Guía para principiantes sobre la compactación de suelos.

1. ¿Qué es la compactación y por qué es importante?

La compactación de suelos es el proceso de aumentar la densidad de un terreno aplicando energía mecánica. En términos sencillos, consiste en hacer circular cargas elevadas sobre capas de suelo el número de veces necesario para alcanzar la densidad especificada. Al reducir los vacíos de aire en el suelo, se aumenta su resistencia, se reduce su capacidad de deformación y se disminuye su permeabilidad.

El objetivo principal de la compactación es mejorar las propiedades geotécnicas del suelo para garantizar la seguridad y durabilidad de las estructuras construidas sobre él, como carreteras, edificios o presas. La elección del equipo y del método de compactación no es universal, sino que depende de factores clave como la naturaleza del terreno, su contenido de humedad y la función que desempeñará el relleno compactado.

Para seleccionar y utilizar correctamente estos equipos, es esencial comprender los principios fundamentales que rigen su funcionamiento.

Figura 1. Distintos tipos de compactadores. https://www.noticiasmaquinaria.com/nuevos-modelos-de-la-serie-de-rodillos-tandem-de-hamm-en-conexpo/

2. Los cuatro esfuerzos elementales de la compactación.

Toda la maquinaria de compactación, desde un pequeño pisón manual hasta un rodillo de varias toneladas, aplica una combinación de cuatro esfuerzos básicos para densificar el suelo. Comprender estos mecanismos es el primer paso para dominar el proceso.

Tipo de esfuerzo Mecanismo y efecto principal
Estático vertical Aplica el peso de la máquina para comprimir el suelo. Produce tensiones fundamentalmente verticales que aprietan las partículas entre sí.
Amasado Genera tensiones en múltiples direcciones, «amasando» el suelo para reordenar partículas. Es especialmente útil para romper terrones en suelos cohesivos.
Impacto Aplica una fuerza súbita que propaga una onda de presión, alcanzando mayor profundidad que el esfuerzo estático.
Vibratorio Aplica una sucesión rápida de impactos que reduce la fricción interna entre partículas, facilitando su reacomodo en una configuración más densa.

Es importante destacar que el tipo de esfuerzo aplicado influye directamente en la estructura final de las partículas del suelo. Un terreno más compactado presenta partículas más orientadas y ordenadas (menos «floculadas»). El efecto de ordenamiento es progresivamente mayor al aplicar esfuerzos en el siguiente orden: estático, vibratorio, de impacto y, por último, de amasado.

Ahora que conocemos la teoría que hay detrás de la compactación, podemos explorar los equipos que aplican estos esfuerzos en la práctica.

3. Tipos principales de equipos de compactación.

Los equipos de compactación se pueden clasificar según el principio de trabajo predominante que utilizan: la fuerza estática de su propio peso o la energía dinámica de la vibración.

3.1. Compactadores estáticos: la fuerza del peso.

Estos equipos dependen principalmente de su peso para compactar el suelo.

3.1.1. Apisonadoras de rodillos lisos

  • Principio de funcionamiento: utilizan cilindros metálicos lisos para aplicar presión estática. Su mecanismo de compactación es «de arriba hacia abajo», por lo que la capa superior recibe la mayor energía.
  • Suelos adecuados: arenas y gravas bien graduadas, limos y arcillas de baja plasticidad. No se recomiendan para arenas uniformes o arcillas blandas.
  • Limitación principal: existe el riesgo de compactar en exceso la superficie y crear una costra rígida conocida como «encarpetamiento», mientras que las capas inferiores quedan menos densas.
Figura 2. Apisonadora estática de rodillo liso tipo triciclo. Imagen: V. Yepes

3.1.2. Compactadores de patas apisonadoras («pata de cabra»)

  • Principio de funcionamiento: en lugar de un rodillo liso, utilizan cilindros con múltiples «patas» o salientes que penetran en el suelo. Esto concentra la presión y compacta el terreno «de abajo hacia arriba».
  • Suelos adecuados: son especialmente efectivos en arenas y gravas con más del 20% de finos, así como en la mayoría de los suelos de grano fino (suelos limo-arcillosos, arenas limosas y arcillosas).
  • Ventaja principal: la acción de las patas rompe los terrones y grumos del suelo, a la vez que mejora la trabazón (unión) entre las sucesivas capas de material compactado.
Figura 3. Rodillo remolcado pata de cabra. Imagen: V. Yepes (2021)

3.1.3. Compactadores de ruedas neumáticas

  • Principio de funcionamiento: combinan el esfuerzo estático de su peso con el efecto de amasado que se produce por la deformación de sus neumáticos de goma, un proceso que reordena las partículas sin romperlas ni aplastarlas.
  • Suelos adecuados: son eficaces en suelos algo cohesivos y rellenos de limos poco plásticos.
  • Ventaja clave: son muy versátiles. Se puede ajustar su efecto modificando dos variables principales:
    • Aumentar la presión de inflado: incrementa la compactación en la superficie.
    • Aumentar la carga por rueda: aumenta el efecto de compactación en profundidad.
Figura 4. Compactador con neumáticos con dibujo. http://www.corinsa.es/tecnologia/compactacion/compactacion-de-tierras/

3.2. Compactadores vibratorios: reduciendo la fricción interna

Estos equipos añaden una fuerza dinámica a su peso estático, lo que los hace extremadamente eficientes.

3.2.1. Principio de funcionamiento

  • Mecanismo: la vibración de un cilindro o una placa, lo que elimina en gran medida la fricción interna entre las partículas del suelo. Así, las partículas se reordenan y alcanzan una mayor densidad con menos esfuerzo y en capas de mayor espesor. Es especialmente eficaz en terrenos granulares (arenas y gravas). Para hacerse una idea de su eficacia, la acción de un rodillo vibrante puede equivaler a la de un rodillo estático mucho más pesado: hasta ocho veces en suelos cohesivos y hasta doce veces en gravas y escolleras.
  • Regla de oro para su uso:
    • Materiales granulares (arenas, gravas): se compactan mejor con frecuencia alta y amplitud reducida.
    • Materiales cohesivos (arcillas, limos): prefieren más amplitud y menor frecuencia.

3.2.2. Tipos más comunes

Existen diversos modelos: los monocilíndricos (con rodillo liso o de patas), los de dos rodillos (tándem) y los mixtos (un rodillo y ruedas neumáticas). De todos ellos, los monocilíndricos autopropulsados son los más versátiles en la mayoría de las obras de movimiento de tierras.

Figura 5. Rodillo compactador vibratorio hidráulico de un solo tambor LSD216H. http://changlin.es/3-2-6-hydraulic-road-roller.html

3.3. Equipos para trabajos específicos

Para tareas específicas o en áreas de difícil acceso, se utilizan equipos más especializados.

3.3.1. Placas y pisones vibrantes

Son máquinas de pequeño tamaño que son guiadas por un operario. Su principal ventaja es que pueden trabajar en espacios reducidos a los que no pueden acceder máquinas más grandes, por ejemplo, en la compactación de rellenos en zanjas o trasdoses de muros.

3.3.2. Compactadores por impactos de gran energía

Este sistema es una alternativa más intensa que los rodillos vibratorios convencionales. Utiliza rodillos de perfil irregular (no cilíndricos) que, al girar a gran velocidad, generan impactos de alta energía. Su principal ventaja es la profundidad de su efecto, que puede alcanzar hasta cuatro o cinco metros.

Figura 6. Compactador de impacto de gran energía.

Una vez conocidos los tipos de equipos disponibles, el siguiente paso lógico es aprender a decidir cuál es el más adecuado para cada situación.

4. ¿Cómo elegir el equipo de compactación adecuado?

La elección del compactador no tiene una solución única, ya que depende de múltiples factores y, en última instancia, es una decisión económica. No obstante, para poder tomar una decisión técnica fundamentada, hay que tener en cuenta tres factores determinantes:

  • La naturaleza del material: es el factor más importante. Los suelos se pueden clasificar en tres grandes grupos:
    1. Suelos finos: limos y arcillas.
    2. Suelos de grano grueso: arenas y gravas.
    3. Pedraplenes: materiales rocosos.
  • El estado del material: principalmente, su contenido de humedad. La humedad actúa como un lubricante entre partículas, pero un exceso o defecto puede dificultar enormemente la compactación.
  • El volumen, la forma de la zona a compactar y el ritmo de la obra: Un área grande y abierta permite el uso de máquinas de alto rendimiento. De hecho, suelen elegirse compactadores con una capacidad de producción superior a la de los equipos de excavación y transporte, para evitar que la compactación se convierta en un «cuello de botella» que retrase todo el proyecto.

La siguiente tabla ofrece una guía simplificada para la selección inicial del equipo en función del tipo de suelo.

Guía rápida para la selección de equipos por tipo de suelo.

Tipo de suelo Equipos recomendados Consideración clave
Suelos finos (limos y arcillas) • Compactadores de patas apisonadoras

• Compactadores de neumáticos

El control preciso de la humedad es fundamental. Estos suelos son sensibles a un exceso o defecto de agua.
Suelos de grano grueso (arenas y gravas) • Rodillos vibratorios

• Compactadores de neumáticos pesados

La vibración es extremadamente efectiva para reordenar las partículas en este tipo de material.
Pedraplenes (roca) • Equipos vibratorios pesados (más de 10 toneladas) Se necesita una gran energía de compactación debido al gran tamaño de los elementos rocosos.

Elegir el equipo adecuado no solo garantiza que se alcancen las especificaciones de densidad, sino que también optimiza el rendimiento y los costes del proyecto.

5. Conclusión: principios clave para el éxito de una compactación.

La compactación es una de las operaciones más importantes en la construcción, ya que de ella dependen la estabilidad y durabilidad de casi cualquier estructura. Aunque se trata de un tema amplio, un principiante puede sentar unas bases sólidas de conocimiento si se centra en dos principios fundamentales.

  • Para lograr una compactación eficaz, es esencial comprender y dominar los cuatro tipos de esfuerzos básicos (estático, de amasado, de impacto y vibratorio), así como la forma en que cada máquina los aplica.
  • Además, es importante entender que la elección del equipo depende principalmente del tipo de suelo. No hay una máquina universal: la clave del éxito es adaptar la herramienta al material con el que se trabaja.

Aquí tienes un vídeo introductorio a los compactadores.

A continuación, os dejo un resumen de las ideas más relevantes que un principiante debería conocer sobre la compactación de suelos. Espero que os resulte interesante.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

John Loudon McAdam: vida y legado del ingeniero que revolucionó las carreteras

John Loudon McAdam (1756 – 1836). https://ca.wikipedia.org/wiki/

John Loudon McAdam (1756-1836) fue un ingeniero escocés que transformó para siempre la construcción de carreteras. Su método, conocido como macadamización, o simplemente «macadán», supuso un hito en la ingeniería civil, permitió el auge del transporte moderno en el siglo XIX y sentó las bases de la pavimentación contemporánea. Nació el 21 de septiembre de 1756 en Ayr, capital del condado histórico de Ayrshire (Escocia), en la casa de lady Cathcart. Pertenecía a la baja nobleza local y era el menor de los diez hijos de James McAdam y Susanna Cochrane, sobrina del séptimo conde de Dundonald.

En 1760, la familia se mudó al castillo de Lagwyne, en Carsphairn, y más tarde al castillo de Whitefoord. Su padre, James, llevaba un estilo de vida elevado y gestionó de manera deficiente el negocio familiar, el Banco de Ayr, lo que provocó grandes pérdidas económicas. Finalmente, se vio obligado a vender la finca ancestral de la familia, Waterhead, y quedó prácticamente arruinado.

John estudió en la escuela del señor Doick, en Maybole, hasta 1770. Ese mismo año, con tan solo 14 años, murió su padre tras la bancarrota del banco familiar. Con la familia en la ruina, John fue enviado a Nueva York para vivir con su tío William McAdam, un próspero comerciante, y con su tía Ann Dey, hija de Dirck Dey, otro neoyorquino. William McAdam era propietario de la empresa McAdam & Co. y poseía más de 30 000 acres en Middlesex, conocidos como Kilby Grant. En este entorno, John se formó como mercader y contable, y estableció relaciones comerciales con personas como Robert Gilmore, de Northfork.

Durante la guerra de la Independencia de las Trece Colonias (1775-1783), John apoyó la causa británica desde el principio. Se convirtió en un mercader de éxito y contratista del Gobierno, y amasó una considerable fortuna. Fue socio propietario del barco privado General Mathew y actuó como agente de premios de guerra: revendía las mercancías y materiales capturados a los rebeldes, lo que le reportó importantes beneficios personales. Se casó con Gloriana Nicoll, hija de William Nicoll de Suffolk, descendiente del coronel Nicoll, en Nueva York. El matrimonio heredó un tercio de las propiedades de West Neck, en Shelter Island, así como terrenos en Blue Point (Islip).

Sin embargo, en 1783, tras la derrota británica, él y su familia sufrieron las consecuencias de haber sido realistas. El nuevo gobierno estadounidense confiscó sus propiedades y activos en América, y él, su esposa y sus dos hijos fueron obligados a regresar a Escocia. Una vez en Escocia, McAdam aún conservaba suficiente capital como para comprar una finca en Sauchrie, cerca de Maybole. Gracias a sus lazos familiares, se asoció con el almirante lord Cochrane y con el conde de Dundonald en negocios de hierro y alquitrán. Estos productos, derivados del carbón, eran fundamentales para sellar los barcos de vela. Sin embargo, la introducción del cobre en los cascos redujo la demanda de alquitrán, lo que debilitó la industria en la que John había invertido.

Con el tiempo, McAdam se volcó en una nueva actividad que marcaría su vida: la construcción de carreteras. Empezó haciendo pruebas con piedras en caminos cercanos a su finca y acabó construyendo una carretera que conectaba Alloway con Maybole, que seguía en uso en 1936. En 1787 fue nombrado administrador de carreteras y, durante los siguientes quince años, ejerció como vicealmirante de Ayrshire, consolidando su experiencia en este campo. En 1798, gracias a un nombramiento oficial, se trasladó a Falmouth (Inglaterra) y, en 1801, con 45 años, fue designado inspector de carreteras de Bristol. Allí perfeccionó sus ideas y puso en práctica un sistema radicalmente distinto al habitual.

El método de MacAdam consistía en lo siguiente:

  • Carreteras de unos seis metros de ancho, con la parte central elevada ocho centímetros sobre los bordes para facilitar el drenaje del agua.
  • Cunetas laterales para evacuar el agua de lluvia y evitar encharcamientos.
  • Tres capas: la más profunda, de tierra compactada; una intermedia, de piedras grandes y regulares; y una superior, de piedra triturada, que quedaba perfectamente compactada con el paso de los carruajes.

El resultado era una superficie lisa, dura, resistente y barata, mucho más duradera y menos proclive a embarrarse que los caminos de tierra o los adoquinados.

Construcción de la primera carretera de macadán en Estados Unidos de América (1823).  https://es.wikipedia.org/wiki/Macad%C3%A1n

McAdam recogió sus ideas en dos tratados fundamentales, en los que defendía la importancia de elevar las carreteras respecto al suelo circundante, asegurar un buen drenaje y emplear materiales seleccionados en capas sistemáticas:

  • Remarks on the Present System of Road-Making (1816)
  • Practical Essay on the Scientific Repair and Preservation of Roads (1819)

El prestigio de McAdam creció rápidamente. En 1815 fue nombrado inspector del Bristol Turnpike Trust y, en la década de 1820, alrededor de 70 patronatos de carreteras lo contrataron como consultor. En 1819, un comité parlamentario elogió públicamente su trabajo. En 1823, el Parlamento británico encargó un estudio sobre el deficiente estado de las carreteras del país, que estaban obsoletas para una nación en plena industrialización. Como resultado, McAdam fue nombrado inspector general de carreteras metropolitanas de Gran Bretaña. Desde este cargo, su método se estandarizó y extendió rápidamente no solo en el Reino Unido, sino también en Europa y Norteamérica. El impacto fue inmediato: gracias a la suavidad y durabilidad de las carreteras macadamizadas, el transporte en diligencia experimentó un auge sin precedentes. Poco tiempo después de su fallecimiento, en Inglaterra ya existían 35 000 kilómetros de carreteras construidas con su método.

Aunque McAdam recibió subvenciones del Parlamento (2000 libras para gastos en 1820 y 5000 libras por su trabajo en Bristol), nunca fue plenamente recompensado. Se le ofreció un título de caballero, pero lo rechazó por su avanzada edad. El macadán supuso el mayor avance en la construcción de carreteras desde el Imperio romano. Con el tiempo, su sistema dio origen a mejoras posteriores. La más significativa se produjo en 1901, cuando Edgar Purnell Hooley patentó el uso del alquitrán para ligar los áridos, creando el tarmac o tarmacadam, antecesor del asfalto moderno. Es curioso que McAdam, a pesar de haber sido propietario de una fábrica de alquitrán de hulla, nunca aplicara este material a su método. Desde la perspectiva actual, puede resultar llamativo, pero en su época su innovación ya era revolucionaria. Hoy en día, aunque las carreteras modernas emplean asfaltos derivados del petróleo sobre bases de hormigón armado, el uso de capas de piedra triturada sigue siendo heredero directo de la innovación de McAdam.

En sus últimos años, McAdam permaneció activo en el ámbito de la ingeniería viaria junto a sus hijos, quienes abandonaron sus ocupaciones en Escocia para ayudarle en Inglaterra. Finalmente, John Loudon McAdam murió el 20 de noviembre de 1836 en Moffat, un balneario del consejo de Dumfries y Galloway, a los 80 años. Fue enterrado en el cementerio local. Su apellido quedó inmortalizado en el lenguaje técnico y en la historia de la ingeniería civil.

Os dejo algunos vídeos de este ingeniero.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas sobre pavimentos de hormigón en carreteras

¿Cuáles son las propiedades clave que distinguen al hormigón para pavimentos de carreteras del hormigón estructural?

El hormigón destinado a pavimentos de carreteras debe ser capaz de soportar tanto el impacto del tráfico como las condiciones climáticas. A diferencia del hormigón estructural, que se centra principalmente en resistir la compresión, los pavimentos de hormigón requieren una alta resistencia a la flexotracción. Esto se debe a que están sometidos a cargas repetidas y a la restricción de contracción de su base, lo que provoca la aparición de fisuras. Por lo tanto, se deben realizar ensayos específicos de flexotracción para controlar su resistencia y la calidad del hormigón para carreteras debe ser superior a la del hormigón de edificación.

¿Qué requisitos de resistencia a la flexotracción y compresión se esperan generalmente para el hormigón de pavimentos?

Para pavimentar carreteras se utilizan hormigones con una resistencia característica a la flexotracción que generalmente se sitúa entre 3,5 y 4,5 MPa a los 28 días. Según la normativa española (PG-3), estos hormigones se designan como HF-3,5, HF-4,0 y HF-4,5. Estas designaciones corresponden aproximadamente a resistencias a la compresión de 25, 30 y 35 MPa a los 28 días, aunque la relación exacta varía en función de los materiales y la dosificación.

¿Qué tipo de cemento se utiliza típicamente en pavimentos de hormigón y qué consideraciones hay sobre su uso?

Generalmente, no se requieren cementos «especiales» para pavimentos de hormigón. Por lo general, se emplean cementos con una resistencia a la compresión de entre 30 y 40 MPa a los 28 días y una dosificación de entre 300 y 350 kg/m³. Se pueden utilizar cementos Portland o cementos con adiciones (como escorias, puzolanas o cenizas volantes), que suelen tener un fraguado más lento, un menor contenido energético y una menor calor de hidratación, por lo que resultan más económicos. Se recomienda utilizar cementos de la clase resistente más baja posible, preferiblemente de 32,5 con resistencia inicial normal (N) y con un alto porcentaje de adiciones activas. No obstante, si se requiere una apertura rápida al tráfico, se pueden utilizar cementos de mayor categoría (42,5 o 52,5) y con alta resistencia inicial (R). Es crucial controlar el uso de grandes volúmenes de adiciones y limitar su contenido al 20 % del cemento, sobre todo en climas fríos.

¿Cuáles son las principales recomendaciones para prevenir fisuras en el hormigón de pavimentos?

Para prevenir la aparición de fisuras en los pavimentos de hormigón, es fundamental tener en cuenta las siguientes recomendaciones:

  • Evitar relaciones agua/cemento inferiores a 0,40.
  • Impedir el intercambio de humedad con la base y el ambiente mediante una saturación temprana de la base y un curado adecuado.
  • Evitar condiciones de restricción elevadas con la base.
  • Usar áridos limpios, libres de polvo y saturados.
  • Diseñar las mezclas para asegurar una ganancia de resistencia temprana apropiada y una exudación adecuada.

¿Cuáles son los componentes principales de un pavimento rígido de hormigón y cuál es la función de cada uno?

Un pavimento rígido de hormigón se compone de varias capas esenciales:

  • Calzada de hormigón: Es la capa superior, que proporciona las características funcionales (drenaje, fricción y regularidad) y gran parte de la capacidad estructural. Actúa como barrera impermeable y su espesor varía en función del tránsito pesado.
  • Base: Ubicada debajo de la calzada, proporciona un apoyo continuo, uniforme y estable, que es crucial para la distribución de cargas y para prevenir la erosión en la interfaz losa-apoyo. Es obligatoria en vías con tráfico pesado.
  • Subbase: Situada debajo de la base, en la explanada, y su función principal es proporcionar una base uniforme para la colocación de la capa base y constituir una plataforma de construcción. Debe tener capacidad drenante y, por lo general, es necesaria como capa de transición.
  • Explanada (subrasante): Es la superficie sobre la que se asienta toda la superestructura del pavimento. Debe tener la resistencia y la regularidad geométrica adecuadas y debe compactarse para soportar la carga de diseño del tránsito.
  • Subdrenaje (opcional): Consiste en estructuras destinadas a eliminar rápidamente el agua que se filtra por juntas y fisuras para evitar efectos perjudiciales en la estructura del pavimento.

    Figura 1. Estructura tipo de un pavimento rígido

¿Qué papel juegan las juntas en los pavimentos de hormigón y cómo se gestiona la transferencia de carga entre las losas?

Las juntas son esenciales para determinar las dimensiones de las losas del pavimento y controlar la aparición de fisuras en las etapas iniciales y durante su uso. Existen juntas de contracción, que debilitan la sección, y juntas de construcción, que se moldean. El aserrado es el método más común para crearlas y debe realizarse antes de que aparezcan las fisuras, pero no demasiado pronto para evitar daños. Se recomienda sellarlas.

La transferencia de carga, es decir, la capacidad de una junta para transmitir una parte de la carga aplicada de una losa a la adyacente, se logra principalmente de dos maneras:

  • Trabazón de áridos: Se produce entre las caras de la fisura que se desarrolla debajo de la junta.
  • Pasadores: Son barras de acero lisas que se colocan en las juntas transversales. Ayudan a disminuir tensiones y deflexiones, reducen el escalonamiento, el bombeo y la rotura de esquinas sin restringir el movimiento horizontal.

En algunos casos, es posible utilizar ambas técnicas conjuntamente para lograr una transferencia óptima.

Figura 2. Pasadores en una junta de construcción de un pavimento rígido

¿Por qué es importante el uso de inclusores de aire en el hormigón para pavimentos en ciertas zonas?

En zonas donde se producen nevadas o heladas, es obligatorio añadir un inclusor de aire al hormigón. Estos aditivos crean poros microscópicos que actúan como «cámaras de expansión». De este modo, el agua del hormigón puede congelarse y aumentar de volumen sin causar desconchados ni daños durante las heladas. Además de proteger contra el daño por hielo, los aditivos aireantes también tienen un efecto plastificante y mejoran la tixotropía del hormigón fresco, lo que ayuda a evitar el desgaste de los bordes del pavimento durante su construcción con encofrados deslizantes. Es crucial controlar el nivel de aire ocluido, que debe situarse entre el 4,5 % y el 6 % en volumen, para evitar pérdidas de resistencia.

¿Qué importancia tienen los arcenes en la estructura de un pavimento de hormigón y qué otras alternativas existen para mejorar el soporte en los bordes?

Aunque no forman parte de la estructura principal de la calzada, los arcenes son fundamentales para el soporte de los bordes de los pavimentos de hormigón. Si el arcén está pavimentado con hormigón, la calzada puede transferir parte de las cargas a su estructura, lo que reduce las tensiones y deflexiones del pavimento principal. Además, minimizan la infiltración de agua desde la superficie. Otras alternativas estructurales que también contribuyen significativamente a mejorar el soporte en los bordes son la incorporación de bordillos (especialmente en pavimentos urbanos) y la ejecución de sobreanchos de calzada.

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

De cantero a leyenda: la historia del gran Thomas Telford

Thomas Telford (1757-1834). https://es.wikipedia.org/wiki/Thomas_Telford

Thomas Telford (9 de agosto de 1757 – 2 de septiembre de 1834) fue un destacado ingeniero civil, arquitecto y cantero escocés, reconocido por sus contribuciones a la infraestructura británica mediante la construcción de caminos, puentes y canales. Nació cerca de Westerkirk, en Dumfries, en el seno de una familia humilde. Su padre, un pastor, murió poco después de su nacimiento, por lo que Thomas fue criado en condiciones de pobreza por su madre, Janet Jackson.

Comenzó su vida laboral como aprendiz de cantero a los 14 años y, de forma autodidacta, se formó en arquitectura y construcción. Todavía se conservan algunas de sus primeras obras, como un puente sobre el río Esk en Langholm. Tras pasar por Edimburgo, se trasladó a Londres en 1782, donde participó en la ampliación de Somerset House, uno de los grandes proyectos de la época, bajo la influencia de arquitectos como Robert Adam y William Chambers. En 1784 trabajó en el astillero naval de Portsmouth, donde consolidó su experiencia en grandes obras.

En 1786 fue nombrado inspector de obras públicas para el condado de Shropshire, cargo que implicaba la construcción de edificios y puentes. Durante este periodo, diseñó y construyó tres puentes sobre el río Severn: en Montford, Buildwas (de hierro fundido) y Bewdley. En esta misma época, restauró el castillo de Shrewsbury, trabajó en iglesias y prisiones y advirtió del inminente colapso de la iglesia de St Chad’s, lo que le ganó el respeto de la población local.

En 1787 se afilió a la logia masónica Salopian Lodge y, gracias al apoyo de William Pulteney, su carrera despegó. En 1788, la Sociedad Pesquera Británica lo envió a Escocia, donde diseñó el puerto de Ullapool. En 1790 fue nombrado inspector de puentes en Shropshire y, en 1793, se convirtió en agente e ingeniero de la compañía del canal Ellesmere. Su fama nacional le llegó con la construcción de los acueductos de Chirk y Pontcysyllte, en Gales, que cruzan los valles del Ceiriog y del Dee. En estas estructuras empleó por primera vez canales de planchas de hierro fundido ensambladas sobre mampostería, una innovación que revolucionó la ingeniería civil de su tiempo.

Ese mismo año, tras la muerte de Josiah Clowes, asumió el proyecto del canal de Shrewsbury, en el que destacó el acueducto de Longdon-on-Tern, uno de los primeros acueductos de hierro fundido del mundo. En 1795, reconstruyó el puente de Bewdley tras las inundaciones y reparó el de Tenbury. También participó en la mejora del abastecimiento de agua y en la reforma de los muelles de Londres.

En 1801, el Gobierno británico lo contrató para dirigir una gigantesca operación de mejora de las infraestructuras de las Tierras Altas de Escocia. Bajo su dirección se construyeron más de 1450 km de caminos, más de 1200 puentes, numerosos puertos, iglesias y servicios públicos. En este contexto, llevó a cabo el canal de Caledonia, inaugurado en 1822, y realizó importantes obras portuarias en Aberdeen, Dundee y otras localidades. Entre las obras viales más destacadas se encuentran el puente de Tongueland (34 m) y el de Cartland Crags (39 m), así como 296 km de nuevas carreteras en las Tierras Bajas.

En 1803, también inició obras de mejora en las rutas desde Chester y Shrewsbury hacia Holyhead, con el objetivo de agilizar las comunicaciones con Irlanda. Como parte de este proyecto, diseñó e inauguró dos puentes colgantes emblemáticos en Gales: el puente colgante sobre el río Conwy y su obra maestra, el puente de Menai (1819–1826), que con sus 176 m de longitud fue el más largo de su tipo en su tiempo y es considerado su logro más sobresaliente.

Puente de Menai. https://es.wikipedia.org/wiki/Puente_colgante_de_Menai

Durante este periodo también actuó como comisionado de préstamos del gobierno para obras públicas bajo la Public Works Loans Act de 1817, financiando proyectos de infraestructura y promoviendo el empleo. En paralelo, trabajó como consultor internacional y, en 1806, fue invitado por el rey de Suecia a colaborar en el canal Göta, al que viajó en 1810 para supervisar las primeras excavaciones.

Desde 1809, lideró obras en Irlanda, como la carretera de Howth a Dublín, el canal del Úlster y la formación de ingenieros como William Dargan. En las décadas siguientes, su enfoque se dirigió también a modernizar los canales para hacerles frente a los ferrocarriles, cada vez más competitivos. Entre estos proyectos destacan la construcción de un nuevo canal entre Wolverhampton y Nantwich y la construcción de un nuevo túnel en Harecastle, Staffordshire, sobre el canal Trent y Mersey.

A partir de 1815, diseñó y ejecutó mejoras en la ruta entre Glasgow y Carlisle (conocida posteriormente como A74), considerada un modelo de ingeniería vial. Entre sus trabajos más importantes en Londres se encuentra el desarrollo de los muelles de St Katharine, un proyecto fundamental para la expansión portuaria de la ciudad. También construyó puentes sobre el río Severn en Tewkesbury y Gloucester, y ejecutó diversas carreteras en las Tierras Bajas de Escocia.

En 1820 fue nombrado primer presidente de la Institución de Ingenieros Civiles, fundada en 1818, cargo que ocupó hasta su muerte. Ese mismo año fue elegido también miembro extranjero de la Real Academia de Ciencias de Suecia.

En 1823, a petición del Parlamento británico, diseñó un conjunto de iglesias y casas parroquiales para zonas rurales de Escocia. Se construyeron 32 de las 43 proyectadas, muchas de las cuales aún existen. En la década de 1830 finalizó proyectos como el puente Galton, el segundo túnel Harecastle, el canal de Gloucester y Berkeley y el canal Birmingham y Liverpool Junction, este último completado tras su fallecimiento.

Thomas Telford murió el 2 de septiembre de 1834 en su casa de Abingdon Street, Londres. Fue enterrado con honores en la abadía de Westminster, donde también hay una estatua en su memoria en la capilla de San Andrés. Nunca se casó, pero dejó una profunda huella en sus colegas y contemporáneos. Su amigo, el poeta Robert Southey, lo llamó «el coloso de las carreteras», y además de su carrera como ingeniero, también publicó poesía entre 1779 y 1784.

En su testamento dejó donaciones para bibliotecas de su región natal y para escritores como Southey y Thomas Campbell. Su legado perdura no solo en obras materiales, sino también en la educación: el Telford College de Edimburgo y la ciudad de Telford, en Shropshire, creada en el siglo XX, llevan su nombre. En 2009, su acueducto de Pontcysyllte fue declarado Patrimonio de la Humanidad por la Unesco, en reconocimiento a su ingenio técnico e innovación.

Os dejo algunos vídeos de este gran ingeniero escocés.

De vertedero a pavimento: La ciencia que mide el beneficio social de reciclar neumáticos en asfaltos

Imagine una carretera que no solo conecta lugares, sino que también genera beneficios sociales en las comunidades por donde pasa. Estamos colaborando con ingenieros chilenos para transformar neumáticos desechados en un innovador aditivo para asfalto llamado Fityre, demostrando que la sostenibilidad vial va más allá de reducir emisiones.

Un reciente estudio publicado en Applied Sciences, revista Q1 del JCR, revela que este material, elaborado con fibras textiles recicladas, supera a alternativas tradicionales en impacto social mediante una revolucionaria metodología: mapas cognitivos difusos. Estas herramientas no solo miden la resistencia o el coste, sino también cómo cada componente afecta a los empleos locales, los riesgos sanitarios y el cumplimiento de las políticas ambientales. ¿El resultado? Un modelo que podría redefinir la forma en que elegimos los materiales para construir las carreteras del futuro.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, en la Universitat Politècnica de València, y es fruto de la colaboración internacional con investigadores de Chile.

El estudio establece un nuevo paradigma metodológico para cuantificar la sostenibilidad social de materiales de construcción mediante mapas cognitivos difusos (FCM), abordando una laguna crítica en la evaluación de infraestructuras. La innovación central consiste en modelar 116 interrelaciones entre 16 indicadores sociales, desde la creación de empleo local hasta la alineación con políticas de economía circular, superando las aproximaciones estáticas convencionales. Este enfoque dinámico permite simular efectos de segundo orden y dependencias no lineales entre variables, y proporciona una herramienta predictiva para diseñar políticas de materiales con un impacto social positivo.

La validación experimental del aditivo Fityre, compuesto por fibras textiles de neumáticos postconsumo (TfELT), demuestra que los materiales reciclados pueden superar a las alternativas importadas en múltiples dimensiones sociales. El análisis revela que Fityre aumenta entre un 30 y un 40 % los indicadores clave de reducción de riesgos sanitarios (I5) y contribución a la revalorización de residuos (I10), sentando un precedente para sustituir insumos vírgenes en países en vías de industrialización. Además, el marco metodológico desarrollado es adaptable para evaluar otros componentes de infraestructura, como hormigones y sistemas de drenaje urbano.

La investigación combina técnicas cualitativas y cuantitativas en tres fases secuenciales:

  1. Construcción del modelo conceptual: mediante la triangulación de entrevistas semiestructuradas (42 expertos), la revisión de normativas chilenas (Ley REP 20.920) y el análisis de manuales técnicos, se identificaron 16 indicadores sociales agrupados en 7 criterios. Un panel Delphi de trece especialistas validó la estructura mediante consenso binomial (75 % de acuerdo).
  2. Desarrollo del FCM: se mapearon las relaciones causales entre los indicadores mediante encuestas que asignaron pesos lingüísticos (desde muy baja hasta muy alta influencia) y polaridad (+/-) utilizando la plataforma QuestionPro. Un sistema de inferencia difusa (FIS) con funciones de membresía triangulares transformó estas respuestas cualitativas en pesos numéricos normalizados (entre -1 y +1). La estabilidad del modelo se verificó mediante iteraciones sucesivas hasta alcanzar la convergencia (<0,001 de variación entre ciclos 5-6).
  3. Evaluación dinámica: cuatro aditivos (Fityre, fibra de vidrio, poliéster y aramida) se analizaron mediante simulación de estados iniciales (t₀) basados en datos técnicos y socioeconómicos chilenos. La contribución social se cuantificó mediante la distancia de Manhattan respecto a un punto anti-ideal, considerando tres etapas del ciclo de vida: extracción, producción y mezclado.

El FCM revela patrones que van en contra de la intuición: mientras que los indicadores técnicos (I3: contribución técnica, I14: certificaciones) muestran una alta centralidad (grado de influencia = 8,7), su impacto en la sostenibilidad social es moderado (λ = 0,42). Esto sugiere que las mejoras técnicas no garantizan beneficios sociales automáticos, por lo que son necesarias intervenciones complementarias en materia de formación laboral y divulgación comunitaria.

En el caso de Fityre, se observa un efecto multiplicador en los criterios de revalorización: cada punto porcentual en I2 (extensión de la vida útil) genera incrementos del 0,8 % en I10 (cumplimiento del REP) y del 0,5 % en I5 (reducción de incendios). Este acoplamiento refuerza la viabilidad de modelos de negocio basados en simbiosis industrial, en los que los residuos de un sector se convierten en insumos críticos para otro.

Las fibras importadas, aunque superiores en I13 (interés de los productores, 75 % frente al 51 % de Fityre), presentan vulnerabilidades sistémicas: una variación del 10 % en los costes logísticos reduce su contribución social total en un 12,4 %, frente al 4,1 % de Fityre. Esto pone de manifiesto la importancia de desarrollar cadenas de suministro locales para materiales sostenibles.

Este estudio ofrece interesantes líneas de investigación futura:

  • Integración con análisis de ciclo de vida híbrido: combinación de FCM con ACV mediante modelos de entrada-salida extendidos, que permiten evaluar el impacto de las decisiones sobre la huella de carbono y la creación de empleo cualificado.
  • Optimización multiobjetivo: aplicar algoritmos genéticos para identificar dosificaciones óptimas de aditivos que maximicen simultáneamente parámetros sociales (I4: empleo nacional), técnicos (resistencia a la fatiga) y económicos (coste por tonelada).
  • Estudios de percepción social: implementar sistemas de supervisión participativa en proyectos piloto para correlacionar indicadores modelados (I9: aceptación al cambio) con métricas empíricas de satisfacción comunitaria.
  • Escalado industrial: desarrollar protocolos para adaptar el modelo a escalas de producción masiva y analizar los efectos de las economías de escala en indicadores como I15 (disponibilidad de fibra) y I7 (cantidad requerida por mezcla).
  • Arquitecturas de gestión: investigar modelos de contratación pública que internalicen los hallazgos del FCM mediante cláusulas de compra verde con ponderaciones sociales explícitas en licitaciones viales.

En conclusión, este trabajo trasciende el enfoque convencional en las propiedades mecánicas de los materiales y propone un marco sistémico para la toma de decisiones en ingeniería civil. Al cuantificar cómo elecciones técnicas afectan a dinámicas sociales complejas, proporciona herramientas para alinear proyectos de infraestructura con los ODS 9 (industria innovadora) y 12 (producción responsable). Los resultados justifican políticas activas de fomento del uso de materiales reciclados locales, no solo por sus beneficios ambientales, sino también por su capacidad para generar capital social en economías emergentes.

Referencia:

SIERRA-VARELA, L.; CALABI-FLOODY, A.; VALDÉS-VIDAL, G.; YEPES, V.; FILUN-SANTANA, A. (2025). Determination of the social contribution of sustainable additives for asphalt mixes through fuzzy cognitive mapping. Applied Sciences, 15(7):3994. DOI:10.3390/app15073994

Como el artículo está publicado en abierto, os lo dejo para su descarga.

Pincha aquí para descargar

Entrevista en Levante-EMV sobre la reconstrucción tras la DANA

Recojo a continuación una entrevista que me han realizado en Levante-EMV sobre la reconstrucción tras la DANA. La noticia la podéis leer en el siguiente enlace: https://www.levante-emv.com/comunitat-valenciana/2025/03/17/error-reconstruir-dana-valencia-sin-adaptar-cambio-climatico-115061981.html

Esta noticia está muy relacionada con el artículo de opinión que escribí en mi blog hace unos días: La ingeniería de la reconstrucción.

La reconstrucción de infraestructuras tras la DANA del 29 de octubre no debe limitarse a la reposición de lo perdido, sino que debe corregir vulnerabilidades y minimizar futuros daños, evitando errores del pasado. Infraestructuras clave como la autovía A7 y la V31 han sido identificadas como barreras que agravaron la inundación, por lo que se plantea la necesidad de medidas de adaptación y mitigación, incluyendo posibles pasos elevados y tecnologías avanzadas para reducir riesgos. Se recomienda rediseñar puentes con cimentación profunda y menor número de soportes para evitar bloqueos en el flujo del agua, así como considerar el impacto de los vehículos arrastrados por la riada en el sistema de drenaje. Expertos en infraestructuras han destacado la necesidad de carreteras y líneas de tren más resilientes al cambio climático, con infraestructuras más permeables a crecidas y posibles modificaciones en su trazado. Para gestionar de manera eficiente la reconstrucción, se propone la creación de un consorcio administrativo que facilite la coordinación entre ayuntamientos, Generalitat y Gobierno central, integrando una visión metropolitana en la planificación territorial.

Pincha aquí para descargar

La ingeniería de la reconstrucción

Imagen del desastre provocado por la DANA. Imagen: V.J. Yepes (10 de noviembre de 2024)

Las catástrofes naturales y humanas han acompañado a la civilización a lo largo de su historia, poniendo a prueba su capacidad de adaptación. Sin embargo, la forma en que se afronta la reconstrucción tras un desastre no puede limitarse a la reposición de lo perdido. El caso de las recientes inundaciones en Valencia el 29 de octubre de 2024 ilustra una realidad que se repite con cada evento extremo: la urgencia de reconstruir suele imponerse a la necesidad de reflexionar. No obstante, si la ingeniería de la reconstrucción se reduce a restablecer el estado previo a la catástrofe, se estaría desperdiciando una oportunidad para corregir vulnerabilidades y minimizar futuros daños.

El primer desafío tras un desastre es la respuesta inmediata. En esta fase, la prioridad es el rescate de personas y la provisión de recursos esenciales. Una vez atendidas estas necesidades básicas, la atención se centra en la recuperación de infraestructuras críticas, como hospitales, redes de agua potable, suministro eléctrico y comunicaciones. Este proceso es complejo, ya que estas infraestructuras no solo deben ponerse en funcionamiento lo antes posible, sino que, en muchos casos, han sufrido daños estructurales que comprometen su funcionalidad.

A partir de este punto surge la cuestión clave: ¿debe la reconstrucción reproducir las mismas condiciones previas a la catástrofe? Desde el punto de vista técnico y económico, esta estrategia es cuestionable. Si las infraestructuras y edificaciones han fallado ante un fenómeno extremo, replicarlas sin modificaciones implica asumir que volverán a fallar en el futuro. En el caso concreto de Valencia, se ha observado que algunos puentes obstaculizaron el flujo del agua y los sedimentos, generando represas que agravaron la crecida. Este problema no es nuevo; estructuras similares han provocado efectos equivalentes en inundaciones anteriores y, sin embargo, su diseño se sigue repitiendo. Por tanto, es necesario un enfoque distinto que incorpore criterios de resiliencia y sostenibilidad en la reconstrucción. En el caso de los puentes, esto podría traducirse en reducir el número de apoyos en el cauce, cimentaciones más profundas para reducir su vulnerabilidad a la erosión y revisar los coeficientes de empuje hidráulico en los cálculos estructurales.

El reto no solo consiste en corregir errores del pasado, sino también en prepararse para escenarios futuros más complejos. El cambio climático está alterando la frecuencia e intensidad de los eventos extremos, lo que obliga a replantear tanto la planificación territorial como la normativa vigente. Lo que antes se consideraba un fenómeno extraordinario puede convertirse en una amenaza recurrente, por lo que es necesario aplicar criterios de diseño más exigentes y estrategias de mitigación más ambiciosas. No se trata únicamente de reforzar las infraestructuras, sino de adaptar las ciudades y las redes de transporte a una realidad en la que las precipitaciones intensas, las sequías prolongadas y el aumento del nivel del mar serán cada vez más frecuentes. La planificación basada en registros históricos ya no es suficiente; la ingeniería debe integrar modelos predictivos y diseñar soluciones flexibles y adaptativas.

Sin embargo, en la reconstrucción tras una catástrofe suele predominar un enfoque táctico, con decisiones orientadas a mostrar una respuesta inmediata a la ciudadanía. La rapidez en la ejecución de ciertas obras genera la percepción de una gestión eficaz, pero este proceder puede ocultar la ausencia de una estrategia que optimice las actuaciones a largo plazo. Si bien es imprescindible contar con equipos de intervención inmediata para hacer frente a la emergencia, también es esencial disponer de un equipo de reflexión que establezca directrices fundamentadas y evite reconstrucciones apresuradas que perpetúen los mismos errores. Algo así como un «ministerio del pensamiento» que sea capaz de analizar las lecciones aprendidas y convertirlas en políticas y proyectos de reconstrucción con criterios sólidos de sostenibilidad y resiliencia.

Esta misma lógica se aplica a la planificación territorial y urbana. Rehabilitar zonas inundables sin considerar estrategias de mitigación perpetúa la exposición al riesgo. En este sentido, la ingeniería tiene el deber de plantear soluciones basadas en evidencia científica y en experiencias previas. La adaptación a eventos extremos no solo implica reforzar estructuras, sino también reconsiderar su localización y función. En muchos casos, las medidas no requieren inversiones desmesuradas, sino una gestión más eficiente del territorio. La creación de zonas de amortiguamiento, la mejora en la capacidad de drenaje y la regulación del uso del suelo son estrategias que pueden marcar la diferencia en futuras catástrofes.

Además, la sostenibilidad a largo plazo implica tener en cuenta a las personas en la ecuación que gobierna los impactos de las actuaciones. No basta con evaluar los efectos sobre las infraestructuras o el medio ambiente, sino que es necesario considerar cómo influyen estas decisiones en la calidad de vida de las personas que habitan los territorios afectados. La reconstrucción debe ir más allá de la restitución de bienes materiales y tener en cuenta también aspectos sociales, económicos y psicológicos. Por ejemplo, esto implicaría reubicar comunidades en zonas seguras, garantizar el acceso equitativo a los servicios básicos y minimizar el impacto de las obras sobre la población más vulnerable. Si la ingeniería no tiene en cuenta estos factores, existe el riesgo de generar soluciones técnicamente eficientes, pero socialmente insostenibles.

Uno de los mayores obstáculos en estos procesos es la fragmentación de competencias. La reconstrucción implica a múltiples actores, desde administraciones locales hasta organismos estatales e internacionales. En muchas ocasiones, la superposición de responsabilidades y la falta de coordinación provocan retrasos y contradicciones en la toma de decisiones. Para evitar este problema, una alternativa viable sería la creación de un consorcio específico encargado de gestionar la reconstrucción, en el que las distintas administraciones deleguen temporalmente parte de sus competencias. Este modelo permitiría una planificación más coherente y una ejecución de proyectos con criterios unificados, lo que evitaría la dispersión de recursos y la toma de decisiones inconexas.

La reconstrucción no es solo un proceso técnico, sino también una oportunidad para transformar el entorno de manera más racional y sostenible. Es indispensable actuar con rapidez, pero no se debe hacer a costa de repetir errores del pasado. La ingeniería, como disciplina, no puede limitarse a solucionar problemas inmediatos, sino que debe anticiparse a los riesgos futuros y ofrecer respuestas fundamentadas en el conocimiento acumulado. Una reconstrucción bien planificada no solo restituye lo destruido, sino que contribuye a construir una sociedad más segura y preparada para afrontar los desafíos futuros.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización de programas de mantenimiento vial: eficiencia y estrategias a largo plazo con algoritmos heurísticos.

Optimal pavement maintenance programs based on a hybrid Greedy Randomized Adaptive Search Procedure Algorithm

El artículo, titulado «Optimal pavement maintenance programs based on a hybrid Greedy Randomized Adaptive Search Procedure Algorithm», escrito por Víctor Yepes, Cristina Torres-Machí, Alondra Chamorro y Eugenio Pellicer, y publicado en el Journal of Civil Engineering and Management, presenta una innovadora herramienta para la gestión eficiente del mantenimiento vial. Este trabajo aborda cómo diseñar programas que maximicen la efectividad a largo plazo (Long-Term Effectiveness, LTE) en redes viales, superando las limitaciones presupuestarias y el desgaste progresivo de las infraestructuras. Para ello, se desarrolla un enfoque híbrido que combina los algoritmos Greedy Randomized Adaptive Search Procedure (GRASP) y Threshold Accepting (TA), lo que permite optimizar la asignación de recursos y cumplir con restricciones técnicas y económicas. Entre los resultados más destacados, se encuentra una mejora del 40 % en la LTE en comparación con estrategias reactivas, que también subraya la importancia de priorizar inversiones tempranas y de implementar tratamientos preventivos como la opción más eficiente a largo plazo.

Introducción

La infraestructura vial es uno de los activos más valiosos de cualquier nación, ya que tiene un impacto directo en el desarrollo económico y social al facilitar el transporte de bienes y personas, por lo que es necesario realizar un mantenimiento adecuado para evitar el deterioro y el incremento de los costes futuros de rehabilitación. Sin embargo, los presupuestos de las agencias públicas son limitados y no alcanzan a cubrir las necesidades de conservación, lo que genera una brecha cada vez mayor entre el estado actual de las infraestructuras y los niveles de inversión requeridos. En Estados Unidos, un tercio de las carreteras están en condiciones mediocres o deficientes, y uno de cada nueve puentes presenta deficiencias estructurales. En España, las necesidades de mantenimiento vial superan los 5500 millones de euros, pero los presupuestos se redujeron un 20 % en 2012, lo que agravó aún más la situación. Este mantenimiento tardío no solo incrementa los riesgos estructurales, sino que también triplica los costes de rehabilitación y los gastos operativos de los vehículos, lo que plantea un problema central: decidir cómo asignar los fondos disponibles de forma óptima para maximizar el rendimiento a largo plazo de las infraestructuras, respetando restricciones técnicas y económicas, y considerando los beneficios acumulados para los usuarios.

Metodología

Formulación del problema de optimización

El problema se define como la maximización de la LTE, un indicador que mide los beneficios acumulados derivados de una infraestructura bien mantenida durante su ciclo de vida.

  1. Función objetivo:
    • Maximizar el área bajo la curva de rendimiento de las infraestructuras (Area Bounded by the Performance Curve, ABPC). Este área refleja la calidad y el nivel de servicio de la infraestructura a lo largo del tiempo.
  2. Restricciones:
    • Presupuestaria: Garantizar que los costos anuales de mantenimiento no excedan el presupuesto disponible en cada año del periodo de planificación.
    • Técnica: Mantener las secciones de la red en una condición mínima aceptable. Esto se evalúa mediante indicadores como el Urban Pavement Condition Index (UPCI, Índice de Condición del Pavimento Urbano), que clasifica la calidad del pavimento en una escala del 1 (peor) al 10 (mejor).
  3. Variables de diseño:
    • Determinar qué secciones de la red deben tratarse, qué tratamiento aplicar y en qué momento realizarlo durante el horizonte de planificación.
  4. Parámetros:
    • Inventario: Datos sobre el tipo de pavimento, su longitud y ancho, condiciones climáticas y características del tráfico.
    • Técnicos: Condición inicial del pavimento, modelos de deterioro a lo largo del tiempo y el conjunto de tratamientos disponibles.
    • Económicos: Costos unitarios de mantenimiento para cada tratamiento.
    • Estratégicos: Periodo de planificación, tasa de descuento y estándares mínimos requeridos.
Las actividades de mantenimiento conllevan un aumento de la vida útil del firme (ΔSL) y, por tanto, una mejora inmediata de su estado (ΔUPCI) en el momento de su aplicación

Algoritmo GRASP-TA

El enfoque híbrido combina dos estrategias complementarias:

  1. GRASP (Procedimiento de Búsqueda Aleatoria Codiciosa Adaptativa):
    • Genera una población inicial de soluciones viables considerando una relajación controlada de las restricciones presupuestarias.
    • Utiliza funciones de priorización para evaluar el impacto de cada posible tratamiento en la LTE y seleccionar las mejores alternativas mediante un proceso probabilístico.
  2. TA (Aceptación de Umbral):
    • Realiza una optimización local a las soluciones generadas por GRASP.
    • Permite aceptar soluciones ligeramente peores en las primeras iteraciones para evitar quedarse atrapado en óptimos locales.
    • Ajusta iterativamente las restricciones presupuestarias relajadas en GRASP para cumplir con las condiciones originales.
Efecto del tratamiento sn para construir la solución en el año t con el algoritmo GRASP

Caso de estudio: red urbana en Santiago, Chile

La red analizada se encuentra en Santiago de Chile. Está compuesta por 20 secciones con pavimentos flexibles (asfálticos) y rígidos (hormigón). El clima de la región es mediterráneo, lo que influye en los patrones de deterioro del pavimento. La condición inicial media de la red es 6,8, según el Índice de Condición del Pavimento Urbano (UPCI), lo que indica una calidad intermedia.

Para los pavimentos asfálticos, los tratamientos evaluados incluyeron opciones de preservación, mantenimiento y rehabilitación. En preservación, el sellado de fisuras aumenta la vida útil en 2 años y tiene un coste de 0,99 USD/m². En el mantenimiento, el fresado y la repavimentación funcional ofrecen 10 años de vida útil por 23,24 USD/m². En rehabilitación, la rehabilitación en frío alcanza los 13 años con un coste de 36,50 USD/m².

Para los pavimentos de hormigón, los tratamientos incluyeron preservación y rehabilitación. El pulido con diamante aumenta la vida útil en 10 años y tiene un coste de 15,39 USD/m². La reconstrucción completa proporciona 25 años de servicio por un coste de 134,60 USD/m². Estos tratamientos representan opciones para diferentes niveles de deterioro y requisitos estructurales.

El programa optimizado mostró un impacto significativo en la efectividad a largo plazo (LTE). Se logró una mejora del 40 % en la LTE en comparación con las estrategias reactivas. Los tratamientos preventivos dominaron las decisiones, seleccionándose en el 80 % de los casos, lo que evidencia su mayor efectividad frente a opciones correctivas o de rehabilitación.

En términos de coste-eficacia, no se seleccionaron los tratamientos reciclados. Aunque ofrecen beneficios similares en términos de vida útil, su alto coste los hace menos competitivos frente a alternativas más económicas, lo que destaca la importancia de equilibrar costes y beneficios en el diseño de programas de mantenimiento.

Análisis de escenarios

1. Escenarios de inventario:

Se analizaron redes con diferentes proporciones de pavimentos asfálticos y de hormigón, con configuraciones del 25 %, 50 % y 75 % para cada tipo. También se estudiaron tres condiciones iniciales de las redes: buenas, intermedias y deficientes. Este análisis permitió evaluar la influencia de las características estructurales y del estado inicial en la optimización de los programas de mantenimiento.

En todos los casos, los resultados mostraron que la optimización mediante el algoritmo GRASP-TA era superior a las estrategias reactivas tradicionales. Esto demostró que el método es altamente adaptable a diversas configuraciones de red y capaz de ofrecer soluciones efectivas en términos de LTE, independientemente de las características de la red o de su estado inicial.

2. Escenarios presupuestarios:

El análisis incluyó variaciones en el presupuesto total, con incrementos y reducciones de hasta el 20 %, así como cambios en la distribución de los fondos a lo largo del tiempo. Se evaluaron dos configuraciones principales para entender su impacto en el rendimiento a largo plazo.

El escenario con mayor inversión en los primeros años mostró un aumento significativo de la LTE. Esto puso de manifiesto que la asignación temprana de fondos mejora sustancialmente los resultados del mantenimiento. Por el contrario, los aumentos progresivos anuales redujeron la LTE en un 15 % respecto al caso base, lo que indica que posponer la inversión perjudica el rendimiento de la red.

Conclusiones

Asignar más recursos durante los primeros años de un programa de mantenimiento es fundamental para optimizar el rendimiento a largo plazo de las infraestructuras. Este análisis pone de manifiesto la importancia de una planificación presupuestaria estratégica, ya que señala que el momento en que se invierten los recursos tiene un impacto considerable en los beneficios acumulados de la red.

  1. Eficiencia del método GRASP-TA: Diseña programas que maximizan la LTE bajo restricciones técnicas y económicas reales.
  2. Importancia de la prevención: Las actividades preventivas son significativamente más rentables a largo plazo.
  3. Estrategias presupuestarias: Es esencial priorizar mayores inversiones en los primeros años del programa para maximizar su impacto.
  4. Limitaciones de los tratamientos reciclados: Aunque presentan beneficios ambientales, su alto costo relativo limita su inclusión en las soluciones optimizadas cuando solo se consideran aspectos técnicos y económicos.

Como recomendaciones futuras habría que integrar criterios de sostenibilidad, como impactos ambientales y sociales, y extender el análisis a redes más grandes y diversas.

Referencia:

YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI:10.3846/13923730.2015.1120770

Aquí os dejo el artículo por si os resulta de interés.

Pincha aquí para descargar

 

Qué es una campaña geotécnica y su relevancia en proyectos de ingeniería

Una campaña geotécnica consiste en un conjunto de actividades y estudios técnicos destinados a caracterizar el subsuelo, identificar las propiedades geológicas y geotécnicas relevantes, detectar posibles problemas y garantizar la viabilidad técnica y la seguridad de las obras. Incluye prospecciones (sondeos, calicatas, ensayos), análisis de materiales y condiciones del terreno, que sirven de apoyo a la toma de decisiones en el diseño y construcción. Estas campañas son fundamentales para garantizar la viabilidad técnica, la seguridad y la sostenibilidad de los proyectos, y también para minimizar riesgos y optimizar costes.

En este artículo, profundizaremos en qué consiste una campaña geotécnica, cómo se lleva a cabo y por qué es relevante ejecutarla correctamente en cualquier proyecto de construcción.

El terreno como protagonista en la ingeniería

El terreno es un elemento crucial en cualquier obra. Un conocimiento inadecuado de sus características puede derivar en problemas como asentamientos diferenciales, deslizamientos, licuefacción o incluso colapsos estructurales. Por ello, las campañas geotécnicas son cruciales para diseñar cimentaciones y estructuras adaptadas a las condiciones específicas de cada emplazamiento.

Estas investigaciones se sustentan en tres pilares esenciales:

  1. Experiencia técnica: es indispensable contar con especialistas capaces de identificar las propiedades del terreno, evaluar riesgos y diseñar soluciones personalizadas.
  2. Calidad de ejecución: desde el alcance del estudio hasta la supervisión de campo, cada etapa debe garantizar la precisión de los resultados.
  3. Normativa y seguridad: el cumplimiento de marcos regulatorios, como el Código Técnico de la Edificación (CTE) y la Guía de Cimentaciones en Obras de Carretera, garantiza que las soluciones sean técnicamente adecuadas y cumplan con los estándares establecidos.

Objetivos y beneficios de las campañas geotécnicas

El objetivo principal de una campaña geotécnica es caracterizar el terreno para poder diseñar soluciones constructivas seguras y eficientes. Entre sus ventajas más destacadas se encuentran:

  • Garantía de seguridad: la identificación de riesgos geotécnicos evita desastres que puedan afectar a personas y estructuras.
  • Optimización de costes: aunque a menudo se perciben como un coste adicional, estas campañas permiten prevenir gastos futuros en reparaciones o rediseños.
  • Diseño adaptado: permite elegir los métodos constructivos más adecuados en función de las características del suelo y de las cargas de la estructura.
  • Mitigación de impactos ambientales y legales: al considerar el entorno y posibles restricciones, se minimizan conflictos y se garantiza la sostenibilidad del proyecto.

Etapas de una campaña geotécnica

1. Recopilación de información previa

Antes de llevar a cabo estudios de campo, es crucial recopilar datos relevantes sobre la zona. Esto incluye:

  • Planos topográficos: proporcionan una visión detallada del terreno.
  • Mapas geológicos: permiten identificar características estratigráficas y litológicas.
  • Historial de uso del terreno: puede revelar posibles riesgos, como rellenos no compactados o estructuras enterradas.
  • Normativa aplicable: por ejemplo, el Eurocódigo 7 sobre diseño geotécnico.

2. Reconocimientos de campo

Los reconocimientos de campo son el núcleo de una campaña geotécnica. Algunas de las técnicas más comunes son:

  • Sondeos mecánicos: Perforaciones para extraer muestras y analizar la estratigrafía del terreno.
  • Ensayos de penetración (SPT, CPT): Evalúan la resistencia del terreno mediante penetraciones controladas.
  • Calicatas y rozas: Excavaciones superficiales para observar directamente las capas del suelo.
  • Ensayos geofísicos: Métodos no invasivos, como sísmica de refracción, para obtener una visión global del subsuelo.
  • Estudios hidrogeológicos: Determinan la posición y características del agua subterránea, que influye en la estabilidad y resistencia del suelo.

Profundidades recomendadas:

  • Para cimentaciones superficiales, al menos 1,5 veces el ancho proyectado de la cimentación.
  • Para cimentaciones profundas (pilotes): a una profundidad mínima de 6 metros por debajo de la punta del pilote.

3. Análisis en laboratorio

Las muestras recolectadas se someten a análisis detallados para determinar:

  • Granulometría y plasticidad: identificación del tipo de suelo y su comportamiento bajo carga.
  • Resistencia y deformabilidad: ensayos triaxiales y edométricos.
  • Permeabilidad: evaluación de la capacidad del terreno para drenar agua.

4. Interpretación y diseño geotécnico

Con los datos recopilados, los ingenieros crean modelos y realizan cálculos para encontrar soluciones óptimas para las cimentaciones y las estructuras. Este proceso incluye:

— Selección del modelo de cálculo adecuado.
— Definición de parámetros de seguridad según la normativa.
— Ajustes según observaciones durante la ejecución.

Importancia de una correcta planificación

  • Construcción de un puente: En un cauce fluvial, por ejemplo, se pueden detectar suelos aluviales inestables, por lo que será necesario diseñar pilotes profundos para evitar asentamientos diferenciales. Por este motivo, se diseñaron pilotes profundos para evitar asentamientos diferenciales.
  • Proyecto de viviendas: Un caso en el que una zona había sido un vertedero, los estudios geotécnicos identifican rellenos inadecuados. La solución puede ser retirar los rellenos inadecuados y compactar el terreno con materiales adecuados.

Desafíos comunes:

  • Limitaciones presupuestarias: reducir la intensidad de los estudios puede ocasionar problemas graves durante la construcción.
  • Condiciones complejas: la heterogeneidad del terreno o la ubicación en zonas sísmicas requieren investigaciones más exhaustivas.
  • Falta de datos previos: la ausencia de estudios anteriores puede complicar la fase inicial de planificación.

Herramientas y normativas clave

  • Software especializado: Programas como Plaxis o GeoStudio permiten modelar comportamientos del terreno y simular condiciones críticas.
  • Normativa aplicable:
    • Código Técnico de la Edificación (CTE): Proporciona directrices para reconocer y mitigar riesgos.
    • Guía de Cimentaciones en Obras de Carretera: Define protocolos para infraestructuras viales.

Conclusión

Las campañas geotécnicas son mucho más que un paso previo en la construcción: son la base sobre la que se asienta la seguridad, la viabilidad y la sostenibilidad de cualquier proyecto. Al identificar riesgos, garantizar diseños óptimos y cumplir con normativas, estas investigaciones se convierten en una inversión estratégica que previene problemas futuros.

En un entorno cada vez más desafiante para la ingeniería, realizar campañas geotécnicas no solo es una práctica recomendada, sino esencial para asegurar el éxito de cualquier obra.

A continuación dejamos un documento que proporciona recomendaciones técnicas detalladas sobre la campaña geotécnica en proyectos de infraestructura vial para la Dirección General de Carreteras, con el objetivo de establecer criterios uniformes y seguros para la investigación del subsuelo durante las diferentes etapas de desarrollo de un proyecto.

Pincha aquí para descargar

Os dejo también un vídeo al respecto. Espero que os sea de interés.

 

Pavimentos bicapa de hormigón

Los pavimentos bicapa de hormigón son una solución eficiente y duradera para las infraestructuras viales. Compuestos por una capa inferior estructural que soporta las cargas de tráfico y una capa superior de rodadura que proporciona funcionalidad y seguridad, estos pavimentos son una alternativa sostenible frente a los pavimentos monocapa. Su desarrollo se remonta a la crisis energética de los años setenta, cuando se buscaban opciones menos dependientes de materiales bituminosos, lo que impulsó la adopción de pavimentos rígidos.

El diseño de los pavimentos bicapa requiere una evaluación exhaustiva de las cargas y la selección adecuada de materiales. La capa estructural emplea hormigón de alta resistencia, mientras que la de rodadura se optimiza para garantizar su durabilidad y comodidad. Las juntas de contracción y expansión, junto con conectores de acero, garantizan la estabilidad y reducen el riesgo de grietas causadas por cambios térmicos y de carga.

El proceso de construcción implica una cuidadosa preparación de la explanada y un riguroso control de calidad en cada una de las etapas, desde el extendido y el acabado hasta el curado de la superficie. En la gestión, se presta especial atención a la regularidad superficial y a la calidad de los materiales empleados para garantizar la durabilidad y la resistencia. En cuanto a la conservación, los pavimentos bicapa requieren menos intervenciones y suponen un menor coste de mantenimiento a largo plazo.

Además, desde el punto de vista ambiental, presentan ventajas como la reducción de emisiones y un menor efecto de calor urbano gracias a su reflectancia. Proyectos de demostración en España han confirmado su viabilidad y sus ventajas en materia de sostenibilidad, eficiencia y confort. La adopción de estos pavimentos, junto con una formación técnica adecuada, puede revolucionar la construcción de infraestructuras viales y proporcionar carreteras más seguras, duraderas y sostenibles.

1. Introducción a los pavimentos bicapa de hormigón

Los pavimentos de hormigón surgieron como una solución duradera para responder a la creciente demanda de carreteras resistentes y con menor necesidad de mantenimiento. Las primeras pruebas en España se realizaron a principios del siglo XX, cuando se desarrollaron técnicas innovadoras, como el uso de encofrados deslizantes y de hormigón armado. La crisis energética de 1973 incentivó la búsqueda de alternativas menos dependientes del petróleo, lo que impulsó el uso de pavimentos rígidos de hormigón y, con el tiempo, favoreció la aplicación de pavimentos bicapa en diversos tipos de vías.

Los pavimentos bicapa de hormigón están compuestos por dos capas diferenciadas: una capa inferior o estructural, destinada a soportar las cargas principales del tráfico, y una capa superior o de rodadura, que proporciona una superficie de contacto segura, duradera y cómoda para el tráfico de vehículos. Este diseño bicapa ofrece ventajas significativas, como una mayor durabilidad, un mejor desempeño acústico y propiedades superficiales específicas, como la resistencia a la abrasión y una mayor reflectancia, lo que contribuye al confort y a la seguridad en las vías.

Los pavimentos bicapa de hormigón presentan varias ventajas frente a los monocapa, entre las que destaca su sostenibilidad, ya que reducen la necesidad de reposiciones frecuentes y, por tanto, disminuyen el uso de recursos materiales y energéticos a largo plazo. Además, ofrecen mayor confort y seguridad gracias a sus mejores acabados superficiales, mayor regularidad y menor sonoridad. Aunque la inversión inicial es mayor, los costes de mantenimiento y funcionamiento se reducen significativamente, por lo que resultan más rentables a largo plazo.

En España no se han llevado a cabo experiencias significativas con pavimentos de hormigón bicapa, construidos con dos tipos de hormigón distintos, adaptados a las características requeridas para cada capa. Sin embargo, la Instrucción Española 6.1-IC sobre secciones de firmes y el PG-3 permiten esta opción. Es importante destacar que el procedimiento constructivo es exigente y requiere la duplicación de los equipos de extendido y de las centrales de hormigón preparado.

2. Bases teóricas del diseño de pavimentos bicapa

El diseño estructural de pavimentos bicapa se basa en la evaluación de cargas y el análisis de las exigencias del tráfico pesado para estimar el espesor y la resistencia necesarios de la capa inferior. También se considera la distribución de la presión a lo largo de la estructura para garantizar la integridad del pavimento con el paso del tiempo. La capa estructural asume la carga del tráfico, mientras que la capa de rodadura protege el hormigón de base y facilita una conducción suave. Para ello, se calculan los esfuerzos de tensión y de compresión en ambas capas mediante modelos de elasticidad y de resistencia estructural.

Para la selección de materiales en pavimentos bicapa, se recomienda utilizar hormigón de alta resistencia para la capa inferior, con bajo contenido de aire, buena cohesión y agregados gruesos y uniformes que maximicen la resistencia estructural. En cuanto a la capa superior o de rodadura, es importante emplear un hormigón con características específicas de textura superficial y de reflectancia. También se puede añadir un aditivo polimérico si es necesario mejorar la resistencia a la abrasión o hacer frente a condiciones climáticas extremas.

En el diseño de pavimentos bicapa, los aspectos clave incluyen la clasificación del tráfico, ya que identificar el tipo e intensidad del tráfico permite determinar la resistencia necesaria para ambas capas. Se recomienda un diseño más robusto en las vías de alto tráfico para evitar el desgaste prematuro. Además, es fundamental verificar la estabilidad de la explanada, ya que es necesario garantizar su capacidad de soporte mediante pruebas del módulo de compresibilidad y de deflexión patrón. Por último, el diseño de juntas es esencial para permitir la dilatación y prevenir agrietamientos, para lo cual hay que calcular la disposición de juntas de contracción y expansión, así como juntas longitudinales y transversales, en función de las tensiones térmicas y de carga en cada segmento de pavimento.

3. Proceso de construcción del pavimento bicapa

Los pavimentos de hormigón pueden ejecutarse en dos capas. Se coloca una capa de rodadura de hormigón de pequeño espesor (entre 4 y 5 cm) sobre otra capa de hormigón, que se extiende junto a la anterior, para que funcionen como una sola capa, creando así el pavimento descrito. Esto permite utilizar áridos de peor calidad en la capa inferior y reservar los de mayor calidad para la capa de rodadura, que debe cumplir con estrictas exigencias de resistencia al desgaste y al pulimento. También es posible limitar la disminución del tamaño máximo del árido en la capa superior, lo que da como resultado un pavimento menos ruidoso (aunque requiere una mayor cantidad de cemento).

Las etapas de construcción de pavimentos bicapa comienzan con la preparación de la explanada, en la que se debe nivelar y compactar el suelo de apoyo para recibir la capa estructural de hormigón, lo que puede incluir una capa de regularización para corregir cualquier irregularidad del terreno. A continuación, se extiende el hormigón de la capa estructural mediante un proceso de nivelación mecánica, para lo cual se utilizan vibradores y rodillos compactadores, con el fin de lograr una densificación adecuada que asegure una buena cohesión y resistencia. Finalmente, se aplica la capa de rodadura de forma continua sobre la capa inferior para evitar la formación de juntas frías y mejorar la durabilidad del pavimento.

La instalación de juntas y conectores es esencial para la durabilidad de los pavimentos bicapa, ya que las juntas de contracción y expansión previenen las grietas causadas por movimientos térmicos y de carga, mientras que los conectores de acero, como barras de atado y pasadores, facilitan la transferencia de carga entre las losas y garantizan la alineación estructural. Además, en las áreas de transición, como los carriles de desaceleración o las conexiones con puentes, se utilizan sistemas de transición que minimizan las discontinuidades entre los diferentes tipos de pavimento, mejorando la continuidad y el rendimiento general del sistema.

El proceso de curado y acabado en la construcción de pavimentos bicapa incluye la aplicación de inhibidores de fraguado y curado, que consisten en un curador químico destinado a evitar la evaporación del agua y asegurar un fraguado controlado, lo que reduce la formación de fisuras y aumenta la durabilidad del pavimento. Además, se realiza un acabado de la superficie con equipos especializados que ajustan la textura y la regularidad, eliminando cualquier irregularidad y garantizando así la seguridad y el confort del usuario.

4. Gestión de calidad en la construcción

El control de calidad de los materiales empleados en la construcción de pavimentos bicapa incluye la realización de pruebas de calidad del hormigón en fábrica, donde se verifica que cumpla con las especificaciones de resistencia y durabilidad mediante el análisis de la resistencia a la compresión y el contenido de aire. Además, se realiza un riguroso control de los componentes de las juntas para garantizar que los materiales de sellado y las barras de conexión cumplan con las normas específicas de elasticidad y resistencia, lo cual es crucial para la integridad y la funcionalidad del pavimento.

El control de la ejecución y el acabado en la construcción de pavimentos bicapa incluye la verificación de la alineación y del espesor de las capas, lo cual es fundamental para garantizar que se coloquen según las especificaciones diseñadas y así asegurar la durabilidad y la resistencia del pavimento. Además, se utilizan equipos de perfilometría para medir la rugosidad y la regularidad de la superficie, lo que permite ajustar la textura superficial con el fin de reducir el ruido y mejorar la tracción, contribuyendo a un mejor rendimiento y seguridad en las vías.

5. Conservación y mantenimiento de pavimentos bicapa

La gestión de la conservación de pavimentos bicapa se basa en estrategias preventivas y correctivas que incluyen el control de las condiciones y el mantenimiento periódico. Un plan preventivo puede contemplar la aplicación de sellado para evitar la entrada de agua en las juntas y reducir el desgaste. Además, se utilizan bases de datos y sistemas de gestión para registrar el estado del pavimento, lo que facilita el seguimiento y la planificación de futuras intervenciones y asegura la prolongación de su vida útil.

Las intervenciones y renovaciones en pavimentos bicapa abarcan el mantenimiento superficial y la reparación de juntas, incluyendo el sellado de juntas y la reparación de grietas superficiales. En casos de desgaste significativo, se puede aplicar una nueva capa de rodadura. Además, en situaciones en las que el pavimento estructural haya fallado, puede ser necesario realizar un refuerzo o incluso una rehabilitación completa del pavimento. Estas intervenciones se planifican cuidadosamente para minimizar la afectación al tráfico, garantizando así la seguridad y la funcionalidad de la vía.

6. Sostenibilidad y análisis ambiental

La evaluación de impacto ambiental de los pavimentos bicapa destaca su eficiencia energética, ya que reducen la dependencia de materiales bituminosos y, por tanto, disminuyen las emisiones de gases durante su producción y transporte. Además, su capacidad de reflectancia contribuye a reducir la temperatura en entornos urbanos, lo que ayuda a mitigar el fenómeno de las islas de calor y a promover un ambiente más sostenible y saludable.

Los aspectos económicos y sociales de los pavimentos bicapa reflejan una relación coste-beneficio a largo plazo, ya que, aunque su coste inicial es más elevado, su durabilidad y sus bajos requerimientos de mantenimiento pueden generar ahorros significativos con el tiempo. Además, la calidad de la superficie de rodadura ofrece un mayor confort y seguridad para el usuario, ya que proporciona una experiencia de conducción más cómoda, con un menor riesgo de deslizamientos y una mayor resistencia al frenado. Esto contribuye a la seguridad vial en general.

7. Conclusiones

En conclusión, la adopción de pavimentos bicapa ofrece numerosas ventajas, como la construcción de carreteras más sostenibles y la reducción de costes operativos a largo plazo. Para futuros proyectos, se recomienda fomentar la formación de ingenieros y técnicos en esta tecnología, así como llevar a cabo estudios piloto en regiones donde el pavimento bicapa aún no se ha implementado ampliamente, lo que facilitaría su adopción y contribuiría a mejorar la infraestructura vial.

A continuación, os dejo un vídeo de IECA sobre la construcción de un pavimento bicapa de hormigón con terminación de árido visto en un tramo de la autovía C-17, en Barcelona. Espero que os guste.

Referencias:

AGUADO, A.; CARRASCÓN, S.; CAVALARO, S.; PUIG, I.; SENÉS, C. (2010). Manual para el proyecto, construcción y gestión de pavimentos bicapa de hormigón. Universitat Politècnica de Catalunya, 204 pp.

Curso:

Curso de fabricación y puesta en obra del hormigón.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.