Toma de decisión multicriterio aplicada a la sostenibilidad de estructuras de edificios basados en métodos modernos de construcción (MMC)

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production, revista de ELSEVIER indexada en el primer decil del JCR.

Desde el establecimiento de los Objetivos de Desarrollo Sostenible, ha surgido una gran preocupación sobre cómo disminuir los impactos que resultan de las actividades de construcción. En este contexto, los Métodos Modernos de Construcción (MMC) surgen como una poderosa forma de reducir la huella del ciclo de vida a través de la optimización del consumo de materiales. Este trabajo se centra en la evaluación de la sostenibilidad de diferentes técnicas MMC aplicadas a estructuras de hormigón de viviendas unifamiliares. Se compara el rendimiento del ciclo de vida en términos de sostenibilidad entre un diseño de referencia convencional, un diseño prefabricado, un diseño de losa ligera con discos huecos presurizados y un diseño basado en elementos estructurales de doble pared. La sostenibilidad se evalúa mediante un conjunto de 38 indicadores que abordan no solo la respuesta económica y medioambiental de los diseños, sino también sus impactos sociales. Se aplican cinco de las técnicas más conocidas de toma de decisiones con criterios múltiples (SAW, COPRAS, TOPSIS, VIKOR y MIVES) para derivar el rendimiento del ciclo de vida de cada diseño en una única puntuación de sostenibilidad. Dado que no hay consenso sobre qué método MCDM funciona mejor en las evaluaciones de sostenibilidad, se propone aquí un Índice Global de Sostenibilidad Estructural (GSSI) que combina y pondera los anteriores para ayudar al análisis de los resultados obtenidos. Los resultados muestran que la consideración de las tres dimensiones de la sostenibilidad conduce a diseños equilibrados cuya preferencia no tiene por qué coincidir con los derivados de cada enfoque unidimensional del ciclo de vida.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El artículo lo podéis descargar GRATUITAMENTE hasta el 28 de enero de 2022 en el siguiente enlace:

https://authors.elsevier.com/c/1eDIl3QCo9bRMh

Abstract

Since the establishment of the Sustainable Development Goals, great concern has arisen on how to diminish the impacts that result from construction activities. In such context, Modern Methods of Construction (MMC) rise as a powerful way to reduce life cycle impacts through optimizing the consumption of materials. This paper focuses on the sustainability assessment of different modern construction techniques applied to concrete structures of single-family houses. The life cycle performance in terms of sustainability is compared between a conventional reference design, a precast design, a lightweight slab design with pressurized hollow discs, and a design based on double-wall structural elements. The sustainability is assessed through a set of 38 indicators that address not only the economic and environmental response of the designs, but also their social impacts as well. Five of the best known Multi-Criteria Decision-Making (MCDM) techniques (SAW, COPRAS, TOPSIS, VIKOR and MIVES) are applied to derive the life-cycle performance of each design into a single sustainability score. Since there is no consensus on which MCDM method works best in sustainability assessments, a Global Structural Sustainability Index (GSSI) combining and weighting the above is proposed here to aid the analysis of the results obtained. The results show that consideration of the three dimensions of sustainability leads to balanced designs whose preference need not coincide with those derived from each one-dimensional life cycle approach.

Keywords:

Sustainability, Construction, Structural design, Life cycle cost, Life cycle assessment, Social life cycle, Multi-criteria decision-making, Modern methods of construction

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision- making applied to the sustainability of building structures bases on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

Nuestra aportación a la 6ª Conferencia Internacional sobre Modelos Mecánicos en Ingeniería Estructural CMMoST 2021

Como suele ser habitual, nuestro grupo de investigación suele presentar algunos de sus trabajos en la Conferencia Internacional sobre Modelos Mecánicos en Ingeniería Estructural. Estamos ya en la sexta edición, la CMMoST 2021, que se va a desarrollar del 1 al 3 de diciembre de 2021 en Valladolid (España). Se trata de un congreso bianual que, como bien indica su blog de presentación, es una excelente oportunidad para presentar a nivel internacional vuestros proyectos y compartir experiencias en el campo de los modelos mecánicos en la ingeniería estructural. CMMoST 2021 va dirigido tanto a investigadores como a profesionales dedicados al desarrollo y aplicación de modelos mecánicos en la ingeniería estructural. De este modo, ingenieros, arquitectos y otros expertos y profesionales relacionados con los modelos estructurales tienen cabida en este congreso internacional.

En esta ocasión, nos presentamos con dos comunicaciones que son parte de la investigación realizada en sendas tesis doctorales en marcha. A continuación os paso el resumen de los dos trabajos. Más adelante os pasaré las comunicaciones completas.

MARTÍNEZ-MUÑOZ, D.; SÁNCHEZ-GARRIDO, A.J.; MARTÍ, J.V.; YEPES, V. (2021). Composite bridge deck optimization with trajectory-based algorithms. 6th International Conference on Mechanical Models in Structural Engineering, CMMoST 2021, 1-3 December, Valladolid, Spain.

ABSTRACT

Bridge optimization can be difficult due to the large number of variables involved in the problem. In this work, the optimization of a steel‐concrete composite box girder bridge has been performed considering cost as objective function. To achieve this objective, Simulated Annealing (SA) has been applied as an example of trajectory‐based algorithm for the optimization of the structure. It is observed that the addition of cells to the bridge cross sections improves not only the section behavior but also the optimization results. Finally, it is observed that the proposed double composite‐action design materializing slabs on the bottom flange on supports, allows eliminating the continuous longitudinal stiffeners. This method automatize the optimization process of an initial design of a composite bridge, which has traditionally been based on the technician’s own experience, allowing to reach results in a more efficient way.

Keywords: Optimization, Structures, Composite bridges, Metaheuristics, Trajectory‐based algorithms.

 

SÁNCHEZ-GARRIDO, A.J.; MARTÍNEZ-MUÑOZ, D.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic logic applied to the multi-criteria evaluation of sustainable alternatives for earth-retaining walls. 6th International Conference on Mechanical Models in Structural Engineering, CMMoST 2021, 1-3 December, Valladolid, Spain.

ABSTRACT

The sustainable design of infrastructures is one of the key aspects for the achievement of the Sustainable Development Goals, given the recognized magnitude of both the economic and environmental impacts of the construction sector. Multi-criteria decision methodologies allow addressing the sustainable design of infrastructures, simultaneously considering the impact of a design on the different dimensions of sustainability. This article proposes the use of neutrosophic logic to solve one of the main problems associated with decision making: the subjectivity of the experts involved. Through the neutrosophic approach of the AHP multi-criteria methodology and the use of the VIKOR technique, the economic and environmental impacts associated with four earth retaining wall designs are analyzed. In the present assessment, the most sustainable response over its life cycle has been found to be the gabion wall.

Keywords: Sustainability, Retaining walls, Neutrosophic logic, AHP, Multi-criteria decision making.

 

Special Issue “2nd Edition of Trends in Sustainable Buildings and Infrastructure”

High visibility: indexed by the Science Citation Index Expanded, the Social Sciences Citation Index (Web of Science) and other databases. Impact Factor: 3.390 (2020)

JCR category rank: Q1: Public, Environmental & Occupational Health (SSCI) | Q2: Public, Environmental & Occupational Health (SCIE) | Q2: Environmental Sciences (SCIE)

Special Issue “2nd Edition of Trends in Sustainable Buildings and Infrastructure”

A special issue of International Journal of Environmental Research and Public Health (ISSN 1660-4601).

Deadline for manuscript submissions: 30 September 2022.

Special Issue Editors

Guest Editor

Prof. Dr. Víctor Yepes
Concrete Science and Technology Institute (ICITECH), Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València Valencia, Spain
Interests: multiobjective optimization; structures optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty

Guest Editor

Prof. Dr. Moacir Kripka
Civil and Environmental Engineering Graduate Program (PPGEng), University of Passo Fundo, Passo Fundo CEP 99052-900, Brazil
Interests: structural analysis; optimization; building; engineering optimization; civil engineering; linear programming; mathematical programming; heuristics; structural optimization; concrete; combinatorial optimization; structural engineering; multiobjective optimization; reinforced concrete; optimization methods; discrete optimization; optimization theory; simulated annealing; optimization software

Special Issue Information

Dear Colleagues,

This Special Issue is the 2nd edition of Trends in Sustainable Buildings and Infrastructure. The recently established Sustainable Development Goals call for a paradigm shift in the way buildings and infrastructures are conceived. The construction industry is a main source of environmental impacts, given its great material consumption and energy demands. It is also a major contributor to the economic growth of regions through the provision of useful infrastructure and generation of employment, among others. Conventional approaches underlying current building design practices fall short of covering the relevant environmental and social implications derived from inappropriate design, construction, and planning. The development of adequate sustainable design strategies is therefore becoming extremely relevant with regard to the achievement of the United Nations 2030 Agenda Goals for Sustainable Development.

This Special Issue aims to increase knowledge on sustainable design practices by highlighting the actual research trends that explore efficient ways to reduce the environmental consequences related to the construction industry while promoting social wellbeing and economic development. These objectives include but are not limited to:

  • Life-cycle-oriented building and infrastructure design;
  • Design optimization based on sustainable criteria;
  • Maintenance design towards sustainability;
  • Inclusion of social impacts in the design of buildings and infrastructures;
  • Resilience and sustainability;
  • Use of sustainable materials;
  • Decision-making processes that effectively integrate economic, environmental, and social aspects.

Papers selected for this Special Issue will be subject to a rigorous peer-review procedure with the aim of rapid and wide dissemination of research results, developments, and applications.

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Environmental Research and Public Health is an international peer-reviewed open access semimonthly journal published by MDPI.

Keywords

  • Sustainable design and construction
  • Life cycle assessment
  • Sustainability in decision making
  • Green buildings
  • Sustainable maintenance
  • Resilient structures
  • Sustainable materials
  • Social life cycle assessment
  • Sustainable management of infrastructures
  • Multiobjective optimization for sustainable development

Sostenibilidad de las carreteras rurales mediante la lógica neutrosófica

Acaban de publicarnos un artículo en la revista Sustainability, revista indexada en el JCR. En este caso se ha considerado la incertidumbre en la determinación de los criterios para la sostenibilidad en carreteras rurales usando la lógica neutrosófica. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En Latinoamérica existe una gran diferencia entre los kilómetros de vías pavimentadas y los que no tienen ningún tipo de protección. Esta situación se agrava en las zonas rurales, limitando las oportunidades de desarrollo y la calidad de vida de los habitantes. En Chile, existen programas estatales que buscan reducir la brecha territorial a través de soluciones básicas de pavimentación de bajo costo; sin embargo, los criterios de priorización aplicables a los caminos rurales son poco claros. Son múltiples los actores que intervienen en los espacios rurales, y la inexistencia de patrones de referencia aumenta la subjetividad en la toma de decisiones de este tipo de infraestructuras. Este estudio intenta determinar los criterios que influyen en la selección de caminos rurales en el sur de Chile para promover el desarrollo territorial sostenible considerando los múltiples actores y la incertidumbre del proceso de selección. Para ello, se realizó una revisión documental, visitas a terreno y 12 entrevistas semiestructuradas. Los criterios se han validado a través de un panel multidisciplinario de expertos y la aplicación de números neutrosóficos para abordar la incertidumbre derivada de estas consultas. Los resultados de este estudio aportan 14 criterios basados en la sostenibilidad para apoyar la planificación de caminos rurales básicos en el sur de Chile.

Abstract:

In Latin America, there is a wide gap between kilometers of paved ways and those with no type of protection. This situation is worse in rural areas, limiting development opportunities and inhabitants’ quality of life. In Chile, there are state programs that seek to reduce the territorial gap through basic low-cost paving solutions; however, the prioritization criteria for rural roads are unclear. Multiple actors affect the rural territories, and the non-existence of reference patterns increases subjectivity in infrastructure decision making. This study attempts to determine criteria that influence the selection of rural roads in southern Chile to promote sustainable territorial development considering multiple actors and the uncertainty of the selection process. For this, a documentary review, field visits, and 12 semi-structured interviews were conducted. The criteria are validated through a multidisciplinary panel of experts and the application of neutrosophic numbers to address the uncertainty derived from the expert consultations. The results of this study contribute 14 sustainable criteria in order to support the planning of basic rural roads in southern Chile.

Keywords:

Rural road; uncertainty; Chile; neutrosophic; sustainability; stakeholders

Reference:

SIERRA, L.; ARAYA, F.; YEPES, V. (2021). Consideration of uncertainty and multiple disciplines in the determination of sustainable criteria for rural roads using neutrosophic logic. Sustainability, 13(17):9854. DOI:10.3390/su13179854

Descargar (PDF, 1.11MB)

Análisis de ciclo de vida de aislamientos reciclados en edificación para diferentes condiciones climáticas en España

Acaban de publicarnos un artículo en la revista Resources, Conservation and Recycling, revista de alto impacto indexada en el JCR. En este caso se ha realizado un análisis del ciclo de vida de los aislamientos utilizados en edificación reciclados y no reciclados, atendiendo a las diferentes condiciones climáticas de España. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El sector de la construcción representa más del 40% del consumo de energía en la Unión Europea, así como una de las causas significativas de impacto ambiental. Por ello, este sector necesita políticas que promuevan la eficiencia energética de los edificios. Uno de los componentes estructurales más importantes para alcanzar esta eficiencia energética son las fachadas. En este trabajo se elige la fachada ventilada por su mejor comportamiento de aislamiento térmico. El impacto ambiental de la fachada ventilada depende del material de aislamiento térmico. El objetivo de este trabajo es evaluar el impacto ambiental de diferentes fachadas ventiladas en función de su comportamiento de aislamiento térmico. Para ello, se aplica la evaluación del ciclo de vida en fachadas ventiladas con diferentes materiales en distintas ubicaciones. Los materiales estudiados son la lana de roca, el corcho natural y el corcho reciclado, y las ubicaciones consideradas son las diferentes zonas climáticas de España. Para llegar a una evaluación ambiental completa se considera todo el ciclo de vida de las fachadas ventiladas, desde la cuna hasta la tumba. Para ello se utiliza el software Open LCA con la base de datos Ecoinvent con el método ReCiPe. Los resultados muestran que el corcho reciclado es el aislamiento térmico con menor impacto ambiental, independientemente de la ubicación.

Abstract:

The construction sector represents more than 40% of energy consumption in the European Union, as well as one of the biggest causes of environmental impact. Therefore, this sector needs a great deal of intervention through policies that promote the energetic efficiency of the buildings. One of the most important structural components to reach this energetic efficiency is the facades. In this work, the facade ventilated is chosen due to its better thermal insulation behaviour. The environmental impact of the facade ventilated depends on the thermal insulation material. The goal of this paper is to evaluate the environmental impact of different ventilated facades according to their thermal insulation behavior. For this purpose, the life-cycle assessment is applied in ventilated facades with different materials in different locations. The materials studied are the rock wool, the natural cork and the recycled cork, and the locations considered are the different climatic areas of Spain. To reach a complete environmental assessment all the ventilated facades life-cycle is considered, from cradle to grave. To do this we use the Open LCA software with the Ecoinvent database with the ReCiPe method. The results show that the recycled cork is the thermal insulation with the lowest environmental impact regardless the location.

Keywords:

Life cycle assessment; ReCiPe; Facade ventilated; Thermal insulation; Sustainability

Reference:

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

Descargar (PDF, 1.25MB)

Métodos de decisión para definir la mejor producción en la industria de la maquinaria agrícola

Acaban de publicarnos un artículo en la revista Sustainability, revista indexada en el JCR. En este caso se ha realizado un análisis comparativo de la producción de la maquinaria agrícola considerando la sostenibilidad en la toma de decisión multicriterio. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Este trabajo presenta la aplicación de métodos de decisión para definir la mejor producción en la industria de la maquinaria agrícola. Con este objetivo, se identificó la programación actual de la línea de producción, así como el flujo de producción, realizando un análisis de inventario y un estudio de impacto ambiental. Se definieron siete alternativas para el mix de producción de remolques de grano, considerando diferentes materiales y procesos de producción. La selección de la mejor programación según los diferentes criterios se realizó mediante el proceso de jerarquía analítica (AHP) y el análisis envolvente de datos (DEA) para evaluar las implicaciones gerenciales en la toma de decisiones. Los resultados obtenidos mediante el AHP identificaron una única alternativa como la mejor, lo que facilita la toma de decisiones. El método DEA identificó dos alternativas como las más eficientes, y en este caso el gestor puede elegir entre una combinación de productos que genere un menor impacto ambiental o una mayor rentabilidad. Aunque se aplica a la industria agrícola, la metodología presentada puede adaptarse fácilmente a otras actividades relacionadas con el entorno construido, como la industria de la construcción.

Abstract:

Competition among companies is growing globally, with the need to increase productivity and efficiency in the product sector. However, there is also a growing concern about global warming and the depletion of natural resources, as well as their effects on human health. In this context, all human activities that involve intense usage of resources must take into account sustainability as one of the decision criteria. This work presents the application of decision-making methods to define the best product mix in the agricultural machinery industry. With this objective, the current schedule of the production line was identified, along with the production flow, by performing an inventory analysis and an environmental impact study (endpoint). A total of seven alternatives for the production mix of grain trailers were defined, considering different materials and production processes. The selection of the best schedule according to the different criteria was performed through the analytic hierarchy process (AHP) and data envelopment analysis (DEA) to evaluate the managerial implications for decision making. The results obtained through AHP identified a single alternative as being the best, which facilitates the decision making. The DEA method identified two alternatives as the most efficient, and in this case the manager can choose between a product mix that generates lesser environmental impact or greater profitability. Although applied to agricultural industry, the presented methodology can be easily adapted to other activities related to the built environment, such as construction industry.

Keywords:

Analytic hierarchy process (AHP); data envelopment analysis (DEA); sustainability; product mix; agricultural industry; decision making

Reference:

HOOSE, A.; YEPES, V.; KRIPKA, M. (2021). Selection of Production Mix in the Agricultural Machinery Industry considering Sustainability in Decision Making. Sustainability, 13(16), 9110; DOI:10.3390/su13169110

Descargar (PDF, 441KB)

Salto cualitativo en el proyecto de investigación HYDELIFE

ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Universitat Politècnica de València

La línea de investigación emprendida por nuestro grupo no puede quedarse en la mera optimización económica del hormigón estructural, que podría ser un objetivo a corto plazo de interés evidente para las empresas constructoras o de prefabricados. En anteriores proyectos (HORSOST, BRIDLIFE, DIMALIFE) afrontados por nuestro grupo se abordó tanto el diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo mediante el empleo de técnicas de minería de datos, como la toma de decisiones en la gestión del ciclo de vida de puentes pretensados de alta eficiencia social y medioambiental bajo presupuestos restrictivos. También se emplearon metamodelos y el diseño óptimo robusto y basado en fiabilidad para obtener diseños automáticos de puentes e infraestructuras que consideraban hormigones con baja huella de carbono, donde se incluían los aspectos de durabilidad, de consumo energético y de emisiones de CO2, de seguridad, y otros que se estudiaban a lo largo del ciclo de vida de las estructuras, en especial en puentes de hormigón pretensado, tanto prefabricados, como construidos “in situ”. Además, se emplearon técnicas de decisión multicriterio para abordar, en primer lugar, la decisión de la mejor tipología constructiva de un puente, y posteriormente, para decidir la mejor de las opciones resultantes de la frontera de Pareto.

La producción científica de estos proyectos fue significativa. Se ha abordado la optimización multiobjetivo (coste, CO2 y energía) de puentes con vigas artesa (Martí et al., 2015; Martí et al., 2016; Yepes et al., 2015;2017), de puentes cajón (García-Segura et al., 2016;2017a;b). Se ha abordado la optimización del mantenimiento de puentes en ambiente marino (Navarro et al., 2017;2018), del mantenimiento de redes de pavimento (Yepes et al., 2016; Torres-Machí, 2017). Se ha analizado la sostenibilidad social de las infraestructuras (Sierra et al., 2017a;b). Se han utilizado metodologías emergentes en la toma de decisiones como la lógica neutrosófica (Navarro et al., 2020) o redes bayesianas (Sierra et al., 2018). Se han utilizado en la optimización metamodelos de redes neuronales (García-Segura et al., 2017b), modelos kriging (Penadés-Plà et al., 2019), el análisis de fiabilidad (García-Segura et al., 2017a). Se han propuesto sistemas de indicadores de sostenibilidad social y medioambiental (Milani et al., 2020; Sánchez-Garrido y Yepes, 2020). Se ha aplicado el diseño robusto a los puentes (Penadés-Plà et al., 2020). Se ha analizado la resiliencia de las infraestructuras (Salas et al., 2020). Se han realizado análisis del ciclo de vida de estructuras e infraestructuras óptimas (Penadés-Plà et al. 2017; Zastrow et al., 2017; Pons et al., 2018;2020; Navarro et al. 2018; Zhou et al., 2020). También se encuentra en fase de evaluación la patente “Viga en cajón mixta acero-hormigón, P202030530” (Alcalá y Navarro, 2020), autor que forma parte del equipo de investigación.

Sin embargo, con el fin de poder dar un paso adelante, es necesario abordar las limitaciones y el alcance de estos proyectos previos. El proyecto HYDELIFE busca un salto cualitativo en nuestra línea de investigación que pretende superar algunas limitaciones en cuanto al alcance planteado hasta ahora. En primer lugar, no se puede perder la oportunidad de incorporar las técnicas emergentes procedentes del DL en la hibridación de las metaheurísticas, pues sería renunciar a la potencia predictiva de la inteligencia artificial y a la eficiencia de esta nueva generación de algoritmos. En segundo lugar, debe abordarse la construcción industrializada modular tanto en edificación como en obra civil, estudiando en detalle y confrontando los puentes mixtos y estructuras híbridas con las soluciones de hormigón en un análisis completo de ciclo de vida que incluya la sostenibilidad social y medioambiental. Para ello se pretende profundizar en las técnicas de decisión multicriterio emergentes como la lógica neutrosófica y otras como las redes bayesianas. En este contexto, a pesar de que se ha avanzado en la optimización multiobjetivo de las estructuras, en el mundo real existen incertidumbres, imperfecciones o desviaciones respecto a los parámetros utilizados en los códigos (propiedades del material, geometría, cargas, etc.). Una estructura óptima se encuentra cercana a la región de infactibilidad, por lo que es necesario incorporar las incertidumbres para proporcionar diseños más robustos y fiables (Martínez-Frutos et al., 2014), tanto desde el diseño basado en fiabilidad como en el diseño óptimo robusto.

El gran problema de la optimización multiobjetivo de estructuras al incorporar las incertidumbres es su muy elevado coste computacional. Tal y como hemos visto en algunos de nuestros trabajos, este problema lo hemos abordado con metamodelos que proporcionan una relación funcional aproximada de las variables de diseño respecto a sus respuestas con un número moderado de análisis completos. Sin embargo, las metaheurísticas híbridas basadas en DL emergen como técnicas que pueden mejorar estos planteamientos previos.

Los trabajos desarrollados hasta el momento por nuestro grupo de investigación han permitido avances importantes en el diseño automatizado y óptimo de las estructuras de hormigón con múltiples criterios a lo largo del ciclo de vida, sin embargo, existen una serie de limitaciones que este HYDELIFE tiene intención de superar:

  • Ampliación del análisis del ciclo de vida no solo a los puentes de hormigón, sino a otras tipologías como puentes mixtos y estructuras híbridas, además de estructuras industrializadas modulares.
  • Utilizar metaheurísticas híbridas basadas en la inteligencia artificial con un doble objetivo: mejorar la calidad de las soluciones al incorporar el aprendizaje profundo en la base de datos generadas en la búsqueda de los algoritmos y reducir los tiempos de cálculo.
  • Explorar el efecto de la aleatoriedad de los parámetros con la incorporación del diseño óptimo robusto y del diseño óptimo basado en fiabilidad para evitar que los proyectos reales optimizados sean infactibles ante pequeños cambios.
  • Profundización en las funciones de distribución de los impactos sociales y ambientales en las construcciones modulares y mixtas.
  • Profundización en la investigación dirigida a la fase de mantenimiento, centrando más el problema social que plantean las estructuras modulares y mixtas en servicio.
  • Analizar la sensibilidad que existe en las políticas presupuestarias poco sensibles a la realidad del sector en la gestión de las estructuras. Ello supone modelar distintos escenarios económicos y analizar las soluciones eficientes derivadas, especialmente en épocas de crisis.
  • Profundización en la determinación de los factores determinantes en la toma de decisión multicriterio.
  • Profundización en los costes de mantenimiento y los esperados en caso de fallo. Además, las incertidumbres asociadas con el deterioro requieren métodos probabilísticos.
  • Profundizar en el análisis de ciclo de vida la inclusión de la demolición y reutilización de los materiales de las infraestructuras, siendo una de las variables de diseño la durabilidad.

Lo indicado hasta ahora, que resume los antecedentes y las realizaciones del grupo, se podría sintetizar en los siguientes aspectos:

  1. La temática a investigar se ha ido profundizando en cada uno de los proyectos realizados, acorde a los objetivos previstos.
  2. Los estudios realizados estaban basados en la optimización multiobjetivo, la toma de decisiones a lo largo del ciclo de vida y el diseño robusto y basado en fiabilidad de puentes pretensados. El objetivo es dar un salto al incorporar en las metaheurísticas el aprendizaje profundo y ampliar el alcance a otro tipo de construcciones industrializadas modulares y puentes mixtos e híbridos.

Referencias

  • AFZAL, M.; LIU, Y.H.; CHENG, J.C.P.; GAN, V.J.L. (2020). Reinforced concrete structural design optimization: A critical review. Clean. Prod., 260:120623.
  • AGUADO, A. et al. (2012). Sustainability Assessment of Concrete Structures within the Spanish Structural Concrete Code. J Constr Eng Manage ASCE, 138(2):268-276.
  • ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.
  • AMERICAN ROAD & TRANSPORTATION BUILDERS ASSOCIATION (2019). 2019 Bridge Report. https://artbabridgereport.org/
  • BIONDINI, F., FRANGOPOL, D. M. (2016). Life-Cycle of Deteriorating Structural Systems under Uncertainty: Review. J Struct Eng ASCE, 142(9), F4016001.
  • CHACÓN, R. (2014). Vigas armadas híbridas de acero. Estado del conocimiento. Revista Ciencia e Ingeniería, 35(2):95-102.
  • FRANGOPOL, D. M. (2011). Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges. Struct Infrast Eng, 7(6), 389-413.
  • GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020b). The buttressed walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics, 8(6), 862.
  • GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020a). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics, 8(4), 555.
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Struct., 125:325-336.
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017a). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Multidiscip. Optim., 56(1):139-150.
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017b). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Struct., 145:381-391.
  • GOBIERNO DE ESPAÑA (2020). Estrategia Nacional de Inteligencia Artificial. https://www.lamoncloa.gob.es/presidente/actividades/Documents/2020/021220-ENIA.pdf
  • MARI, A. (2007). Educar para la sostenibilidad en el ámbito de la ingeniería. Conferencia de clausura. II Jornadas de enseñanza del hormigón estructural. ACHE, Madrid, pp. 33-49.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Clean. Prod., 120:231-240.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. J. Struct. Eng., 141(2): 04014114.
  • MARTÍNEZ-FRUTOS, J.; MARTÍ, P. (2014). Diseño óptimo robusto utilizando modelos Kriging: aplicación al diseño óptimo robusto de estructuras articuladas. Rev Int Metod Numer., 30(2):97-105.
  • MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Civ. Eng., 2020, 8823370.
  • MILANI, C.J.; YEPES, V.; KRIPKA, M. (2020). Proposal of sustainability indicators for the design of small-span bridges. J. Environ. Res. Public Health, 17(12):4488.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018a). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018b). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Impact Assess. Rev., 72:50-63.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018c). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Clean. Prod., 196: 698-713.
  • NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Impact Assess. Rev., 74:23-34.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Struct Infrast Eng, 16(7): 949-967.
  • PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Struct., 179:556-565.
  • PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265.
  • PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Clean. Prod., 192:411-420.
  • RAC Foundation. (2019). Bridge maintenance table – GB local authorities. https://www.racfoundation.org/media-centre/bridge-maintenance-backlog-grows
  • RAHMAN, M.M. (2014). Barriers of implementing modern methods of construction. Manage. Eng., 30(1):69-77.
  • SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. J. Environ. Res. Public Health, 17(3): 962.
  • SALEHI, H.; BURGUEÑO, R. (2018). Emerging artificial intelligence methods in structural engineering. Struct., 171:170-189.
  • SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Clean. Prod., 258: 120556.
  • SARMA, K.C.; ADELI, H. (1998). Cost optimization of concrete structures. J Struct Eng ASCE, 124(5): 570-578.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017a). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Impact Assess. Rev., 67:61-72.
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017b). Method for estimating the social sustainability of infrastructure projects. Impact Assess. Rev., 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Clean. Prod., 176:521-534.
  • TAFFESE, W.Z.; SISTONEN, E. (2017). Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions. Constr., 77:1-14.
  • THURLBY, R. (2013). Managing the asset time bomb: a system dynamics approach. Inst. Civ. Eng. – Forensic Engineering, 166(3):134-142.
  • TONG, X.; YANG, H.; WANG, L.; MIAO, Y. (2019). The development and field evaluation of an IoT system of low-power vibration for bridge health monitoring. Sensors, 19(5):1222.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Clean. Prod., 148:90-102.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Constr., 49:123-134.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Civ. Eng. Manage., 22(4):540-550.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Civ. Mech. Eng., 17(4):738-749.
  • YEPES, V.; DASÍ-GIL, M.; MARTÍNEZ-MUÑOZ, D.; LÓPEZ-DESFILÍS, V.J.; MARTÍ, J.V. (2019). Heuristic techniques for the design of steel-concrete composite pedestrian bridges. Sci., 9(16), 3253.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767.
  • ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Clean. Prod., 140:1037-1048.
  • ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. J. Environ. Res. Public Health, 17(16):5953.

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Entrega de premios a las mejores tesis doctorales en decisión multicriterio 2020

En el marco de la XIII Reunión del Grupo Español de Decisión Multicriterio, que se celebró en San Sebastián, se entregó ayer, 23 de julio del 2021, los premios a las mejores tesis doctorales en decisión multicriterio 2020. Este grupo se creó en 1999 dentro de la Sociedad Española de Estadística e Investigación Operativa (SEIO).

El premio a la mejor tesis doctoral la recibió Ignacio Javier Navarro Martínez, tesis doctoral que tuve el placer de dirigir junto con el profesor José V. Martí. En este enlace podéis encontrar detalles de este premio.

Las tesis doctorales premiadas son las siguientes:

PRIMER PREMIO

Título: Life cycle assessment applied to the sustainable design of prestressed bridges in coastal environments
Autor: Ignacio Javier Navarro Martínez
Directores: Víctor Yepes Piqueras y José V. Martí Albiñana
Universidad: Universidad Politécnica de Valencia
Año: 2019

SEGUNDO PREMIO “EX AEQUO”

Título: Building composite indicators from a multicriteria approach: an empirical application for the performance appraisal and efficiency of the Spanish Public Higher Education System
Autora: Samira El Gibari Ben Said
Directores: Trinidad Gómez Núñez y Francisco Ruiz de la Rúa
Universidad: Universidad de Málaga
Año: 2020

Título: Ordinal treatment of ordered qualitative scales: analysis, methods and applications
Autora: Raquel González del Pozo
Director: José Luis García Lapresta
Universidad: Universidad de Valladolid
Año: 2020

Entrega del Primer Premio, con Ignacio junto a los miembros del jurado

 

Ignacio, primer premiado, junto con Samira y Raquel, segundo premio “ex aequo”
Ignacio explicando su tesis doctoral

Os paso a continuación la relación de artículos científicos indexados que han sido fruto de la tesis doctoral de Ignacio J. Navarro, y otras que han sido desarrolladas tras la defensa de su tesis.

Referencias:

  1. SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homesEnvironmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572
  2. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2021). Neutrosophic completion technique for incomplete higher-order AHP comparison matrices. Mathematics, 9(5):496. DOI:10.3390/math9050496
  3. NAVARRO, I.J.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; REMPLING, R.; YEPES, V. (2020). Life cycle sustainability assessment for multi-criteria decision making in bridge design: A review. Journal of Civil Engineering and Management, 26(7):690-704. DOI:10.3846/jcem.2020.13598
  4. PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265
  5. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7): 949-967. DOI:10.1080/15732479.2019.1676791
  6. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multi-criteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803. DOI:10.1155/2019/6134803
  7. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:10.1016/j.eiar.2018.10.001
  8. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110
  9. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:10.1016/j.eiar.2018.05.003
  10. NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:10.3390/su10030845

 

Premio Jaume Blasco a la Innovación

Es para mí un placer comunicar en mi blog que la Comisión de Premios del XXV Congreso Internacional de Dirección e Ingeniería de Proyectos ha tenido a bien otorgar el Premio Jaume Blasco a la Innovación 2021 a la comunicación “Consideración de la incerteza de multi-disciplinas en la determinación de criterios sostenibles de caminos rurales usando la lógica neutrosófica“, cuyos autores han sido Leonardo Sierra, Felipe Araya y Víctor Yepes. Agradezco enormemente este tipo de reconocimientos que premia la labor realizada en los últimos años por nuestro grupo de investigación en la Universitat Politècnica de València.

Descargar (PDF, 1.03MB)

 

Hipótesis de partida del proyecto HYDELIFE

Instituto de Ciencia y Tecnología del Hormigón (ICITECH). http://congress.cimne.com/SAHC2020/frontal/JoseM.Adam.asp

En varios artículos anteriores detallamos los antecedentes, la motivación, así como la trascendencia del proyecto de investigación HYDELIFE. Ahora vamos a explicar las hipótesis e partida sobre las que se basa este proyecto.

La hipótesis principal de partida es que las emergentes metaheurísticas híbridas son capaces de extraer información no trivial de las inmensas bases de datos procedentes de la optimización y mejorar la calidad y el tiempo de cálculo tanto en el diseño como en el mantenimiento óptimo de puentes y estructuras. Con esta propuesta metodológica se pretende abordar las incertidumbres del mundo real planteando el diseño y el mantenimiento óptimo basándose en la fiabilidad y en diseños robustos. Esta hipótesis debe extenderse a los procesos de toma de decisión multicriterio que atienda a la sostenibilidad social y ambiental del ciclo de vida completo que contemple las fluctuaciones tanto de los parámetros como de los escenarios posibles, especialmente en el caso de fuertes restricciones presupuestarias. Esta metodología presenta, no obstante, serias dificultades, por lo que se deben explorar metamodelos y DL capaces de acelerar los complejos procesos de cálculo.

Para la consecución de los objetivos del proyecto, es necesario alcanzar una serie de objetivos específicos que, a su vez, se basan en unas determinadas hipótesis:

  • Hipótesis 1: Las metaheurísticas mejoran la calidad y reducen el tiempo de cálculo cuando se hibridan con el aprendizaje profundo (DL).
  • Hipótesis 2: El análisis del ciclo de vida de la construcción industrializada modular presenta mejores indicadores medioambientales y sociales que la construcción tradicional.
  • Hipótesis 3: La optimización multiobjetivo de los puentes mixtos de hormigón y acero y las estructuras híbridas de acero reduce los impactos sociales y ambientales a lo largo del ciclo de vida.
  • Hipótesis 4: La optimización multiobjetivo puede llevar a soluciones que pueden ser infactibles con pequeñas variaciones en los parámetros o en las restricciones.
  • Hipótesis 5: Tanto el diseño óptimo basado en fiabilidad como el diseño óptimo robusto conducen a soluciones menos sensibles a la variabilidad y a los cambios en los escenarios (especialmente presupuestarios), pero se basan en funciones de probabilidad poco realistas por falta de datos.
  • Hipótesis 6: Es posible utilizar metamodelos y DL en el diseño óptimo robusto y en el diseño basado en fiabilidad para el proyecto y para el mantenimiento de puentes mixtos y estructuras modulares.
  • Hipótesis 7: Las soluciones de mantenimiento óptimo de puentes mixtos y estructuras modulares son diferentes si el análisis del ciclo de vida se incluye o no en la fase de proyecto.
  • Hipótesis 8: Incluso considerando la variabilidad innata al mundo real, es posible integrar múltiples actores, escenarios y criterios (tangibles e intangibles) en técnicas analíticas que asistan en la toma de decisiones complejas que incluyan aspectos de sostenibilidad social y ambiental mediante herramientas colaborativas.
  • Hipótesis 9: Las decisiones públicas (instituciones) y privadas (empresas) adecuadas pueden mejorar la sostenibilidad, las prestaciones a largo plazo y la durabilidad de las estructuras incluso con escenarios presupuestarios muy restrictivos.
  • Hipótesis 10: Dado un horizonte temporal para una estructura, es posible encontrar un diseño y una gestión posterior de dicho activo que mejore otras alternativas, incluso con presupuestos restrictivos.
  • Hipótesis 11: Las medidas estratégicas, de proyecto y preventivas derivadas de un sistema de apoyo a la toma de decisiones multicriterio son preferibles por su menor coste social y ambiental a la reparación severa de los puentes y estructuras modulares.
  • Hipótesis 12: Es posible encontrar buenas prácticas en el diseño, conservación, mantenimiento y desmantelamiento de los puentes y estructuras modulares que sean robustas a cambios en los escenarios presupuestarios.

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.