De vertedero a pavimento: La ciencia que mide el beneficio social de reciclar neumáticos en asfaltos

Imagine una carretera que no solo conecta lugares, sino que también genera beneficios sociales en las comunidades por donde pasa. Estamos colaborando con ingenieros chilenos para transformar neumáticos desechados en un innovador aditivo para asfalto llamado Fityre, demostrando que la sostenibilidad vial va más allá de reducir emisiones.

Un reciente estudio publicado en Applied Sciences, revista Q1 del JCR, revela que este material, elaborado con fibras textiles recicladas, supera a alternativas tradicionales en impacto social mediante una revolucionaria metodología: mapas cognitivos difusos. Estas herramientas no solo miden la resistencia o el coste, sino también cómo cada componente afecta a los empleos locales, los riesgos sanitarios y el cumplimiento de las políticas ambientales. ¿El resultado? Un modelo que podría redefinir la forma en que elegimos los materiales para construir las carreteras del futuro.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, en la Universitat Politècnica de València, y es fruto de la colaboración internacional con investigadores de Chile.

El estudio establece un nuevo paradigma metodológico para cuantificar la sostenibilidad social de materiales de construcción mediante mapas cognitivos difusos (FCM), abordando una laguna crítica en la evaluación de infraestructuras. La innovación central consiste en modelar 116 interrelaciones entre 16 indicadores sociales, desde la creación de empleo local hasta la alineación con políticas de economía circular, superando las aproximaciones estáticas convencionales. Este enfoque dinámico permite simular efectos de segundo orden y dependencias no lineales entre variables, y proporciona una herramienta predictiva para diseñar políticas de materiales con un impacto social positivo.

La validación experimental del aditivo Fityre, compuesto por fibras textiles de neumáticos postconsumo (TfELT), demuestra que los materiales reciclados pueden superar a las alternativas importadas en múltiples dimensiones sociales. El análisis revela que Fityre aumenta entre un 30 y un 40 % los indicadores clave de reducción de riesgos sanitarios (I5) y contribución a la revalorización de residuos (I10), sentando un precedente para sustituir insumos vírgenes en países en vías de industrialización. Además, el marco metodológico desarrollado es adaptable para evaluar otros componentes de infraestructura, como hormigones y sistemas de drenaje urbano.

La investigación combina técnicas cualitativas y cuantitativas en tres fases secuenciales:

  1. Construcción del modelo conceptual: mediante la triangulación de entrevistas semiestructuradas (42 expertos), la revisión de normativas chilenas (Ley REP 20.920) y el análisis de manuales técnicos, se identificaron 16 indicadores sociales agrupados en 7 criterios. Un panel Delphi de trece especialistas validó la estructura mediante consenso binomial (75 % de acuerdo).
  2. Desarrollo del FCM: se mapearon las relaciones causales entre los indicadores mediante encuestas que asignaron pesos lingüísticos (desde muy baja hasta muy alta influencia) y polaridad (+/-) utilizando la plataforma QuestionPro. Un sistema de inferencia difusa (FIS) con funciones de membresía triangulares transformó estas respuestas cualitativas en pesos numéricos normalizados (entre -1 y +1). La estabilidad del modelo se verificó mediante iteraciones sucesivas hasta alcanzar la convergencia (<0,001 de variación entre ciclos 5-6).
  3. Evaluación dinámica: cuatro aditivos (Fityre, fibra de vidrio, poliéster y aramida) se analizaron mediante simulación de estados iniciales (t₀) basados en datos técnicos y socioeconómicos chilenos. La contribución social se cuantificó mediante la distancia de Manhattan respecto a un punto anti-ideal, considerando tres etapas del ciclo de vida: extracción, producción y mezclado.

El FCM revela patrones que van en contra de la intuición: mientras que los indicadores técnicos (I3: contribución técnica, I14: certificaciones) muestran una alta centralidad (grado de influencia = 8,7), su impacto en la sostenibilidad social es moderado (λ = 0,42). Esto sugiere que las mejoras técnicas no garantizan beneficios sociales automáticos, por lo que son necesarias intervenciones complementarias en materia de formación laboral y divulgación comunitaria.

En el caso de Fityre, se observa un efecto multiplicador en los criterios de revalorización: cada punto porcentual en I2 (extensión de la vida útil) genera incrementos del 0,8 % en I10 (cumplimiento del REP) y del 0,5 % en I5 (reducción de incendios). Este acoplamiento refuerza la viabilidad de modelos de negocio basados en simbiosis industrial, en los que los residuos de un sector se convierten en insumos críticos para otro.

Las fibras importadas, aunque superiores en I13 (interés de los productores, 75 % frente al 51 % de Fityre), presentan vulnerabilidades sistémicas: una variación del 10 % en los costes logísticos reduce su contribución social total en un 12,4 %, frente al 4,1 % de Fityre. Esto pone de manifiesto la importancia de desarrollar cadenas de suministro locales para materiales sostenibles.

Este estudio ofrece interesantes líneas de investigación futura:

  • Integración con análisis de ciclo de vida híbrido: combinación de FCM con ACV mediante modelos de entrada-salida extendidos, que permiten evaluar el impacto de las decisiones sobre la huella de carbono y la creación de empleo cualificado.
  • Optimización multiobjetivo: aplicar algoritmos genéticos para identificar dosificaciones óptimas de aditivos que maximicen simultáneamente parámetros sociales (I4: empleo nacional), técnicos (resistencia a la fatiga) y económicos (coste por tonelada).
  • Estudios de percepción social: implementar sistemas de supervisión participativa en proyectos piloto para correlacionar indicadores modelados (I9: aceptación al cambio) con métricas empíricas de satisfacción comunitaria.
  • Escalado industrial: desarrollar protocolos para adaptar el modelo a escalas de producción masiva y analizar los efectos de las economías de escala en indicadores como I15 (disponibilidad de fibra) y I7 (cantidad requerida por mezcla).
  • Arquitecturas de gestión: investigar modelos de contratación pública que internalicen los hallazgos del FCM mediante cláusulas de compra verde con ponderaciones sociales explícitas en licitaciones viales.

En conclusión, este trabajo trasciende el enfoque convencional en las propiedades mecánicas de los materiales y propone un marco sistémico para la toma de decisiones en ingeniería civil. Al cuantificar cómo elecciones técnicas afectan a dinámicas sociales complejas, proporciona herramientas para alinear proyectos de infraestructura con los ODS 9 (industria innovadora) y 12 (producción responsable). Los resultados justifican políticas activas de fomento del uso de materiales reciclados locales, no solo por sus beneficios ambientales, sino también por su capacidad para generar capital social en economías emergentes.

Referencia:

SIERRA-VARELA, L.; CALABI-FLOODY, A.; VALDÉS-VIDAL, G.; YEPES, V.; FILUN-SANTANA, A. (2025). Determination of the social contribution of sustainable additives for asphalt mixes through fuzzy cognitive mapping. Applied Sciences, 15(7):3994. DOI:10.3390/app15073994

Como el artículo está publicado en abierto, os lo dejo para su descarga.

Descargar (PDF, 3.36MB)

Análisis del ciclo de vida de puentes usando matemática difusa bayesiana

Acaban de publicarnos un artículo en la revista científica Applied Sciences (indexada en el JCR, Q2) un artículo que trata sobre el análisis del ciclo de vida de puentes usando redes bayesianas y matemática difusa. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En la actualidad, reducir el impacto de la industria de la construcción en el medio ambiente es fundamental para lograr un desarrollo sostenible. Son muchos los que utilizan programas informáticos para evaluar el impacto ambiental de los puentes. Sin embargo, debido a la complejidad y la diversidad de los factores medioambientales de la industria de la construcción, es difícil actualizarlos y determinarlos rápidamente, lo que provoca la pérdida de datos en las bases de datos. La mayoría de los datos perdidos se optimizan mediante la simulación de Monte Carlo, lo que reduce en gran medida la fiabilidad y precisión de los resultados de la investigación. Este trabajo utiliza la teoría matemática difusa avanzada bayesiana para resolverlo. En la investigación, se establece una evaluación de la teoría matemática difusa bayesiana y un modelo de discriminación prioritaria de sensibilidad de varios niveles, y se definen los pesos y los grados de pertenencia de los factores de influencia para lograr una cobertura completa de los mismos. Con el apoyo de la modelización teórica, se evalúan exhaustivamente todos los factores de influencia en las distintas etapas del ciclo de vida de la estructura del puente. Los resultados muestran que la fabricación de materiales, el mantenimiento y el funcionamiento del puente siguen produciendo contaminación ambiental; la fuente principal de las emisiones supera el 53 % del total. El factor de impacto efectivo alcanza el 3,01. Al final del artículo, se establece un modelo de sensibilidad de «big data». Optimizando con estas técnicas, las emisiones contaminantes del tráfico se redujeron en 330 toneladas. Se confirma la eficacia y la practicidad del modelo de evaluación integral de la metodología propuesta para abordar los factores inciertos en la evaluación del desarrollo sostenible en el caso de los puentes. Los resultados de la investigación contribuyen a alcanzar los objetivos de desarrollo sostenible en la industria de la construcción.

El artículo se ha publicado en abierto, y se puede descargar en el siguiente enlace: https://www.mdpi.com/2076-3417/11/11/4916

ABSTRACT:

At present, reducing the construction industry’s impact on the environment is the key to achieving sustainable development. Countries worldwide are using software systems to bridge environmental impact assessment. However, due to the complexity and discreteness of ecological factors in the construction industry, they are difficult to update and determine quickly, and data is missing in the database. Most of the lost data are optimized by Monte Carlo simulation, which significantly reduces the reliability and accuracy of the research results. This paper uses Bayesian advanced fuzzy mathematics theory to solve this problem. In the research, a Bayesian fuzzy mathematics evaluation and a multi-level sensitivity priority discrimination model are established, and the weights and membership degrees of influencing factors were defined to achieve comprehensive coverage of influencing factors. With the support of theoretical modeling, software analysis and fuzzy mathematics theory are used to comprehensively evaluate the five stages’ influencing factors in the bridge structure’s life cycle. The results show that the bridge’s material manufacturing, maintenance, and operation still produce environmental pollution; the primary source of the emissions exceeds 53% of the total emissions. The practical impact factor reaches 3.01. A big data sensitivity model was established at the end of the article. Significant data innovation and optimization analysis reduced traffic pollution emissions by 330 tonnes. Modeling the comprehensive research model application clearly confirms the effectiveness and practicality of the Bayesian network fuzzy number comprehensive evaluation model in dealing with uncertain factors in evaluating the sustainable development of the construction industry. The research results have made important contributions to realizing the sustainable development goals of the construction industry.

Keywords:

Construction industry; environmental; impact factor; analysis; contribution

Reference:

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

Descargar (PDF, 5MB)

 

Optimización energética de muros de contrafuertes

Acaban de publicarnos un artículo en la revista científica Applied Sciences (indexada en el JCR, Q2) un artículo que trata sobre el uso de distintas técnicas heurísticas para optimizar una pasarela de sección mixta hormigón-acero. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La importancia de la construcción en el consumo de recursos naturales está llevando a los profesionales del diseño estructural a crear diseños de estructuras más eficientes que reduzcan tanto las emisiones como la energía consumida. En este trabajo se presenta un proceso automatizado para obtener diseños óptimos energéticos de muros de contrafuertes. Se consideraron dos funciones objetivo para comparar la diferencia entre una optimización de costes y una optimización de energía incorporada. Para alcanzar el mejor diseño para cada criterio de optimización, se ajustaron los parámetros del algoritmo. Este estudio utilizó un algoritmo híbrido de optimización simulada para obtener los valores de la geometría, las resistencias del hormigón y las cantidades de hormigón y materiales. La relación entre todas las variables geométricas y la altura del muro se obtuvo ajustando las funciones lineales y parabólicas. Se encontró que la optimización de los costes y de la energía están vinculados. Una reducción de costes de 1 euro lleva asociada una reducción del consumo energético de 4,54 kWh. Para conseguir un diseño de baja energía, se recomienda reducir la distancia entre los contrafuertes con respecto a la optimización económica. Esta disminución permite reducir los refuerzos necesarios para resistir la flexión del alzado. La diferencia entre los resultados de las variables geométricas de la cimentación para los dos objetivos de optimización apenas revela variaciones entre ellos. Este trabajo proporciona a los técnicos algunas reglas prácticas de diseño óptimo. Además, compara los diseños obtenidos mediante estos dos objetivos de optimización con las recomendaciones de diseño tradicionales.

El artículo se ha publicado en abierto, y se puede descargar en el siguiente enlace: https://www.mdpi.com/2076-3417/11/4/1800

ABSTRACT:

The importance of construction in the consumption of natural resources is leading structural design professionals to create more efficient structure designs that reduce emissions as well as the energy consumed. This paper presents an automated process to obtain low embodied energy buttressed earth-retaining wall optimum designs. Two objective functions were considered to compare the difference between a cost optimization and an embodied energy optimization. To reach the best design for every optimization criterion, a tuning of the algorithm parameters was carried out. This study used a hybrid simulated optimization algorithm to obtain the values of the geometry, the concrete resistances, and the amounts of concrete and materials to obtain an optimum buttressed earth-retaining wall low embodied energy design. The relation between all the geometric variables and the wall height was obtained by adjusting the linear and parabolic functions. A relationship was found between the two optimization criteria, and it can be concluded that cost and energy optimization are linked. This allows us to state that a cost reduction of €1 has an associated energy consumption reduction of 4.54 kWh. To achieve a low embodied energy design, it is recommended to reduce the distance between buttresses with respect to economic optimization. This decrease allows a reduction in the reinforcing steel needed to resist stem bending. The difference between the results of the geometric variables of the foundation for the two-optimization objectives reveals hardly any variation between them. This work gives technicians some rules to get optimum cost and embodied energy design. Furthermore, it compares designs obtained through these two optimization objectives with traditional design recommendations.

Keywords:

Heuristic optimization; energy savings; sustainable construction; buttressed earth-retaining walls

Reference:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

Descargar (PDF, 1.02MB)