Materiales para pavimentos de hormigón

Figura 1. Construcción de pavimento de hormigón. https://obrasurbanas.es/como-controlar-el-alabeo-en-losas-de-pavimentos-de-hormigon/

En este artículo se ofrece una visión detallada de los materiales que se emplean en los pavimentos de hormigón, así como los requisitos técnicos que estos deben cumplir para asegurar una construcción de calidad en carreteras, autopistas y aeropuertos, vías peatonales, carriles ciclistas, zonas de almacenamiento y, en general, todos los firmes sometidos al tráfico. Se centra en los pavimentos de hormigón ejecutados in situ, dejando aparte los ejecutados con hormigón compactado con rodillo. Basado en la norma UNE-EN 13877-1:2013, se ha estructurado el contenido en tres grandes apartados: especificaciones de los materiales del hormigón, requisitos básicos del hormigón y requisitos básicos para otros materiales en pavimentos de hormigón. Este texto se ha redactado de forma accesible para facilitar el aprendizaje de los estudiantes de ingeniería civil, quienes podrán aplicarlo en proyectos de diseño y construcción de infraestructuras.

1. Especificaciones para los materiales del hormigón

Para garantizar la resistencia y durabilidad del hormigón en pavimentos, los materiales que lo componen deben cumplir los requisitos de calidad que aseguran un rendimiento adecuado frente a las exigencias de tráfico y condiciones ambientales. A continuación, se describen los componentes principales y sus especificaciones según la UNE-EN 13877-1:2013.

  • Cemento:
    • La elección del tipo de cemento es fundamental, ya que este actúa como el aglutinante que da cohesión al resto de materiales en la mezcla. De acuerdo con la norma EN 206-1, el cemento utilizado debe ser adecuado para la clase de resistencia requerida. La especificación concreta del tipo de cemento puede variar según las normativas nacionales o regionales del lugar de aplicación.
    • El cemento debe poseer propiedades que permitan una resistencia adecuada al tráfico y a la exposición ambiental del pavimento, evitando problemas como la desintegración o la pérdida de capacidad estructural con el paso del tiempo.
  • Áridos:
    • Los áridos, tanto gruesos como finos, son la base sólida del hormigón y deben cumplir con la norma EN 12620 para asegurar su idoneidad en términos de tamaño, forma y dureza. La selección y el tipo de áridos influyen directamente en la resistencia, la durabilidad y la trabajabilidad de la mezcla.
    • Es importante que el tamaño máximo de los áridos no sea mayor de un tercio (1/3) del espesor de la capa de hormigón, ya que así se evita que el agregado interfiera en la uniformidad del pavimento. En pavimentos armados con juntas o armados continuos, el tamaño del árido no debe superar un tercio de la distancia entre las armaduras longitudinales, previniendo obstrucciones y asegurando una correcta distribución de la mezcla.
  • Agua de amasado:
    • La calidad del agua de amasado es crucial, ya que interviene en las reacciones químicas de hidratación del cemento y en la cohesión de la mezcla. La norma UNE-EN 1008 establece los parámetros que debe cumplir el agua, incluyendo aspectos como la presencia de cloruros o sulfatos, que pueden afectar a la durabilidad.
    • Además de evitar posibles contaminantes, el agua debe mezclarse en proporciones controladas para asegurar que el hormigón adquiera la resistencia y consistencia deseadas. Es importante mantener una relación agua/cemento equilibrada, ya que una cantidad excesiva de agua puede generar porosidad y debilitar el material.
  • Otros materiales:
    • En algunos proyectos, pueden añadirse otros materiales, como adiciones y aditivos, para mejorar ciertas propiedades del hormigón. Estos deben cumplir con la norma EN 206-1, que establece los requisitos de conformidad para dichos materiales.
    • Los aditivos pueden ser superfluidificantes, retardadores o aceleradores de fraguado, entre otros, y ayudan a optimizar el manejo, la durabilidad y la resistencia de la mezcla en condiciones específicas de uso. Las adiciones, como las cenizas volantes o el humo de sílice, pueden mejorar la densidad del hormigón y su resistencia a agentes externos como el cloruro y la humedad.

2. Requisitos básicos del hormigón

Las propiedades del hormigón fresco y endurecido son fundamentales para asegurar la calidad y el rendimiento del pavimento. A continuación, se detallan los requisitos básicos que debe cumplir el hormigón, según la norma.

  • Hormigón fresco:
    • Consistencia: La consistencia determina la fluidez de la mezcla y su capacidad de ser manipulada durante el proceso de colocación. Para garantizar que el hormigón sea adecuado para el equipo de colocación, la norma permite especificar una clase de consistencia o un valor objetivo. La consistencia es importante no solo para la colocación, sino también para evitar problemas de compactación y reducir la formación de poros.
    • Densidad: La densidad del hormigón fresco debe determinarse mediante el cálculo de la masa de todos los componentes en un volumen específico. La densidad se especifica con una tolerancia del 1,5 % sobre el valor deseado, lo que permite adaptarse a ligeras variaciones de la mezcla. Esta propiedad influye en la resistencia y la durabilidad de la estructura final.
    • Contenido de aire: El volumen de aire atrapado en el hormigón es importante para prevenir problemas derivados de las congelaciones y descongelaciones. El contenido de aire debe medirse en el lugar de la obra según la norma EN 12350-7, y puede establecerse un porcentaje mínimo de aire en función de la normativa de cada país.
    • Contenido de cemento y partículas finas: La cantidad de cemento debe ser suficiente para dar resistencia al hormigón, mientras que el contenido de partículas de menos de 0,25 mm debe controlarse para evitar una textura excesivamente fina. Esto garantiza un equilibrio adecuado entre manejabilidad y resistencia final.
    • Contenido de cloruros: Si el hormigón incorpora elementos de acero sin protección, como barras de unión o pasadores, el contenido de cloruros no debe superar el 0,40 % de la masa del cemento. Esto previene la corrosión de los elementos metálicos y prolonga la vida útil de la estructura.
  • Hormigón endurecido:
    • Resistencia a ciclos de hielo y deshielo: En áreas donde el hormigón está expuesto a variaciones térmicas importantes, es necesario que el material resista los ciclos de congelación y descongelación sin sufrir deterioro. La norma especifica la resistencia que debe cumplir el hormigón en estas condiciones, de acuerdo con la EN 206-1.
    • Resistencia mecánica: La resistencia a la compresión, la tracción indirecta y la flexotracción del hormigón endurecido se miden a los 28 días. Estos parámetros se evalúan mediante ensayos específicos, como los ensayos de compresión (EN 12390-3), tracción indirecta (EN 12390-6) y flexotracción (EN 12390-5), que permiten clasificar el hormigón en distintas clases de resistencia y asegurar su adecuación para el tráfico y el uso proyectado.
Figura 2. Pavimento postesado. VSL Sistemas Especiales de Construcción Argentina S.A.

3. Requisitos básicos para otros materiales en pavimentos de hormigón

Además del hormigón, existen otros materiales que cumplen funciones específicas en los pavimentos y deben cumplir normativas particulares para garantizar su rendimiento.

  • Materiales de curado:
    • Los productos de curado son esenciales para evitar la pérdida de humedad en el hormigón fresco, lo que previene la formación de fisuras y asegura una ganancia de resistencia adecuada. Estos productos deben cumplir con la especificación técnica CEN/TS 14754-1, que evalúa su eficacia en la retención de agua.
    • Además, es recomendable que estos materiales de curado protejan el hormigón de variaciones bruscas de temperatura, especialmente en climas extremos, para evitar tensiones internas que puedan causar fisuras prematuras.
  • Retardadores de superficie:
    • En acabados de pavimentos con textura de árido expuesto, se utilizan retardadores de superficie que permiten revelar el árido grueso al retirar el mortero superficial. Estos retardadores deben estar diseñados específicamente para esta función y deben protegerse contra la evaporación hasta completar el proceso de fraguado.
  • Productos de sellado de juntas:
    • Las juntas en el pavimento son esenciales para permitir la expansión y contracción del hormigón, y los selladores de juntas deben prevenir la infiltración de agua. Los materiales de sellado deben cumplir con la norma EN 14188-1, EN 14188-2 o EN 14188-3, en función de si el sellado es en caliente, en frío o preformado. Esto evita la entrada de agua que puede congelarse y causar daños a largo plazo.
  • Barras de unión y pasadores:
    • Estos elementos de acero aseguran la transmisión de carga en las juntas y ayudan a prevenir el deslizamiento entre las losas adyacentes. Deben cumplir con la norma EN 10080, y especificar un nivel de resistencia B250 para barras lisas y B500 para barras corrugadas. Las dimensiones de estas barras deben seleccionarse en función de las tablas de la norma, teniendo en cuenta factores como el espesor del pavimento.
  • Armaduras:
    • La armadura de acero, que controla las fisuras y proporciona resistencia a las tensiones de tracción, debe cumplir con la norma EN 10080. En pavimentos armados continuos, la continuidad de la armadura puede lograrse mediante soldaduras, solapes o conectores, lo que garantiza una estructura sólida y sin fisuras que resista el paso constante de vehículos.

Este artículo aborda los detalles técnicos necesarios para comprender y aplicar las especificaciones de materiales en pavimentos de hormigón. Su selección y cumplimiento son esenciales para construir estructuras duraderas, seguras y adecuadas para las demandas de tráfico actuales y futuras.

Referencias:

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CALO, D.; SOUZA, E.; MARCOLINI, E. (2015). Manual de diseño y construcción de pavimentos de hormigón. Instituto del Cemento Portland Argentino (ICPA).

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C. (1965) Pavimentos de hormigón normal y pretensado. Experiencia española en el tramo de ensayo. Publicación n.º 18 del Laboratorio de Transporte y Mecánica del Suelo. Centro de Estudios y Experimentación de Obras Públicas (CEDEX). Madrid.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

RECUENCO, E. (2014). Firmes y pavimentos de carreteras y otras infraestructuras. Garceta grupo editorial, Colección Escuelas, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cálculo de la producción de un compactador

Figura 1. Compactador monocilíndrico vibratorio autopropulsado Cat CS10 GC. https://www.interempresas.net/ObrasPublicas/Articulos/346172-Caterpillar-presenta-sus-nuevos-compactadores-vibratorios-de-suelos-de-un-solo-tambor.html

La producción de un compactador es directamente proporcional a su velocidad de trabajo, al ancho eficaz del compactador y al espesor de la tongada una vez compactada, e inversamente proporcional al número de pasadas necesarias. El ancho eficaz sería la diferencia entre la anchura del órgano de trabajo del compactador y el solape necesario para garantizar la compactación entre los distintos carriles.

Debido a la multitud de factores que influyen en la compactación, para grandes volúmenes de obra, se aconseja la realización de tramos de prueba, donde se pueden establecer los criterios que, bajo la perspectiva económica, sean óptimos para llegar a la compactación especificada. Los tramos de prueba no suelen estar justificados en el caso de que los materiales sean suficientemente homogéneos y siempre resulta interesante cuando nos encontramos ante yacimientos importantes. En otro caso, no resulta económica su ejecución. Estos tramos de prueba están formados por una cuña, cuyo espesor llega hasta el máximo que se considere para el equipo empleado.

Este tipo de cuestiones se tratan ampliamente en el curso sobre “Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación”. Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-compactacion-superficial-y-profunda-de-suelos-en-obras-de-ingenieria-civil-y-edificacion/. Además, este os recomiendo también el curso sobre “Gestión de costes y producción de la maquinaria empleada en la construcción”, cuya información podéis ver aquí: https://ingeoexpert.com/cursos/curso-de-gestion-de-costes-y-produccion-de-la-maquinaria-empleada-en-la-construccion/

A continuación os dejo un par de nomogramas que permiten el cálculo directo de esta producción. En uno de ellos se han utilizado tanto las unidades del sistema internacional como las anglosajonas. Estos nomogramas se han elaborado en colaboración con el profesor Pedro Martínez Pagán, de la Universidad Politécnica de Cartagena.

Referencias:

MORILLA, I. (2012). Interpretación de los ensayos geotécnicos en suelos. 627 pp., Madrid.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Maquinaria y procedimientos de construcción: Problemas resueltos

Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.

El libro tiene 562 páginas. Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

Descargar (PDF, 17.88MB)

Orden Circular 4/2023 Procedimiento para la justificación de precios en la Dirección General de Carreteras y base de precios de apoyo

Ha sido para mí un placer participar en la redacción de parte de la Orden Circular 4/2023 sobre procedimiento para la justificación de precios en la Dirección General de Carreteras y base de precios de apoyo. El reto ha consistido en presentar de forma explícita la metodología subyacente que permite la justificación del precio de las unidades de obra. En este caso, aparecen una serie de novedades que creo que son de interés para el sector. Aparece el concepto de unidades de ejecución complejas o atípicas, donde el empleo de medios singulares las aparta de una construcción estandarizada. También aparece, por vez primera, el concepto de unidades determinantes, que van a ser las que soporten la mayor parte del importe del presupuesto de una obra. Pues bien, en estos dos casos, se obliga a una justificación expresa y detallada de las unidades de obra. Solo para los casos del resto de unidades, se aporta la base de precios como un apoyo para la justificación de los precios, sin que tampoco deba considerarse como un objetivo de precio concreto a utilizar.

Un aspecto también importante ha sido dejar claros conceptos que se manejaban, con el paso del tiempo, de forma inadecuada. Un ejemplo es el Cuadro de Precios N.º 2, donde se prohíbe de forma expresa su desglose en las siguientes categorías genéricas: mano de obra, maquinaria, resto de obra, materiales y costes indirectos.

El documento presenta, también, una serie de anexos que complementan el procedimiento, en las que he participado especialmente en el Anexo 4:

  • Anexo 1: Convenios colectivos del sector de la construcción según provincias.
  • Anexo 2: Listado de precios básicos de los principales materiales.
  • Anexo 3: Justificación de precios de unidades de ejecución de obra. Ejemplos.
  • Anexo 4: Método simplificado de cálculo de producción de una máquina.
  • Anexo 5: Base de precios de apoyo de la D.G.C.

La redacción de este documento ha sido fruto del esfuerzo de un grupo de trabajo perteneciente a la Subdirección General de Proyectos y Obras de la Dirección General de Carreteras del Ministerio de Transportes, Movilidad y Agenda Urbana. Mi especial agradecimiento a la confianza depositada en mi persona por parte de su titular D. Fernando Pedrazo Majárrez. También se ha contado con el soporte del encargo a INECO, con la participación expresa de D. José Manuel Sáez Serrano, Dña. María del Consuelo Martín Galán y D. Javier Fernández Pedroche, entre otro personal. Igualmente, se ha contado con la participación en el grupo del trabajo del Comité de Construcción y la Comisión de Maquinaria de SEOPAN. Mi agradecimiento personal a todos ellos, pues su visión y aportes son de gran interés para el documento.

Por último, mi recomendación es que se lea con detenimiento el documento, pues existen modificaciones que deberían tenerse en cuenta a partir de este momento. Además, tal y como se ha establecido en estas reuniones, el objetivo es mejorar paulatinamente el documento en futuras ediciones. Por mi parte, este documento lo voy a poner a circular entre mis estudiantes en la Escuela de Ingeniería de Caminos, Canales y Puertos para su aplicación inmediata en TFGs y TFMs.

Además, para los que estéis interesados, un desarrollo completo sobre los temas de costes y producción de los equipos los podéis seguir en el siguiente curso: https://ingeoexpert.com/cursos/curso-de-gestion-de-costes-y-produccion-de-la-maquinaria-empleada-en-la-construccion/

Os dejo, para su descarga, el documento completo. Espero que os sea de interés.

Descargar (PDF, 19.69MB)

Normas añejas que afectan a la justificación de precios de un proyecto

En ocasiones nos encontramos con rutinas y costumbres arraigadas en la redacción y revisión de proyectos de construcción. A lo largo del tiempo, estas prácticas se vuelven habituales y ni siquiera nos cuestionamos su validez, simplemente las seguimos porque “se hace así de toda la vida”. Es el típico argumento “ad antiquitatem” o apelación a la tradición, que implica que algo debe ser correcto o bueno porque es antiguo o tradicional, o porque es “como siempre han sido las cosas”. Sin embargo, es evidente que se trata de una falacia argumentativa.

Un ejemplo de esta situación es el frecuente “copiar y pegar” de artículos de los Pliegos de Prescripciones Técnicas Particulares de un proyecto, o cuando se justifican los precios sin tener conocimiento de las razones detrás del límite del 6% para el coeficiente K de costes indirectos en obras terrestres. Lo mismo ocurre con documentos como el Cuadro de Precios N.º 2 que, indagando en su historia, esta se desvanece en la oscuridad remota del pasado y no se sabe muy bien cuál es su origen. De alguna de estas cosas ya hemos hablado en algunos artículos anteriores.

Pero otras veces, hay que remontarse a Órdenes, Circulares o Notas Internas del Ministerio correspondiente, que son las que en un pasado distante dictaron, con mayor o menor fortuna, las formas y los contenidos en la forma de redactar los proyectos de construcción. Sin embargo, de manera mimética y sin autocrítica, seguimos aplicándolas como siempre. En ocasiones, surgen dudas razonables sobre si estas normativas, o parte de ellas, siguen en vigor o han sido reemplazadas por otras con un estatus legal diferente. Si buscáis un listado de la normativa aplicable sobre proyectos, podéis acudir a la página siguiente: http://carreteros.org/normativa/proyectos/proyectos.htm, aunque se trata de un enlace que podría no estar actualizado o sea incompleto.

A modo de ejemplo, os presento varias normas que han dado origen a una parte de la justificación de precios en un proyecto. Espero que os resulten útiles y, al mismo tiempo, os invito a reflexionar si, después de varias décadas, aún tiene sentido su aplicación o si es necesario replantear su redacción y contenido. Es posible que conozcan otras normas antiguas que aún mantengan vigente parte de su articulado.

Descargar (PDF, 1.22MB)

Descargar (PDF, 79KB)

Descargar (PDF, 160KB)

Descargar (PDF, 389KB)

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estribos cerrados de puentes

Figura 1. Esquema de estribo cerrado. Imagen: V. Yepes

El estribo cerrado es uno de los tipos más comunes de estribos utilizados en puentes. Consiste en un muro frontal, que constituye la estructura principal del estribo, aletas laterales (con o sin muro lateral), un murete guarda y una losa de transición. En la Figura 1 se puede ver el esquema de su sección transversal. El muro frontal se encarga de recibir la carga del tablero a través de los apoyos, los cuales permiten que el tablero se mueva de forma independiente a los movimientos ocasionados por las tierras circundantes. Además, el estribo cerrado se apoya en el terreno natural, en lugar de hacerlo sobre el terraplén, lo que ayuda a reducir los asientos a largo plazo. Esto es especialmente beneficioso para evitar asentamientos que podrían afectar al tablero si este fuera hiperestático.

El diseño de la parte superior del estribo se determina según el tipo de carga y los movimientos del tablero. Por otro lado, la parte inferior está influenciada por las acciones del tablero y el empuje de las tierras, especialmente cuando el estribo es alto. En el caso de puentes ferroviarios, donde el empuje horizontal en la parte superior debido al frenado es significativo, el diseño de la parte inferior del estribo, incluyendo la variación de los espesores, el tamaño del cimiento, entre otros aspectos, también se ve afectado por este efecto. En los viaductos destinados a trenes de alta velocidad, es común utilizar anclajes tipo Gewi o cables de pretensado para sujetar el tablero a uno de los estribos. Este estribo se denomina estribo fijo, mientras que la junta de dilatación se ubica en el estribo opuesto.

El cierre lateral del estribo depende de si hay posibilidad de derrame de tierras por delante de él. En el caso poco frecuente de estribos cerrados donde se pueda producir derrame, se soluciona colocando una pequeña aleta triangular perpendicular al muro frontal del estribo. La altura y longitud de la aleta dependerán del grosor del tablero y la inclinación del derrame del terraplén. En el caso más frecuente, donde no hay derrame de tierras por delante del estribo, existen dos soluciones posibles. La primera es extender muros en continuación del muro frontal, conocidos como “aletas en prolongación”. La segunda es disponer muros adyacentes al propio muro frontal y perpendiculares a este, conocidos como “muros en vuelta”. En este último caso, dependiendo de la altura del estribo y la inclinación de las tierras, puede ser necesario construir verdaderos muros de contención para contener el terraplén.

Este tipo de estribo permite no verter tierras por delante de él, lo cual es especialmente útil cuando se desea evitar invadir la vía inferior. En caso de que haya edificaciones cercanas, se puede extender lateralmente el estribo mediante la construcción de un muro en vuelta, que puede prolongarse según sea necesario. Estos muros en vuelta pueden tener un ángulo de 90º con el estribo (Figura 2), siguiendo la disposición del vial en caso de que el estribo se desvíe, o pueden formar un ángulo (generalmente de 30º) siguiendo la inclinación del terraplén.

Figura 2. Paso elevado sobre la línea del ferrocarril en el término municipal de Lodosa. http://www.navarra.es/NR/rdonlyres/36F08D42-4369-4D8F-B831-194DE72E5827/103157/110408op61b2.JPG

En el caso de estribos de gran altura, generalmente a partir de unos 8 m, existen dos opciones alternativas en lugar de mantener un espesor constante, que suele ser significativo y solo necesario en los últimos metros inferiores, donde el cortante y el momento flector son más altos. La primera opción es establecer un espesor variable, en la cual se suele cambiar el espesor cada 4 m, que coincide con la altura típica de las capas de hormigonado. La segunda opción es utilizar un muro frontal nervado con rigidizadores verticales. En este caso, el muro frontal transmite el empuje de las tierras a través de la flexión horizontal a los nervios, y estos, a su vez, lo transmiten verticalmente a la cimentación.

La impermeabilización es un elemento esencial en un estribo, tanto para garantizar su funcionalidad como para reducir los empujes del trasdós. Por esta razón, todos los estribos deben contar con una capa de material filtrante en el trasdós, así como con un tubo de drenaje en el fondo que permita la evacuación de las aguas acumuladas detrás del muro frontal hacia el exterior.

Los asientos que ocurren en el terraplén de acceso son más significativos que los que se producen en el muro. En los puentes de carretera, se evita el resalto abrupto que se generaría en la unión entre ambos elementos mediante el uso de una losa de transición. Esta losa se apoya en las tierras de un lado y en el muro del otro, proporcionando una transición suave entre ambos extremos. El tamaño de esta losa dependerá de la diferencia de asientos entre el muro y el terraplén, así como de la altura y calidad del terraplén. Por lo general, una losa de transición de 4 a 5 m de longitud suele ser suficiente (Manterola, 2006).

Os dejo un pequeño vídeo donde se explican los estribos de los puentes, incluido el estribo cerrado. Espero que os sea de interés.

Referencias:

ARENAS, J.J.; APARICIO, A.C. (1984). Estribos de puente de tramo recto. Santander: Universidad de Cantabria.

DIRECCIÓN GENERAL DE CARRETERAS (1994). Manual para el proyecto y ejecución de estructuras de suelo reforzado. Ministerio de Obras Públicas, Transportes y Medio Ambiente.

JURADO, C. (2016). Puentes (I). Evolución, tipología, normativa, cálculo. 2ª edición, Madrid.

MANTEROLA, J. (2006). Puentes II. Apuntes para su diseño, cálculo y construcción. Colección Escuelas. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328.

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estribos abiertos de puente

Figura 1. Esquema de estribo abierto. Imagen: V. Yepes

Se recomienda utilizar el estribo oculto bajo el terraplén en los puentes tipo paso superior, ya que esto mejora la visibilidad de los conductores que transitan por la vía inferior, lo cual a su vez aumenta la comodidad y la funcionalidad de la infraestructura. Si el estribo permite el paso de tierras a través de él, se considera un estribo abierto; de lo contrario, se clasifica como cerrado. En el caso de puentes con alturas superiores a 4 o 5 m, el uso de un estribo abierto ahorra materiales en comparación con uno cerrado. Estas alturas suelen ser comunes en los pasos superiores de las carreteras.

En esencia, un estribo abierto o falso se compone de un dintel o cargadero que sirve de apoyo para el tablero del puente. Este dintel descansa sobre pantallas o diafragmas que transfieren las cargas a la cimentación. Una característica importante del estribo abierto es que permite el vertido de tierra sobre él, lo cual ayuda a reducir el empuje horizontal ejercido por el terraplén. Para lograr esto, se crea una transición entre la viga cabezal que sostiene el dintel y el suelo de cimentación mediante el empleo de pantallas, pilotes u otros elementos que permiten el paso de la tierra. En esta solución, las pantallas desempeñan un papel crucial al reemplazar en gran medida el muro frontal del estribo cerrado, lo que resulta en un ahorro significativo de hormigón.

Estos estribos suelen estar compuestos por tres elementos principales (ver Figura 1): una viga cabezal que alberga los neoprenos y sirve como soporte y protección del tablero contra las tierras del terraplén; un murete de guarda o tape colocado sobre la viga para evitar la entrada de tierra en la zona de apoyo, con una aleta en cada extremo para mayor protección; dos pantallas que sustentan la viga cabezal o cargadero y permiten el paso del terraplén frente a ellas; y una zapata corrida que distribuye las cargas provenientes de las pantallas hacia el terreno de cimentación. Además, se incluye una losa de transición entre el terraplén y el tablero, la cual se apoya en la viga cabezal. Es frecuente que las alturas totales de los estribos y las tensiones admisibles de cimentación se encuentren en un rango de 6 a 15 m y de 0,2 a 0,5 MPa, respectivamente.

Figura 2. Geometría del estribo abierto: variables y principales parámetros (Luz et al, 2015).

La cantidad de pantallas a utilizar, así como su espesor y altura en la base, dependerán del ancho total del tablero y la altura del estribo. Incluso es posible contar con estribos abiertos que requieran solamente dos pantallas para tableros de aproximadamente 20 m de ancho, aunque en casos de tableros más anchos podrían ser necesarios diafragmas adicionales.

En este tipo de configuración, el dintel o cargadero se construye una vez completado el terraplén y los pilotes. Los pilotes, a su vez, se instalan después de finalizar los terraplenes para reducir en la medida de lo posible las presiones ejercidas por las tierras.

Sin embargo, este tipo de estribo no se considera apropiado para su uso en cauces fluviales debido a que la presencia de agua puede provocar la erosión del talud. Su utilización se limita a cruces de carreteras o vías férreas. Es imprescindible que el desbordamiento de tierras no cause inundaciones en la plataforma de tráfico inferior. Por lo tanto, el estribo debe estar adecuadamente separado de dicha plataforma, lo que implica que el tablero deba tener una longitud mayor.

Referencias:

ARENAS, J.J.; APARICIO, A.C. (1984). Estribos de puente de tramo recto. Santander: Universidad de Cantabria.

DIRECCIÓN GENERAL DE CARRETERAS (1994). Manual para el proyecto y ejecución de estructuras de suelo reforzado. Ministerio de Obras Públicas, Transportes y Medio Ambiente.

LUZ, A., YEPES, V., GONZÁLEZ-VIDOSA, F., MARTÍ, J. V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540): e114, doi: http://dx.doi.org/10.3989/ic.14.089.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Plantas asfálticas con tambor secador-mezclador

Figura 1. Tambor secador-mezclador

En España, las centrales discontinuas fueron el método predominante para la producción de áridos mezclados con betún hasta los años 80. En ese momento, se introdujo la tecnología de la central continua de tambor secador-mezclador (drum-mixer), capaz de producir hasta 600 toneladas por hora. Esta innovadora planta cuenta con un tambor cilíndrico que se encarga de secar los áridos y mezclarlos con el betún. El tambor gira sobre su propio eje gracias a un motor reductor alimentado por un motor eléctrico.

Las plantas continuas de tambor secador-mezclador se dividen en dos secciones: la primera calienta los áridos, mientras que en la segunda se agregan el ligante y el filler para mezclar. Aunque la corriente de gases durante el proceso arrastra partículas de polvo mineral, el betún presente en la mezcla limita la extracción del filler al 20-25%. Los álabes del tambor se cierran en la zona del quemador para proteger los materiales de la llama, y se abren gradualmente para aumentar el contacto con los gases de la combustión sin oxidar excesivamente el ligante.

El proceso de producción de mezclas asfálticas con áridos fríos comienza en el extremo del quemador, donde los áridos se introducen en el tambor y se calientan para eliminar la humedad. En la sección inicial del tambor, los potentes ventiladores extraen el fíller y lo almacenan para su uso posterior. En la sección media, se pulveriza el betún y el polvo mineral de recuperación y aportación, logrando la mezcla final en la sección final con la ayuda de los álabes. Una variante del proceso utiliza dos tambores consecutivos para calentar los áridos y agregar el ligante. La emulsificación del betún mejora la trabajabilidad de la mezcla, que luego se vierte en camiones o se almacena en silos calorífugos, como en las plantas discontinuas.

Figura 2. Planta móvil de tambor secador-mezclador

La central de tambor secador-mezclador tiene como desventaja que se realiza una única dosificación de áridos en frío, lo que dificulta la obtención de una granulometría precisa, especialmente con arenas con exceso de finos. No obstante, esta planta presenta varias ventajas en comparación con las centrales tradicionales. Es más simple y consume menos energía, debido a que solo hay una dosificación, mientras que en las plantas discontinuas se efectúan varias dosificaciones en diferentes etapas. Además, es más pequeña y fácil de transportar y montar, y también más económica tanto en su adquisición como en su mantenimiento, lo que la hace más rentable económicamente. A pesar de estas ventajas, hay desventajas en que solo hay un proceso de dosificación, lo que puede resultar en dificultades para lograr la granulometría establecida si se utiliza arena con un exceso de polvo mineral. Sin embargo, es muy adecuada para procesos de reciclado en central, para los cuales se dispone en el tambor un anillo con una tolva para la introducción de los productos de reciclado.

Referencias:

KRAEMER, C.; PARDILLO, J.M.; ROCCI, S.; ROMANA, M.G.; SÁNCHEZ, V.; DEL VAL, M.A. (2010). Ingeniería de carreteras II. McGraw-Hill, Madrid.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Lechadas bituminosas y microaglomerados en frío

Figura 1. Pavimentadora de lechada bituminosa/ micro aglomerado. http://dgroadmachinery.es/5-3-micro-surfacing-paver.html

La lechada bituminosa, también conocidas como slurry, consiste en la aplicación de una o varias capas de mortero bituminoso en frío sobre una superficie, utilizando áridos, emulsión bituminosa, agua y, eventualmente, polvo mineral de aportación y otros aditivos en menor proporción. Además de su uso en firmes, las lechadas bituminosas también son empleadas en tratamientos de sellado, mejora del deslizamiento y fines estéticos. Las lechadas tienen una amplia variedad de aplicaciones, incluyendo carreteras, aeropuertos, pistas deportivas, carriles para bicicletas, aparcamientos, vías urbanas, áreas peatonales, entre otros. En algunas situaciones, es necesario que la lechada tenga un color específico, para lo cual se utilizan pigmentos durante su fabricación.

Inicialmente, las lechadas se empleaban principalmente para la impermeabilización de suelos envejecidos y como tratamiento de sellado. Con granulometrías con un tamaño máximo de árido inferior a 6 mm, estas lechadas proporcionaron la textura adecuada requerida para el nivel de demanda de tráfico y se aplicaron en una sola capa con dosificaciones que oscilaron entre 5 y 8 kg/m².

Anteriormente, los áridos finos limitaban el grosor de las capas de lechada debido a su inestabilidad ante el tráfico. En años recientes, se ha mejorado la tecnología de los tratamientos para permitir el desarrollo de microaglomerados en frío que utilizan áridos de mayor tamaño. Los nuevos emulgentes y aditivos facilitan la producción de emulsiones con rotura controlada para aplicar los microaglomerados en zonas de tráfico rápido. La maquinaria avanzada produce texturas uniformes y las emulsiones modificadas con polímeros permiten áridos de hasta 12 mm, logrando texturas rugosas para aumentar la resistencia al deslizamiento y disminuir el desprendimiento de áridos. Las fibras sintéticas aumentan el contenido de ligante residual en las lechadas, otorgándoles mayor resistencia a la fatiga y al envejecimiento. Los microaglomerados en frío consisten en dos capas de lechada, la primera fina y la segunda más gruesa, y suelen emplear emulsiones modificadas como ligante.

La fabricación y aplicación de lechadas se realiza a través de mezcladoras móviles montadas en camiones que también se encargan de extenderlas. Estas unidades incluyen depósitos para los componentes de la mezcla y un mezclador helicoidal continuo para preparar el producto. Después, la lechada se distribuye mediante una caja repartidora o rastra, que se remolca sobre la superficie a tratar, y se termina con una maestra de goma graduable en altura. Para la compactación, se utilizan compactadores de neumáticos de alta presión, ya que solo se requiere un efecto superficial.

Os paso un vídeo explicativo del profesor Miguel Ángel del Val, de la Universidad Politécnica de Madrid, donde nos explica en detalle las lechadas bituminosas y microaglomerados en frío.

También os dejo un documento de la Asociación Técnica de Emulsiones Bituminosas (ATEB) al respecto. Espero que os sea de interés.

Descargar (PDF, 217KB)

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Riegos sin gravilla

Figura 1. https://www.ibef.net/es/emulsions-3/tecnicas/riegos-de-adherencia/

Un riego sin gravilla estaría compuesto únicamente por ligantes bituminosos. El empleo de los riegos sin gravilla en la construcción de firmes suele reservarse con fines auxiliares o provisionales, nunca proporcionando unas características estructurales. Forman parte de las operaciones auxiliares en la construcción o conservación del firme. Estrictamente hablando, estos riegos no pueden considerarse superficiales, sino que se dividen en varios tipos:

  • Riegos en negro: se aplican sobre superficies de rodadura envejecidas como medida provisional para rejuvenecer el firme y mejorar su impermeabilidad.
  • Riegos antipolvo: se aplican en caminos rurales o de poco tráfico para minimizar la producción de polvo y proteger al firme de la erosión y la humedad.
  • Riego de imprimación: se aplica un ligante sobre una capa granular antes de colocar sobre ella una capa o tratamiento bituminoso. La imprimación penetra en la superficie de la base, sella los huecos, endurece la superficie y ayuda a unir la capa superior de asfalto. Este riego optimiza la transmisión de cargas, por lo que es importante barrer enérgicamente la superficie granular y regarla con agua antes de su aplicación.
  • Riego de adherencia: se aplica una emulsión bituminosa sobre una capa tratada con ligantes hidrocarbonados o conglomerantes hidráulicos antes de colocar cualquier tipo de capa bituminosa que no sea un tratamiento superficial con gravilla o una lechada bituminosa. Este riego mejora la adherencia entre las capas bituminosas.
  • Riego de curado: se aplica sobre capas tratadas con conglomerante para evitar la pérdida de humedad y lograr un curado adecuado. En la práctica, estos riegos también se pueden utilizar como riego de imprimación o como protección contra el tráfico rodado.

Os dejo a continuación un vídeo educativo del profesor Miguel Ángel del Val, de la Universidad Politécnica de Madrid, que espero que os sea de interés.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.