## Análisis del ciclo de vida de puentes usando matemática difusa bayesiana

Acaban de publicarnos un artículo en la revista científica Applied Sciences (indexada en el JCR, Q2) un artículo que trata sobre el análisis del ciclo de vida de puentes usando redes bayesianas y matemática difusa. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El artículo se ha publicado en abierto, y se puede descargar en el siguiente enlace: https://www.mdpi.com/2076-3417/11/11/4916

ABSTRACT:

At present, reducing the impact of the construction industry on the environment is the key to achieving sustainable development. Countries all over the world are using software systems for bridge environmental impact assessment. However, due to the complexity and discreteness of environmental factors in the construction industry, they are difficult to update and determine quickly, and there is a phenomenon of data missing in the database. Most of the lost data are optimized by Monte Carlo simulation, which greatly reduces the reliability and accuracy of the research results. This paper uses Bayesian advanced fuzzy mathematics theory to solve this problem. In the research, a Bayesian fuzzy mathematics evaluation and a multi-level sensitivity priority discrimination model are established, and the weights and membership degrees of influencing factors were defined to achieve comprehensive coverage of influencing factors. With the support of theoretical modelling, software analysis and fuzzy mathematics theory are used to comprehensively evaluate all the influencing factors of the five influencing stages in the entire life cycle of the bridge structure. The results show that the material manufacturing, maintenance, and operation of the bridge still produce environmental pollution; the main source of the emissions exceeds 53% of the total emissions. The effective impact factor reaches 3.01. At the end of the article, a big data sensitivity model was established. Through big data innovation and optimization analysis, traffic pollution emissions were reduced by 330 tonnes. Modeling of the comprehensive research model; application; clearly confirms the effectiveness and practicality of the Bayesian network fuzzy number comprehensive evaluation model in dealing with uncertain factors in the evaluation of the sustainable development of the construction industry. The research results have made important contributions to the realization of the sustainable development goals of the construction industry.

Keywords:

Construction industry; environmental; impact factor; analysis; contribution

Reference:

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

Descargar (PDF, 5MB)

## Método de redes bayesianas para la toma de decisiones respecto a la sostenibilidad social de los proyectos de infraestructura

Acaban de publicarnos en la revista Journal of Cleaner Production un artículo donde aplicamos el método de las redes bayesianas aplicado a la toma de decisiones relacionadas con la sostenibilidad social de los proyectos. El Journal of Cleaner Production es revista de fuerte impacto, pues se encuentra en el primer decil en el ámbito ENVIRONMENTAL SCIENCES de la Web of Science. Os dejo a continuación el resumen y el enlace al artículo por si os resulta de interés: https://www.sciencedirect.com/science/article/pii/S0959652617330998

ABSTRACT:

Nowadays, sustainability assessment tends to focus on the biophysical and economic aspects of the built environment. The social aspects are generally overestimated during an infrastructure evaluation. This study proposes a method to optimize infrastructure projects by assessing their social contribution. This proposal takes into account the infrastructure’s interactions with the local environment in terms of its potential contribution in the short and long term. The method is structured in three stages: (1) preparation of a decision-making model, (2) formulation of the model, and (3) implementation of the model through optimization of infrastructure projects from the social sustainability viewpoint. The theory of Bayesian reasoning and a harmony search optimization algorithm are used to carry out the research. The paper presents the application to a case study of a set of alternatives for road infrastructure projects in El Salvador. This approach creates a model of participative decision-making. The results show that the method can distinguish socially efficient alternatives from the short and long-term contributions. In addition, the results suggest that some variables are less sensitive to the short and long-term maximization, while others vary their values to improve one objective or the other. The findings are directly applied to a real case. The method can be employed in the infrastructure formulation and prioritization phases and complemented with economic and environmental sustainability assessments.

KEYWORDS:

Bayesian networks, Infrastructure, Multiple criteria, Optimization algorithm, Social sustainability

Reference:

SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects.  Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140

A continuación os dejo la versión autor:

Descargar (PDF, 557KB)