Evaluación de sistemas de cerramiento en naves industriales de acero: impacto ambiental y estrategias de final de vida.

Acaban de publicar nuestro artículo en la revista Buildings, de la editorial Elsevier, indexada en el JCR. El trabajo se realiza un exhaustivo análisis comparativo, basado en la metodología de Análisis de Ciclo de Vida (LCA) «de la cuna a la tumba», de tres soluciones de cerramiento para naves industriales de acero (chapas de acero, combinación de acero y ladrillo de arcilla y combinación de acero y bloque de hormigón) bajo dos escenarios de fin de vida (vertedero y reciclaje). Partiendo de una unidad funcional de 500 m² de envolvente lateral y utilizando el método ReCiPe 2016 Midpoint en 18 categorías de impacto, se desglosan detalladamente los inventarios de materiales, factores de reposición, procesos de extracción y fabricación, así como las repercusiones de distintas rutas de gestión de residuos. El estudio identifica los puntos críticos en las fases preoperativa, operativa y postoperativa, cuantifica las ventajas ambientales del reciclaje frente al vertido y evidencia que, pese a la preponderancia del acero, los indicadores de toxicidad humana y ecotoxicidad superan ampliamente la huella de carbono en importancia relativa. Por último, se discuten las limitaciones, se destacan las conclusiones clave y se proponen líneas de actuación futuras para enriquecer la sostenibilidad en el diseño y la gestión de las naves industriales.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València, y es fruto de la colaboración internacional con investigadores de la Universidad Tecnológica Federal de Paraná (Universidade Tecnológica Federal do Paraná, UTFPR), de Brasil.

En el sector de la construcción existe una fuerte demanda de sustituir las técnicas tradicionales por sistemas más sostenibles que cuantifiquen y reduzcan sus impactos ambientales más allá de las simples emisiones de CO₂ o la energía incorporada. Sin embargo, son escasos los estudios comparativos de LCA en naves industriales de acero que contrasten diversas opciones de cerramiento y analicen simultáneamente distintos escenarios de fin de vida. Este trabajo compara tres sistemas de cerramiento en naves de acero (SW: paneles de acero, SClaW: acero + ladrillo de arcilla y SConW: acero + bloque de hormigón) bajo dos rutas de fin de vida (vertedero frente a reciclaje), evaluando su desempeño en 18 categorías de impacto del método ReCiPe 2016 Midpoint. El objetivo es determinar qué combinaciones de materiales y gestión de residuos ofrecen el menor impacto ambiental global y, en consecuencia, orientar futuras decisiones de diseño y gestión.

Siguiendo la norma ISO 14040/44, se define el alcance como el ciclo completo de vida de las naves (extracción de materias primas, producción, construcción, uso y fin de vida). La unidad funcional elegida es 500 m² de cerramiento lateral equivalente a la envolvente de dos muros completos de la nave (superficie total: 600 m², 30 m × 20 m × 5 m). Se excluyó el tratamiento de los residuos generados en la obra y en el mantenimiento por falta de datos fiables y para garantizar la comparabilidad entre los tres diseños.

Las naves comparten estructura de perfiles de acero (ASTM A36 y A572 Gr. 50) y techo de chapa trapezoidal galvanizada de 0,5 mm de espesor y una pendiente del 5 %. Los cerramientos varían únicamente:

  • SW: chapa de acero (2500,78 kg).
  • SClaW: chapa (1190,85 kg) + ladrillo de arcilla (17 503,33 kg) + mortero (10 860,95 kg).
  • SConW: chapa (1190,85 kg) + bloque de hormigón (51 102,57 kg) + mortero (11 235,08 kg).

Para la etapa de uso, se asumió una vida útil de la nave de 50 años y de 40 años para el cerramiento (ABNT NBR 15575), por lo que se calculó un factor de reposición RF = 50/(40−1) = 0,25. Es decir, durante la explotación se sustituyó el 25 % de los materiales del cerramiento.

Se empleó SimaPro 9.6.0.1 con la base de datos Ecoinvent 3.10 y el método ReCiPe 2016 Midpoint (perspectiva jerárquica), con el que se caracterizaron 18 categorías: desde el «potencial de calentamiento global» o GWP hasta la toxicidad humana y la ecotoxicidad (terrestre, dulce y marina), pasando por la eutrofización, el agotamiento de recursos y el consumo de agua. El análisis abarca las fases preoperacional, operativa (incluido el RF) y postoperativa (vertederos inertes/sanitarios según la norma CONAMA 307/2002 frente a rutas de reciclaje).

Resultados: fases preoperativa y operativa

  • SW presenta los mayores impactos en seis categorías clave (eutrofización, ecotoxicidad y toxicidad humana), debido a la extracción y procesamiento intensivos del acero, con liberación de metales pesados y compuestos que elevan la eutrofización de las aguas continentales, la eutrofización marina, la ecotoxicidad terrestre, la ecotoxicidad de las aguas continentales, la eutrofización marina y la toxicidad carcinógena humana.
  • SClaW es el más perjudicial en otras seis categorías (escasez de recursos fósiles, escasez de recursos minerales, GWP, formación de partículas finas, radiación ionizante y toxicidad no carcinógena humana) debido al alto consumo de combustibles fósiles y materias primas en la cocción de ladrillos.
  • SConW lidera las 6 categorías restantes (ozonación, ozonización humana y terrestre, acidificación terrestre, consumo de agua, uso del suelo), atribuibles a la producción de cemento y hormigón (SO₂, NO_x, consumo de áridos y agua).

El impacto operativo equivale a un 25 % del preoperacional en todas las categorías, debido al RF uniforme, por lo que se suma directamente para el análisis conjunto.

Resultados: fase postoperativa

  • En el Escenario 1 (vertedero), SW arroja los mayores impactos en GWP, escasez de recursos fósiles, toxicidad y consumo de agua al verter acero (100 % reciclable) en un vertedero sanitario, lo que aumenta la demanda de material virgen y las emisiones asociadas.
  • En el Escenario 2 (reciclaje), todos los impactos se reducen drásticamente para los tres proyectos; la magnitud de esta reducción es mayor en SW debido a su alta proporción de acero, lo que penaliza severamente su perfil ambiental en el vertedero.

Este contraste evidencia que la estrategia de gestión de residuos (vertedero frente a reciclaje) tiene un efecto igual o más importante que la elección del material de cerramiento.

Resultados: ciclo de vida completo y comparativa cuantitativa.

En el ciclo de vida completo bajo el escenario 2, el SW + reciclaje obtiene el mejor desempeño ambiental en 9 de las 18 categorías. Por ejemplo, en GWP registra 7 823,752 kg CO₂ eq, con el SClaW al 98,34 % y el SConW al 72,66 % de ese valor; en Ozone Depletion es 0,00126 kg CFC11 eq (SClaW al 78,62 %, SConW al 176,45 %); en Ionizing Radiation registra 221,576 kBq Co-60 eq (33,85 % y −4,54 % respectivamente).

En contraste, el SW + vertedero es la peor alternativa en siete categorías (ecotoxicidad terrestre y acuática, carcinogenicidad y eutrofización), lo que subraya el impacto negativo de no reciclar el acero.

La normalización revela que las categorías de ecotoxicidad (terrestre, dulce y marina) y toxicidad no carcinógena para los humanos dominan el impacto total, superando ampliamente a la de GWP. Esto indica que existen riesgos locales y laborales por exposición a contaminantes pesados y compuestos tóxicos, que a menudo quedan fuera de los debates centrados únicamente en el cambio climático.

Discusión de los resultados

  • La opción más favorable en la mitad de las categorías ambientales evaluadas es la elección de chapas de acero reciclables, combinada con un programa de reciclaje efectivo.
  • El estudio demuestra la relevancia de ampliar el alcance de los indicadores más allá del CO₂, ya que categorías como la ecotoxicidad y la toxicidad humana pueden ser hasta 20 veces más significativas en términos normalizados.
  • La disposición de materiales reciclables (acero, ladrillo, hormigón) en vertederos supone un «punto caliente» que puede anular parcialmente las ventajas de un diseño ligero o materialmente eficiente.

Limitaciones y futuras líneas de investigación

Los autores reconocen que el estudio presenta varias limitaciones derivadas del ámbito de los datos y del alcance metodológico. En primer lugar, se ha excluido del inventario la generación de residuos durante las fases de construcción y mantenimiento, debido a la falta de datos fiables y específicos para proyectos de naves industriales. Además, la dependencia de procesos y materiales modelados en la base de datos genérica Ecoinvent, sin tener en cuenta los inventarios locales brasileños, puede afectar a la representatividad regional de los resultados y sesgar las conclusiones. Por último, el análisis se ha centrado exclusivamente en indicadores ambientales, dejando fuera las dimensiones económica y social, como los costes de ciclo de vida y el impacto social, así como aspectos operativos clave, como el confort térmico y la eficiencia energética durante el uso de las naves.

Para superar estas limitaciones y enriquecer la sostenibilidad de futuros estudios, se proponen una serie de recomendaciones. En primer lugar, se sugiere incorporar inventarios primarios locales que reflejen de manera más precisa los procesos y materiales de cada región, especialmente en contextos como el brasileño. En segundo lugar, se debe ampliar el abanico de sistemas constructivos analizados, incluyendo soluciones con aislantes y materiales híbridos que puedan ofrecer mejores prestaciones ambientales. En tercer lugar, se debe avanzar hacia un análisis integrado de costes y aspectos sociales mediante una metodología LCSA (Life Cycle Sustainability Assessment), que combine las dimensiones económica, ambiental y social. Por último, se debe evaluar el rendimiento en uso de las naves y relacionar los resultados de la LCA ambiental con parámetros de eficiencia energética y confort térmico para ofrecer una visión más completa del ciclo de vida del edificio.

Referencia:

VITORIO JUNIOR, P.C.; YEPES, V.; ONETTA, F.; KRIPKA, M. (2025). Comparative Life Cycle Assessment of Warehouse Construction Systems under Distinct End-of-Life Scenarios. Buildings, 15(9), 1445. DOI:10.3390/buildings15091445

Como el artículo está publicado en abierto, lo dejo para su descarga.

Descargar (PDF, 2.18MB)

 

Coste del ciclo de vida de las baterías de NiZn mediante Optimización Multiobjetivo por Enjambre de Partículas

Acaban de publicarnos un artículo en la revista Sustainability, revista indexada en el JCR. El artículo de investigación se centra en la optimización de las funciones de coste del ciclo de vida (LCC) e impacto ambiental (LCA) de las baterías de níquel-zinc (NiZn) mediante el algoritmo de optimización por enjambres de partículas multiobjetivo (MOPSO). El proceso de optimización se centra en las fases de adquisición de materias primas y de fin de vida útil de las baterías de NiZn para mejorar sus indicadores clave de rendimiento (KPI) de sostenibilidad. La metodología, implementada en MATLAB, utiliza un modelo de formulación de LCC y LCA ambiental, e incorpora datos de la base de datos Ecoinvent, el software OpenLCA y otras bases de datos públicas. Los resultados obtenidos gracias a la optimización proporcionan información sobre las combinaciones de países más eficaces para obtener materias primas para la producción de baterías de NiZn y gestionar los residuos de las baterías que no se pueden reciclar. Los KPI de sostenibilidad, como el impacto del calentamiento global y los costes de capital, se vinculan automáticamente a los resultados, lo que garantiza su reproducibilidad en caso de actualizaciones de datos o cambios en las ubicaciones de producción y reciclaje establecidas inicialmente en París (Francia) y Krefeld (Alemania). El proceso de validación implica un análisis de sensibilidad para garantizar la solidez de los parámetros matemáticos y tener en cuenta las futuras variaciones del mercado, junto con el uso del proceso jerárquico analítico (AHP) para validar los resultados con interacciones humanas. En el futuro, se sugiere incluir las fases de fabricación y uso en el modelo de optimización para mejorar aún más la sostenibilidad y la eficiencia de las baterías de NiZn.

Como conclusiones más importantes de este trabajo, se pueden señalar las siguientes:

  • El estudio optimizó el ciclo de vida, el impacto ambiental y el costr de las baterías de NiZn, utilizando los datos más recientes disponibles de los principales productores y centros de tratamiento de residuos.
  • La optimización por enjambres de partículas multiobjetivo (MOPSO) se consideró más adecuada que el algoritmo genético (GA) para la optimización multiobjetivo, debido a su eficiencia y eficacia.
  • El análisis tuvo en cuenta 14 flujos de materiales, una línea de eliminación de residuos y varias ubicaciones del mundo con diferentes costes e impactos ambientales, lo que puso de relieve la complejidad del proceso de optimización.
  • Mediante el MOPSO, se identificaron las ubicaciones óptimas de los proveedores de materias primas con un coste e impacto medioambiental mínimos, así como las ubicaciones de eliminación de residuos de materiales no reciclables.
  • Se recomendaron países proveedores óptimos específicos para los diferentes materiales, haciendo hincapié en la importancia de tomar decisiones estratégicas de abastecimiento para reducir el impacto ambiental y los costes.
  • El modelo de IA demostró su solidez al alinearse con los resultados del proceso jerárquico analítico (AHP) y mostrar su resiliencia a las fluctuaciones del mercado en el análisis de sensibilidad.
  • El estudio hizo hincapié en la necesidad de contar con módulos de programación dinámicos para estimar los indicadores clave de rendimiento (KPI) de sostenibilidad y validar los resultados de la optimización, especialmente en las fases de adquisición de materias primas y eliminación de residuos.
  • La validación mediante el AHP reveló similitudes y diferencias entre la IA y los resultados de las encuestas de un panel de expertos, lo que puso de manifiesto la eficacia del modelo de IA en la toma de decisiones estratégicas para el abastecimiento y la gestión de residuos.
  • El documento concluyó destacando la importancia de incorporar las fases de fabricación y uso en los futuros modelos de optimización para mejorar aún más la sostenibilidad y la eficiencia de las baterías de NiZn.

Abstract:

This study aims to optimize the Environmental Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) of NiZn batteries using Pareto Optimization (PO) and Multi-objective Particle Swarm Optimization (MOPSO), which combine Pareto optimization and genetic algorithms (GA). The optimization focuses on the raw material acquisition and end-of-life phases of NiZn batteries to improve their sustainability Key Performance Indicators (KPIs). The optimization methodology, programmed in MATLAB, is based on a formulation model of LCC and the environmental LCA, using data from the Ecoinvent database, the OpenLCA software (V1.11.0), and other public databases. Results provide insights about the best combination of countries for acquiring raw materials to manufacture NiZn and for disposing of the waste of NiZn batteries that cannot be recycled. These results were automatically linked to some sustainability KPIs, such as global warming and capital costs, being replicable in case of data updates or changes in production or recycling locations, which were initially considered at Paris (France) and Krefeld (Germany), respectively. These results provided by an AI model were validated by using a sensitivity analysis and the Analytical Hierarchy Process (AHP) through an expert panel. The sensitivity analysis ensures the robustness of mathematical parameters and future variations in the market; on the other hand, the AHP validates the Artificial Intelligence (AI) results with interactions of human factors. Further developments should also consider the manufacturing and use phases in the optimization model.

Keywords:

LCCA; LCA; MOPSO; genetic algorithms; AHP; sustainability KPIs; AI; NiZn batteries

Reference:

MALVIYA, A.K.; ZAREHPARAST MALEKZADEH, M.; SANTARREMIGIA, F.E.; MOLERO, G.D.; VILLALBA-SANCHIS, I.; MARTÍNEZ-FERNÁNDEZ, P.; YEPES, V. (2024). Optimization of the Life cycle cost and environmental impact functions of NiZn batteries by using Multi-Objective Particle Swarm Optimization (MOPSO). Sustainability, 16(15):6425. DOI:10.3390/su16156425

Descargar (PDF, 2.03MB)

Valoración del impacto social de puentes de hormigón y mixtos

Acaban de publicarnos un artículo en Sustainability, revista indexada en el JCR. Se trata de valorar distintas alternativas de puentes de hormigón o mixtos desde el punto de vista de la sostenibilidad social. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La definición de sostenibilidad incluye tres pilares fundamentales: económico, medioambiental y social. Los estudios sobre el impacto económico en las infraestructuras de ingeniería civil se han centrado en la reducción de costes. No está necesariamente en consonancia con la sostenibilidad económica, pues no se cosideran otros factores económicos. Además, la evaluación del pilar social se ha desarrollado poco en comparación con la económica y la medioambiental. Es esencial centrarse en la sostenibilidad social y evaluar indicadores claros que permitan a los investigadores comparar alternativas. Además, los estudios de evaluación del ciclo de vida de los puentes se han centrado hasta ahora en soluciones de hormigón. Esto ha dado lugar a una falta de análisis del impacto de las alternativas de puentes mixtos. Este estudio se realiza en dos fases. La primera parte evalúa la sostenibilidad social y medioambiental de “la cuna a la tumba” con las bases de datos SOCA v2 y ecoinvent v3.7.1. Esta evaluación se realiza sobre cuatro alternativas de puentes de hormigón y mixtos con luces entre 15 y 40 m. Para obtener los indicadores sociales y medioambientales se ha utilizado ReCiPe y el método de ponderación del impacto social. La segunda parte del estudio compara los resultados obtenidos de la evaluación social y medioambiental de las alternativas variando la tasa de reciclaje del acero. Las alternativas de puente son la losa maciza de hormigón pretensado, la losa aligerada de hormigón pretensado, el cajón-viga de hormigón pretensado y el cajón-viga mixto. Los resultados muestran que las opciones compuestas son las mejores en cuanto al impacto medioambiental, pero las soluciones de viga cajón de hormigón son mejores en cuanto al impacto social. Además, un aumento de la tasa de reciclaje del acero aumenta el impacto social y disminuye el medioambiental.

Abstract

The definition of sustainability includes three fundamental pillars: economic, environmental, and social. Studies of the economic impact on civil engineering infrastructures have been focused on cost reduction. It is not necessarily in line with economic sustainability due to the lack of other economic factors. Moreover, the social pillar assessment has been weakly developed compared to the economic and the environmental ones. It is essential to focus on the social pillar and evaluate clear indicators that allow researchers to compare alternatives. Furthermore, bridge life cycle assessment studies have been focused on concrete options. This has resulted in a lack of analysis of the impact of composite bridge alternatives. This study is conducted in two stages. The first part of the study makes a cradle-to-grave social and environmental sustainability evaluation with the SOCA v2 and ecoinvent v3.7.1 databases. This assessment is carried out on four concrete and composite bridge alternatives with span lengths between 15 and 40 m. The social impact weighting method and recipe have been used to obtain the social and environmental indicators. The second part of the study compares the results obtained from the social and environmental assessment of the concrete and the composite alternatives varying the steel recycling rate. The bridge alternatives are prestressed concrete solid slab, prestressed concrete lightened slab, prestressed concrete box-girder, and steel-concrete composite box-girder. The results show that composite options are the best for environmental impact, but the concrete box girder solutions are better for social impact. Furthermore, an increase in the steel recycling rate increases the social impact and decreases the environmental one.

Keywords

Sustainability; bridges; structures; LCA; ReCiPe; SOCA

Reference:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

Descargar (PDF, 1.26MB)