El Puente entre la Guerra y la Ingeniería: James B. Eads

James Buchanan Eads (1820-1887). https://es.wikipedia.org/wiki/James_Buchanan_Eads

James Buchanan Eads (23 de mayo de 1820 – 8 de marzo de 1887) fue un ingeniero e inventor estadounidense de renombre mundial, cuya vida estuvo marcada por la autodisciplina, la innovación técnica y una profunda comprensión del río Misisipi. Obtuvo más de 50 patentes y fue reconocido a nivel internacional. Diseñó y construyó el Puente Eads sobre el río Misisipi en San Luis, el cual fue declarado Monumento Histórico Nacional.

Primeros años y formación autodidacta

Eads nació en Lawrenceburg, Indiana, en 1820. Su segundo nombre, Buchanan, se lo pusieron en honor a James Buchanan, primo de su madre y congresista por Pensilvania y futuro presidente de Estados Unidos. La infancia de Eads fue nómada y difícil. La inestabilidad económica de su padre, involucrado en negocios poco exitosos, obligó a la familia a trasladarse repetidamente: primero a Cincinnati (Ohio), luego a Louisville (Kentucky) y, por último, a St. Louis (Misuri).

A los 13 años, Eads tuvo que dejar la escuela para ayudar a la familia. Uno de sus primeros empleos fue en Williams & Dühring, una tienda de comestibles en St. Louis. Su jefe, Barrett Williams, notó su inquietud intelectual y le permitió acceder libremente a su biblioteca personal, ubicada sobre la tienda. En su tiempo libre, el joven James devoraba libros de física, mecánica, maquinaria e ingeniería, convirtiéndose así en un ingeniero autodidacta.

Inicios en el río y éxito empresarial

A los 18 años, Eads se embarcó como sobrecargo en un barco de vapor que recorría el Misisipi, donde se familiarizó con los riesgos y desafíos de la navegación fluvial. Al observar la gran cantidad de naufragios y la pérdida de mercancías valiosas, comenzó a imaginar métodos para recuperar cargamentos hundidos.

A los 22 años, inventó un barco de salvamento revolucionario al que denominó «submarino». Aunque no era una nave sumergible en sí, permitía que Eads descendiera al fondo del río mediante una campana de buceo construida con un barril de whisky de cuarenta galones, adaptado con una manguera para el suministro de aire desde la superficie. Gracias a este invento, podía caminar por el fondo del río y recuperar objetos de valor, como lingotes de plomo y hierro. En una ocasión, incluso extrajo un tarro de mantequilla en buen estado de conservación.

Durante los doce años que estuvo al frente de su empresa de salvamento en el río Misisipi, esta prosperó tanto que, en 1857, Eads se retiró temporalmente con una considerable fortuna. Incursionó brevemente en la industria del vidrio, fundando la primera fábrica de vidrio en el oeste de EE. UU., pero este proyecto se vio interrumpido por la Guerra con México, por lo que volvió al negocio de salvamento en 1848. Con el tiempo, su flota alcanzó las diez embarcaciones y uno de sus barcos más avanzados logró bombear el agua y reflotar cascos hundidos desde el lecho del río.

Guerra Civil: la revolución de los ironclads

Con el estallido de la Guerra Civil en 1861, Eads fue convocado a Washington por el fiscal general Edward Bates, quien le había recomendado a causa de su amistad, para ofrecer su experiencia en la defensa fluvial del Misisipi. El gobierno federal aceptó finalmente su propuesta de construir una flotilla de buques acorazados con poco calado, propulsados por vapor y adecuados para los ríos del interior.

Eads fue contratado para construir una serie de ironclads y, en tan solo cinco meses, entregó siete embarcaciones. Además, transformó el vapor fluvial New Era en el acorazado Essex, que se convirtió en una pieza clave de la flota de la Unión. Atendió a las observaciones de los oficiales de la Flotilla Occidental e incorporó mejoras en cada iteración. A lo largo de la guerra, construyó más de 30 acorazados fluviales que participaron en batallas clave como las de Forts Henry y Donelson, Memphis, Vicksburg, Isla n.º 10 y Mobile Bay. Estas embarcaciones fueron los primeros acorazados en combatir en América y, junto con el famoso duelo del Monitor y el Merrimack, marcaron un hito en la historia naval.

El Puente Eads: obra maestra de la ingeniería

Tras la guerra, Eads fue seleccionado para liderar uno de los proyectos de ingeniería más ambiciosos de su tiempo: el primer puente ferroviario y de carretera que cruzaría el río Misisipi en San Luis. Las obras comenzaron el 20 de agosto de 1867 y se enfrentaron a numerosos desafíos técnicos y políticos.

El Puente Eads, concluido en 1874, fue el primero de gran tamaño construido con acero estructural y el más largo del mundo en su momento. Eads fue también pionero en emplear el sistema de vigas en voladizo (cantilever), lo que permitió mantener la navegación fluvial durante su construcción. Para cimentar sus tres arcos de acero de más de 500 pies cada uno, se excavó hasta el lecho rocoso a más de 30 metros bajo el río. Esto obligó a trabajar con cámaras de aire comprimido, lo que provocó casos de enfermedad por descompresión. Eads respondió instalando una clínica flotante, mejorando la alimentación del personal, aplicando una descompresión gradual y construyendo un elevador de acceso.

La calidad del acero también fue objeto de una supervisión estricta. Su proveedor, Andrew Carnegie, tuvo que volver a laminar algunas partidas hasta en tres ocasiones por no cumplir con la resistencia mínima exigida de 60 000 psi (414 MPa). Durante la construcción del arco central, una ola de calor deformó temporalmente la estructura, por lo que Eads tuvo que implementar su solución alternativa: un tapón roscado de hierro forjado que permitió ajustar y cerrar con precisión el último tramo del arco, tarea que se completó el 17 de septiembre de 1873. El puente se inauguró oficialmente el 4 de julio de 1874 y sigue en funcionamiento hasta hoy.

Puente Eads. https://es.wikipedia.org/wiki/James_Buchanan_Eads

El Puente Eads fue designado Monumento Histórico Nacional por el Departamento del Interior en 1964 y el 21 de octubre de 1974 fue inscrito como Monumento Histórico Nacional de Ingeniería Civil por la Sociedad Americana de Ingenieros Civiles. También recibió un Premio Especial de Reconocimiento del Instituto Americano de Construcción en Acero en 1974, en el centenario de su puesta en servicio. Eads también diseñó los diques del paso sur del río Misisipi, que fueron declarados Monumentos Históricos Nacionales de Ingeniería Civil en 1982.

Espigones en Nueva Orleans y nuevos proyectos

Posteriormente, el Gobierno le solicitó ayuda para resolver otro problema crítico: garantizar un canal navegable permanente en Nueva Orleans. Eads propuso construir una serie de espigones para alterar el comportamiento sedimentario del río. El proyecto fue financiado inicialmente por Eads, bajo la condición de recibir el pago solo si tenía éxito. En menos de cinco años, en 1879, había creado un canal estable y profundo que facilitaba el comercio marítimo durante todo el año.

Inspirado por este logro, Eads presentó una alternativa al canal de Panamá: un ferrocarril interoceánico en Tehuantepec (México) que transportaría barcos sobre plataformas móviles. Sin embargo, pese a sus esfuerzos, el Congreso de EE. UU. rechazó dos proyectos de ley para financiar la obra.

Reconocimientos y últimos años

James B. Eads fue el primer ingeniero estadounidense en recibir la Medalla Albert de la Royal Society of Arts de Londres. También trabajó como consultor en obras de infraestructura en Liverpool (Inglaterra), Toronto (Canadá), Veracruz y Tampico (México). Se casó en dos ocasiones y tuvo dos hijas biológicas y tres hijastras.

Eads falleció el 8 de marzo de 1887 en Nassau (Bahamas), dejando tras de sí un legado que combinaba genialidad técnica, profundo conocimiento práctico e incansable espíritu innovador. Su vida y su obra continúan siendo referentes en la historia de la ingeniería civil y naval.

En 1920, Eads fue incluido en el Pabellón de la Fama de los Grandes Americanos, ubicado en los terrenos del Bronx Community College en Nueva York. Cada año, la Academia de Ciencias de St. Louis otorga el Premio James B. Eads para reconocer a una persona distinguida por sus logros sobresalientes en ciencia y tecnología. En 1927, los decanos de las facultades de ingeniería de Estados Unidos votaron a Eads como uno de los cinco mejores ingenieros de todos los tiempos, un honor que compartió con Leonardo da Vinci, James Watt, Ferdinand de Lesseps y Thomas A. Edison.

Os dejo unos vídeos de su figura.

Puentes ferroviarios de acero a finales del siglo XIX

En las últimas décadas del siglo XIX, el desarrollo de los puentes ferroviarios de acero se convirtió en uno de los pilares fundamentales de la ingeniería civil moderna. Esta evolución estuvo estrechamente relacionada con la necesidad de estructuras capaces de soportar trenes más pesados y mayores luces, y a la vez fue catalizadora de avances decisivos en la producción y uso estructural del acero. Desde los primeros arcos hasta las grandes estructuras continuas en voladizo, los puentes de acero no solo respondieron a una necesidad funcional, sino que impulsaron la transformación de la tecnología de construcción a escala global.

El puente Eads: origen del acero en la ingeniería ferroviaria

Puente Eads. https://es.wikipedia.org/wiki/Puente_Eads

El primer uso del acero en un puente se produjo en 1828, durante la construcción de un puente colgante en Viena (Austria), en el que se incorporaron cadenas de suspensión de acero fabricadas mediante el proceso de horno de solera abierta. El primer empleo del acero en un puente ferroviario se produjo en la construcción del puente de St. Louis, posteriormente conocido como puente Eads, entre 1869 y 1874. Este puente, que cruza el río Misisipi en Misuri, constaba de dos vanos laterales de 152 m y un vano central de 158,5 m, y supuso un hito técnico sin precedentes. Diseñado por James B. Eads, incorporó por primera vez miembros tubulares huecos en los cordones de las armaduras y empleó el método de cajones neumáticos para cimentaciones profundas, algo revolucionario para la época. Este método de construcción de pilas también fue utilizado por Brunel en la construcción del puente Royal Albert en Saltash (Reino Unido) en 1859. Thomas Telford había propuesto este método en 1800 para un puente de hierro fundido que cruzaría el río Támesis en Londres, y Robert Stephenson lo utilizó en 1846 para construir un puente ferroviario de arco de hierro para evitar el uso de cimbra en el concurrido canal del estrecho de Menai. Eads utilizó principios desarrollados por Galileo en el siglo XVII para explicar a los escépticos los fundamentos de la construcción en voladizo de arcos. Eads no tenía una formación académica en ingeniería, pero contó con la ayuda de Charles Pfeiffer para el diseño y de Theodore Cooper para la construcción.

Eads rechazó el uso del puente colgante —considerado demasiado flexible para cargas ferroviarias— y propuso en su lugar un puente de arcos de hierro fundido, sobre los cuales se dispuso una armadura adicional que aumentaba la rigidez del tablero ferroviario. En 1864, John Roebling propuso un puente colgante para este emplazamiento. La estructura generó tanto escepticismo público y mediático que, antes de su apertura, Eads realizó pruebas de carga con catorce de las locomotoras más pesadas disponibles en el país. La magnitud del proyecto fue tan grande que prácticamente agotó los recursos de la incipiente industria siderúrgica estadounidense.

Expansión de la industria del acero y el papel del ferrocarril

La demanda de puentes con mayores luces por parte de los ferrocarriles norteamericanos, junto con el aumento constante del peso de locomotoras y vagones, impulsó el crecimiento de la industria del acero. Figuras como Andrew Carnegie invirtieron decididamente en mejorar los procesos de producción del acero para conseguir materiales con mayor resistencia y ductilidad. Este impulso dio lugar, en 1879, a la construcción del primer puente ferroviario íntegramente de acero, con celosías tipo Whipple, por parte de la Chicago and Alton Railway en Glasgow, Misuri.

La transición del puente colgante al sistema en voladizos

Aunque algunos ingenieros estadounidenses siguieron diseñando puentes ferroviarios colgantes, la preocupación por su flexibilidad frente a cargas dinámicas y viento persistía. Aun así, el famoso puente de Brooklyn, finalizado en 1883, incluía dos líneas ferroviarias. Sin embargo, el aumento de la masa de las locomotoras y la necesidad de una mayor rigidez estructural provocaron el declive de los puentes colgantes como solución ferroviaria.

La solución técnica más eficaz se encontró en el diseño cantilever, o de avance en voladizo, que permitía construir grandes luces sin cimbra y con suficiente rigidez para cargas dinámicas. El primer puente ferroviario cantilever (también llamado tipo Gerber) construido en Estados Unidos fue el de la Cincinnati Southern Railway sobre el río Kentucky en 1877. En 1883, la Michigan Central and Canada South Railway completó un puente cantiléver de viga de tablero superior sobre el desfiladero del Niágara, paralelo al puente colgante ferroviario de Roebling de 1854. Poco después, en 1884, la Canadian Pacific Railway cruzó el río Fraser, en Columbia Británica, con el primer puente cantilever de acero completamente equilibrado de tablero superior.

Estas estructuras, con brazos en voladizo y tramos suspendidos, se convirtieron en la solución habitual para grandes luces, ya que permitían un diseño estáticamente determinado, rigidez adecuada frente a cargas móviles y la eliminación de la cimbra en el vano principal.

El impulso de Theodore Cooper y la estandarización del acero

En 1880, el ingeniero Theodore Cooper publicó un influyente artículo titulado The Use of Steel for Railway Bridges ante la Sociedad Americana de Ingenieros Civiles (ASCE), en el que promovía el uso exclusivo del acero para puentes ferroviarios. A raíz de ello, casi todos los puentes ferroviarios estadounidenses posteriores se construyeron con acero, y hacia 1895 este material también se utilizaba en otras tipologías de puentes. Para entonces, la producción de perfiles estructurales de acero para puentes ya estaba plenamente desarrollada en el país. Para 1895, las formas estructurales ya no se fabricaban en hierro, sino que se utilizaba acero de manera exclusiva.

El puente de Forth: el cantiléver monumental europeo

Puente de Forth. https://es.wikipedia.org/wiki/Puente_de_Forth

En el Reino Unido, el gobierno levantó la prohibición del uso del acero en puentes ferroviarios en 1877. Una década más tarde, el ingeniero Benjamin Baker, tras estudiar numerosos puentes cantiléver estadounidenses —especialmente los de la Canadian Pacific Railway—, propuso un diseño para el puente sobre el estuario del Forth, en Escocia. Antes de esto, Baker quizá no conocía el trabajo de los ingenieros C. Shaler Smith o C. C. Schneider, quienes ya habían diseñado y construido puentes ferroviarios en voladizo en Estados Unidos. El puente de Forth, completado en 1890, se convirtió en un hito de la ingeniería europea: un gigantesco puente cantiléver de acero con brazos de 207 m y un vano suspendido de 107 m.

Pese a las dudas de algunos ingenieros respecto a la fiabilidad del acero Bessemer por su posible fragilidad, Baker lo empleó en el proyecto. La estructura demostró una rigidez excepcional: la deflexión máxima medida con locomotoras pesadas fue de solo 90 mm, muy cerca del valor teórico previsto de 100 mm. También se sometió a pruebas con dos trenes de carbón largos y pesados en condiciones de viento extremas, con una deflexión inferior a 180 mm.

El puente de Quebec: tragedia, rediseño y récord mundial

Puente de Quebec. https://es.wikipedia.org/wiki/Puente_de_Quebec

La siguiente gran estructura cantiléver fue el puente de Quebec, sobre el río San Lorenzo. Con un vano central de 549 m, aún es en la actualidad el puente cantiléver de mayor luz del mundo. Sin embargo, su construcción estuvo marcada por dos catastróficos fallos: en 1907, un error en el cálculo de las tensiones de compresión durante la fase de voladizo provocó el colapso de la estructura. En la reconstrucción se utilizó acero con níquel como nuevo material. No obstante, en 1916, el vano suspendido cayó al ser izado. Finalmente, el puente se terminó y se abrió al tráfico ferroviario en 1917. Los proyectistas originales fueron Theodore Cooper y Peter Szlapka, de la empresa Phoenixville Bridge Company. Tras el colapso, H. E. Vautelet presentó un nuevo diseño, pero la remodelación del puente se licitó entre varias empresas constructoras y fue ejecutada por G. H. Duggan (St. Lawrence Bridge Company) bajo la dirección de C. C. Schneider, R. Modjeski y C. N. Monsarrat. El acero aleado con níquel se utilizó por primera vez en 1909 en el puente de Blackwell’s Island (hoy Queensboro), en Nueva York. El acero con níquel también fue empleado extensamente por J. A. L. Waddell en diseños de puentes ferroviarios de grandes luces. A. N. Talbot realizó ensayos de conexiones de acero con níquel para la reconstrucción del puente de Quebec.

Puentes de tramo continuo: una opción limitada en América

Mientras que en Europa los puentes de tramo continuo se hicieron más frecuentes, en América del Norte se evitaban por su carácter estáticamente indeterminado. Una excepción fue el puente ferroviario de la Canadian Pacific Railway en Montreal, construido en 1886 con tramos principales de 124,5 m. Se utilizó un método cantiléver para su construcción, controlando cuidadosamente las deformaciones en los cordones inferiores mediante tensores y tornillos ajustables. Estos vanos fueron reemplazados en 1912 debido a las preocupaciones sobre su comportamiento bajo cargas ferroviarias más pesadas. El extremo principal de las cerchas de reemplazo del vano simple se apoyó mediante cimbras sobre una barcaza móvil durante su instalación en un trazado adyacente.

El primer gran puente ferroviario de acero de Francia fue el Viaducto del Viaur, que se construyó en 1898. Este puente de arco en celosía tipo cantilever es inusual, ya que no tiene un vano suspendido, por lo que la estructura es estáticamente indeterminada. Muchos ingenieros consideran que el diseño no era apropiado para cargas ferroviarias.

Viaducto del Viaur. https://es.wikipedia.org/wiki/Viaducto_del_Viaur

La consolidación de nuevas técnicas: roblonado y acero de alto carbono

A principios del siglo XX, muchas estructuras de hierro y acero fueron sustituidas debido al aumento de peso de las locomotoras. El peso típico de las locomotoras era de aproximadamente 40 t en 1860, 70 t en 1880, 100 t en 1890, 125 t en 1900 y 150 t en 1910. Aunque el roblonado era común en Europa, en Estados Unidos no se estandarizó en puentes de gran luz hasta alrededor de 1915. El roblonado se utilizaba en vanos de menor luz a principios del siglo XX.

Uno de los primeros ejemplos destacados fue el Hell Gate Bridge en Nueva York, una estructura de arco de acero de 298 m completada en 1916 para soportar cuatro vías ferroviarias. Fue erigido sin cimbra y empleó por primera vez acero con alto contenido en carbono, principalmente, debido al alto coste del acero aleado.

Ese mismo año, la Chesapeake & Ohio Railroad terminó el puente de Sciotoville, en Ohio, con dos tramos continuos de 236,5 m, el más largo de su tipo hasta hoy.

Puente de Sciotoville. https://en.wikipedia.org/wiki/Sciotoville_Bridge

Un legado de 80.000 puentes

En 1910 se estimaba que había unos 80 000 puentes de hierro y acero en Estados Unidos, que sumaban un total de 2250 kilómetros sobre una red de 300 000 km de vías. La mayoría de los puentes eran de construcción de acero a principios del siglo XX. El ferrocarril, en su rápida expansión tras la Guerra Civil, se convirtió en el principal motor de innovación estructural, propiciando el paso de la madera y la mampostería al hierro y, finalmente, al acero.

El desarrollo de procesos como el Bessemer (1856) y el horno Siemens-Martin (1867) permitió la producción económica del acero. Así, los puentes ferroviarios de acero se convirtieron en una respuesta ingenieril al desafío logístico de la era industrial, marcando el inicio de la ingeniería estructural moderna.

 

Los orígenes la ingeniería de puentes ferroviarios: Resistencia de materiales y mecánica estructural

Puente antiguo en celosía para un ferrocarril de vía única, reconvertido para uso peatonal y soporte de tuberías. https://es.wikipedia.org/wiki/Puente_en_celos%C3%ADa

El desarrollo de la ingeniería de puentes ferroviarios se ha sustentado en el avance progresivo de disciplinas fundamentales como la resistencia de materiales y la mecánica estructural. A lo largo de los siglos XVII y XVIII, diversos científicos establecieron los fundamentos del análisis racional de estructuras. En 1678, Robert Hooke formuló la ley que relaciona la fuerza elástica con la deformación. En 1705, Jacob Bernoulli llevó a cabo un estudio exhaustivo sobre las curvas de deflexión. Leonhard Euler y Charles-Augustin de Coulomb fueron pioneros en la investigación de la estabilidad elástica de los elementos sujetos a compresión. Posteriormente, en 1826, Louis Navier sentó las bases de una teoría más exhaustiva de la elasticidad.

Francia ocupó una posición destacada en la promoción de estos avances durante el siglo XVIII, contribuyendo significativamente al desarrollo de ingenieros dotados de una sólida formación científica. Estos profesionales ejercieron una notable influencia en el campo de la ingeniería ferroviaria estadounidense. Dignos de mención son los ingenieros Charles Ellet (1830), Ralph Modjeski (1855), L. F. G. Bouscaren, ingeniero jefe del ferrocarril de Cincinnati Southern (1873) y H. E. Vautelet, ingeniero de puentes del Canadian Pacific Railway hacia 1876, quienes se formaron en las primeras escuelas de ingeniería francesas. Esta formación, fundamentada en un enfoque riguroso de las matemáticas, la mecánica y el análisis estructural, resultó determinante en el desarrollo de la ingeniería de puentes ferroviarios en América del Norte. En este contexto, los profesionales aplicaron los principios adquiridos en Francia, introduciendo un diseño más racional y científico en sus respectivos contextos ferroviarios. Entre 1885 y 1889, el ingeniero alemán F. Engesser, especializado en puentes ferroviarios, realizó importantes avances en el análisis de la estabilidad de los elementos comprimidos. Gracias a su trabajo, este tipo de estudios se pudieron generalizar para su aplicación práctica en ingeniería estructural, y los ingenieros disponían de herramientas más precisas para evaluar el riesgo de pandeo en columnas y otros elementos críticos de los puentes metálicos. Estos desarrollos fueron especialmente relevantes en un contexto de creciente demanda de estructuras más resistentes y fiables en la red ferroviaria europea.

Desde su nacimiento en la década de 1820, el ferrocarril se expandió rápidamente durante más de ochenta años. Este crecimiento constante, unido al aumento del peso de las locomotoras, provocó que muchos puentes tuvieran que ser reemplazados cada diez o quince años. La necesidad de estructuras más resistentes, con mayor luz y fiabilidad, unida a los fallos estructurales que se producían en servicio, impulsó a los ingenieros de mediados del siglo XIX a adoptar un enfoque más científico en el diseño de puentes de hierro y acero. A causa del elevado número de accidentes ferroviarios debidos a fallos estructurales en los puentes, la ingeniería de estos elementos experimentó una evolución significativa a lo largo del siglo XIX. Estos incidentes pusieron de manifiesto la necesidad urgente de adoptar un enfoque más riguroso y científico en el diseño y la evaluación de las estructuras, lo que impulsó una serie de investigaciones y avances técnicos fundamentales para garantizar la seguridad en el transporte ferroviario.

En Estados Unidos, esta práctica era principalmente empírica, basada en la experiencia y en la repetición de diseños de armaduras probadas, como las de tipo Town, Long, Howe y Pratt, en los que se mejoraban los materiales, pero sin un conocimiento profundo de las fuerzas internas. Este enfoque se reveló insuficiente entre 1850 y 1870, cuando se produjeron numerosos fallos estructurales. La necesidad de aumentar la seguridad y responder a cargas mayores llevó al desarrollo de métodos analíticos más rigurosos. En este contexto, Squire Whipple publicó en 1847 el primer análisis racional de celosías isostáticas mediante el método de los nudos, lo que supuso un hito en la historia de la ingeniería estructural.

Puente Britannia. https://es.wikipedia.org/wiki/Puente_Britannia

Entretanto, en Europa, ingenieros franceses, alemanes y británicos también avanzaban en la teoría de la elasticidad y la mecánica estructural. En 1849, P. E. Clapeyron desarrolló la ecuación de los tres momentos, que aplicó en 1857 al análisis del puente Britannia. El diseño de este puente se basó en un análisis de tramos simples, a pesar de que Fairbairn y Stephenson eran conscientes de los efectos de la continuidad sobre la flexión. Los tramos se montaron inicialmente con apoyos simples y, posteriormente, se elevaron secuencialmente en los pilares correspondientes. Una vez en su posición, los tramos se conectaron mediante placas remachadas para lograr la continuidad del mismo, un enfoque innovador que permitió superar las limitaciones de los métodos tradicionales de construcción de puentes de la época. En el Reino Unido, los ingenieros ferroviarios realizaron ensayos con metales y modelos a escala para evaluar la resistencia y estabilidad de los puentes.

A partir de los trabajos de Whipple, dos ingenieros europeos destacaron especialmente: D. J. Jourawski y Karl Culmann. Jourawski criticó el uso de refuerzos verticales de placa empleados por Stephenson en el puente Britannia. Consideraba que esta solución no era la más adecuada para garantizar la resistencia y estabilidad del puente y destacaba la importancia de emplear métodos más eficientes en el diseño de elementos de compresión en estructuras de gran envergadura. Culmann, ingeniero del Ferrocarril Real Bávaro, fue un defensor temprano del análisis matemático de estructuras. En 1851, estudió en detalle las celosías como la Howe, ampliamente utilizadas en Estados Unidos. Karl Culmann no solo se centró en celosías isostáticas como las de tipo Howe, sino que también analizó estructuras hiperestáticas, como las celosías Long, Town y Burr. Estas configuraciones, más complejas desde el punto de vista estructural por ser estáticamente indeterminadas, fueron estudiadas por Culmann mediante métodos aproximados, lo que supuso un paso importante para comprender y evaluar este tipo de estructuras. Aunque no se disponía aún de herramientas matemáticas completamente desarrolladas para resolver estos sistemas con precisión, sus aproximaciones permitieron establecer criterios útiles para su diseño y validación en el contexto ferroviario de la época.

Tipos estructurales celosías metálicas (vía @dobooku)

Durante esta misma época, se desarrollaron nuevas formas estructurales como la celosía Warren (1846) y W. B. Blood ideó en 1850 un método de análisis específico para armaduras trianguladas. La viga Warren, caracterizada por su estructura triangular regular y su eficiencia en la distribución de esfuerzos, se utilizó por primera vez en un puente ferroviario en 1853, en la línea del Great Northern Railway del Reino Unido. Este hecho marcó el inicio de su aplicación práctica en la infraestructura ferroviaria, consolidándose progresivamente como una de las tipologías estructurales más versátiles y extendidas en Europa y América del Norte.

En el Reino Unido, la investigación sobre los efectos de las cargas móviles y la velocidad también se inició en la década de 1850, precedida por los estudios teóricos de Stokes y Willis sobre vibraciones y resistencia. Fairbairn abordó en 1857 el impacto de estas cargas sobre estructuras isostáticas.

En 1862, el ingeniero alemán J. W. Schwedler presentó una teoría fundamental sobre momentos flectores y esfuerzos cortantes en vigas, y contribuyó al análisis de armaduras mediante el uso del método de secciones. Ese mismo año, A. Ritter perfeccionó dicho método al desarrollar un enfoque basado en el equilibrio en la intersección de dos barras de la armadura. Paralelamente, entre 1864 y 1874, James Clerk Maxwell y Otto Mohr desarrollaron y perfeccionaron los métodos gráficos para el análisis de celosías. Estas técnicas permitieron representar visualmente y con gran precisión los flujos de fuerza en las estructuras, lo que facilitó el diseño y la comprensión del comportamiento estructural.

Además, Maxwell y W. J. M. Rankine realizaron importantes aportaciones teóricas en ámbitos clave como los cables de suspensión en puentes metálicos, las vigas en celosía y los efectos de flexión, cortante, deformación y estabilidad en elementos comprimidos. Sus trabajos sentaron las bases de muchas de las prácticas modernas en ingeniería de estructuras metálicas y contribuyeron decisivamente al avance del diseño de puentes ferroviarios. Culmann también abordó el análisis de vigas continuas y largueros, y en 1866 publicó una descripción general del método para diseñar puentes en voladizo. En 1866, Karl Culmann publicó una descripción extensa y sistemática del análisis gráfico de celosías, consolidando así una metodología visual que permitió a los ingenieros calcular con mayor claridad y eficacia las fuerzas internas en estructuras complejas. Su obra no solo facilitó el diseño de puentes ferroviarios más seguros y eficientes, sino que también sirvió como referencia durante décadas en la enseñanza y práctica de la ingeniería estructural.

Posteriormente, Culmann desarrolló teorías sobre cargas móviles y flexión de vigas que fueron ampliamente aceptadas en Europa y Estados Unidos. En 1867, E. Winkler introdujo las líneas de influencia, una herramienta clave para el análisis de estructuras sometidas a cargas en movimiento.

El estudio de los efectos dinámicos del tráfico ferroviario, como los impactos derivados de las irregularidades de la vía, el «golpe de ariete» de las locomotoras, el cabeceo, el balanceo y la oscilación, continuó impulsando la investigación teórica y experimental. El aumento de la carga ferroviaria también generó preocupación por la fatiga del material, un campo en el que A. Wöhler destacó por sus estudios para los ferrocarriles alemanes.

A finales del siglo XIX, la ingeniería de puentes ferroviarios en Norteamérica dio un nuevo paso hacia la consolidación de una práctica plenamente científica. El ingeniero J. A. L. Waddell desempeñó un papel clave en este proceso, ya que en 1898 y 1916 publicó dos obras de referencia sobre el diseño de puentes de acero. Estos textos sentaron las bases de una metodología rigurosa y estandarizada para el diseño estructural en el ámbito ferroviario.

Hasta entonces, era habitual que las compañías ferroviarias adquiriesen puentes completos a fabricantes que ofrecían soluciones prefabricadas y de diseño propio. Waddell y otros ingenieros promovieron un cambio radical: que los diseños los realizaran de forma independiente, ingenieros cualificados basándose en principios científicos y que las empresas solo se encargaran de la fabricación. La Erie Railroad fue la primera en aplicar este nuevo modelo, y su ejemplo fue seguido rápidamente por el resto de compañías ferroviarias estadounidenses. Así, el diseño independiente y técnicamente fundamentado se convirtió en la norma.

Así, a comienzos del siglo XX, la ingeniería de puentes ferroviarios había alcanzado una madurez técnica plena en Estados Unidos y Europa, basada en fundamentos científicos sólidos, metodologías de cálculo avanzadas y una clara profesionalización del diseño estructural.

Os dejo un vídeo de un puente de ferrocarril en celosía tipo Warren.

Puentes de fundición en la ingeniería ferroviaria

Figura 1. Puente de hierro de Stephenson atravesando el río Gaunless. https://es.wikipedia.org/wiki/Ferrocarril_de_Stockton_y_Darlington

Durante el siglo XIX, el crecimiento vertiginoso de las redes ferroviarias en el Reino Unido y Estados Unidos planteó un gran desafío técnico: construir puentes capaces de soportar trenes cada vez más pesados y recorrer distancias más largas.

Los materiales tradicionales, como la madera y la piedra, no podían hacer frente a estas nuevas exigencias. En este contexto, surgió un nuevo material en la historia de la ingeniería: el hierro fundido.

¿Qué es el hierro fundido?

El hierro fundido, también conocido como fundición de hierro o hierro colado, es una aleación de hierro con un alto contenido de carbono (normalmente entre un 2 % y un 4 %), lo que facilita su fundición y moldeado. Se obtenía vertiendo el metal fundido en moldes, lo que permitía fabricar piezas con formas complejas y repetitivas. Su gran resistencia a la compresión lo hacía ideal para soportar cargas pesadas, especialmente en elementos estructurales como arcos y pilares.

Sin embargo, también tenía una limitación importante: era frágil, es decir, podía romperse de forma repentina si se sometía a esfuerzos de tracción o impactos bruscos. Esta característica marcaría el principio y el final de su uso en los puentes ferroviarios, como veremos.

Los primeros puentes de fundición

Figura 2. Vista del Iron Bridge. https://es.wikipedia.org/wiki/Iron_Bridge

Los primeros puentes metálicos se fabricaron de fundición y la mayoría tienen estructuras poco claras, heredadas de los puentes de piedra y de madera. La herencia de tipologías anteriores es habitual cuando se comienza con un nuevo material.

El primer puente metálico del mundo se construyó en 1779 en Coalbrookdale (Reino Unido). Se trataba de un arco de fundición de 30,5 m de altura que cruzaba el río Severn. Este puente demostró que era posible utilizar metales con éxito en grandes estructuras. En estos primeros puentes, los arcos se construían con barras unidas por pernos.

Décadas más tarde, en 1839, Estados Unidos siguió este ejemplo con un puente similar de 24,5 m en Brownsville (Pensilvania). Estos arcos de fundición fueron los primeros puentes ferroviarios metálicos y su uso se extendió rápidamente a medida que las locomotoras se volvían más pesadas y las distancias más largas.

Uno de los puentes más antiguos que aún se conserva es el de Merthyr Tydfil (Gales), construido en 1793. Con una longitud de 14 m, fue concebido para una línea industrial de tranvías y constituye el puente ferroviario de hierro colado más antiguo que aún se mantiene en pie.

En 1823, George Stephenson —uno de los padres del ferrocarril moderno— construyó el primer puente de hierro fundido para una línea pública: el ferrocarril de Stockton a Darlington. Para ello, se utilizaron tramos de 3,8 m en forma de lentes, apoyados sobre caballetes. Esta solución sentó un precedente para numerosas otras estructuras que facilitarían el cruce de valles anchos o profundos sin pendientes pronunciadas, aspecto fundamental debido a la limitada capacidad de tracción de las primeras locomotoras.

El desarrollo del hierro fundido en la ingeniería ferroviaria

A medida que las exigencias del ferrocarril aumentaban, ingenieros británicos de renombre como Robert Stephenson e Isambard Kingdom Brunel diseñaron puentes de arco de fundición que demostraban una eficacia notable en la compresión. A partir de 1830, se inició la construcción de arcos y vigas de fundición en el Reino Unido. En Estados Unidos, la empresa ferroviaria B&O se dedicó a la fabricación de vigas de fundición en 1846, siendo seguida por otras compañías como Pennsylvania Railroad en 1853 y Boston and Albany Railroad en 1860.

El primer puente ferroviario de Richmond fue construido por el contratista Thomas Brassey y diseñado por los ingenieros civiles Joseph Locke y J. E. Errington en nombre del Ferrocarril de Londres y del Suroeste (L&SWR). El puente ferroviario de Richmond, Windsor y Staines fue inaugurado en 1848. Debido a las preocupaciones sobre el uso de la fundición en su construcción, fue reconstruido durante la década de 1900, siendo el principal cambio la sustitución de elementos de hierro por otros de acero.

Cabe señalar que uno de los hitos más destacados fue el viaducto de Crumlin, en Gales, construido en 1857. Con una estructura mixta y elementos de fundición, permitía atravesar un valle de forma eficiente y fue considerado un logro técnico en su época.

En paralelo, en Estados Unidos se empezó a usar predominantemente cerchas compuestas por madera, hierro fundido y hierro forjado, una aleación de hierro que resulta más dúctil y resistente a la tracción. Un ejemplo notable es la cercha tipo Howe, que integra elementos de compresión en hierro fundido y de tracción en hierro forjado, complementados con piezas de madera.

La fragilidad del hierro fundido y su declive

Figura 3. Desastre del puente del Dee. https://es.wikipedia.org/wiki/Desastre_del_puente_del_Dee

A pesar de sus ventajas, el hierro fundido presentaba una desventaja significativa: su fragilidad ante cargas dinámicas y golpes. En 1847, el colapso del puente ferroviario del Dee, con vigas de fundición en el Reino Unido, generó un extenso debate entre ingenieros británicos (Figura 3). Provocó cinco víctimas mortales y puso de manifiesto la debilidad de los puentes de vigas de fundición de hierro reforzadas con tirantes de hierro forjado. Además, recibió fuertes críticas hacia su diseñador, el ingeniero Robert Stephenson, hijo del también ingeniero George Stephenson. Se llegó a la conclusión de que, a pesar de su resistencia a la compresión, el hierro fundido no demostraba una respuesta óptima ante las fuerzas de tracción ni ante los impactos generados por las locomotoras al atravesar los puentes.

En Estados Unidos, el problema también se hizo evidente. Tras el lamentable incidente del derrumbe de un puente de hierro en la línea Erie Railroad en 1850, algunas compañías se vieron compelidas a sustituir las estructuras de hierro por otras de madera. No obstante, otras, como el ferrocarril B&O, mantuvieron la utilización del hierro fundido, aunque con mayores medidas de precaución y principalmente en elementos que solo operaban bajo compresión.

A partir de la década de 1850, el uso del hierro forjado se fue imponiendo progresivamente por su mayor resistencia a los esfuerzos de tracción. En Europa, la construcción de puentes ferroviarios de hierro colado cesó alrededor de 1867. Un ejemplo notable fue el puente sobre el río Garona en Francia, construido por Gustave Eiffel en 1860, con una longitud de 488 m.

En Estados Unidos, el hierro fundido continuó siendo utilizado durante un período adicional de aproximadamente una década, aunque con una aplicación más restringida a usos altamente específicos.

Conclusión

El hierro fundido supuso un hito revolucionario en la historia de la ingeniería, posibilitando la construcción de los primeros grandes puentes metálicos. Su facilidad de fabricación y resistencia a la compresión lo convirtieron en una solución ideal en los inicios del ferrocarril. No obstante, su vulnerabilidad ante cargas dinámicas motivó a los ingenieros a explorar materiales más robustos, como el hierro forjado y, posteriormente, el acero.

A pesar de sus limitaciones, el legado del hierro fundido perdura en numerosas estructuras que desafían el paso del tiempo, más de dos siglos después. Más allá de su función estructural, los puentes ferroviarios de hierro fundido también son valorados por su importancia estética, con diseños elaborados que embellecen el entorno donde se sitúan.

 

La ingeniería de la reconstrucción

Imagen del desastre provocado por la DANA. Imagen: V.J. Yepes (10 de noviembre de 2024)

Las catástrofes naturales y humanas han acompañado a la civilización a lo largo de su historia, poniendo a prueba su capacidad de adaptación. Sin embargo, la forma en que se afronta la reconstrucción tras un desastre no puede limitarse a la reposición de lo perdido. El caso de las recientes inundaciones en Valencia el 29 de octubre de 2024 ilustra una realidad que se repite con cada evento extremo: la urgencia de reconstruir suele imponerse a la necesidad de reflexionar. No obstante, si la ingeniería de la reconstrucción se reduce a restablecer el estado previo a la catástrofe, se estaría desperdiciando una oportunidad para corregir vulnerabilidades y minimizar futuros daños.

El primer desafío tras un desastre es la respuesta inmediata. En esta fase, la prioridad es el rescate de personas y la provisión de recursos esenciales. Una vez atendidas estas necesidades básicas, la atención se centra en la recuperación de infraestructuras críticas, como hospitales, redes de agua potable, suministro eléctrico y comunicaciones. Este proceso es complejo, ya que estas infraestructuras no solo deben ponerse en funcionamiento lo antes posible, sino que, en muchos casos, han sufrido daños estructurales que comprometen su funcionalidad.

A partir de este punto surge la cuestión clave: ¿debe la reconstrucción reproducir las mismas condiciones previas a la catástrofe? Desde el punto de vista técnico y económico, esta estrategia es cuestionable. Si las infraestructuras y edificaciones han fallado ante un fenómeno extremo, replicarlas sin modificaciones implica asumir que volverán a fallar en el futuro. En el caso concreto de Valencia, se ha observado que algunos puentes obstaculizaron el flujo del agua y los sedimentos, generando represas que agravaron la crecida. Este problema no es nuevo; estructuras similares han provocado efectos equivalentes en inundaciones anteriores y, sin embargo, su diseño se sigue repitiendo. Por tanto, es necesario un enfoque distinto que incorpore criterios de resiliencia y sostenibilidad en la reconstrucción. En el caso de los puentes, esto podría traducirse en reducir el número de apoyos en el cauce, cimentaciones más profundas para reducir su vulnerabilidad a la erosión y revisar los coeficientes de empuje hidráulico en los cálculos estructurales.

El reto no solo consiste en corregir errores del pasado, sino también en prepararse para escenarios futuros más complejos. El cambio climático está alterando la frecuencia e intensidad de los eventos extremos, lo que obliga a replantear tanto la planificación territorial como la normativa vigente. Lo que antes se consideraba un fenómeno extraordinario puede convertirse en una amenaza recurrente, por lo que es necesario aplicar criterios de diseño más exigentes y estrategias de mitigación más ambiciosas. No se trata únicamente de reforzar las infraestructuras, sino de adaptar las ciudades y las redes de transporte a una realidad en la que las precipitaciones intensas, las sequías prolongadas y el aumento del nivel del mar serán cada vez más frecuentes. La planificación basada en registros históricos ya no es suficiente; la ingeniería debe integrar modelos predictivos y diseñar soluciones flexibles y adaptativas.

Sin embargo, en la reconstrucción tras una catástrofe suele predominar un enfoque táctico, con decisiones orientadas a mostrar una respuesta inmediata a la ciudadanía. La rapidez en la ejecución de ciertas obras genera la percepción de una gestión eficaz, pero este proceder puede ocultar la ausencia de una estrategia que optimice las actuaciones a largo plazo. Si bien es imprescindible contar con equipos de intervención inmediata para hacer frente a la emergencia, también es esencial disponer de un equipo de reflexión que establezca directrices fundamentadas y evite reconstrucciones apresuradas que perpetúen los mismos errores. Algo así como un «ministerio del pensamiento» que sea capaz de analizar las lecciones aprendidas y convertirlas en políticas y proyectos de reconstrucción con criterios sólidos de sostenibilidad y resiliencia.

Esta misma lógica se aplica a la planificación territorial y urbana. Rehabilitar zonas inundables sin considerar estrategias de mitigación perpetúa la exposición al riesgo. En este sentido, la ingeniería tiene el deber de plantear soluciones basadas en evidencia científica y en experiencias previas. La adaptación a eventos extremos no solo implica reforzar estructuras, sino también reconsiderar su localización y función. En muchos casos, las medidas no requieren inversiones desmesuradas, sino una gestión más eficiente del territorio. La creación de zonas de amortiguamiento, la mejora en la capacidad de drenaje y la regulación del uso del suelo son estrategias que pueden marcar la diferencia en futuras catástrofes.

Además, la sostenibilidad a largo plazo implica tener en cuenta a las personas en la ecuación que gobierna los impactos de las actuaciones. No basta con evaluar los efectos sobre las infraestructuras o el medio ambiente, sino que es necesario considerar cómo influyen estas decisiones en la calidad de vida de las personas que habitan los territorios afectados. La reconstrucción debe ir más allá de la restitución de bienes materiales y tener en cuenta también aspectos sociales, económicos y psicológicos. Por ejemplo, esto implicaría reubicar comunidades en zonas seguras, garantizar el acceso equitativo a los servicios básicos y minimizar el impacto de las obras sobre la población más vulnerable. Si la ingeniería no tiene en cuenta estos factores, existe el riesgo de generar soluciones técnicamente eficientes, pero socialmente insostenibles.

Uno de los mayores obstáculos en estos procesos es la fragmentación de competencias. La reconstrucción implica a múltiples actores, desde administraciones locales hasta organismos estatales e internacionales. En muchas ocasiones, la superposición de responsabilidades y la falta de coordinación provocan retrasos y contradicciones en la toma de decisiones. Para evitar este problema, una alternativa viable sería la creación de un consorcio específico encargado de gestionar la reconstrucción, en el que las distintas administraciones deleguen temporalmente parte de sus competencias. Este modelo permitiría una planificación más coherente y una ejecución de proyectos con criterios unificados, lo que evitaría la dispersión de recursos y la toma de decisiones inconexas.

La reconstrucción no es solo un proceso técnico, sino también una oportunidad para transformar el entorno de manera más racional y sostenible. Es indispensable actuar con rapidez, pero no se debe hacer a costa de repetir errores del pasado. La ingeniería, como disciplina, no puede limitarse a solucionar problemas inmediatos, sino que debe anticiparse a los riesgos futuros y ofrecer respuestas fundamentadas en el conocimiento acumulado. Una reconstrucción bien planificada no solo restituye lo destruido, sino que contribuye a construir una sociedad más segura y preparada para afrontar los desafíos futuros.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Evaluación del ciclo de vida social de las alternativas de subestructura ferroviaria

Acaban de publicar un artículo en el Journal of Cleaner Production, revista indexada en el primer decil del JCR. El estudio presenta indicadores sociales diseñados para evaluar el ciclo de vida de las infraestructuras ferroviarias y evalúa los impactos sociales de tres soluciones comunes de este tipo subestructura. La investigación tiene como objetivo determinar la alternativa de diseño más ventajosa desde el punto de vista social para la infraestructura ferroviaria, haciendo hincapié en la importancia de tener en cuenta los factores sociales junto con las dimensiones económicas y ambientales en el desarrollo sostenible. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El estudio utilizó el proceso de redes analíticas (ANP) para sintetizar el desempeño social de las diferentes soluciones de subestructuras en un solo indicador de comparación. La investigación recopiló datos de inventario de las bases de datos oficiales del territorio español para evaluar los indicadores basados en el contexto social. El documento estableció una colección de criterios mensurables y seleccionó seis indicadores sociales basándose en las «directrices» y las fichas metodológicas para las subcategorías de la evaluación del ciclo de vida social. La metodología introducida en la investigación se puede aplicar en la evaluación de los impactos sociales en varios proyectos de infraestructura más allá de los ferrocarriles, como puentes, carreteras o estructuras portuarias, lo que mejora la aplicabilidad de la evaluación del ciclo de vida social.

Las contribuciones más destacables de este trabajo son las siguientes:

  • Introduce indicadores sociales diseñados para evaluar el ciclo de vida de las infraestructuras ferroviarias.
  • Evalúa los impactos sociales de tres soluciones frecuentes de subestructura de vías férreas.
  • Destaca la importancia de considerar los factores sociales junto con las dimensiones económicas y ambientales en el desarrollo de infraestructuras sostenibles.

ABSTRACT

The sustainable design of infrastructure involves assessing economic, environmental, and social impacts. While significant progress has been made in evaluating economic and environmental life cycle impacts since the Paris Agreement, there’s a notable gap in techniques for assessing social aspects in infrastructure design. This study introduces social indicators tailored for evaluating the lifecycle of railway infrastructures. The indicators are applied to assess the social impacts of three common railway track substructure solutions: conventional ballasted track, embedded slab track (BBEST solution), and sleeper-based, ballastless (RHEDA2000) substructure solutions. Using the Analytic Network Process (ANP), the social performance of each alternative is synthesized into a single indicator for comparison. Results indicate that the conventional ballasted track outperforms, scoring 12% higher than BBEST and 61% better than RHEDA in social terms. This is attributed to its reliable capacity for generating high-quality employment and fostering economic activities in the defined product system regions.

KEYWORDS:

Social life cycle assessment; Railway; ANP; Sustainability; Multi-criteria decision-making; Sustainable design.

REFERENCE:

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. (2024). Social life cycle assessment of railway track substructure alternatives. Journal of Cleaner Production, 450:142008. https://doi.org/10.1016/j.jclepro.2024.142008.

Os dejo el artículo para su descarga, pues está publicado en abierto.

Pincha aquí para descargar

Cálculo aproximado del movimiento de tierras entre un perfil en desmonte y otro en terraplén

Figura 1. Secciones en desmonte y terraplén.

Para elaborar el cálculo de la compensación de tierras en un proyecto de infraestructura vial, se requiere de una metodología específica que comienza por la obtención de las mediciones de los volúmenes de tierras entre los perfiles transversales al eje de la vía.

En un artículo previo, se explicó cómo calcular el área de un polígono definido por las coordenadas de sus vértices. A partir de la superficie de los perfiles transversales, se puede proceder al cálculo del volumen de terraplén o de desmonte entre ellos. De esta manera, se podrá determinar el diagrama de masas y optimizar las distancias de transporte para calcular la compensación de tierras.

Sin embargo, se plantea un problema cuando un perfil está en desmonte y el otro en terraplén (Figura 1), o cuando un mismo perfil tiene tanto desmonte como terraplén debido a su ubicación a media ladera. En este artículo vamos a deducir una formulación aproximada para el cálculo de los volúmenes en el caso de que un perfil esté en desmonte y el otro en terraplén. La media ladera será un caso particular del anterior.

El problema que os doy resuelto proporciona una fórmula aproximada de cálculo que solo depende de las áreas de las secciones y de la separación entre ellas. Sin embargo, como podremos comprobar, esta simplificación a veces da errores. Evaluamos un caso concreto para ver hasta qué punto la aproximación es aceptable.

Este tema y los ejercicios resueltos son algunos casos que se explican dentro del Curso de gestión de costes y producción de la maquinaria empleada en la construcción. Os animo a que, si estáis interesados, os informéis de este curso en línea.

Pincha aquí para descargar

Referencias:

YEPES, V. (1995). Maquinaria de movimiento de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-264. 144 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Reglas de Corini y cálculo de la distancia de transporte en la compensación de tierras

Figura 1. Aspecto de un diagrama de masas de Bruckner.

El diagrama de masas de Bruckner permite la optimización del transporte en el movimiento de tierras. De este tema ya hicimos un artículo anterior que os recomiendo repasar. En este vamos a centrarnos más en el proceso de cálculo.

Este tema y ejercicios resueltos son algunos casos que se explican dentro del Curso de gestión de costes y producción de la maquinaria empleada en la construcción. Os animo a que, si estáis interesados, os informéis de este curso en línea.

Volviendo al contenido de este artículo, se trata de determinar los volúmenes a transportar, las distancias de acarreo, los vertederos y los préstamos. Este diagrama permite ajustar la compensación longitudinal y las distancias a las que trasladar los volúmenes de desmonte y terraplén (Figura 1).

Entre las propiedades más interesantes del diagrama, se tienen las siguientes:

  • La ordenada de un punto cualquiera mide el volumen acumulado desde el origen.
  • El volumen excedente acumulado en el origen es nulo, y la horizontal trazada por él, se llama fundamental.
  • La curva de volúmenes es ascendente para desmontes y descendente para terraplenes.
  • Un máximo o un mínimo de la curva, son puntos de paso entre terraplenes y desmontes.
  • La diferencia de ordenadas entre dos puntos mide el volumen a mover entre ambos.
  • Entre las secciones correspondientes a los puntos de intersección de una horizontal cualquiera con la curva de volúmenes, existe compensación entre desmonte y terraplén. El volumen total de tierra a transportar está dado por la ordenada máxima del arco de diagrama comprendido, con relación a la horizontal considerada (Figura 2).
Figura 2. Volúmenes de tierra a transportar en el diagrama de masas
  • El momento de transporte es el trabajo necesario para mover un volumen de suelo desde su posición original, una vez determinada la distancia, hasta la posición final de proyecto. Es el producto del volumen transportado (ordenada) por la distancia (abscisa).
  • El área de cada cámara de compensación respecto a una horizontal cualquiera mide el momento de transporte de la compensación entre las secciones correspondientes a la intersección de dicha horizontal con la línea del diagrama. El área dividida por la ordenada máxima es la distancia media de transporte. Existe entonces un rectángulo de área equivalente al área de la onda y que tiene por altura el volumen de tierra a transportar (Figura 3).
Figura 3. Distancia media de transporte en una cámara de compensación del diagrama de masas
  • Con respecto a una horizontal cualquiera, las ondas situadas por arriba, con el primer tramo ascendente (exceso de excavación) y el segundo descendente (exceso de terraplén) se llaman “montes”. Asimismo, las situadas por debajo con el primer tramo descendente y el segundo ascendente se llaman “valles”.
  • Para minimizar el coste, en el diagrama la suma de las bases de los valles debe ser igual a la suma de las bases de los montes (Figura 4).

    Figura 4. La suma de las longitudes de valles y montes deben ser iguales para minimizar el coste.

Para optimizar el movimiento de tierras, se pueden seguir las denominadas reglas de Corini, que son las siguientes:

  1. La longitud de distribución estará comprendida entre la fundamental y una horizontal trazada por la sección extrema.
  2. Se trazarán diversas horizontales de compensación, comprendiendo cada una un monte y un valle de igual base.
  3. De no ser posible la 2, se trazarán horizontales, en sentido ascendente o descendente, comprendiendo más valles y más montes, de modo que la suma de la base de los montes sea igual a la suma de la base de los valles.
  4. La horizontal de distribución secundaria (dentro de una cámara autocompensada) debe ser tangente a la onda (Figura 5).
Figura 5. La horizontal de distribución secundaria debe ser tangente a la onda dentro de una cámara autocompensada

La obtención de las distancias medias de transporte se ha realizado apoyándose en las propiedades de la línea de volúmenes:

  • Cálculo de la diferencia entre dos ordenadas con respecto a una horizontal cualquiera. Esta diferencia da el volumen de desmonte o terraplén disponible entre ellas.
  • Entre las secciones correspondientes a los puntos de intersección de una horizontal con la línea de volúmenes existe compensación de desmonte y terraplén; el volumen total de tierras a mover entre esas dos secciones será la ordenada máxima con relación a la horizontal considerada.
  • Efectuando la compensación por horizontales, la tierra del punto N se arroja en el P, el área de cada cantera de compensación, correspondiente a una horizontal determinada, mide el momento de transporte de la compensación entre las secciones de intersección de la horizontal con la línea de volúmenes. El área ABC (Figura 2) mide el momento de transporte de la compensación entre A y C.
Figura 6. Obtención de las distancias de transporte
  • Los parámetros que intervienen en el cálculo de la distancia media de transporte de las compensaciones longitudinales son, básicamente, los volúmenes parciales y las áreas parciales entre perfiles, con cuya suma se obtiene el volumen transportado y la superficie total de cada área compensada denominada esencialmente cantera de compensación.
  • Considerando las propiedades analíticas de los diagramas de masas para la obtención del producto volumen por cada distancia de cada compensación longitudinal, la distancia media de transporte para cada área compensada que delimita el diagrama y el eje de abscisas, será el cociente entre el área y el volumen transportado de la misma.

  • Por último, la distancia media de transporte global de la compensación longitudinal se determina con la ponderación de los productos volumen por distancia media de las áreas compensadas existentes dividida por el volumen transportado total.

Referencias:

YEPES, V. (1995). Maquinaria de movimiento de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-264. 144 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compensación de tierras: el diagrama de masas

Figura 1. Perfil del terreno y diagrama de masas (Bruckner)

Cuando todas las tierras a desmontar, después del oportuno estudio geotécnico, resultan aprovechables para la ejecución de los terraplenes, no es necesario desecharlas o llevarlas a vertederos o “caballeros”. Si todos los terraplenes necesarios pueden construirse con los productos obtenidos del desmonte, no será necesario recurrir a tierras de “préstamo”. Si ambas condiciones se cumplen simultáneamente, lo cual es difícil de lograr, se producirá una compensación total de tierras.

Para lograr este objetivo, no habrá que olvidar el “entumecimiento” que sufren las tierras excavadas al compactarlas.  Además, para planificar el transporte de la tierra, es necesario contar con el “esponjamiento” que experimenta el terreno natural al excavarlo.

Figura 2. Compensación transversal

Si en una sección a media ladera se emplean los productos procedentes del desmonte en la ejecución del terraplén de dicho tramo, lograremos una compensación transversal (Figura 2) que es, en principio, la opción más económica, pues implica un menor costo de transporte. En este sentido, el buldócer suele ser la opción más adecuada. Sin embargo, también debemos analizar la compensación longitudinal de tierras, es decir, qué haremos con el excedente de tierra de cada desmonte para construir el terraplén requerido, así como el costo del transporte asociado a esta operación. Por tanto, es fundamental considerar los medios auxiliares necesarios para llevar a cabo la obra de manera eficiente.

En la planificación de obras de infraestructuras lineales, la elección de la maquinaria para el movimiento de tierras se basa en las condiciones del terreno y las distancias de transporte estimadas a partir de los volúmenes de excavación y relleno. Estos datos se representan en los diagramas de masas, también llamado diagrama de Bruckner, que permite ajustar la compensación longitudinal y las distancias de transporte de los volúmenes de desmonte y terraplén (Figura 1). En este diagrama, la diferencia de ordenadas entre dos puntos mide el volumen a mover entre ambos. Además, los puntos de corte del perfil del terreno con la rasante de la vía corresponden a máximos o mínimos en el diagrama de masas.

En ocasiones, la optimización técnica puede no ser rentable por los altos costos de combustible de maquinaria pesada, como las traíllas. Esto podría obligar a buscar préstamos o recurrir a vertederos, lo que implica gastos adicionales y la responsabilidad de rehabilitar y reforestar el área, además de pagar cánones a los propietarios. Es importante tener en cuenta la calidad de los materiales que se encuentren en el terreno, tanto dentro como fuera de la traza, a través de sondeos geotécnicos, pues esto afecta la distribución de las tongadas y las distancias de transporte, dependiendo de si se trata de pedraplenes, suelos seleccionados, etc.

La compensación adecuada de volúmenes se ve afectada significativamente por su impacto ambiental. Por lo tanto, se busca no solo igualar los volúmenes de desmonte y terraplén para minimizar los costos, sino también reducir el impacto ambiental. Esto implica evitar la construcción de terraplenes altos y prolongados que ocupen áreas de alto valor económico o ecológico, y en su lugar, construir viaductos. En algunos casos, los grandes costos de desmontes se evitan mediante la construcción de túneles o la implementación de permeabilidad territorial.

Sin embargo, todo esto puede aumentar significativamente los costos del proyecto, lo que requiere que el Director del Proyecto (representante de la propiedad) esté dispuesto a gastar el dinero. Por lo tanto, el autor del proyecto debe conocer las demandas y prioridades de la propiedad con respecto al impacto ambiental.

Algunas de las recomendaciones en la compensación de volúmenes son las siguientes:

  • Un factor importante que influye en la compensación de volúmenes son las obras de drenaje transversal, caños, estructuras, etc. que pueden requerir curvas y pendientes en las pistas de acarreo, lo que puede distorsionar las distancias teóricas.
  • Es fundamental considerar que los volúmenes de desmonte y terraplén dependen de la diferencia entre la cota del terreno y la del perfil de la obra. Por lo tanto, es posible modificar ambos volúmenes mediante la alteración del perfil de la obra.
  • Un aumento de las cotas del trazado reduce el volumen de desmonte y aumenta el de terraplenes, mientras que una disminución produce un aumento de desmontes y una disminución de terraplenes. De esta manera, ajustando la rasante, es posible lograr la compensación óptima entre ambos volúmenes.
  • Es recomendable buscar una compensación de volúmenes por tramos no demasiado largos, en lugar de referirse a la totalidad de la obra, pues puede generar distancias de transporte excesivamente largas.

A continuación os dejo varios vídeos explicativos y varios problemas resueltos que, espero, sean de vuestro interés. Se trata de uno de los muchos casos que explicamos en el Curso de gestión de costes y producción de la maquinaria empleada en la construcción. Os animo a que, si estáis interesados, os informéis de este curso en línea.

Pincha aquí para descargar

Referencias:

YEPES, V. (1995). Maquinaria de movimiento de tierras. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-264. 144 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Visibilidad para el grupo de investigación CONSTRUCTION OPTIMIZATION – ICITECH UPV

En mi blog personal, suelo destacar los logros personales de los miembros de nuestro grupo de investigación, compuesto por profesores e investigadores jóvenes de varios países, que tienen su sede en el ICITECH (Instituto de Ciencia y Tecnología del Hormigón) de la Universitat Politècnica de València. Sin embargo, estos logros a menudo pasan desapercibidos debido a la falta de una vía de comunicación propia.

Desde 2006, nuestro grupo ha centrado sus investigaciones en la optimización multiobjetivo y la toma de decisiones multicriterio para garantizar la sostenibilidad económica, social y medioambiental a lo largo del ciclo de vida de puentes e infraestructuras. Hasta la fecha, hemos publicado unos 150 artículos científicos indexados en el JCR y hemos presentado numerosas comunicaciones en congresos nacionales e internacionales. Ya se han leído 15 tesis doctorales y, en este momento, se encuentran otras 10 en marcha.

No obstante, consideramos que es crucial aumentar la visibilidad de nuestro trabajo para acercarlo a la sociedad. De esta manera, esperamos que nuestra investigación pueda contribuir a la construcción de infraestructuras más sostenibles y eficientes en el futuro.

Como podréis observar, hemos diseñado un logotipo para identificar nuestro trabajo. El diseño sigue el estilo institucional de los grupos de investigación de nuestra universidad. En la parte inferior, en color rojo destacado, aparece el acrónimo de la UPV, mientras que encima figuran dos palabras que consideramos fundamentales: “CONSTRUCTION” y “OPTIMIZATION”. Las hemos escrito en inglés porque queremos comunicar nuestro trabajo a nivel internacional.

La primera de ellas transmite que nuestro objeto de investigación no se limita a las estructuras de hormigón o puentes, sino que abarcamos un amplio espectro de infraestructuras, como edificios, carreteras, ferrocarriles, puertos y presas, entre otros. Además, la palabra “optimización” resume la base y los inicios de nuestro grupo, ya que buscamos mejorar la sostenibilidad integral de las infraestructuras a lo largo de su ciclo de vida.

Sin lugar a dudas, lo más complicado para nosotros ha sido crear una silueta que capture, a modo de paraguas, el núcleo central de nuestro mensaje. Hemos creado un arco que simboliza un puente y también tiene la intención de representar una cúpula de un edificio, un tramo de carretera o una sección de una presa bóveda. En resumen, hemos buscado un diseño que sea fácil de comprender y que simbolice el trabajo que llevamos a cabo en nuestro grupo.

Pues bien, podéis encontrar toda la información que vaya generando el grupo en las siguientes redes de comunicación. Os invito a que las sigáis para estar al tanto de lo que está ocurriendo en la punta de lanza del conocimiento en este ámbito de la ingeniería de la construcción.

Twitter: https://twitter.com/ConstOptUPV

Facebook: https://www.facebook.com/groups/231497652653826

LinkedIn: https://www.linkedin.com/groups/12794089/