Aplicación del análisis del valor MIVES a la estructura de una vivienda unifamiliar de autopromoción con criterios de sostenibilidad

Este trabajo presenta el estudio entre tres alternativas estructurales dispares aplicadas una vivienda unifamiliar adosada, para la toma de decisión de un autopromotor, apoyándose en métodos multicriterio y teniendo en cuenta parámetros de sostenibilidad. Se ha definido un modelo de evaluación y propuesto una serie de indicadores usando la metodología MIVES que permite identificar, estructurar y evaluar las distintas alternativas propuestas transformándolas en un valor, cuyo máximo es la opción óptima. Se obtiene la validación del método para una alternativa tradicional (hormigón in situ), prefabricada (©YTONG) y tecnológica (©ELESDOPA) consiguiendo esta última la mejor valoración a pesar de no ser la más económica ni la más rápida de ejecutar.  Las viviendas unifamiliares suelen estar más ligadas a proyectos singulares para clientes particulares, no siendo objeto de interés para los promotores que obtienen mayores beneficios en otros productos inmobiliarios de tipo plurifamiliar. Sin embargo, para cualquier autopromotor su “hogar” constituye quizás la mayor inversión de su vida, y por tanto una de las decisiones más importantes a tomar. No existe una herramienta específica en el mercado para evaluar de forma rigurosa (más allá del coste de obra) la sostenibilidad de una vivienda durante su ciclo de vida. Los cuestionarios para evaluar los indicadores a través de atributos (tangibles e intangibles) identifican numéricamente las deficiencias de esta tipología para mejorar su índice de valor, ofreciendo al proyectista una herramienta objetiva y eficaz para justificar ante su cliente el mejor uso de materiales, mano de obra y tecnología, para conseguir diseños óptimos (desde el punto de vista ambiental, social, estético, funcional, temporal, económico, seguridad y salud, etc.). En conclusión, un estudio así desde la fase inicial permitiría a todo gestor de proyecto controlar los aspectos fundamentales que marcarán el equilibrio del futuro edificio para que sea más funcional, inteligente, económico y sostenible.

Os dejo a continuación un vídeo explicativo donde os cuento los aspectos básicos del trabajo.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258: 120556. DOI:10.1016/j.jclepro.2020.120556

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué alternativa de puente es la más sostenible medioambientalmente? ¿Y socialmente?

He empezado una serie de vídeos divulgativos donde quiero explicar, de forma breve, los resultados que estamos obteniendo en nuestro grupo de investigación. Considero que es importante hacerlo debido a que, muchas veces, los artículos científicos quedan almacenados en las grandes revistas y no llegan al técnico o al público en general.

En este caso, os he preparado un vídeo sobre en el que explico cómo hemos realizado el análisis del ciclo de vida de cuatro tipologías de puentes muy utilizados en nuestro país: losas macizas, losas aligeradas, secciones en cajón y secciones mixtas. Se analiza no solo el impacto social, sino también el medioambiental. Os explico qué metodología usamos, el software, las bases de datos, etc. Os llevaréis una relativa sorpresa con los resultados obtenidos. Ya os adelanto que las mejores alternativas medioambientales no se corresponden con las mejores desde el punto de vista social.

Los que queráis descargar gratuitamente el artículo, podéis acudir al siguiente enlace: https://www.mdpi.com/2071-1050/14/9/5186

Referencia:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curso en línea de “Gestión de costes y producción de la maquinaria empleada en la construcción”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Gestión de costes y producción de la maquinaria empleada en la construcción”.

El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-gestion-de-costes-y-produccion-de-la-maquinaria-empleada-en-la-construccion/

Os paso un vídeo explicativo y os doy algo de información tras el vídeo.

Este es un curso básico sobre la gestión de los costes y la producción de los equipos y maquinaria empleada en la construcción, tanto en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado para que el estudiante pueda profundizar en aquellos aspectos que les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás los conceptos básicos sobre la gestión de la producción, la selección económica de los bienes de equipo, los costes de propiedad y operación de la maquinaria, su amortización, la disponibilidad y fiabilidad de los equipos, el mantenimiento y reparación, los parques de maquinaria y la gestión de instalaciones, almacenes e inventarios, el estudio del trabajo y la productividad, las políticas de incentivos, métodos de medición del trabajo y la producción de equipos de máquinas. El curso se centra especialmente en la comprensión de los fundamentos básicos que gobiernan la gestión de los costes y la producción de los equipos, mostrando especial atención a la maquinaria pesada de movimientos de tierras y compactación. Es un curso de espectro amplio que incide en el conocimiento de los fundamentos de la ingeniería de la producción. Resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de los métodos y técnicas empleadas en la gestión de los costes y el rendimiento de la maquinaria en casos concretos. El curso trata llenar el hueco que deja la bibliografía habitual, donde no se profundiza en el coste y la producción de conjuntos de equipos. Además, el curso está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso se organiza en 30 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. Además, se entregan 75 problemas resueltos que complementan la teoría estudiada en cada lección. La dedicación aproximada para cada lección se estima en 2-3 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos del tema abordado. Al final se han diseñado tres unidades adicionales para afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y su capacidad para resolver problemas reales. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.

El curso está programado para 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de las técnicas actuales para la gestión de costes y producción de los equipos de máquinas empleados para la construcción
  2. Evaluar y seleccionar la maquinaria atendiendo a criterios económicos y técnicos
  3. Conocer la gestión de los sistemas de almacenamiento de materiales en obra y los parques de maquinaria
  4. Aplicar las técnicas de estudios de métodos y medición del trabajo para mejorar la eficiencia de los equipos
  5. Aplicar técnicas de aprendizaje e incentivos a la producción para mejorar la productividad

Programa

  • – Lección 1. Mecanización de las obras
  • – Lección 2. Adquisición y renovación de la maquinaria
  • – Lección 3. La depreciación de los equipos y su vida económica
  • – Lección 4. Selección de máquinas y equipos
  • – Lección 5. La estructura del coste
  • – Lección 6. Costes de propiedad de las máquinas
  • – Lección 7. Costes de operación de las máquinas
  • – Lección 8. Fondo horario y disponibilidad de los equipos
  • – Lección 9. Fiabilidad de los equipos
  • – Lección 10. Mantenimiento y reparación de los equipos
  • – Lección 11. Instalación y organización interna de la obra
  • – Lección 12. Parques de maquinaria y gestión de inventarios
  • – Lección 13. Constructividad y constructibilidad
  • – Lección 14. Estudio del trabajo y productividad
  • – Lección 15. Los incentivos a la productividad en la construcción
  • – Lección 16. Estudio de métodos
  • – Lección 17. Medición del trabajo
  • – Lección 18. La curva de aprendizaje en la construcción
  • – Lección 19. Ciclo de trabajo y factor de acoplamiento
  • – Lección 20. Producción de los equipos
  • – Lección 21. Composición y clasificación de suelos
  • – Lección 22. Movimiento de tierras y factor de esponjamiento
  • – Lección 23. Producción de los buldóceres
  • – Lección 24. Producción de las cargadoras
  • – Lección 25. Producción de las motoniveladoras
  • – Lección 26. Producción de las mototraíllas
  • – Lección 27. Producción de las retroexcavadoras
  • – Lección 28. Producción de las dragalinas
  • – Lección 29. Producción de los equipos de acarreo
  • – Lección 30. Producción de los compactadores
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 160 artículos en revistas indexadas en el JCR. Autor de 10 libros, 22 apuntes docentes y más de 350 comunicaciones a congresos. Ha dirigido 16 tesis doctorales, con 10 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social, así como el Premio a la Trayectoria Excelente en Investigación y el Premio al Impacto Excelente en Investigación, ambos otorgados por la Universitat Politècnica de València.

Lorena Yepes Bellver

Ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Universitat Politècnica de València.

Profesora Asociada en el Departamento de Mecánica de los Medios Continuos y Teoría de las Estructuras de la Universitat Politècnica de València. Es ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Ha trabajado en los últimos años en empresas constructoras y consultoras de ámbito internacional. Aparte de su dedicación docente e investigadora, actualmente se dedica a la consultoría en materia de ingeniería y formación.

Referencias:

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

 

Método de la Dirección General de Carreteras para la determinación del tiempo disponible para el trabajo

Figura 1. Isolíneas de coeficientes de reducción de los días de trabajo (MOP, 1964).

En todo proyecto constructivo suele aparecer un anejo que trata del Plan de Obra donde se planifica la duración de cada una de las actividades que se van a desarrollar en una obra. Para ello, además de conocer las mediciones y los rendimientos de los equipos, es necesario establecer el número de días que son útiles para el trabajo, considerando tanto los datos climáticos como el calendario laboral del lugar.

La previsión de los días trabajables en función de la climatología, se puede estimar de acuerdo con las recomendaciones de la publicación “Isolíneas de coeficientes de reducción de los días de trabajo”, editada por la División de Construcción de la Dirección General de Carreteras del M.O.P.T., actual Ministerio de Fomento. Los datos climáticos necesarios para su redacción se pueden obtener de la publicación “Datos climáticos para Carreteras”, editado asimismo por la División de Construcción de la Dirección general de M.O.P.T. (1964). Según este método, para calcular el tiempo disponible en las distintas clases de obra, se establecen unos coeficientes de reducción aplicables al número de días laborables de cada mes.

Figura 2. Portada de la publicación “Datos climáticos para Carreteras” (MOP, 1964)

No obstante, si se dispone de datos recientes de los regímenes de precipitaciones y temperaturas de estaciones meteorológicas suficientemente próximas a las obras, deben utilizarse dichos datos. Se trata de dar un orden de magnitud, pues en la práctica, durante la ejecución de las obras, la evolución del tiempo atmosférico en cada momento es impredecible. Sin embargo, con los resultados de este cálculo se podrá elaborar un plan de obra lo más ajustado posible, de forma que se reduzcan las desviaciones de plazo.

En la Figura 3 se muestra cómo los condicionantes climatológicos y los imprevistos influyen en el plazo de obra. También es necesario conocer el desglose de las actividades, sus mediciones y el rendimiento de los equipos elegidos.

Figura 3. Condicionantes para determinar el plazo de una obra.

Días aprovechables en la ejecución de las obras

Para estimar el número de días hábiles en la jornada laboral, se analizan los datos climáticos históricos registrados por estaciones meteorológicas cercanas al área de trabajo.

Condiciones límite

Para cada clase de obra, se entiende por día útil de trabajo, en cuanto a la climatología se refiere, el día en que la precipitación y la temperatura del ambiente sean inferior y superior, respectivamente, a los límites que se definen a continuación.

No se consideran las altas del ambiente que impidan la puesta en obra del hormigón, tanto por el número inapreciable de días que se dan como por caer dentro del microclima de una zona reducida.

Los límites que se dan a continuación son los correspondientes al método del MOP (1964). No obstante, se deberían adaptar a los condicionantes de las distintas disposiciones técnicas vigentes, así como lo que el propio proyecto pudiese considerar.

Temperatura límite para la ejecución de unidades bituminosas: Es aquella por debajo de la cual no se pueden ejecutar riegos, tratamientos superficiales o por penetración, y mezclas bituminosas. Normalmente, se considera 10 °C para tratamientos superficiales o por penetración y 5 ºC para mezclas bituminosas.

Temperatura límite para la manipulación de materiales húmedos: Se determina en 0 °C la temperatura límite del ambiente para la manipulación de materiales naturales húmedos.

Precipitación límite diaria: Se definen dos valores: 1 mm/día, que limita el trabajo en ciertas unidades sensibles a la lluvia ligera; y 10 mm/día para el resto de los trabajos. Se considera que, con 10 mm de precipitación al día, es necesaria una protección especial para realizar cualquier trabajo.

Coeficientes de reducción por condiciones climáticas durante los trabajos

El número total de días hábiles disponibles para cada tipo de trabajo se calcula multiplicando el número de días laborables del mes por sus respectivos coeficientes reductores. A continuación, se enumeran dichos coeficientes:

Cálculo de los días utilizables para cada clase de obra en la fase constructiva

Para obtener los coeficientes de reducción promedio para cada tipo de trabajo y su ubicación, se asocia un factor meteorológico que afecta a la obra, tal y como se representa en la Tabla 1.

Tabla 1. Factores climáticos

Suponiendo que estos sucesos son independientes entre sí, como el trabajo debe cancelarse cuando ocurra una de las condiciones adversas, los coeficientes de reducción se aplican de forma reiterada. La Tabla 2 indica el coeficiente de reducción de los días laborables que afecta a cada clase de obra.

Tabla 2. Coeficientes reductores

Tras aplicar las fórmulas anteriores, se obtienen los valores correspondientes a cada mes y a cada coeficiente para un determinado lugar y año.

Para determinar los días utilizables netos de cada mes se contemplan dos factores de reducción; uno, el de los días de climatología adversa, cuyo coeficiente de reducción coincide con cm, para cada clase de obra y, otro, el de los días no laborables cf y que dependen de los días festivos que varían según el año, la localidad y los convenios laborales. El coeficiente cf es el cociente entre los días laborables y los totales del mes correspondiente.

Dado que los días festivos también pueden ser de climatología adversa, se puede adoptar el criterio propuesto en la publicación de la Dirección General de Carreteras. En ese caso (1-cm) representa la probabilidad de que un día cualquiera del mes presente climatología adversa para dicha clase de obra; y (1-cmcf, la probabilidad de que un día laborable presente una climatología adversa.

El coeficiente de reducción total será, por tanto:Para obtener una mayor precisión que la obtenida en el coeficiente de reducción arriba indicado, se podría emplear la fórmula siguiente:que representa la probabilidad de que un día del mes presente climatología favorable (cm) y que sea laborable (cf).

En la Figura 4 se recoge el número de días aprovechables del 2015 para la ejecución de las principales de obra para Ourense, tal y como figura en el “Proyecto de Trazado. Autovía A-76 Ponferrada-Ourense. Tramo: A Veiga de Cascallá-O Barco de Valdeorras”, elaborado por INECO.

Figura 4. Días aprovechables del 2015 para la ejecución de las principales de obra para Ourense. “Proyecto de Trazado. Autovía A-76 Ponferrada-Ourense. Tramo: A Veiga de Cascallá-O Barco de Valdeorras”, elaborado por INECO

Referencias:

MINISTERIO DE OBRAS PÚBLICAS (1964). Datos Climáticos para Carreteras. Dirección General de Carreteras.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización de la vía en placa mediante metamodelos para mejorar la sostenibilidad de la construcción ferroviaria

Acaban de publicarnos un artículo en el Journal of Construction Engineering and Management-ASCE, revista indexada en el primer cuartil del JCR. Se trata de optimizar la vía en placa mediante metamodelos para mejorar la sostenibilidad de la construcción ferroviaria. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Este artículo no está publicado en abierto, pero podéis encontrarlo, solicitándolo, en esta dirección: https://www.researchgate.net/publication/360243758_Slab_Track_Optimization_Using_Metamodels_to_Improve_Rail_Construction_Sustainability o bien descargarlo directamente de la página web de ASCE: https://ascelibrary.org/doi/full/10.1061/%28ASCE%29CO.1943-7862.0002288

El ferrocarril es un medio de transporte eficaz, sin embargo, la construcción y el mantenimiento de las vías férreas tienen un impacto medioambiental importante en términos de emisiones de CO2 y uso de materias primas. Esto es especialmente cierto en el caso de la vía en placa, pues necesitan grandes cantidades de hormigón. También son más caras de construir que las vías convencionales con balasto, pero requieren menos mantenimiento y presentan otras ventajas que las convierten en una buena alternativa, especialmente para las líneas de alta velocidad. Para contribuir a un ferrocarril más sostenible, este trabajo pretende optimizar el diseño de una de las tipologías de vía en placa más comunes: RHEDA 2000. El objetivo principal es reducir la cantidad de hormigón necesaria para construir la losa sin comprometer su rendimiento y durabilidad. Para ello, se utilizó un modelo basado en el método de los elementos finitos (MEF) de la vía, emparejado con un metamodelo de kriging que permite analizar múltiples opciones de espesor de la losa y resistencia del hormigón de forma puntual. Mediante kriging, se obtuvieron soluciones óptimas que se validaron a través del modelo MEF para garantizar el cumplimiento de las restricciones mecánicas y geométricas predefinidas. Partiendo de una configuración inicial con una losa de 30 cm de hormigón con una resistencia característica de 40 MPa, se llegó a una solución optimizada, consistente en una losa de 24 cm de hormigón con una resistencia de 45 MPa, que arroja una reducción de costes del 17,5%. Este proceso puede aplicarse ahora a otras tipologías de losas para obtener diseños más sostenibles.

Abstract:

Railways are an efficient transport mode, but building and maintaining railway tracks have a significant environmental impact in terms of CO2 emissions and the use of raw materials. This is particularly true for slab tracks, which require large quantities of concrete. They are also more expensive to build than conventional ballasted tracks, but require less maintenance and have other advantages that make them a good alternative, especially for high-speed lines. To contribute to more sustainable railways, this paper aims to optimize the design of one of the most common slab track typologies: RHEDA 2000. The main objective is to reduce the amount of concrete required to build the slab without compromising its performance and durability. To do so, a model based on the finite-element method (FEM) of the track was used, paired with a kriging metamodel to allow analyzing multiple options of slab thickness and concrete strength in a timely manner. By means of kriging, optimal solutions were obtained and then validated through the FEM model to ensure that predefined mechanical and geometrical constraints were met. Starting from an initial setup with a 30-cm slab made of concrete with a characteristic strength of 40 MPa, an optimized solution was reached, consisting of a 24-cm slab made of concrete with a strength of 45 MPa, which yields a cost reduction of 17.5%. This process may be now applied to other slab typologies to obtain more sustainable designs.

Keywords:

Slab track; Optimization; Latin hypercube; Kriging; Finite-element method (FEM).

Reference:

MARTÍNEZ FERNÁNDEZ, P.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2022). Slab track optimisation using metamodels to improve rail construction sustainabilityJournal of Construction Engineering and Management, 148(7):04022053. DOI:10.1061/(ASCE)CO.1943-7862.0002288

Valoración del impacto social de puentes de hormigón y mixtos

Acaban de publicarnos un artículo en Sustainability, revista indexada en el JCR. Se trata de valorar distintas alternativas de puentes de hormigón o mixtos desde el punto de vista de la sostenibilidad social. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La definición de sostenibilidad incluye tres pilares fundamentales: económico, medioambiental y social. Los estudios sobre el impacto económico en las infraestructuras de ingeniería civil se han centrado en la reducción de costes. No está necesariamente en consonancia con la sostenibilidad económica, pues no se cosideran otros factores económicos. Además, la evaluación del pilar social se ha desarrollado poco en comparación con la económica y la medioambiental. Es esencial centrarse en la sostenibilidad social y evaluar indicadores claros que permitan a los investigadores comparar alternativas. Además, los estudios de evaluación del ciclo de vida de los puentes se han centrado hasta ahora en soluciones de hormigón. Esto ha dado lugar a una falta de análisis del impacto de las alternativas de puentes mixtos. Este estudio se realiza en dos fases. La primera parte evalúa la sostenibilidad social y medioambiental de “la cuna a la tumba” con las bases de datos SOCA v2 y ecoinvent v3.7.1. Esta evaluación se realiza sobre cuatro alternativas de puentes de hormigón y mixtos con luces entre 15 y 40 m. Para obtener los indicadores sociales y medioambientales se ha utilizado ReCiPe y el método de ponderación del impacto social. La segunda parte del estudio compara los resultados obtenidos de la evaluación social y medioambiental de las alternativas variando la tasa de reciclaje del acero. Las alternativas de puente son la losa maciza de hormigón pretensado, la losa aligerada de hormigón pretensado, el cajón-viga de hormigón pretensado y el cajón-viga mixto. Los resultados muestran que las opciones compuestas son las mejores en cuanto al impacto medioambiental, pero las soluciones de viga cajón de hormigón son mejores en cuanto al impacto social. Además, un aumento de la tasa de reciclaje del acero aumenta el impacto social y disminuye el medioambiental.

Abstract

The definition of sustainability includes three fundamental pillars: economic, environmental, and social. Studies of the economic impact on civil engineering infrastructures have been focused on cost reduction. It is not necessarily in line with economic sustainability due to the lack of other economic factors. Moreover, the social pillar assessment has been weakly developed compared to the economic and the environmental ones. It is essential to focus on the social pillar and evaluate clear indicators that allow researchers to compare alternatives. Furthermore, bridge life cycle assessment studies have been focused on concrete options. This has resulted in a lack of analysis of the impact of composite bridge alternatives. This study is conducted in two stages. The first part of the study makes a cradle-to-grave social and environmental sustainability evaluation with the SOCA v2 and ecoinvent v3.7.1 databases. This assessment is carried out on four concrete and composite bridge alternatives with span lengths between 15 and 40 m. The social impact weighting method and recipe have been used to obtain the social and environmental indicators. The second part of the study compares the results obtained from the social and environmental assessment of the concrete and the composite alternatives varying the steel recycling rate. The bridge alternatives are prestressed concrete solid slab, prestressed concrete lightened slab, prestressed concrete box-girder, and steel-concrete composite box-girder. The results show that composite options are the best for environmental impact, but the concrete box girder solutions are better for social impact. Furthermore, an increase in the steel recycling rate increases the social impact and decreases the environmental one.

Keywords

Sustainability; bridges; structures; LCA; ReCiPe; SOCA

Reference:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

Descargar (PDF, 1.26MB)

Plan de calidad de obra del constructor en el Código Estructural

Figura 1. Entendiendo lo que es el plan de calidad de una obra

En el ámbito de la gestión de la calidad siempre se ha llamado “Plan de Calidad” a la aplicación del sistema de calidad de una empresa a un producto determinado. En efecto, según la norma ISO 9000:2015 “Fundamentos y vocabulario”, un plan de calidad es una especificación de los procedimientos y recursos asociados a aplicar, cuándo deben aplicarse y quién tiene que aplicarlos a un objeto específico. Por tanto, una empresa constructora que disponga de un sistema de calidad, desarrollará un plan de calidad que se adapte a cada obra. Si subcontratara una parte, debería el subcontratista tener su propio plan de calidad o bien asumir el de la empresa principal.

Lo habitual es que la empresa certifique su sistema de gestión de la calidad según la norma UNE-EN ISO 9001, pero podría hacerlo bajo cualquier otro modelo. Sin embargo, esta certificación es voluntaria, salvo que el cliente la exija para un contrato determinado. En efecto, la gestión del sistema de calidad se materializa y documenta en un Manual de Calidad, en un Manual de Procedimientos (obligatorios y específicos de la actividad) y en el Plan de Calidad. Es la llamada pirámide documental del sistema de calidad.

De hecho, el Código Estructural exige al constructor en determinados casos la posesión de un sistema certificado conforme a la UNE-EN ISO 9001. Por ejemplo, en el Artículo 22.4 esta exigencia se aplica al caso de un control de ejecución a nivel intenso. También aparece en el Anejo 2 referido al índice de contribución de la estructura a la sostenibilidad. Sin embargo, se deslizan erratas en la redacción como en el Anejo 18 de bases de cálculo, donde se refiere a la norma en la versión del año 2000, cuando la versión vigente es la del 2015.

Pues bien, el Código Estructural, en vez de simplificar los términos y acogerse al vocabulario internacionalmente aceptado, utiliza conceptos similares que resultan confusos. Estamos hablando del plan de obra (cronograma) y el programa (procedimiento) de autocontrol del constructor. He tenido que utilizar los paréntesis para señalar que el plan de obra también se puede llamar cronograma, y que el programa de autocontrol también se llama procedimiento de autocontrol (véase el Artículo 19 Plan y programa de control). De estos términos confusos ya hemos hablado anteriormente en otros artículos. De hecho, no es posible diferenciar si el plan de obra y el programa de autocontrol son dos documentos diferentes o es uno solo. Parece que cada administración pública o gremio en la construcción ha querido redefinir los conceptos sobre la calidad de forma particular. Curioso es el nombre de Plan de Aseguramiento de la Calidad (P.A.C.) de la Dirección General de Carreteras (1995).

El Artículo 17 sobre criterios generales de la calidad de las estructuras indica que el “sistema de aseguramiento de la calidad aplicado al proyecto en sí, se describirá en el denominado procedimiento de autocontrol del constructor“. El Artículo 22.1 sobre control de la ejecución mediante comprobación del control de producción del constructor determina que “el programa de autocontrol contemplará las particularidades concretas de la obra, relativas a medios, procesos y actividades y se desarrollará el seguimiento de la ejecución de manera que permita a la dirección facultativa comprobar la conformidad con las especificaciones del proyecto y lo establecido en el Código. Para ello, los resultados de todas las comprobaciones realizadas serán documentados por el constructor, en los registros de autocontrol“. También añade lo siguiente: “en función del nivel de control de la ejecución, el constructor definirá un sistema de gestión de los acopios suficiente para conseguir la trazabilidad requerida de los productos y elementos que se colocan en la obra“. Además, dicho programa de autocontrol del constructor deberá ser aprobado por la dirección facultativa antes del inicio de las obras. Es decir, que lo que internacionalmente se conoce como “Plan de Calidad” se llama en el Código Estructural “Procedimiento de autocontrol“.

Por tanto, ya que no es posible diferenciar el plan de obra (cronograma) y el programa (procedimiento) de autocontrol del constructor como dos documentos separados, nos referiremos a ellos como plan de calidad de obra, elaborado por el constructor y aprobado por la dirección facultativa.

Figura 2. El control de la calidad de la obra según el Código Estructural. Elaboración propia.

Para la redacción del plan de calidad de obra se debe tener en cuenta el Plan de Control, que es un documento del proyecto. Aunque resulta implícito, es evidente que este plan de control del proyecto debe ser coherente con el resto de documentos de dicho proyecto, y en particular, con el Pliego de Prescripciones Técnicas Particulares. Es en el proyecto donde se deben recoger las condiciones del control de recepción de los materiales, las de ejecución de las unidades de obra y las condiciones de aceptación y rechazo. De esta forma, el constructor puede desarrollar dentro de su plan de calidad un Programa de Puntos Críticos de Inspección (PPI) donde se determinan los puntos de parada donde la dirección facultativa realiza el control exterior en la fecha prevista para que no se produzcan retrasos. Es por eso que también se llama cronograma al plan de obra del constructor. El Artículo 22.1 deja al constructor de documentar todas las comprobaciones realizadas en los llamados “registros de autocontrol“, que, evidentemente, se asocian de forma implícita a los PPI.

Sin embargo, el Código Estructural, para liar un poco más este tema, asocia el PPI al llamado “Programa de Control“. El objetivo es que el PPI englobe no solo el autocontrol del constructor sino que aparezcan todos los agentes implicados. Y si fuera poca la confusión, en el Artículo 19 nos dice que en el caso de obras de puentes de carretera, el programa de control puede estar incluido en el llamado “esquema director de la calidad“.

La única forma de entender este galimatías es dar una interpretación simple a lo que el Código Estructural dice. Digamos que el plan de calidad de una obra es un documento que redacta el constructor para adaptar su sistema de gestión de la calidad a lo recogido por el proyecto. Dicho documento recoge las condiciones aceptación de materiales y unidades de obra, para lo cual incluye un PPI asociado al cronograma de la obra para evitar interrupciones y el sistema de gestión de los acopios. Cuando la dirección facultativa aprueba dicho documento, entonces cambia de nombre y se llama, a partir de ese momento, Programa de Control que incluye, como hemos visto, el PPI. Como podéis ver he tenido que simplificar bajo el nombre “plan de calidad de una obra” al “plan de obra (cronograma) y el programa (procedimiento) de autocontrol” del constructor. No solo es simple, sino que utiliza la nomenclatura internacional en el ámbito de la calidad. En la Figura 3 figura la pirámide documental de un sistema de gestión de la calidad de una empresa y las definiciones particulares que emplea el Código Estructural.

Figura 3. Equivalencia entre la nomenclatura internacional sobre calidad y la empleada por el Código Estructural. Elaboración propia.

García Valcarce et al. (2004) indican que un plan de calidad de obra debería incluir las formas de trabajar, los recursos y la secuencia de actividades que tienen que realizarse. Por lo tanto, debería recoger lo siguiente:

  • Datos generales de la obra (propiedad, proyectista, dirección facultativa, contrato, etc.)
  • Documentación para la ejecución
  • Documentación del proyecto
  • Organigramas nominales de producción y calidad
  • Partes de obra subcontratadas
  • Procedimientos de ejecución
  • Medios de trabajo necesarios, propios o ajenos
  • Organización y funcionamiento del control interno (PPI y fichas de autocontrol)
  • Registros de todas las inspecciones y controles
  • No conformidades detectadas y acciones correctivas aplicadas

El resultado de aplicar el plan de calidad es una serie de documentos que sirven para demostrar la gestión realizada. A modo de ejemplo, se podrían citar los siguientes (García Valcarce et al., 2004): acta de replanteo, certificado final de obra, informes del control de calidad realizado, certificados de calidad de los materiales, resultados de los ensayos de los materiales, certificados parciales del control sobre la calidad de la ejecución, planos definitivos de lo realmente ejecutado, instrucciones de uso y mantenimiento.

Os he grabado un vídeo explicativo que espero resulte de interés.

Os dejo algún vídeo explicativo genérico sobre el plan de calidad de una obra.

Referencias:

DIRECCIÓN GENERAL DE CARRETERAS (1995). Libro de la calidad. Ministerio de Obras Públicas, Transportes y Medio Ambiente, Madrid, 132 pp.

GARCÍA VALCARCE, A.; SÁNCHEZ-OSTIZ, A.; GONZÁLEZ, P.; CONRADI, E.; LÓPEZ, J.A. (2004). Manual de dirección y organización de obras. Editorial Dossat 2000, Madrid, 362 pp.

YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 1. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-660. Depósito Legal: V-3150-2001.

YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 2Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-961. Depósito Legal: V-3151-2001.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El Programa de Puntos de Inspección en el Código Estructural

Figura 1. https://www.tuv.com/spain/es/inspecci%C3%B3n-de-cubiertas-de-naves-industriales-e-integridad-estructural.html

Uno de los documentos clave en el control de la calidad en la ejecución de las obras es el llamado Programa de Puntos de Inspección (PPI). Se trata de un formato de registro que se emplea en proyectos, obras o actividades formadas por varias tareas y donde se impliquen varias personas o empresas. Sirven para registrar que las actividades se han realizado correctamente.

Este concepto, muy empleado en el ámbito de la gestión de la calidad, tiene un tratamiento específico en el Código Estructural. Sin embargo, solo se habla del PPI de forma explícita en el Capítulo 24 dedicado a la gestión de la calidad de la fabricación y ejecución de las estructuras de acero. Ninguna referencia en artículos previos dedicados a estructuras de hormigón. Es un ejemplo más de cómo se ha elaborado este Código como yuxtaposición de las normativas previas de estructuras de hormigón y acero. En particular, el Artículo 102.1 es el que define el programa de puntos de inspección. Fuera del ámbito normativo, los comentarios del Artículo 63.2 sobre unidades de inspección incluyen qué tipo de operaciones son las que se deben recoger en el PPI. Como curiosidad, señalaremos que estos comentarios indican que “en la página web del Ministerio de Transportes, Movilidad y Agenda Urbana se incluye un enlace donde se puede acceder a unas tablas editables para la elaboración de los Programas de Puntos de Inspección”. El enlace a dichas tablas se puede encontrar aquí: https://www.mitma.gob.es/organos-colegiados/comision-permanente-del-hormigon/cph/programas_puntos_de_inspeccion.

García Valcarce et al. (2004) indican que el PPI tiene como objeto controlar la calidad de la ejecución de las obras. Según estos autores, ese control se basa en el autocontrol. Sin embargo, el actual Código Estructural va más allá. En efecto, el Artículo 102.1 indica que el PPI forma parte del programa de control (Figura 2). Por lo tanto, es un documento que se aprueba por la Dirección Facultativa y cuyas fuentes son tres: el plan de control del proyecto, el plan de obra (cronograma) del constructor y el procedimiento (programa) de autocontrol del constructor. Además, indica este artículo que el PPI reflejará el conjunto de controles, inspecciones y ensayos a realizar en la fabricación y ejecución de la estructura (de acero) por los diferentes agentes de control implicados. Es decir, no se trata únicamente de un documento de autocontrol del constructor, sino de todos los agentes implicados.

Figura 2. Relación del Programa de Puntos de Inspección con el resto de documentos de control, según el Código Estructural. Elaboración propia

Resumiendo lo más importante del PPI en relación con el Código Estructural, diremos que:

  1. Atiende a los controles en la fabricación y en la ejecución de la estructura
  2. Forma parte del programa de control aprobado por la dirección facultativa
  3. Registra los controles, inspecciones y ensayos de los diferentes agentes de control implicados

El Artículo 102.1 indica que el contenido mínimo del PPI será el siguiente:

  • las unidades de inspección, tanto en taller como en obra,
  • el tipo de inspección y comprobaciones a realizar,
  • los procedimientos o normas que regularán la verificación de la conformidad de cada inspección, así como las especificaciones de aceptación,
  • la ubicación y frecuencia o intensidad de las inspecciones,
  • la forma de documentación de los resultados,
  • la designación de la persona responsable de la realización y firma de los diferentes controles o inspecciones,
  • los puntos de espera o parada a respetar durante el proceso de control, y
  • cualquier comentario u observación aclaratoria.

Básicamente, un PPI es una tabla o lista de chequeo donde se enumeran las tareas clave del proyecto o actividad que se quiere controlar. Una vez que se ejecuta la tarea, los responsables firman para dejar constancia de que se ha realizado correctamente. Se pueden agrupar las actividades en las siguientes (García Valcarce et al., 2004):

  • Control de recepción de materiales y productos
  • Control de ejecución de las unidades de obra
  • Control de aceptación y rechazo

Existen legislaciones autonómicas donde se recoge en un Libro de Control de Calidad (Gobierno Vasco), o el Libro de Gestión de Calidad de Obra (Generalitat Valenciana), aquellos registros de aceptación y resultados de la calidad de las obras de edificación que debe gestionar la dirección facultativa.

Figura 3. Ejemplo de fichas del Libro de Control de Calidad (Gobierno Vasco)

Referencias:

GARCÍA VALCARCE, A.; SÁNCHEZ-OSTIZ, A.; GONZÁLEZ, P.; CONRADI, E.; LÓPEZ, J.A. (2004). Manual de dirección y organización de obras. Editorial Dossat 2000, Madrid, 362 pp.

YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 1. Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-660. Depósito Legal: V-3150-2001.

YEPES, V. (2001). Garantía de calidad en la construcción. Tomo 2Servicio de Publicaciones de la Universidad Politécnica de Valencia. SP.UPV-961. Depósito Legal: V-3151-2001.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los distintivos de calidad en el Código Estructural

https://www.mitma.gob.es/organos-colegiados/comision-permanente-del-hormigon/cph/reconocimiento-de-distintivos

El distintivo de calidad oficialmente reconocido (DCOR) fue una posibilidad que se introdujo en la derogada Instrucción de Hormigón Estructural EHE-08 como una certificación de la calidad del hormigón que asegurase una mayor normalización del producto y que permitiese reducir los controles de calidad de la obra.

En el Código Estructural, DCOR se recoge en numerosos artículos. Veamos los más relevantes:

  • Art. 4.2.2 Condiciones técnicas del proyecto, se establece que “a la vista de las posibles mayores garantías técnicas y de trazabilidad que pueden estar asociadas a los distintivos de calidad, el autor del proyecto valorará la inclusión, en el correspondiente pliego de prescripciones técnicas particulares, de la exigencia de emplear materiales, productos y procesos que dispongan de un distintivo de calidad oficialmente reconocido“.
  • Art. 4.2.3 Condiciones técnicas en la ejecución, se refuerza esta posibilidad, pues “la dirección facultativa valorará la conveniencia de exigir productos y procesos que dispongan de un distintivo de calidad oficialmente reconocido“. En el Art. 18 Garantía de la conformidad de productos y procesos de ejecución, distintivos de calidad, una de las formas por las que se pueden garantizar los productos y procesos es “mediante la posesión de un distintivo de calidad oficialmente reconocido (DCOR) concedido a un organismo de certificación acreditado conforme al Reglamento (CE) N.º 765/2008 del Parlamento Europeo y del Consejo, de 9 de julio“; además, el Código permite ciertas consideraciones especiales en la recepción de los productos y procesos con DCOR que no requieran el marcado CE.
  • Art. 21.1 Control documental de los suministros, se incide en el certificado final del suministro del producto suministrado cuando dispongan DCOR. En ese caso, si presentan una garantía superior, debe efectuarse un control documental específico, para lo que “los suministradores entregarán al constructor, quien los facilitará a la dirección facultativa, los certificados que avalen que los productos que se suministrarán están en posesión de un distintivo de calidad oficialmente reconocido vigente“.
  • Art. 22.2 Control de la ejecución mediante inspección de los procesos, en el caso de que un proceso de ejecución de la estructura se encuentre en posesión de un DCOR, “la dirección facultativa podrá eximir de la realización de las inspecciones externas“.

El DCOR es de carácter voluntario y puede estar oficialmente reconocido por la Subdirección General de Normativa y Estudios Técnicos del Ministerio de Transportes, Movilidad y Agenda Urbana u otro órgano directivo con competencias en el ámbito de la edificación o de la obra pública y perteneciente a la Administración Pública de cualquier Estado miembro de la Unión Europea, de Turquía o de cualquiera de los Estados firmantes del Acuerdo sobre el Espacio Económico Europeo.

Sin embargo, es importante resaltar que en los productos con marcado CE, los DCOR no podrán certificar la conformidad con las prestaciones declaradas en lo que respecta a las características esenciales cubiertas por la norma armonizada, ni tampoco con las prestaciones de ninguna característica esencial relacionada con los requisitos básicos incluidos en el anexo I del Reglamento (EU) 305/2011, de 9 de marzo de 2011.

A continuación hemos representado en un mapa conceptual las características relevantes del DCOR (Figura 2).

 

Figura 1. Distintivo de calidad oficialmente reconocido (DCOR). Imagen: V. Yepes.

Os dejo a continuación el Artículo 18 del Código Estructural para su consulta.

Artículo 18. Garantía de la conformidad de productos y procesos de ejecución, distintivos de calidad.

La ejecución de la estructura se llevará a cabo según el proyecto y las modificaciones autorizadas y documentadas por la dirección facultativa. Durante la ejecución de la estructura se elaborará la documentación que reglamentariamente sea exigible y en ella se incluirá, sin perjuicio de lo que establezcan otras reglamentaciones, la documentación a la que hace referencia el Anejo 4 de este Código.

En todas las actividades ligadas al control de recepción, podrá estar presente un representante del agente responsable de la actividad o producto controlado (autor del proyecto, suministrador de hormigón, suministrador de las armaduras elaboradas,
suministrador de los elementos prefabricados, constructor, etc.). En el caso de la toma de muestras, cada representante se quedará con copia del acta correspondiente. Cuando se produzca cualquier incidencia en la recepción derivada de resultados de ensayo no conformes, el suministrador y en su caso, el constructor, tendrá derecho a recibir una copia del correspondiente informe del laboratorio y que deberá ser facilitada por la dirección facultativa.

La conformidad de los productos y de los procesos de ejecución respecto a las exigencias básicas definidas por este Código, requiere que satisfagan con un nivel de garantía suficiente un conjunto de especificaciones.

De forma voluntaria, los productos y los procesos pueden disponer de las garantías necesarias para que se cumplan los requisitos mínimos contemplados en este Código, mediante la incorporación de sistemas (como por ejemplo, los distintivos de calidad) que
avalen, a través de las correspondientes auditorías, inspecciones y ensayos, que sus sistemas de calidad y sus controles de producción, cumplen las exigencias requeridas para la concesión de tales sistemas. Dichos sistemas deberán ser coherentes con las consideraciones especiales contempladas en este Código, con el fin de que el índice de fiabilidad de la estructura sea al menos el mismo, independientemente de los materiales que utilice.

A los efectos de este Código, dichas garantías pueden demostrarse por cualquiera de los siguientes procedimientos:

a) mediante la posesión de un distintivo de calidad oficialmente reconocido (DCOR) concedido a un organismo de certificación acreditado conforme al Reglamento (CE) N.º 765/2008 del Parlamento Europeo y del Consejo, de 9 de julio,
b) en el caso de productos fabricados en la propia obra o de procesos ejecutados en la misma, mediante un sistema equivalente validado y supervisado bajo la responsabilidad de la dirección facultativa, que asegure que el índice de fiabilidad de la estructura es al menos el mismo.

Este Código contempla la aplicación de ciertas consideraciones especiales en la recepción para aquellos productos y procesos que presenten las garantías necesarias para su cumplimiento mediante cualquiera de los dos procedimientos mencionados en el párrafo anterior.

El control de recepción tendrá en cuenta las garantías asociadas a la posesión de un distintivo, siempre que este cumpla unas determinadas condiciones. Así, tanto en el caso de los procesos de ejecución, como en el de los productos que no requieran el marcado CE según el Reglamento (UE) N.º 305/2011, de 9 de marzo de 2011, este Código permite aplicar unas consideraciones especiales en su recepción, cuando ostenten un distintivo de calidad de carácter voluntario que esté oficialmente reconocido por la Subdirección General de Normativa y Estudios Técnicos del Ministerio de Transportes, Movilidad y Agenda Urbana u otro órgano directivo con competencias en el ámbito de la edificación o de la obra pública y perteneciente a la Administración Pública de cualquier Estado miembro de la Unión Europea, de Turquía o de cualquiera de los Estados firmantes del Acuerdo sobre el Espacio Económico Europeo.

Lo dispuesto en el párrafo anterior será también de aplicación a los productos de construcción fabricados o comercializados legalmente en un Estado que tenga un acuerdo de asociación aduanera con la Unión Europea, cuando ese acuerdo reconozca a esos productos el mismo tratamiento que a los fabricados o comercializados en un Estado miembro de la Unión Europea.

De acuerdo al apartado 4.1, en el caso de los productos con marcado CE, los distintivos de calidad oficialmente reconocidos no podrán certificar la conformidad con las prestaciones declaradas en lo que respecta a las características esenciales cubiertas por la norma armonizada, ni tampoco con las prestaciones de ninguna característica esencial relacionada con los requisitos básicos incluidos en el anexo I del Reglamento (EU) 305/2011, de 9 de marzo de 2011.

18.1 Procedimiento de reconocimiento oficial de distintivos de calidad.

El reconocimiento oficial del distintivo se desarrollará conforme al procedimiento que establezca la Administración reconocedora de cualquier Estado miembro de la Unión Europea, de Turquía o de cualquier Estado de la Asociación Europea de Libre Comercio
signatario del Acuerdo sobre el Espacio Económico Europeo.

En el caso de los reconocimientos de distintivos por parte del Ministerio de Transportes, Movilidad y Agenda Urbana, se aplicará el siguiente procedimiento.

Estarán legitimados para presentar las solicitudes de reconocimiento oficial de un distintivo de calidad, los organismos de certificación acreditados conforme a los apartados de este Código que le sean de aplicación y a la norma UNE-EN ISO/IEC 17065 según el Reglamento (CE) N.º 765/2008, del Parlamento Europeo y del Consejo de 9 de julio, por el que se establecen los requisitos de acreditación y vigilancia del mercado relativos a la comercialización de productos.

Las solicitudes deberán acompañarse de al menos la siguiente documentación:

a) Memoria explicativa y justificativa de la solicitud.
b) Reglamento regulador del distintivo en donde se definan las garantías particulares, procedimiento de concesión, régimen de funcionamiento, requisitos técnicos y reglas para la toma de decisiones. En cualquier caso, dicho reglamento incluirá la declaración explícita del cumplimiento del contenido de este Código.
c) Cualquier otra documentación que la Administración reconocedora establezca o considere necesaria en relación al ámbito de certificación en el que se desarrolle el distintivo.

La Administración reconocedora podrá recabar los informes o dictámenes de los expertos por ella designados, en función de las características de la certificación cuyo reconocimiento se solicita.

Para mayor difusión y comodidad en el acceso de la información por parte de los usuarios, cualquier Administración reconocedora de las contempladas en los párrafos anteriores para el reconocimiento oficial de un distintivo de calidad, podrá solicitar la publicación de los distintivos por ellas reconocidas en las páginas web de las Comisiones Permanentes que proponen este Código, creadas a tal efecto.

Si la resolución de la Administración reconocedora fuese desfavorable al reconocimiento, la finalización del procedimiento se produciría con la comunicación al solicitante.

La enmienda o retirada del reconocimiento oficial del distintivo podrá ser realizada a instancia o de parte, para lo cual se iniciará el procedimiento mediante la oportuna solicitud y se regirá conforme a los mismos trámites que para su reconocimiento.

La Administración reconocedora vigilará la correcta aplicación de los distintivos, por lo que podrá participar en todas aquellas actividades que se consideren relevantes para el correcto funcionamiento del distintivo así como asistir a las inspecciones que realicen los servicios de inspección correspondientes a las instalaciones que ostenten el distintivo de calidad, para verificar la correcta actuación de estos en la supervisión de las características técnicas de los productos y la adecuación del control interno sobre su producción.

Si se detectase alguna anomalía en estos procedimientos, la Autoridad reconocedora podrá incoar un expediente y podrá suspender el reconocimiento, comunicando previamente la propuesta de retirada al solicitante con el objeto de que pueda formular alegaciones. La validez del reconocimiento quedará condicionada durante el período de validez, al mantenimiento de las condiciones que los motivan.

18.2 Distintivos de calidad concedidos por entidades de certificación en otros Estados.

No será necesaria la declaración explícita requerida en el punto b) del apartado 18.1, si una entidad de certificación de otro Estado miembro de la Unión Europea, de Turquía o de cualquiera de los Estados firmantes del Acuerdo sobre el Espacio Económico Europeo, evalúa la conformidad respecto a cualquier norma o reglamento que, manteniendo al menos las garantías necesarias para verificar un nivel similar de calidad del producto o proceso y de sus características técnicas, demuestre que se cumplen los requisitos de seguridad estructural contemplados en este Código.

También resulta de interés recoger el comentario que se hace al respecto de este artículo:

“En el caso de los productos o procesos (como por ejemplo, el hormigón) que presentan un nivel de garantía adicional de acuerdo con el articulado y se fabrican o desarrollan, según el caso, a partir de otros productos (como por ejemplo, cementos) susceptibles de estar también en posesión de distintivos de calidad, la utilización de estos permite una mejora en la trazabilidad global y facilita la consecucion de los niveles adicionales de garantía en los productos finales.

En el caso de que se realicen ensayos o comprobaciones experimentales sobre cualquier producto o proceso que esté en posesión de un distintivo oficialmente reconocido y de los resultados de ensayos realizados pueda confirmarse una no conformidad del producto respecto a lo establecido en este Código, la dirección facultativa notificará dicha circunstancia al Organismo emisor del distintivo y a la Administración que hubiera efectuado el reconocimiento”.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El sistema de seguimiento del constructor según el Código Estructural

Figura 1. Imagen: V. Yepes

El constructor debe definir y desarrollar un sistema de seguimiento que verifique la conformidad de la ejecución de los trabajos. Para ello debe desarrollar dos documentos. Por una parte el plan de obra, que también se llama “cronograma” en el Código Estructural, y el procedimiento de autocontrol de la ejecución de la estructura (también llamado “programa de autocontrol”. Ambos documentos desarrollan el plan de control definido en el proyecto. Entre los tres, darán lugar al programa de control que deberá aprobar la dirección facultativa. Por cierto, ya comentamos en un artículo anterior la confusión de términos cuando se mezclan “plan” y “programa” con “control” y “autocontrol”. El Código Estructural se merece que se simplifiquen y aclaren los términos.

El plan de obra lo debe redactar el constructor antes del inicio de los trabajos. El Código también lo llama cronograma para enfatizar el hecho de poner plazos a lo planificado por el constructor. Téngase en cuenta que, junto con el plan de control del proyecto y el programa de autocontrol del constructor, el plan de obra sirve de base al programa de control que debe aprobar la dirección facultativa.

Los contenidos mínimos que debe disponer el sistema de seguimiento de la obra del constructor (plan de obra y programa de autocontrol) son los siguientes:

  • El plan de obra o cronograma.
  • El sistema de gestión de los materiales, productos y elementos que se vayan a colocar en la obra, para garantizar su trazabilidad.
  • Las particularidades, con relación a los medios, procesos y actividades, para ejecutar la obra.
  • Las comprobaciones a realizar en el seguimiento de la ejecución, incluyendo su justificación, designación del responsable y de cumplimiento con el proyecto y lo establecido en el Código. Los resultados se documentarán por el constructor en los registros de autocontrol.

El concepto “programa de autocontrol” se puede encontrar disperso a lo largo del Código Estructural. Según el Art. 17 Criterios generales para la gestión de la calidad de las estructuras, el procedimiento de autocontrol del constructor es el sistema de aseguramiento de la calidad propio que incluye las evidencias necesarias para dar cumplimiento a los requerimientos del control e inspección establecidos en el correspondiente proyecto de ejecución y en el Código Estructural. Pero las ideas fundamentales las podemos ver en el Art. 19 Plan y programa de control, Art. 22 Control de la conformidad de los procesos de ejecución, Art. 22.1 Control de la ejecución mediante comprobación del control de producción del constructor y Art. 22.2 Control de la ejecución mediante inspección de los procesos.

A continuación os dejo un mapa conceptual donde se aclaran las relaciones del programa de autocontrol del constructor con otros aspectos del seguimiento de la ejecución (Figura 2).

Figura 2. Mapa conceptual sobre el control de la ejecución de una obra según el Código Estructural. Imagen: V. Yepes.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.