Transporte hidráulico de pulpas: fundamentos y práctica

El transporte hidráulico de pulpas es un tema esencial en ingeniería de procesos y de minas. La operación de mover sólidos suspendidos en agua mediante tuberías y bombas no solo conecta las diferentes etapas de un proceso, como la molienda, la clasificación, la flotación o la disposición de relaves, sino que también influye en gran medida en los costes de operación, la eficiencia energética y la vida útil de los equipos. Por tanto, es fundamental que los estudiantes de Ingeniería comprendan sus principios y métodos de diseño.

En este artículo se presentan de manera ordenada los conceptos principales: qué es una pulpa, cómo se clasifican, qué tipos de bombas se emplean, cómo se estiman las pérdidas y la altura dinámica total, qué significa la velocidad crítica para evitar la sedimentación, cómo se analiza la cavitación y, por último, cómo se selecciona la bomba adecuada. No obstante, se aconseja un estudio más profundo del tema, atendiendo a las referencias.

1. La pulpa: naturaleza y propiedades

Una pulpa es una mezcla de agua y partículas sólidas en suspensión. Esta definición simple oculta una gran variedad de comportamientos. La forma en que la pulpa fluye depende de varios factores:

  • Concentración de sólidos: se mide en peso o volumen. A bajas concentraciones, la mezcla se comporta parecido al agua. A concentraciones altas, la viscosidad aumenta y pueden aparecer comportamientos no newtonianos (el fluido ya no responde de manera lineal al esfuerzo aplicado).

  • Tamaño de partícula: si la mayoría de las partículas son muy finas (menores a 75 micras), la pulpa tiende a ser homogénea, sin sedimentación marcada. Si predominan partículas gruesas, la pulpa es heterogénea, con riesgo de deposición.

  • Densidad de las partículas: minerales como la magnetita o la galena, con densidades altas, hacen que la pulpa sea más pesada y requiera mayor energía para su transporte.

  • Forma de las partículas: las partículas angulosas o irregulares causan más desgaste que las esféricas.

  • Viscosidad del líquido portador: en la mayoría de los casos es agua, pero a veces se emplean soluciones que alteran la viscosidad.

Estas propiedades son críticas porque determinan tanto la potencia que necesitará la bomba como la durabilidad de los componentes.

2. Bombas para pulpas: tipos y características

El transporte de pulpas se realiza en la gran mayoría de casos con bombas centrífugas, adaptadas a condiciones abrasivas y, a veces, corrosivas. Existen distintos tipos:

  • Bombas horizontales centrífugas: las más comunes en minería y procesos. Permiten gran variedad de caudales y alturas.

  • Bombas verticales: incluyen las de tanque y las de sumidero. Se usan cuando el nivel de pulpa varía mucho o cuando es conveniente sumergir parte de la bomba.

  • Bombas sumergibles: cada vez más empleadas en aplicaciones de drenaje de pulpas.

  • Bombas de desplazamiento positivo: útiles cuando se manejan pulpas muy viscosas o cuando se requiere caudal casi constante independientemente de la presión.

https://www.mogroup.com/es/informacion/e-books/manual-de-bombas–para-pulpa/

Un aspecto importante de las bombas de pulpa es su construcción robusta: impulsores anchos, ejes más gruesos, rodamientos de gran capacidad y, sobre todo, sistemas de sellado capaces de resistir condiciones adversas. Los sistemas de sellado pueden ser dinámicos (aprovechan la propia presión de la pulpa), mecánicos (son caros, pero muy seguros) o de empaquetadura (son los más comunes y requieren mantenimiento frecuente).

3. Materiales de construcción y desgaste

El desgaste es el enemigo número uno de las bombas de pulpa. Cada partícula de mineral en movimiento actúa como un proyectil microscópico que impacta contra las superficies internas de la bomba. Por ello, los materiales deben escogerse con cuidado.

  • Elastómeros (como goma natural o poliuretanos): absorben impactos y funcionan bien con partículas finas o blandas.

  • Metales endurecidos: hierro alto en cromo o aceros especiales resisten abrasión cortante, como la producida por partículas de cuarzo.

  • Cerámicos: extremadamente duros y duraderos, pero frágiles y costosos, usados en condiciones extremas.

La selección no es trivial, ya que depende del tamaño y la forma de las partículas, su concentración, la corrosión química del medio y la temperatura. Elegir bien el material puede duplicar o triplicar la vida útil de la bomba.

4. Altura dinámica total y pérdidas en el sistema

Para que una bomba funcione adecuadamente, debe entregar una altura dinámica total (TDH) que cubra:

  1. Altura estática: diferencia de nivel entre el depósito de aspiración y el de descarga.

  2. Pérdidas por fricción en la tubería: dependen de la longitud, el diámetro, la rugosidad y la velocidad del flujo.

  3. Pérdidas en accesorios: codos, válvulas, reducciones.

  4. Energía cinética: asociada a la velocidad del flujo en salida y entrada.

En el caso del agua, las pérdidas por fricción pueden calcularse mediante fórmulas empíricas o a través de la relación de Darcy-Weisbach, que tiene en cuenta la velocidad, el diámetro y un coeficiente de fricción que se obtiene del diagrama de Moody. En pulpas, sin embargo, estas correlaciones deben corregirse, ya que los sólidos aumentan la resistencia al flujo. Existen diagramas experimentales, como los de Warman, que ayudan a calcular los factores de corrección.

5. Velocidad crítica y sedimentación

Uno de los problemas más graves del transporte de pulpas es la sedimentación. Si la velocidad del flujo desciende por debajo de un valor crítico, las partículas comienzan a depositarse en el fondo de la tubería, lo que puede provocar obstrucciones o un desgaste desigual.

Este valor crítico, conocido como velocidad de Durand, depende de tres factores principales: el tamaño característico de las partículas, la densidad relativa del sólido respecto al agua, y el diámetro de la tubería. En pocas palabras:

  • Cuanto más grandes y densas son las partículas, mayor debe ser la velocidad.

  • Cuanto mayor es el diámetro de la tubería, menor es la velocidad necesaria para mantener las partículas en suspensión.

Mantener la velocidad por encima de este límite garantiza un flujo homogéneo y minimiza el riesgo de sedimentación.

6. Cavitación y NPSH

La cavitación es otro fenómeno que puede poner en peligro la operación segura. Ocurre cuando la presión de entrada de la bomba cae por debajo de la presión de vapor del líquido. En ese momento, se forman burbujas que, al colapsar dentro del impulsor, generan ondas de choque que dañan el material, producen ruido y reducen la eficiencia.

Para evitarlo, se calcula la altura positiva neta de aspiración disponible (NPSHa), que debe ser siempre mayor que la NPSH requerida (NPSHr) por la bomba. En términos prácticos:

  • El sistema debe garantizar suficiente presión en la succión de la bomba.

  • Se recomienda dejar un margen de seguridad adicional (entre 0,5 y 1 metro, o entre 10% y 35% según las guías de diseño).

Determinación del máximo caudal aspirable desde el punto de vista de la cavitación

7. Selección de la bomba

El procedimiento para elegir una bomba de pulpas sigue varios pasos:

  1. Definir caudal y condiciones de operación.

  2. Calcular la TDH real para la pulpa, incluyendo pérdidas.

  3. Convertir la TDH de pulpa a su equivalente en agua, usando factores de corrección.

  4. Consultar curvas de fabricante (Q–H–Eficiencia) y ubicar el punto de operación.

  5. Comprobar potencia requerida, eficiencia, NPSH y velocidad de rotación.

  6. Verificar materiales y opciones de sellado según la abrasividad y corrosión del medio.

Hoy en día, programas de cálculo como Pipe-Flo, AFT Fathom o WinCAPS ayudan a realizar estas estimaciones de manera más ágil, permitiendo simular condiciones de operación variables.

8. Consejos prácticos de operación

  • Mantener velocidades mínimas de 2–3 m/s en descarga y no menos de 1–2 m/s en aspiración (ajustadas según la naturaleza de la pulpa).

  • Usar tuberías lo más rectas posibles y minimizar codos bruscos.

  • Monitorear continuamente el desgaste de revestimientos e impulsores.

  • Planificar un stock de repuestos críticos: el tiempo de parada por una bomba fuera de servicio puede ser muy costoso.

  • Vigilar el NPSH disponible en condiciones de nivel mínimo en el depósito de succión.

9. Reflexión final

El transporte hidráulico de pulpas es un campo en el que confluyen la mecánica de fluidos, la ciencia de materiales y el diseño de equipos. Para los estudiantes de ingeniería, dominar estos fundamentos no solo es esencial para aprobar una asignatura, sino también para resolver problemas reales en los sectores de la minería, la metalurgia, la química e incluso en algunas industrias ambientales.

La clave es comprender que detrás de cada fórmula hay un concepto físico claro: mantener las partículas en suspensión, reducir las pérdidas de energía, evitar la cavitación y prolongar la vida útil de los equipos.

Referencias:

  • Abulnaga, B. E. (2002). Slurry Systems Handbook. McGraw-Hill.

  • ANEFA. (2020). Manual de áridos: Parámetros hidráulicos y de bombeo. Asociación Nacional de Empresarios Fabricantes de Áridos.

  • Bouso, J. L. (1993). Manual de bombeo de pulpas. ERAL, Equipos y Procesos S.A.

  • Bouso, J. L. (1998). El hidrociclón… Lo que siempre quiso saber y no encontró en los libros. Americas Mining.

  • Grzina, A., Roudnev, A., & Burgess, K. E. (2002). Weir slurry pumping manual (1.ª ed.). Weir International.

  • Martínez-Pagán, P. (2025). Transporte hidráulico: Bombeo de pulpas. Apuntes del 3er curso GIRME ingeniería minera. Universidad Politécnica de Cartagena.
  • Metso Outotec. (2020). Slurry pump handbook (8.ª ed.). Metso Minerals (Sala) AB. Recuperado de http://www.metso.com/pumps

  • Volk, M. (2013). Pump characteristics and applications (3.ª ed.). CRC Press. https://doi.org/10.1201/b15559

  • Warman, L. (2000). Warman slurry pumping handbook. Warman International.

  • Yepes, V. (2023). Maquinaria y procedimientos de construcción: Problemas resueltos (Colección Académica, Ref. 376). Editorial Universitat Politècnica de València. https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Os dejo algunos vídeos, que pueden ser de interés:

Este artículo, también puede interesar:

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El hormigón frente al mar: cómo alargar la vida de los edificios costeros

A continuación, os paso el contenido de una nota de prensa que ha lanzado la UPV sobre uno de nuestros trabajos de investigación relacionados con el proyecto RESILIFE.

Este trabajo se ha publicado en una de las revistas de mayor impacto científico, dentro del primer decil del JCR: Environmental Impact Assessment Review.

También os dejo enlaces a la noticia. Espero que os resulte interesante.

 

La UPV desarrolla una metodología pionera que combina economía, medioambiente y sociedad para decidir cómo construir y mantener de forma sostenible en entornos marinos.

Por las mañanas, cuando la brisa marina llega a las playas gaditanas, también transporta consigo algo menos poético que el aroma del mar: partículas de sal. Estas sales, cargadas de cloruros, penetran en los materiales de los edificios y aceleran la corrosión del hormigón armado. El resultado es un problema silencioso, pero de gran magnitud: estructuras que se deterioran antes de tiempo, con costes de reparación muy elevados y, en algunos casos, con riesgos para la seguridad.

Un equipo de la Universitat Politècnica de València (UPV) ha desarrollado una herramienta que podría cambiar la forma en la que se planifican las construcciones en la costa. Su investigación, publicada en la revista internacional Environmental Impact Assessment Review, propone un método novedoso que integra tres dimensiones de la sostenibilidad:

  • la económica (cuánto cuesta construir y mantener),
  • la ambiental (qué huella deja en términos de emisiones y recursos),
  • y la social (cómo afecta a trabajadores, vecinos y usuarios).

En palabras de Antonio J. Sánchez-Garrido, autor principal del trabajo: “No basta con calcular cuántos años puede durar un material; hay que considerar también qué impacto tendrá sobre la comunidad, sobre el medio ambiente y sobre el bolsillo de quienes deben mantenerlo”.

Un edificio piloto frente al mar

Para aterrizar su modelo, los investigadores eligieron un caso muy concreto: un hotel situado en primera línea de playa en Sancti Petri (Cádiz). A partir de ahí simularon doce alternativas constructivas distintas, desde cementos especiales hasta recubrimientos protectores o cambios en el tipo de acero de las armaduras.

A cada una de estas alternativas le aplicaron modelos matemáticos de predicción del deterioro y un sistema de decisión multicriterio (FUCOM–TOPSIS) que permite ordenar las opciones en función de su sostenibilidad. El horizonte temporal fue de 100 años, lo que ofrece una visión a largo plazo del ciclo de vida del edificio.

El resultado: una especie de “hoja de ruta” que indica qué material conviene utilizar y cada cuánto tiempo hay que intervenir para alargar la vida útil de la construcción.

Resultados que desmontan intuiciones

Uno de los hallazgos más llamativos es que las soluciones más duraderas no son necesariamente las más sostenibles. El acero inoxidable, por ejemplo, puede resistir más de un siglo sin apenas corrosión. Sin embargo, su elevado coste económico y el fuerte impacto ambiental asociado a su producción lo convierten en una opción menos recomendable si se busca un equilibrio global.

En cambio, alternativas como el cemento resistente a sulfatos (SRC) se posicionan como las más equilibradas: ofrecen buena durabilidad, costes razonables y un impacto ambiental moderado. Según el estudio, con esta solución bastaría con intervenir aproximadamente cada 53 años, lo que supone un gran ahorro económico y logístico.

Otros materiales, como las mezclas con humo de sílice o los tratamientos hidrofóbicos, también obtienen puntuaciones muy competitivas, alargando la vida útil de la estructura y reduciendo la necesidad de reparaciones frecuentes.

Más allá del cálculo técnico

El valor añadido del trabajo radica en su enfoque integral. Hasta ahora, muchas decisiones en construcción se han basado en criterios parciales: el coste inmediato, la resistencia mecánica o la facilidad de ejecución. La propuesta de la UPV va más allá al incluir también los efectos sociales: desde la generación de empleo en la fase de construcción y mantenimiento, hasta las molestias que las obras provocan en vecinos, turistas o trabajadores.

“Un hotel en primera línea de playa no puede permitirse cerrar cada pocos años para reparaciones. Reducir la frecuencia y la duración de las obras no solo ahorra dinero, sino que mejora la experiencia de quienes viven o disfrutan de esos espacios”, explica Víctor Yepes, coautor del estudio e investigador del Instituto ICITECH de la UPV.

Aplicaciones prácticas y futuro

Las aplicaciones de esta metodología son numerosas. Puede ayudar a promotores inmobiliarios a elegir materiales más sostenibles, a administraciones públicas a incluir métricas objetivas en sus licitaciones de obra, y a ingenieros y arquitectos a planificar proyectos con una visión a largo plazo.

Además, se trata de un modelo replicable y transparente, lo que significa que puede adaptarse a diferentes contextos: desde viviendas costeras hasta paseos marítimos, puentes o incluso puertos.

El equipo de la UPV ya trabaja en los siguientes pasos: incorporar inteligencia artificial y modelos probabilísticos para mejorar las predicciones, y validar la metodología en proyectos reales a gran escala, que permitan trasladar este conocimiento directamente al sector.

Un cambio de paradigma

En un momento en que Europa avanza hacia la neutralidad climática y exige a la construcción estándares más estrictos de sostenibilidad, este tipo de investigaciones se vuelven cruciales. No se trata solo de ahorrar dinero o prolongar la vida de los edificios, sino de repensar la relación entre infraestructuras, medio ambiente y sociedad.

La sal del mar seguirá siendo una amenaza para las estructuras costeras, pero gracias a esta metodología, los edificios podrán resistir mejor el paso del tiempo. Y, sobre todo, podrán hacerlo de manera más respetuosa con el planeta y con las personas que los habitan.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2026). Optimizing reactive maintenance intervals for the sustainable rehabilitation of chloride-exposed coastal buildings with MMC-based concrete structure. Environmental Impact Assessment Review, 116, 108110. DOI:10.1016/j.eiar.2025.108110

Esta investigación ha tenido repercusión en la prensa escrita. Aquí tenéis algunos enlaces:

https://cadenaser.com/comunitat-valenciana/2025/08/24/la-upv-propone-como-hacer-mas-duraderos-los-edificios-junto-al-mar-radio-valencia/

https://www.larazon.es/comunidad-valenciana/upv-crea-herramienta-que-ayuda-alargar-vida-util-edificios-situados-junto-mar_2025082468aad195fb354e4b3d1cad77.html

https://valenciaplaza.com/arquitectura-patrimonio-valencia-comunitat-valenciana/la-upv-crea-una-herramienta-que-ayuda-a-alargar-la-vida-util-de-los-edificios-situados-junto-al-mar

https://castellondiario.com/edificios-mas-duraderos-frente-al-mar-la-herramienta-pionera-de-la-upv/

https://www.lavanguardia.com/vida/20250824/10997986/crean-herramienta-ayuda-alargar-vida-util-edificios-situados-mar-agenciaslv20250824.html?utm_term=botones_sociales

UPV crea ferramenta per a prolongar la vida d’edificis costaners i optimitzar el seu manteniment

Os dejo también dos cortes de RNE y de La Ser sobre este mismo tema.

 

Método de Galerkin y placas elásticas: la contribución de Borís Galiorkin a la ingeniería estructural

Borís Grigórievich Galiorkin (1871–1945). https://generals.dk/general/Galerkin/

Borís Grigórievich Galiorkin (1871–1945) fue un ingeniero y matemático soviético cuya obra transformó la teoría de estructuras y la física matemática. Nacido en una familia humilde en Polotsk, tuvo que compaginar desde joven sus estudios con distintos trabajos para poder subsistir. Su vida estuvo marcada tanto por la represión política —incluidos periodos en prisión— como por una intensa labor científica y docente. Galiorkin es recordado principalmente por el desarrollo del célebre Método de Galerkin, una técnica de aproximación para resolver ecuaciones diferenciales que hoy es pilar en disciplinas como la mecánica, la termodinámica o el electromagnetismo. Su legado sigue siendo fundamental en la ingeniería moderna.

Borís Grigórievich Galérkin (en ruso, Бори́с Григо́рьевич Галёркин, apellido a veces transliterado como Galerkin o Galyorkin) nació el 20 de febrero de 1871. Pólatsk, Gobernación de Vítebsk, Imperio ruso; actual Bielorrusia —falleció el 12 de julio de 1945 en Leningrado, URSS— fue un ingeniero civil y matemático soviético, célebre por formular el método de Galerkin, una técnica numérica fundamental para la resolución aproximada de ecuaciones diferenciales parciales.

Nació en el seno de una familia judía pobre. Sus padres, Girsh-Shleym (Hirsh-Shleym) Galerkin y Perla Basia Galerkina, poseían una casa en Polotsk, pero sus oficios artesanales apenas generaban ingresos. Desde los doce años trabajó como calígrafo en los tribunales para ayudar a la economía familiar.

Cursó sus estudios en Polotsk y, tras superar los exámenes de acceso en Minsk en 1893, obtuvo la oportunidad de continuar su formación superior. Ese mismo año ingresó en el Instituto Tecnológico Estatal de San Petersburgo, donde estudió matemáticas e ingeniería. Para mantenerse, dio clases particulares y, desde 1896, trabajó como diseñador técnico. Durante su etapa universitaria, se vinculó a los socialdemócratas rusos, lo que marcó el rumbo de su vida. En 1899, poco antes de graduarse, fue expulsado del instituto por sus actividades políticas, pero logró graduarse como estudiante externo ese mismo año.

Comenzó su carrera profesional en la fábrica de locomotoras de Járkov en 1899 y, en 1903, se trasladó a San Petersburgo para asumir el cargo de ingeniero jefe en la Northern Mechanical and Boiler Plant. Al mismo tiempo, continuó su activismo en el partido socialdemócrata y fundó un sindicato obrero. Fue encarcelado brevemente en 1905 y, en 1907, condenado a dieciocho meses de prisión. En la cárcel escribió su primer tratado científico: un manual sobre análisis estructural. En 1908, tras salir de prisión, decidió apartarse de la militancia y dedicarse a la ingeniería civil y a la ciencia.

En 1909, comenzó a enseñar mecánica estructural en el Instituto Tecnológico de San Petersburgo, bajo la influencia de V. L. Kirpichov, y en contacto con científicos como Iván Bubnov, A. N. Krylov, I. V. Meshcherskiy y S. P. Timoshenko. Ese mismo año, publicó su primer trabajo sobre pandeo longitudinal, inspirado en Euler y aplicable al diseño de puentes y estructuras de edificios.

Entre 1909 y 1914 viajó por Alemania, Austria, Suiza, Bélgica y Suecia para estudiar obras y sistemas constructivos modernos. En 1911, enseñó también en el Instituto Politécnico Femenino y, en 1913, diseñó la estructura metálica de una central termoeléctrica en San Petersburgo, considerada la primera gran edificación rusa con armazón metálico sometido a cargas pesadas, lo que supuso un hito en Europa.

En 1915 presentó el trabajo que le daría fama mundial: el método de aproximación para ecuaciones diferenciales, que aplicó inicialmente a entramados y placas. Aunque I. G. Bubnov había propuesto un enfoque similar en 1911, la formulación de Galerkin fue más general, ya que desvinculó el procedimiento de la resolución variacional directa e interpretó el método como una técnica universal aplicable a problemas de mecánica y física matemática.

En la actualidad, el método de Galerkin (también conocido como método de Bubnov-Galerkin) constituye la base de numerosos algoritmos en mecánica, termodinámica, electromagnetismo, hidrodinámica y otras disciplinas, y se considera uno de los antecedentes directos del método de elementos finitos.

En 1919 obtuvo una plaza de profesor en el Instituto Politécnico Femenino y, en 1920, ganó por concurso la cátedra de Mecánica Estructural en el Instituto Tecnológico de San Petersburgo. Al año siguiente, también impartía docencia en la Universidad de Leningrado y en el Instituto de Ingenieros de Comunicaciones de dicha ciudad. Ese mismo año, la Sociedad Matemática de San Petersburgo reabrió sus puertas tras la revolución con el nombre de Sociedad Físico-Matemática de Petrogrado. Galiorkin desempeñó un papel central en ella junto a científicos como V. A. Steklov, Serguéi Bernstein y Alexandr Friedmann.

En 1923, fue elegido decano de la Facultad de Ingeniería Civil del Politécnico, donde defendió la independencia académica frente a las presiones políticas y creó los primeros laboratorios de la facultad. En 1924 realizó su último viaje internacional, al Congreso de Mecánica Aplicada en los Países Bajos. En 1928 fue elegido miembro correspondiente de la Academia de Ciencias de la URSS, y en 1935, miembro de pleno derecho. Durante las décadas de 1920 y 1930, fue consultor en las principales obras industriales e hidráulicas de la URSS. Entre sus aportaciones, destacan sus estudios sobre la presa y la central hidroeléctrica del Dniéper (1929), en los que analizó las tensiones en los muros de la presa de perfil trapezoidal. En 1933 publicó Uprugie tonkie plity (Placas delgadas elásticas) y, en 1937, su monografía sobre membranas. Además, entre 1934 y 1945 investigó la teoría de recubrimientos o carcazas, que tenía aplicaciones industriales novedosas. Recibió dos doctorados en técnicas y matemáticas (1934) y el título de Trabajador Eminente en Ciencia e Ingeniería. Ese mismo año fue nombrado director del Instituto de Mecánica de la Academia de Ciencias, cargo que mantuvo hasta su fallecimiento.

En 1939, con la reorganización de la Universidad de Ingeniería Militar (VITU), fue nombrado director del Departamento de Mecánica Estructural y ascendido a teniente general de ingeniería, a pesar de no haber servido en el ejército. Durante la Segunda Guerra Mundial, dirigió la Comisión de Construcciones Defensivas de Leningrado y, tras ser evacuado a Moscú, trabajó en la Comisión de Ingeniería Militar de la Academia de Ciencias. En 1942 recibió el Premio Stalin por sus contribuciones.

Murió en Moscú el 12 de julio de 1945, poco después de la victoria soviética, y fue enterrado en el cementerio Volkovo de San Petersburgo.

El nombre de Galiorkin está ligado al método de Galerkin, uno de los pilares del análisis numérico moderno y del cálculo estructural. Sus investigaciones sobre entramados, placas, membranas y recubrimientos tuvieron un enorme impacto teórico y práctico, especialmente en presas hidroeléctricas, estructuras metálicas y en la consolidación de la ingeniería soviética.

Entre sus obras destacan:

  • Sterzhni i plastinki (Barras y placas, 1915)

  • Uprugie tonkie plity (Placas delgadas elásticas, 1933)

  • Sobranie sochinenii (Obras completas, 1952–1953)

En 1998, el asteroide (22611) Galerkin fue nombrado en su honor, consagrando el legado de uno de los ingenieros y matemáticos más influyentes del siglo XX.

La trayectoria de Borís Grigórievich Galerkin demuestra que la perseverancia y la pasión científica pueden superar las adversidades económicas y políticas. A lo largo de su vida, compaginó la enseñanza, la investigación y la práctica ingenieril, dejando una profunda huella en la ciencia y la técnica del siglo XX. El método de Galerkin y sus estudios sobre estructuras, placas y cáscaras elásticas no solo resolvieron problemas de su tiempo, sino que también sentaron las bases de los métodos numéricos que hoy en día utilizan ingenieros y científicos de todo el mundo. Su legado sigue vivo en cada cálculo estructural, simulación computacional y diseño que recurre a estas herramientas fundamentales.

En este audio podemos conocer más de su biografía.

Os paso un vídeo del método de Garlerkin.

 

Preguntas frecuentes sobre la dosificación de hormigones

¿Qué es la dosificación del hormigón y por qué es tan importante?

La dosificación del hormigón consiste en determinar las proporciones exactas de sus componentes (cemento, agua, áridos y aditivos) para obtener una mezcla óptima. El objetivo es que el hormigón resultante posea las características idóneas de durabilidad, resistencia, compacidad y consistencia para la obra en cuestión. Una dosificación adecuada es fundamental para garantizar la resistencia y la durabilidad de las estructuras. Si no se realiza adecuadamente, la mezcla puede perder homogeneidad y los componentes pueden segregarse, lo que comprometería las propiedades del hormigón endurecido.

¿Cuáles son los factores clave que hay que considerar antes de dosificar el hormigón?

Antes de dosificar el hormigón, es importante considerar varios factores para garantizar que la mezcla sea adecuada para la aplicación deseada. Estos incluyen:

  • Resistencia deseada del hormigón: es la propiedad mecánica principal que se busca.
  • Condiciones ambientales: la exposición a temperaturas extremas, ciclos de congelación-deshielo o ambientes agresivos (como el agua de mar o los sulfatos) influye en la durabilidad.
  • Equipos de fabricación y compactación: la elección entre métodos manuales o mecánicos para la mezcla y la compactación incide en la trabajabilidad y en la necesidad de aditivos.
  • Granulometría y la calidad de los áridos: el tamaño máximo, la forma (rodado o machacado) y la distribución granulométrica son esenciales para la compacidad y la trabajabilidad.
  • Dimensiones de la sección y disposición de las armaduras: influyen en el tamaño nominal máximo del árido y en la trabajabilidad necesaria para garantizar un buen llenado y una correcta compactación.
  • Tipo de cemento y el uso de aditivos: determinan las propiedades de fraguado, de endurecimiento y las características especiales del hormigón.

¿Cuáles son los principales métodos de dosificación del hormigón?

Existen varios métodos, cada uno adecuado para diferentes situaciones y niveles de precisión:

  • Dosificación en volumen: es el método más antiguo y sencillo. Se utiliza principalmente en obras pequeñas y consiste en determinar las cantidades mediante tablas de proporciones para obtener un metro cúbico de hormigón.
  • Métodos basados en el contenido de cemento: incluyen el método de Fuller y la fórmula de Bolomey. Estos se centran en la cantidad de cemento por metro cúbico y en la granulometría de los áridos para lograr una buena densidad y trabajabilidad, con el objetivo de utilizar menos cemento.
  • Métodos basados en la resistencia a la compresión: como el método A.C.I. y el método De la Peña. Estos parten de la resistencia deseada del hormigón y consideran la cantidad de agua, el tamaño y el tipo de árido, así como la consistencia, para determinar las proporciones. Se utilizan ampliamente en obras estructurales.
  • Métodos racionales: como el método Faury, que se basa en principios granulométricos y define una curva granulométrica ideal para garantizar una granulometría total adecuada, incluida la del cemento. Es más flexible y preciso, pero requiere cálculos más complejos.
  • Métodos prácticos/experimentales: como el método de Valette y los hormigones de prueba, que implican la realización de mezclas experimentales en el laboratorio o en la obra para verificar y ajustar las proporciones en función de las propiedades del hormigón fresco y endurecido.

¿Cómo influyen la relación agua/cemento y la cantidad de cemento en la dosificación?

La relación agua/cemento (a/c) es un factor crítico para la resistencia y la durabilidad del hormigón. A menor relación a/c, mayor resistencia y durabilidad, y menor coste si la resistencia es fija. La cantidad de cemento, junto con la relación a/c, se selecciona para cumplir los requisitos de resistencia y durabilidad. El Código Estructural establece límites para el contenido de cemento: no puede ser inferior a 200, 250 y 275 kg/m³ para hormigón en masa, armado o pretensado, respectivamente. La cantidad máxima de cemento por metro cúbico de hormigón suele ser de 500 kg, aunque este límite puede superarse con la autorización de la dirección de obra. Una relación agua/cemento adecuada y un contenido de cemento adecuado minimizan el riesgo de segregación y aseguran la cohesión de la mezcla.

¿Por qué son importantes los ensayos experimentales con hormigón dosificado y qué se evalúa?

El cálculo matemático y teórico de las proporciones del hormigón no exime de la responsabilidad de comprobar experimentalmente la composición obtenida. En la práctica, múltiples factores pueden influir en las propiedades del hormigón. Los ensayos experimentales son cruciales para:

  • Verificación de la docilidad (trabajabilidad): se mide mediante el método del asentamiento del cono de Abrams (UNE EN 12350-2), a fin de garantizar que el hormigón pueda moldearse y compactarse fácilmente en obra.
  • Comprobación de la resistencia: se verifica mediante ensayos de resistencia a la compresión con probetas fabricadas y curadas según las normas específicas (UNE-EN 12390-2).
  • Ajustes y correcciones: Las pruebas permiten ajustar la dosis de agua para lograr el asentamiento requerido y, si el rendimiento difiere significativamente del cálculo teórico (más del ±3 %), se corrigen las proporciones de los áridos. También se pueden ajustar las dosis de cemento si la resistencia obtenida supera la necesaria. La toma de muestras para estos ensayos se realiza en el punto de vertido, a la salida del elemento de transporte, entre un cuarto y un tercio de la descarga, y deben estar presentes el proveedor del hormigón y el constructor, con un acta levantada por el laboratorio.

¿Cómo influye la dosificación del hormigón en la segregación de sus componentes?

La segregación es la pérdida de homogeneidad de la mezcla de hormigón y está directamente relacionada con una dosificación incorrecta. Un hormigón mal dosificado puede presentar dos tipos principales de segregación:

  • Por exceso de agua: si la cantidad de agua es excesiva, el mortero puede separarse de los áridos y los áridos más gruesos tienden a depositarse en el fondo.
  • Por escasez de agua y exceso de finos (hormigón muy seco): en este caso, los áridos más gruesos se separan y se depositan con mayor facilidad que las partículas más finas. Para evitar la segregación, es fundamental realizar una dosificación que asegure la cohesión de la mezcla. Las mezclas más propensas a la segregación son las que contienen mucha arena, las ásperas o poco dóciles y las extremadamente secas o fluidas. Un aumento adecuado de la cantidad de agua suele mejorar la cohesión y eliminar la segregación en mezclas secas.

¿Cuáles son las limitaciones y correcciones más habituales en la dosificación del hormigón en la práctica?

A pesar de los métodos teóricos, la dosificación del hormigón en la práctica presenta limitaciones y requiere correcciones.

  • Limitaciones normativas: el Código Estructural establece rangos mínimos y máximos para el contenido de cemento y la relación agua/cemento con el fin de garantizar la durabilidad y la resistencia del hormigón en función del tipo de estructura y de la exposición.
  • Ajustes por humedad de los áridos: los áridos de la obra suelen tener un grado de humedad distinto del de la condición saturada y del de la superficie seca considerados en la dosificación inicial. Esta humedad afecta tanto la cantidad de agua efectiva en la mezcla como el peso real de los áridos. Por tanto, se calcula la humedad libre y se ajustan, en consecuencia, la dosis de agua y el peso de los áridos. Si la dosificación se mide en volumen, también debe considerarse el esponjamiento de la arena.
  • Modificación por rendimiento: se comprueba si el volumen de hormigón producido en obra coincide con el volumen teórico calculado. Si hay diferencias (generalmente, superiores al ±3 %), se ajustan las proporciones de los áridos para mantener la dosis de cemento y la relación agua/cemento.
  • Corrección por variaciones de la granulometría: si la arena suministrada contiene proporciones de grava no previstas o si la granulometría general de los áridos varía, es necesario modificar las proporciones de arena y grava para mantener la trabajabilidad y la compactación deseadas y asegurar el cumplimiento de las bandas granulométricas óptimas.

¿Quiénes son los «participantes» clave en la fabricación de un buen hormigón?

Existe una metáfora ingeniosa para describir los roles esenciales en este proceso:

  • Un sabio para el agua: ya que es fundamental para la trabajabilidad, la resistencia y la durabilidad, su cantidad debe calcularse y controlarse cuidadosamente.
  • Un avaro con el cemento: destaca la necesidad de ser eficiente en su uso, el componente más costoso, sin comprometer las propiedades deseadas del hormigón. Esto implica un uso óptimo que cumpla con los requisitos mínimos de resistencia y durabilidad.
  • Un dadivoso para los áridos: sugiere generosidad al seleccionar y combinar los áridos, buscando la mejor granulometría y calidad posibles para lograr la máxima compacidad y una trabajabilidad adecuada a las condiciones de la obra.
  • Y para revolverlo… ¡Un genio de la ingeniería! Este último participante subraya el papel fundamental del ingeniero, que con su experiencia y conocimiento, y una pizca de audacia, integra todos los componentes y ajusta el proceso para asegurar el éxito final del hormigón. Esto implica supervisión constante, capacidad para realizar correcciones en obra y garantizar el cumplimiento de todas las especificaciones.

Os dejo un audio de resumen de este tema:

Os dejo varios vídeos, que espero, os sean útiles:

También os dejo unos documentos sobre este tema:

Pincha aquí para descargar

Pincha aquí para descargar

Curso:

Curso de fabricación y puesta en obra del hormigón.

Glosario de términos clave

  • Dosificación del hormigón: Proceso de determinar las proporciones exactas de los componentes (cemento, agua, áridos, aditivos) para obtener una mezcla de hormigón con las características deseadas (resistencia, durabilidad, trabajabilidad, etc.).
  • Hormigón en masa: Hormigón sin armadura de acero.
  • Hormigón armado: Hormigón que contiene una armadura de acero para mejorar su resistencia a la tracción.
  • Hormigón pretensado: Hormigón en el que se inducen esfuerzos de compresión antes de la aplicación de las cargas de servicio, generalmente mediante tendones de acero.
  • Resistencia característica: Valor de resistencia a la compresión del hormigón por debajo del cual solo se espera un porcentaje especificado de resultados (p. ej., 5 %). Es la resistencia mínima garantizada por la normativa.
  • Resistencia media de dosificación: Resistencia promedio objetivo para la mezcla de hormigón, calculada para asegurar que la resistencia característica se cumpla en obra, considerando la variabilidad del proceso.
  • Áridos: Materiales granulares (arena, grava) que forman el esqueleto del hormigón.
  • Granulometría: Distribución por tamaños de las partículas de un árido. Una granulometría adecuada es crucial para la trabajabilidad y compacidad del hormigón.
  • Tamaño máximo nominal del árido: Dimensión máxima de las partículas del árido grueso utilizada en una mezcla de hormigón.
  • Consistencia del hormigón: Medida de la fluidez o rigidez del hormigón fresco, generalmente determinada mediante el ensayo de asentamiento del cono de Abrams.
  • Trabajabilidad: Propiedad del hormigón fresco que describe la facilidad con la que puede ser mezclado, transportado, colocado, compactado y acabado sin segregación.
  • Asentamiento del cono de Abrams: Ensayo estandarizado para medir la consistencia del hormigón fresco.
  • Relación agua/cemento: Proporción en peso de agua libre respecto al cemento en la mezcla de hormigón. Es el factor más influyente en la resistencia y la durabilidad del hormigón.
  • Aditivos: Sustancias añadidas al hormigón en pequeñas cantidades para modificar sus propiedades (p. ej., plastificantes, incorporadores de aire, retardantes).
  • Segregación: Separación de los componentes del hormigón fresco, lo que da lugar a una distribución no uniforme de los materiales y a propiedades inferiores.
  • Gessner (parábola de Gessner): Curva granulométrica teórica que representa una distribución de tamaños de áridos que maximiza la compacidad y la docilidad de la mezcla.
  • Bolomey (fórmula de Bolomey): Método de dosificación basado en el contenido de cemento, que busca una mezcla económica y resistente, perfeccionando el método de Fuller.
  • Método A.C.I. (American Concrete Institute): Método empírico de dosificación ampliamente utilizado, basado en tablas y experiencia para determinar las proporciones de la mezcla.
  • Método de la Peña: Método de dosificación basado en la resistencia a la compresión, aconsejado para hormigones estructurales con condiciones de ejecución controlables.
  • Método de Fuller: Método de dosificación antiguo basado en el contenido de cemento y una granulometría continua.
  • Método Faury: Método de dosificación racional que se fundamenta en principios granulométricos y en el concepto de «curva granulométrica ideal», que incluye el efecto de pared.
  • Método de Valette: Método experimental de dosificación que emplea técnicas de laboratorio para determinar las proporciones óptimas de los materiales.
  • Humedad libre: Agua contenida en los áridos por encima de la cantidad necesaria para su estado saturado con superficie seca, que contribuye al agua de amasado de la mezcla.
  • Agua de absorción: Agua que los áridos pueden absorber hasta alcanzar su estado saturado superficialmente seco (sss).
  • Rendimiento del hormigón: Volumen real de hormigón producido por una amasada o por unidad de cemento, comparado con el volumen teórico.
  • Efecto de pared: Fenómeno cuantificado por Faury que describe la influencia de las superficies rígidas (moldajes y armaduras) en la densidad y distribución granular del hormigón adyacente.
  • Módulo de finura: Indicador de la finura o grueso de un árido, especialmente arena, utilizado en algunos métodos de dosificación.
  • Huso granulométrico: Rango de curvas granulométricas consideradas aceptables para un determinado tipo de hormigón y de aplicación.
  • Densidad aparente (de áridos): Masa de un volumen de árido, incluyendo los huecos entre las partículas.
  • Densidad real (de áridos o cemento): Masa de un volumen de material sólido, excluyendo los huecos.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Economía circular en la industria del cemento y el hormigón

Figura 1. Economía circular. Fuente: PEMAR (2016-2022)

¿Qué es la economía circular y en qué se diferencia del modelo económico tradicional?

La economía circular es un modelo económico diseñado para eliminar los residuos y maximizar el uso eficiente de los recursos, todo lo cual contrasta con el modelo lineal tradicional de «tomar, hacer y desechar». Su objetivo principal es mantener los productos, materiales y recursos en uso durante el mayor tiempo posible. En la práctica, esto se consigue cerrando ciclos (transformando residuos en materias primas secundarias), ralentizando ciclos (alargando la vida útil de productos y materiales) y estrechando ciclos (maximizando el valor económico de una cantidad fija de recursos).

¿Por qué la industria del cemento y del hormigón está adoptando la economía circular?

Lo hace debido a los desafíos ambientales sin precedentes y a la creciente demanda de recursos. El Foro Económico Mundial señala que cada año se incorporan a la economía mundial 100 mil millones de toneladas de materiales, de los cuales cerca de la mitad se utilizan en ingeniería y construcción. Se estima que para el año 2100 se necesitarán dos mil millones de nuevos hogares, junto con su infraestructura de apoyo. La economía circular es esencial para reducir esta intensa demanda de recursos, mejorar la eficiencia en la fabricación y el diseño, maximizar la vida útil de los proyectos y minimizar y reutilizar los residuos. Además, la adopción de la economía circular es clave para que el sector alcance la neutralidad en emisiones de carbono para el año 2050, un objetivo global de la industria.

¿Cuáles son los principios clave de la economía circular aplicados al cemento y al hormigón según las «9R» del PNUMA?

El Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) describe la economía circular en términos de nueve acciones «R», que, en el caso de materiales de construcción de larga duración como el cemento y el hormigón, se adaptan a seis categorías principales:

  • Reducir por diseño: disminuir la cantidad de material utilizado desde la fase de concepción.
  • Reciclar: evitar la eliminación de residuos y permitir que el material vuelva al ciclo de producción.
  • Readaptar: modificar elementos y componentes para un uso igual o mejor que el original.
  • Reutilizar: Utilizar los materiales o productos tal cual, siempre que sea posible.
  • Rechazar/Reducir: comprar o usar menos y utilizar artículos y servicios durante más tiempo.
  • Reparar, renovar o remanufacturar: reparar en lugar de reemplazar, renovar lo existente o remanufacturar equipos para que queden como nuevos. Estos principios son particularmente efectivos en el cemento y el hormigón, debido a su durabilidad y completa reciclabilidad.

¿De qué manera se aplican los conceptos de economía circular en las fases de diseño de productos y proyectos en la industria del cemento y del hormigón?

En la fase de diseño, la circularidad se aborda de dos maneras:

  • Diseño de productos: Por un lado, se optimizan las recetas de hormigón para cumplir con los requisitos técnicos y maximizar el contenido reciclado, por ejemplo, incorporando cenizas volantes como material cementoso suplementario (SCM) para reducir la cantidad de clínker y mejorar la durabilidad.
  • Diseño de proyectos: La versatilidad del hormigón permite a los diseñadores optimizar el uso de materiales y la circularidad. Esto incluye el uso de elementos prefabricados de hormigón que pueden desmontarse y reutilizarse en nuevos proyectos, así como la implementación de sistemas de construcción modular que facilitan la adaptación y el reúso.
Figura 2. https://www.oficemen.com/la-industria-cementera-en-su-objetivo-de-alcanzar-la-neutralidad-climatica-a-mitad-de-siglo-fija-en-un-43-el-objetivo-de-reduccion-de-co2-a-2030/#

¿Qué papel juega el reciclaje en la economía circular del cemento y el hormigón?

El reciclaje es fundamental para reducir el empleo de materias primas. En la producción de clínker, se emplea el procesamiento de residuos y materiales secundarios como combustibles y materias primas alternativas (ARMs), lo que permite sustituir combustibles fósiles y materias primas primarias, y gestionar residuos. En cuanto al hormigón y los agregados, el primero es completamente reciclable: sus componentes prefabricados pueden reciclarse para producir nuevos hormigones y el hormigón al final de su vida útil puede procesarse para producir áridos reciclados de calidad controlada que sustituyen a los áridos naturales.

¿De qué manera contribuye la durabilidad del hormigón a la reutilización y readaptación de proyectos?

La durabilidad y longevidad inherentes del hormigón lo convierten en un material ideal para la reutilización y readaptación. Los elementos de hormigón pueden diseñarse para ser desmontados y reutilizados en otros proyectos, incluidos sistemas prefabricados o diseños modulares completos. A nivel de proyecto, las estructuras de hormigón son intrínsecamente adecuadas para la readaptación, ya que tienen una larga vida útil, requieren poco mantenimiento y son resistentes a desastres naturales como inundaciones e incendios. Esto permite reutilizar edificios con estructuras de hormigón duraderas en lugar de demolerlos y reconstruirlos, como en el caso de la reconversión de antiguas fábricas en modernos espacios.

¿Qué nuevas tecnologías se están investigando para fomentar la economía circular en la industria del cemento y del hormigón?

Esta industria está invirtiendo en investigación y desarrollo de tecnologías innovadoras para aumentar la circularidad. Entre ellas, destacan los Materiales Cementosos Suplementarios (MCS), como las cenizas volantes y la escoria de alto horno granulada, que sustituyen parcialmente al clínker, reducen la huella de carbono y mejoran la durabilidad del hormigón. También se están llevando a cabo investigaciones para mejorar la recarbonatación del hormigón, es decir, el proceso natural por el cual el material absorbe CO₂ del medio ambiente. El objetivo es optimizar este proceso en el hormigón demolido al final de su vida útil para maximizar la absorción de CO₂ y contribuir a la reducción neta de carbono.

¿Qué iniciativas específicas propone la GCCA para acelerar la adopción de la economía circular en los sectores del cemento y el hormigón?

La Global Cement and Concrete Association (GCCA) propone varias iniciativas que requieren colaboración público-privada para establecer un marco regulatorio común:

  • Facilitar el uso de residuos como combustibles alternativos y materias primas en la producción de clínker, incentivando la segregación de residuos y la infraestructura para su procesamiento.
  • Promover el uso de materiales cementosos suplementarios (MCS) en la fabricación de cemento y hormigón, para lo cual los gobiernos deberían incluirlos en las especificaciones de los proyectos públicos y revisar las normativas de construcción.
  • Reducir y eliminar gradualmente los vertederos de residuos de construcción y demolición de hormigón, estableciendo normativas que obliguen a reciclar estos materiales. Con estos compromisos se pretende acelerar la implementación de principios circulares, informar sobre los progresos mediante métricas, innovar en productos y aplicaciones, colaborar para promover buenas prácticas y fomentar el diseño circular desde el principio.

Os paso un enlace a un artículo que profundiza sobre las ideas anteriores.

La Industria del Cemento y del Hormigón y su rol en la transición hacia una Economía Circular

Os dejo algunos vídeos al respecto, espero que os sean de interés.

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Más allá del coste inicial: cómo elegir la mejor estrategia de refuerzo sísmico con criterios de sostenibilidad

Acaban de publicarnos un artículo en la revista Mathematics, revista indexada en el primer decil del JCR. Desarrolla un marco de decisión multicriterio que integra análisis del ciclo de vida (económico, ambiental y social) con técnicas avanzadas de decisión en entornos de incertidumbre (DEMATEL, DANP y TOPSIS en entornos difusos). El modelo se ha aplicado a un caso real de refuerzo de pilares de hormigón armado en Quito, una ciudad expuesta a riesgos sísmicos y volcánicos, por lo que los resultados son especialmente relevantes para la práctica profesional. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València, y es fruto de la colaboración con la Universidad Central de Ecuador. A continuación se recoge un resumen sintético del trabajo.

En los últimos años, la ingeniería civil ha tenido que replantear las estrategias de intervención en el patrimonio edificado. En regiones con alta peligrosidad sísmica, es imperioso reforzar las estructuras de hormigón armado construidas conforme a normativas antiguas. La demolición y reconstrucción, aunque técnicamente es posible, tiene un gran impacto ambiental y social, y supone un coste elevado. Por este motivo, la investigación reciente se orienta hacia metodologías que permitan adoptar soluciones integrales que equilibren la seguridad estructural, la sostenibilidad ambiental, la viabilidad económica y la aceptación social.

Un objetivo ambicioso: tomar decisiones informadas y sostenibles.

El objetivo del estudio es proporcionar a los ingenieros un procedimiento para priorizar técnicas de refuerzo sísmico de pilares de hormigón armado que tenga en cuenta de manera simultánea los siguientes aspectos:

  • Costes de ciclo de vida (LCC): diseño, construcción, mantenimiento y demolición.
  • Impactos ambientales (LCA): consumo de recursos, emisiones con efectos sobre la salud humana y daños a los ecosistemas.
  • Impactos sociales (S-LCA): seguridad de los trabajadores, derechos laborales, efectos sobre la comunidad local, compatibilidad arquitectónica y tiempo de interrupción del uso.

Lo novedoso es que estos criterios no se tratan como compartimentos estancos, sino como un sistema interdependiente en el que las decisiones económicas repercuten en lo social y lo ambiental, y viceversa.

La metodología paso a paso

  1. Selección de criterios: se identificaron nueve indicadores distribuidos en tres dimensiones (económica, ambiental y social).
  2. Análisis de relaciones causales (fuzzy DEMATEL): permitió visualizar qué criterios actúan como causa (por ejemplo, el coste de construcción influye en varios indicadores) y cuáles como efecto (por ejemplo, la salud humana se ve afectada por las decisiones ambientales y económicas).
  3. Determinación de pesos relativos (DANP): se asignó importancia a cada criterio teniendo en cuenta esas interdependencias. La dimensión social emergió como la de mayor peso global (44,6%), seguida de la ambiental (32,2%) y la económica (23,1%).
  4. Evaluación de alternativas (TOPSIS): se compararon tres técnicas habituales de refuerzo de pilares:
    • Encamisado con hormigón armado.
    • Encamisado con acero.
    • Revestimiento con CFRP (polímeros reforzados con fibra de carbono).
      Cada una se evaluó en todas las fases del ciclo de vida, desde la extracción de materias primas hasta el final de vida.

Resultados: el CFRP como mejor opción global

El análisis mostró perfiles muy diferenciados:

  • Hormigón armado (RC):
    • Ventaja: la alternativa más barata en coste inicial y en LCC.
    • Inconveniente: presenta los mayores impactos ambientales y sociales, debido al uso intensivo de materiales (cemento y áridos) y a la mayor duración y molestias de obra.
  • Acero (ST):
    • Ventaja: menor impacto social que el hormigón, reducción moderada de impactos ambientales.
    • Inconveniente: costes significativamente más altos, sobre todo en mantenimiento y fin de vida (protecciones contra corrosión, demolición).
  • CFRP:
    • Ventaja: mejor desempeño ambiental (hasta un 81% menos de consumo de recursos respecto al RC) y social (reducción de hasta un 85% en impactos sobre la sociedad). Además, tiempos de ejecución mucho más cortos, con mínima afectación al uso del edificio.
    • Inconveniente: coste inicial muy superior (un 154% más que el RC).
    • Resultado: pese a ese mayor coste inicial, es la alternativa mejor valorada globalmente cuando se consideran los 50 años de vida útil.

La conclusión es clara: el criterio de sostenibilidad a largo plazo favorece el uso del CFRP, aunque su adopción aún depende de la disponibilidad económica y de la madurez del mercado en cada contexto.

Aplicaciones prácticas en la ingeniería real

Para el proyecto de refuerzo de una estructura, este estudio ofrece varias lecciones prácticas:

  • Justificación técnica y económica: el marco permite presentar a clientes y administraciones un análisis riguroso que va más allá del presupuesto inicial, considerando impactos a 50 años.
  • Planificación de obra: la valoración de los tiempos de intervención y la compatibilidad arquitectónica muestra que soluciones como el CFRP pueden reducir notablemente la interrupción de la actividad en edificios de uso crítico (hospitales, colegios, edificios administrativos).
  • Selección de materiales: el análisis evidencia cómo el acero requiere medidas de protección adicionales frente a la corrosión, mientras que el hormigón aumenta considerablemente la huella de carbono. Esto impulsa a considerar materiales compuestos, incluso con su mayor precio, cuando la sostenibilidad y el servicio a la comunidad son prioritarios.
  • Diseño normativo y políticas públicas: al integrar impactos sociales, el modelo puede orientar normativas de rehabilitación sísmica en países con gran stock de edificaciones vulnerables, priorizando soluciones que maximicen beneficios sociales, además de estructurales.

Conclusiones y recomendaciones para la práctica profesional

  1. Mirar más allá del coste inicial: la ingeniería actual debe adoptar un enfoque de ciclo de vida para que las decisiones sean sostenibles y no hipotequen a futuras generaciones.
  2. Dar peso a lo social: en muchos contextos, el impacto en trabajadores y usuarios pesa tanto como la seguridad estructural. Reducir los tiempos de obra y las afecciones al entorno puede ser determinante.
  3. Promover materiales innovadores: el CFRP se posiciona como un referente en refuerzos sísmicos por su durabilidad, bajo impacto ambiental y beneficios sociales.
  4. Aplicar marcos multicriterio: metodologías como la propuesta permiten al ingeniero defender decisiones complejas con base científica y transparencia.
  5. Aprovechar el modelo en la planificación pública: puede guiar programas de rehabilitación masiva en países sísmicamente activos, optimizando recursos y beneficios.

En definitiva, este trabajo no solo aporta un modelo matemático, sino también una forma de pensar y justificar nuestras decisiones como ingenieros civiles. Es un claro ejemplo de cómo la integración de herramientas de análisis avanzado con criterios de sostenibilidad puede transformar la práctica profesional y alinearla con los retos del siglo XXI.

Este audio os puede servir para entender el trabajo realizado.

Os dejo un vídeo que resume este trabajo.

Referencia:

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

Como el artículo está publicado en abierto, os lo dejo para su descarga.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas frecuentes sobre el hormigón reforzado con fibras

1. ¿Qué es el hormigón reforzado con fibras (HRF) y cómo se diferencia del hormigón tradicional?

El hormigón reforzado con fibras (HRF) se define como aquel hormigón que incluye en su composición fibras cortas, discretas y distribuidas aleatoriamente en su masa. A diferencia del hormigón tradicional, que tiene una buena resistencia a la compresión, pero es frágil y tiene una resistencia limitada a la tracción, la incorporación de fibras al HRF mejora significativamente su ductilidad y resistencia a la tracción y a la flexotracción. Esto permite que el HRF pueda sustituir, total o parcialmente, al refuerzo de acero convencional (hormigón armado) o activo (hormigón pretensado o postesado) en ciertas aplicaciones. La mejora del comportamiento frágil del hormigón se logra aumentando su resistencia a la tracción en los procesos posteriores a la fisuración de la matriz, en los que las fibras «cosen» las fisuras y evitan el colapso frágil.

Figura 1. https://blog.laminasyaceros.com/blog/hormigon-armado

2. ¿Cuáles son los principales tipos de fibras utilizadas en el HRF y sus características distintivas?

Existen cuatro grandes grupos de fibras para el refuerzo del hormigón:

  • Fibras de acero: Son las más utilizadas tradicionalmente y mejoran notablemente la tenacidad, la ductilidad, la resistencia a la flexión, la tracción, el cortante, el impacto y la fatiga. Se presentan en diversas formas para mejorar el anclaje con el hormigón, como patillas, ondulaciones o corrugaciones. Su dosificación habitual oscila entre 25 y 70 kg/m³. A pesar de sus excelentes propiedades mecánicas, pueden presentar problemas de corrosión si no se controlan adecuadamente.
  • Fibras macro-sintéticas estructurales: Generalmente de poliolefina (polipropileno o polietileno de alta densidad), son poliméricas y tienen un diámetro superior a 0,30 mm. Ofrecen propiedades mecánicas mejoradas y son químicamente estables, lo que elimina los problemas de corrosión del acero. Se requiere una menor dosificación (3-12 kg/m³) para obtener resultados similares en comparación con las de acero, lo que reduce el coste y el peso. Mejoran la durabilidad en ambientes agresivos y reducen el desgaste de los equipos de bombeo.
  • Micro-fibras de polipropileno: Con diámetros inferiores a 0,30 mm, no asumen una función estructural, pero son altamente efectivas para reducir la fisuración por retracción plástica y mejorar el comportamiento del hormigón frente al fuego (debido a su baja temperatura de fusión, que crea espacios para el vapor de agua y evita el estallido). Su dosificación es baja (1-2 kg/m³).
  • Fibras de vidrio (GRC): Utilizadas principalmente en mortero de cemento reforzado con fibras de vidrio (GRC). Mejoran la ductilidad y la resistencia a la tracción del mortero. Sin embargo, su durabilidad en ambientes alcalinos es limitada debido a la corrosión de las fibras. Se han desarrollado fibras resistentes a los álcalis (AR) para mitigar este problema. Se usan en aplicaciones en las que no se necesitan armaduras, lo que permite realizar diseños versátiles con espesores reducidos.
Figura 2. Fuente: http://esp.sika.com

3. ¿Cómo influye la adición de fibras en las propiedades mecánicas y la trabajabilidad del hormigón?

La adición de fibras en el hormigón tiene un impacto significativo en varias de sus propiedades:

  • Resistencia a la compresión: Los incrementos son modestos y, a partir de ciertos umbrales de dosificación, la resistencia puede incluso reducirse debido a problemas de compactación y trabajabilidad.
  • Resistencia a la tracción y flexo-tracción: Las fibras aumentan notablemente estas resistencias al «coser» las fisuras y mejorar el comportamiento post-fisuración. La ductilidad y tenacidad del hormigón endurecido se incrementan con la fracción volumétrica de fibras.
  • Módulo de elasticidad: Las variaciones suelen ser pequeñas, aunque en altas dosificaciones de fibras sintéticas pueden observarse reducciones apreciables. En el caso de las fibras de acero, el módulo puede aumentar hasta un valor máximo, para luego disminuir.
  • Comportamiento frente a fisuración: Las fibras controlan la aparición y propagación de microfisuras, aumentando la absorción de energía durante el proceso de fisuración. Son especialmente efectivas contra la fisuración por retracción plástica (micro-fibras de polipropileno) y fisuración por acciones térmicas.
  • Durabilidad: Las fibras pueden mejorar la durabilidad al reducir la abertura de las fisuras, lo que limita la entrada de agentes nocivos. Las fibras poliméricas destacan por su estabilidad química y ausencia de problemas de corrosión, a diferencia de las fibras de acero que requieren protección.
  • Trabajabilidad: La adición de fibras generalmente reduce la trabajabilidad del hormigón. Las fibras de acero, debido a su mayor rigidez, afectan más la trabajabilidad que las fibras poliméricas. Es importante tener en cuenta esta reducción al diseñar la mezcla y los métodos de colocación y compactación.

4. ¿Qué importancia tiene el anclaje de las fibras en la matriz de hormigón para su rendimiento estructural?

El anclaje de las fibras en la matriz del hormigón es un factor determinante para el comportamiento del material compuesto. La capacidad de las fibras para trabajar solidariamente con la matriz del hormigón es crucial para su aportación.

  • Mecanismo de refuerzo: Si la fibra está bien anclada, controlará la apertura de la fisura, produciendo un «efecto de puenteo» sobre la fisura. Esto permite que la fibra movilice su resistencia a la tracción, impidiendo la propagación incontrolada de la fisura.
  • Tipos de fallo: Un anclaje deficiente puede llevar a un deslizamiento de la fibra por falta de adherencia o una rotura brusca del anclaje, en lugar de la rotura de la propia fibra o un deslizamiento controlado. Por ejemplo, en fibras metálicas, los extremos conformados (patillas, ondulaciones) son comunes para mejorar este anclaje mecánico. En fibras poliméricas, se busca la rugosidad superficial.
  • Longitud mínima de anclaje: Para fibras rectas, la longitud mínima de anclaje es un parámetro fundamental.
  • Orientación y distribución: Además del tipo de anclaje, la orientación y distribución de las fibras dentro de la masa de hormigón son vitales. Un factor de orientación adecuado y una distribución homogénea, influenciadas por el flujo del hormigón y el «efecto pared» en los moldes, aseguran que un mayor número de fibras actúen eficazmente en el plano de la fisura.

5. ¿Cómo se evalúa la aptitud estructural del hormigón reforzado con fibras según las normativas vigentes?

La aptitud estructural del HRF se evalúa principalmente mediante ensayos de resistencia a la tracción por flexión en probetas entalladas, conforme a la norma UNE-EN 14651. Los resultados de este ensayo (curvas fuerza-apertura de fisura o CMOD) proporcionan los valores necesarios para tener en cuenta la contribución de las fibras en los estados límites de servicio (ELS) y en los estados límites últimos (ELU).

Para que las fibras puedan considerarse estructuralmente relevantes, deben cumplir los siguientes requisitos de resistencia residual a la tracción por flexión:

  • La resistencia característica residual a tracción por flexión fR,1,k (para una abertura de fisura de 0,5 mm) no debe ser inferior al 40 % del límite de proporcionalidad (fLOP).
  • La resistencia característica residual a tracción por flexión fR,3,k (para una abertura de fisura de 2,5 mm) no debe ser inferior al 20 % del límite de proporcionalidad (fLOP).

Además, normas como la EN 14889 (para fibras de acero y poliolefina) exigen que el fabricante declare el volumen unitario de fibras que puede alcanzar una resistencia residual a la flexión de 1,5 MPa a 0,5 mm CMOD y 1,0 MPa a 3,5 mm CMOD. Estos requisitos garantizan que el HRF tenga un comportamiento adecuado después de la fisuración.

6. ¿De qué manera las fibras de polipropileno contribuyen a la resistencia del hormigón frente al fuego?

Las microfibras de polipropileno son particularmente eficaces para aumentar la resistencia del hormigón al fuego, aunque no aporten resistencia estructural. Su contribución se basa en una propiedad clave: su baja temperatura de fusión, que ronda los 150-160 °C.

Cuando el hormigón se somete a altas temperaturas durante un incendio, el agua contenida en su masa se convierte en vapor a más de 100 °C. Este vapor genera una presión interna considerable que puede provocar el spalling o estallido brusco del hormigón, desprendiendo trozos y dejando al descubierto la armadura. Al fundirse a una temperatura relativamente baja, las fibras de polipropileno crean canales y huecos dentro de la matriz del hormigón. Estos nuevos espacios permiten que el vapor de agua escape y libere la presión acumulada, lo que reduce significativamente el riesgo de estallido explosivo. Este mecanismo es crucial para mantener la integridad de la estructura durante un incendio y proteger los elementos de refuerzo internos.

7. ¿Cuáles son las ventajas operativas y de seguridad al usar fibras poliméricas en comparación con las fibras de acero?

Las fibras poliméricas ofrecen varias ventajas operativas y de seguridad importantes en comparación con las fibras de acero:

  • Menor peso: Las fibras poliméricas tienen una densidad aproximadamente 8,5 veces inferior a las de acero. Esto significa que con un peso significativamente menor se puede lograr el mismo número de fibras por unidad de volumen, lo que facilita el manejo y reduce la carga total de la estructura.
  • Mejor trabajabilidad: Las macro-fibras sintéticas, aunque reducen la trabajabilidad en comparación con el hormigón sin fibras, lo hacen en menor medida que las fibras de acero, lo que facilita el proceso de amasado, transporte y colocación del hormigón.
  • Reducción del desgaste de equipos: Las fibras poliméricas, al ser menos rígidas y abrasivas, reducen el desgaste en los equipos de bombeo y mezclado del hormigón. Esto es especialmente beneficioso en aplicaciones de hormigón proyectado, donde se prioriza la continuidad del proceso.
  • Mayor seguridad en el manejo: El riesgo de pinchazos y cortes durante la manipulación e instalación es casi nulo con las fibras poliméricas, a diferencia de las rígidas fibras de acero que pueden sobresalir de la superficie de acabado y causar daños. Las fibras poliméricas también ofrecen un mejor acabado superficial.
  • Ausencia de corrosión: Al estar fabricadas con materiales poliméricos, son químicamente estables y eliminan por completo los problemas de corrosión que pueden afectar a las fibras de acero, lo que mejora la durabilidad en ambientes agresivos, como aquellos con cloruros.
  • Aislamiento eléctrico: Las fibras poliméricas no son conductoras de electricidad, lo que las hace una alternativa técnica y económica viable en usos donde las corrientes eléctricas puedan ser un problema para las fibras metálicas.

8. ¿Por qué el hormigón reforzado con fibra de vidrio (GRC) se considera un material con alta versatilidad de diseño, y cuáles son sus limitaciones principales?

El hormigón reforzado con fibra de vidrio (GRC) es muy valorado por su enorme versatilidad de diseño, ya que permite crear formas muy diversas con espesores reducidos de alrededor de 10 mm. Esta cualidad se debe a sus buenas propiedades mecánicas, en particular a su resistencia a la tracción y ductilidad, para lo cual no es necesario utilizar armaduras convencionales. Se trata de un material compuesto cementíceo que se adapta a moldes complejos, por lo que es ideal para elementos prefabricados, paneles de fachada, piezas arquitectónicas con motivos decorativos, encofrados perdidos con mosaicos y rehabilitaciones de edificios históricos.

Sin embargo, el GRC tiene una limitación principal: con el paso del tiempo, pierde propiedades mecánicas, un fenómeno conocido como «envejecimiento». Este fenómeno se debe principalmente a dos causas concurrentes:

  • Corrosión de las fibras de vidrio: Las fibras de vidrio pueden sufrir corrosión en el ambiente alcalino de la matriz de cemento, lo que reduce su sección y, por ende, su capacidad de refuerzo. Aunque se han desarrollado fibras alcali resistant (AR) a base de circonio para mitigar esto, el problema no se elimina por completo.
  • Formación de compuestos de hidratación: La acumulación de compuestos resultantes de la hidratación del cemento entre los filamentos de los haces de fibras también contribuye a la pérdida de propiedades.

El resultado de este envejecimiento es una notable pérdida de ductilidad y capacidad de carga del GRC con el paso del tiempo, como se observa en las curvas de tensión-deformación, lo que limita su uso a elementos no estructurales. A pesar de ello, sigue siendo un material popular para elementos decorativos y de revestimiento en los que priman la ligereza y la libertad de diseño.

Os dejo algunos vídeos al respecto:

Os dejo a continuación el siguiente documento para su consulta, que espero que sea de interés.

Pincha aquí para descargar

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas frecuentes sobre el futuro del hormigón

1. ¿Cuál es el problema principal con el hormigón tradicional y por qué es necesaria su transformación?

El hormigón ha sido un pilar fundamental en la construcción de infraestructuras globales gracias a su durabilidad, versatilidad y bajo coste. Sin embargo, su producción tiene un impacto ambiental significativo, ya que la fabricación de cemento, un componente esencial del hormigón, es responsable del 8 % de las emisiones globales de CO₂. Esto se debe principalmente a la calcinación de la piedra caliza para producir clínker, un proceso que libera grandes cantidades de dióxido de carbono. Dada la creciente urbanización, especialmente en regiones en desarrollo, es crucial disponer de un hormigón más sostenible para mitigar el cambio climático y alinear la industria de la construcción con los objetivos globales de sostenibilidad.

2. ¿Cómo se está abordando la reducción de emisiones de CO₂ relacionadas con el clínker en la producción de cemento?

La producción de clínker es el proceso que más emisiones genera dentro de la industria del hormigón. Para reducir sus emisiones, se están implementando varias estrategias:

  • Cemento LC3 (limestone calcined clay cement): Este cemento sustituye hasta el 50 % del clínker por una mezcla de arcilla calcinada y piedra caliza molida, lo que puede reducir las emisiones de CO₂ en un 40 % en comparación con el cemento Portland tradicional.
  • Uso de aditivos: Materiales como las cenizas volantes y la escoria de alto horno pueden mezclarse con el cemento para reducir el contenido de clínker sin comprometer la resistencia del hormigón y promover una economía circular mediante la reutilización de subproductos industriales.
  • Tecnologías de producción avanzadas: Se están investigando hornos de precalentamiento, sistemas de recuperación de calor y combustibles alternativos, como el hidrógeno o la energía solar concentrada, para hacer la producción de clínker más eficiente.

3. ¿Qué alternativas se están explorando para reemplazar los áridos naturales en el hormigón y cuál es su impacto?

Los áridos (arena y grava) constituyen la mayor parte del volumen del hormigón y su extracción natural conlleva impactos ambientales, como la degradación del paisaje y la pérdida de biodiversidad. Por ello, se están buscando alternativas sostenibles.

  • Áridos reciclados: Se obtienen de la trituración de residuos de construcción y demolición, lo que reduce la demanda de áridos vírgenes y la cantidad de residuos que van a parar a los vertederos. Son útiles en aplicaciones no estructurales y, gracias a las mejoras en las técnicas de procesamiento, cada vez lo son más en aplicaciones estructurales.
  • Áridos artificiales: Estos áridos, producidos a partir de subproductos industriales o residuos (como escoria de alto horno o cenizas volantes), pueden tener propiedades superiores y contribuir a la economía circular. La empresa Brimstone, por ejemplo, ha desarrollado áridos a partir de silicatos de calcio que no solo reemplazan a los naturales, sino que también capturan carbono, por lo que el hormigón resultante es «carbono negativo».
  • Áridos de plásticos reciclados: Aunque se encuentra en una etapa inicial, la incorporación de plásticos reciclados puede reducir tanto los residuos plásticos como la extracción de áridos, mejorando incluso la flexibilidad del material.

4. ¿Cómo contribuyen las energías renovables a un hormigón más sostenible?

La producción de cemento requiere mucha energía y la quema de combustibles fósiles es responsable de aproximadamente el 30 % de las emisiones de CO₂ asociadas al hormigón. La transición a energías renovables es clave:

  • Energía solar concentrada: Tecnologías como la desarrollada por Synhelion y Cemex utilizan espejos para enfocar la luz solar y generar el calor necesario para el proceso de calcinación en los hornos de cemento, reduciendo las emisiones y la dependencia de combustibles fósiles.
  • Energía eólica y solar fotovoltaica: Estas fuentes se emplean para alimentar las operaciones auxiliares de las plantas de cemento (trituración, molienda), reduciendo la huella de carbono general.
  • Biomasa y residuos industriales: El uso de residuos agrícolas, forestales e industriales como combustibles alternativos en los hornos de cemento permite reducir significativamente las emisiones de CO₂.
  • Hornos de precalentamiento y sistemas de recuperación de calor: Estas innovaciones mejoran la eficiencia energética al reutilizar el calor generado en el proceso, lo que reduce el consumo de energía primaria hasta en un 20 %.

5. ¿Qué papel juega la captura y almacenamiento de carbono (CCS) en la reducción de emisiones del hormigón?

La CCS es una tecnología prometedora para reducir significativamente las emisiones de CO₂. Consiste en capturar el CO₂ emitido durante la producción de cemento antes de que se libere a la atmósfera y almacenarlo de forma segura en formaciones geológicas subterráneas.

  • Proceso: El CO₂ se puede capturar mediante métodos de postcombustión (después de quemar combustibles), precombustión (antes de la combustión) u oxicombustión (usando oxígeno puro en la combustión).
  • Implantación: La planta que Heidelberg Materials tiene en Brevik (Noruega) es un ejemplo pionero, ya que captura aproximadamente el 90 % de sus emisiones de CO₂ (400 000 toneladas al año) para almacenarlas en el mar del Norte.
  • Beneficios y retos: La CCS puede reducir hasta en un 90 % las emisiones y es compatible con la infraestructura existente. No obstante, los costes de instalación y operación son elevados y el proceso requiere mucha energía, además de necesitar un almacenamiento seguro y permanente.

6. ¿Cómo se introduce el CO₂ directamente en la fabricación o vertido del hormigón para mejorar sus propiedades y reducir su huella de carbono?

Una innovación clave es la introducción de CO₂ capturado directamente en el hormigón fresco durante su mezcla, como lo hace la tecnología CarbonCure.

  • Proceso: El CO₂ se inyecta en la mezcla, donde reacciona con el calcio del cemento para formar carbonato de calcio, un proceso denominado mineralización. Este carbonato de calcio queda fijado de forma permanente en el interior del hormigón.
  • Beneficios: Reduce las emisiones en aproximadamente un 5-7 % por metro cúbico de hormigón y permite disminuir la cantidad de cemento necesaria, lo que a su vez reduce las emisiones de clínker.
  • Mejora de propiedades: El carbonato de calcio contribuye a una microestructura más densa, lo que incrementa la resistencia a la compresión del hormigón (hasta un 10%) y mejora su durabilidad.
  • Implantación: Esta tecnología está siendo adoptada por productores de Norteamérica y Europa en proyectos de construcción, lo que demuestra su viabilidad técnica y ambiental.

7. ¿Qué significa el concepto de «cascading» en el hormigón y cómo se relaciona con la economía circular y el reciclaje?

En el contexto de la economía circular, el aprovechamiento en cascada (en inglés, cascading) se refiere a la reutilización de materiales en diferentes niveles o aplicaciones para maximizar su valor antes de desecharlos definitivamente. En el caso del hormigón:

  • Cascading: Implica el desmontaje y la reutilización directa de piezas de hormigón, por ejemplo, bloques o paneles de un edificio antiguo en un nuevo proyecto, o su reutilización en aplicaciones de menor calidad si no pueden usarse estructuralmente, como áridos reciclados para pavimentos o rellenos. El objetivo es aprovechar el material en diferentes etapas de su ciclo de vida.
  • Reciclaje de hormigón: Este proceso consiste en triturar y procesar el hormigón demolido para convertirlo en áridos reciclados que pueden utilizarse en la producción de nuevos hormigones o como base en carreteras.
  • Relación: Ambos conceptos son complementarios y se enmarcan en la economía circular. El cascading puede ser una primera fase (reutilización directa) y el reciclaje supone un paso posterior para reintroducir los materiales en el ciclo productivo una vez que han llegado al final de su vida útil en la aplicación de mayor valor. El diseño para el desmontaje facilita el aprovechamiento en cascada, ya que permite la deconstrucción en lugar de la demolición para recuperar componentes.

8. ¿Cuáles son los principales desafíos y el futuro del hormigón sostenible?

El camino hacia un hormigón más sostenible implica superar varios desafíos:

  • Costes iniciales: La transición a energías renovables, tecnologías de captura de carbono y la implementación de sistemas de reciclaje implican altas inversiones iniciales.
  • Calidad y homogeneidad: Asegurar la calidad y consistencia de los áridos reciclados o materiales alternativos es un reto constante.
  • Regulación y estándares: Muchos códigos de construcción aún no se han actualizado para permitir el uso amplio de estas nuevas tecnologías y materiales en aplicaciones estructurales.
  • Conciencia y adopción: Es necesario aumentar la conciencia en la industria y facilitar la adopción masiva de estas innovaciones.

El futuro del hormigón pasa por la implementación a gran escala de estas tecnologías. Será crucial un esfuerzo conjunto de la industria, los gobiernos y la academia para superar las barreras técnicas, económicas y regulatorias. La inversión en investigación y desarrollo, junto con políticas de apoyo, permitirá que el hormigón no solo mitigue su impacto ambiental, sino que se posicione como un material clave en un futuro construido sobre principios de sostenibilidad y economía circular, convirtiéndose así en un aliado en la lucha contra el cambio climático.

A continuación os paso un audio que explica bien lo contenido en este artículo.

Os dejo varios vídeos sobre el futuro del hormigón y la tecnología CarbonCure. Espero que os resulte de interés.

Os paso un artículo al respecto, que espero os sea de interés.

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Métodos de decisión multicriterio aplicados a los proyectos vivienda social

Acaban de publicarnos un artículo en la revista Journal of Civil Engineering and Management, revista indexada en el JCR. Presenta un análisis exhaustivo de la investigación científica en torno a la evaluación de las viviendas sociales. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. A continuación se recoge un resumen sintético del trabajo.

La evaluación de proyectos de vivienda social es un proceso complejo que requiere tener en cuenta múltiples factores para conseguir comunidades más resilientes y sostenibles. Los métodos de decisión multicriterio (MCDM) son herramientas esenciales que proporcionan un marco estructurado para la adopción de decisiones informadas, ya que integran criterios cuantitativos y cualitativos. Esta revisión bibliográfica, basada en 93 artículos publicados entre 1994 y marzo de 2025, destaca la creciente prevalencia de los MCDM, el enfoque en la sostenibilidad (que abarca aspectos ambientales, sociales, económicos y técnicos) y la evolución hacia técnicas más modernas, como la lógica difusa y neutrosófica. Aunque el proceso de jerarquía analítica (AHP) y TOPSIS son los métodos más utilizados, es necesario integrar más los MCDM en todas las fases del proceso de construcción para mejorar la constructibilidad y la sostenibilidad, sobre todo en la vivienda social.

Contexto y desafío de la vivienda social

La vivienda es un elemento clave para cubrir las necesidades básicas de la población y fortalecer la cohesión social. Sin embargo, el crecimiento demográfico y la urbanización han agravado la escasez de viviendas asequibles, sostenibles y socialmente justas en todo el mundo. El modelo tradicional de construcción no solo encarece los costes a lo largo de la vida útil de la vivienda, sino que también provoca impactos negativos en el medio ambiente y en la salud.

En este contexto, la vivienda social se presenta como una solución esencial para atender a las poblaciones más vulnerables, garantizar unas condiciones mínimas de habitabilidad y calidad de vida, y promover la inclusión social.

No obstante, el desarrollo urbano desordenado ha favorecido la expansión de asentamientos informales y la falta de infraestructuras básicas adecuadas. Para que las iniciativas de vivienda social sean efectivas, es necesario adoptar un enfoque integral que tenga en cuenta la viabilidad económica, la sostenibilidad medioambiental y la equidad social. En un mundo donde la urbanización acelerada amenaza los medios de vida de millones de personas, buscar soluciones sostenibles es cada vez más urgente.

Métodos de decisión multicriterio (MCDM)

Los MCDM son herramientas poderosas para la toma de decisiones en escenarios con múltiples objetivos o criterios, facilitando la evaluación y comparación de alternativas basadas en varios aspectos cruciales. Se clasifican en:

  • Métodos de Puntuación: Asignan puntuaciones numéricas a los criterios para comparación (e.g., SAW, COPRAS).
  • Métodos Basados en Distancia: Evalúan alternativas midiendo la distancia a un punto ideal positivo y a un punto ideal negativo (e.g., TOPSIS, VIKOR, ARAS, EDAS).
  • Métodos de Comparación Pareada: Comparan alternativas directamente para determinar preferencias basadas en criterios específicos (e.g., AHP, ANP).
  • Métodos de Superación (Outranking): Se basan en la noción de que una alternativa óptima es preferible si es igual o superior en todos los criterios y al menos uno de ellos (e.g., PROMETHEE, ELECTRE).
  • Funciones de Utilidad (Valor) Multi-atributo: Representan las preferencias del tomador de decisiones a través de funciones de utilidad/valor (e.g., MAUT, SWARA, MIVES).

Prevalencia y tendencias:

  • AHP es el método individual dominante (75% de los casos individuales), seguido por TOPSIS.
  • El 48% de los artículos revisados utilizan la comparación pareada, siendo AHP el método principal (41 artículos).
  • Los métodos basados en distancia representan el 21% del uso, con TOPSIS como la opción predominante.
  • Métodos híbridos: Aunque se aboga por la integración de diferentes MCDM, su adopción generalizada es limitada. La combinación AHP + TOPSIS es frecuente, aprovechando la capacidad de AHP para estructurar criterios y la de TOPSIS para identificar y clasificar alternativas.
  • Números Crisp vs. Lógica Difusa/Neutrosófica: La mayoría de los estudios (84%) emplean números crisp, lo que indica un enfoque en datos exactos. Sin embargo, desde 2011, ha habido un aumento en el uso de la lógica difusa (15% de los manuscritos) para manejar la imprecisión y vaguedad inherentes a los juicios humanos. La lógica neutrosófica (1%) también ha comenzado a explorarse.
  • La Agenda 2030 y el ODS 11 («Ciudades y Comunidades Sostenibles»), junto con la adopción de la Nueva Agenda Urbana en 2015, han impulsado un aumento significativo en las publicaciones (más del 77% entre 2016 y la actualidad), «subrayando el papel fundamental de la vivienda adecuada y sostenible como piedra angular para lograr ciudades sostenibles.

Criterios de evaluación en vivienda social

Los proyectos de vivienda social se evalúan considerando cuatro dimensiones principales, reflejando un enfoque integral de sostenibilidad:

  • Económicos: Predominantemente enfocados en costos de construcción, reparación y mantenimiento, y gastos operativos de los proyectos de vivienda. Solo siete artículos revisados incluyen el Coste del Ciclo de Vida (LCC) según ISO 15686-5.
  • Ambientales: Abordan consumo de energía, eficiencia hídrica, emisiones contaminantes, gestión de residuos y energía del ciclo de vida (LCE). El consumo de energía y las emisiones de contaminantes son los aspectos más evaluados.
  • Sociales: Los criterios incluyen salud y seguridad, nivel de confort, facilidad de servicios y satisfacción del usuario. La accesibilidad a servicios públicos y la inclusión social son aspectos clave.
  • Técnicos: Comprenden especificaciones del proyecto, diseño, construcción y criterios de programación, con énfasis en la innovación, calidad y adhesión a los plazos.

Hay un cambio hacia evaluaciones multidimensionales, con «comparación por pares, superación y métodos basados en la distancia» emergiendo como herramientas esenciales.

Fases del proceso de construcción y MCDM

La aplicación de MCDM se distribuye en varias fases de la constructibilidad:

  • Fase de diseño: Es la fase más estudiada, cubriendo optimización del diseño interior, selección de sistemas de construcción óptimos y diseño MEP (Mecánico, Eléctrico y de Fontanería) priorizando el confort térmico.
  • Fase de planificación conceptual: Se centra en la viabilidad económica, la elección de ubicaciones adecuadas y la consideración de las necesidades de los habitantes, incluyendo acceso a servicios públicos, transporte, seguridad y áreas recreativas.
  • Fase de mantenimiento y puesta en marcha: Evalúa el bienestar de los ocupantes, las renovaciones arquitectónicas y energéticas, y las técnicas de refuerzo estructural.
  • Fase de construcción: Se enfoca en el uso de maquinaria, materiales y mano de obra, abordando preocupaciones de seguridad.
  • Fase de adquisiciones: Aborda la evaluación de proveedores y la gestión de la cadena de suministro, un aspecto vital pero poco representado.

A pesar de las intervenciones de la ciencia de la construcción que se centran en el conocimiento, la planificación, las adquisiciones y la ejecución, la investigación en este ámbito aborda principalmente cuestiones convencionales en lugar de conceptos emergentes como la economía circular y el Análisis del Ciclo de Vida (ACV) completo.

Discusión y direcciones futuras de investigación

La revisión destaca la necesidad de:

  • Integración de MCDM más allá de la viabilidad económica: Ampliar el alcance para abarcar la viabilidad social, técnica y ambiental.
  • Mayor uso de métodos híbridos y lógicas avanzadas: A pesar de la complejidad de los proyectos de vivienda social, la aplicación de la lógica difusa y neutrosófica en MCDM individuales e híbridos sigue siendo limitada en comparación con otras disciplinas de ingeniería. Se recomienda la integración de enfoques híbridos que integren MCDM con lógica difusa o neutrosófica, para evaluaciones más precisas.
  • Estandarización de criterios de evaluación: Existe una falta de consenso en los criterios de evaluación de la sostenibilidad, lo que subraya la «necesidad de un marco estandarizado que integre sistemáticamente estos aspectos. Un enfoque de Evaluación del Ciclo de Vida de la Sostenibilidad (SLCA) podría ser beneficioso.
  • Exploración de MCDM alternativos: Métodos como el Best-Worst Method (BWM) y el Combinative Distance-Based Assessment (CODAS) ofrecen ventajas sobre los métodos tradicionales en ciertos escenarios y deberían ser considerados.
  • Mayor aplicación del análisis de sensibilidad: Solo 17 de los artículos revisados emplearon análisis de sensibilidad, a pesar de su crucial papel para determinar la solidez de los métodos y la validez de los resultados.
  • Integración de tecnologías como GIS y BIM: La combinación de GIS (Sistemas de Información Geográfica), BIM (Modelado de Información de Construcción) y MCDM ha demostrado ser efectiva en la ingeniería civil, permitiendo análisis espaciales y temporales multicriterio. Esta integración puede optimizar la selección de sitios, el uso de recursos y la planificación sostenible a largo plazo. Sin embargo, su combinación es limitada en la literatura revisada.
  • Abordar la interdependencia de los criterios: La naturaleza holística y multifacética de la sostenibilidad implica que los criterios están inherentemente interconectados, lo que desafía los enfoques individuales de MCDM. Un reconocimiento exhaustivo de esta interdependencia es vital.

7. Conclusiones clave

  • Los MCDM son herramientas versátiles y esenciales para evaluar proyectos de vivienda social, con AHP, TOPSIS y COPRAS como los más prevalentes.
  • Existe una tendencia creciente hacia el uso de MCDM con lógicas de incertidumbre como la difusa y neutrosófica, aunque su aplicación todavía es limitada.
  • La sostenibilidad es un factor clave, siendo la dimensión social la más analizada, seguida por la económica, ambiental y técnica. No obstante, se necesita un marco estandarizado y la integración del Análisis del Ciclo de Vida (LCA) para evaluaciones más completas.
  • La aplicación de MCDM en todas las fases de la construcción mejora la toma de decisiones, optimiza los recursos y permite la identificación temprana de riesgos.
  • Es crucial investigar la jerarquización de criterios y la optimización de modelos híbridos para mejorar la aplicabilidad de los MCDM en proyectos de interés social.
  • La adopción de innovaciones como la construcción modular y el uso de materiales sostenibles es fundamental para la eficiencia y sostenibilidad de la vivienda social.

Este documento de información busca guiar a los profesionales de la investigación y a los tomadores de decisiones hacia la integración de métodos MCDM modernos para abordar de manera más efectiva los complejos desafíos de la vivienda social, impulsando así decisiones más informadas y sostenibles.

Os dejo un resumen en audio donde se explican las ideas principales del trabajo.

Al estar publicado en abierto, os dejo el artículo completo.

Pincha aquí para descargar

Glosario de términos clave

  • AHP (Analytic Hierarchy Process / Proceso Analítico Jerárquico): Un método MCDM basado en comparaciones por pares para estructurar y analizar decisiones complejas, determinando la importancia relativa de los criterios y alternativas.
  • ANP (Analytic Network Process / Proceso de Red Analítico): Una extensión del AHP que permite relaciones más complejas entre los criterios y las alternativas, incluyendo interdependencias y retroalimentación.
  • ARAS (Additive Ratio Assessment / Evaluación por Razón Aditiva): Un método MCDM basado en el cálculo de ratios aditivos para clasificar alternativas en función de su rendimiento.
  • BIM (Building Information Modelling / Modelado de Información de Construcción): Un proceso inteligente basado en modelos 3D que permite a los profesionales de la arquitectura, ingeniería y construcción planificar, diseñar, construir y gestionar edificios e infraestructuras de manera más eficiente.
  • COPRAS (Complex Proportional Assessment / Evaluación Proporcional Compleja): Un método MCDM de puntuación que evalúa alternativas basándose en su proximidad a un punto ideal y a un punto anti-ideal.
  • Crisp numbers (Números nítidos): Valores precisos y exactos utilizados en los cálculos matemáticos, que no consideran la imprecisión o la ambigüedad inherente a algunos conceptos humanos o datos subjetivos.
  • Constructability (Constructibilidad): La medida en que el diseño de un proyecto facilita la construcción, permitiendo un uso eficiente de los recursos y la mano de obra para mejorar el costo, el tiempo, la calidad y la seguridad.
  • DEMATEL (Decision Making Trial and Evaluation Laboratory / Laboratorio de Evaluación y Toma de Decisiones): Un método MCDM que ayuda a analizar relaciones causa-efecto entre criterios, permitiendo comprender su interdependencia.
  • EDAS (Evaluation Based on Distance to Average Solution / Evaluación Basada en la Distancia a la Solución Promedio): Un método MCDM que evalúa alternativas en función de su distancia a la solución promedio.
  • ELECTRE (Elimination and Choice Expressing Reality Method / Método de Eliminación y Elección que Expresa la Realidad): Una familia de métodos MCDM de superación que compara alternativas por pares y determina su relación de preferencia o indiferencia.
  • Fuzzy logic (Lógica difusa): Una forma de lógica multivaluada que permite valores de verdad intermedios entre «verdadero» y «falso», utilizada para modelar la incertidumbre y la vaguedad en los juicios humanos.
  • GIS (Geographic Information Systems / Sistemas de Información Geográfica): Un sistema que crea, gestiona, analiza y mapea todo tipo de datos. Relaciona los datos con la ubicación, analizando la información geográfica para organizar capas de información en visualizaciones mediante mapas.
  • Hybrid MCDMs (MCDM híbridos): Combinaciones de dos o más métodos MCDM, o de MCDM con otras herramientas (como BIM o GIS), para aprovechar las fortalezas de cada técnica y abordar la complejidad de los problemas de decisión.
  • LCA (Life Cycle Assessment / Análisis del Ciclo de Vida): Una metodología para evaluar los impactos ambientales asociados a todas las etapas de la vida de un producto o servicio, desde la extracción de materias primas hasta su disposición final.
  • LCC (Life Cycle Cost / Costo del Ciclo de Vida): El cesto total de un activo a lo largo de su vida útil, incluyendo los costos iniciales de adquisición, operación, mantenimiento, y disposición final.
  • MCDM (Multi-Criteria Decision Methods / Métodos de Decisión Multicriterio): Herramientas analíticas y computacionales que ayudan a los tomadores de decisiones a evaluar y priorizar diferentes opciones considerando múltiples factores o criterios, a menudo conflictivos.
  • MIVES (Model Integrated Value for Sustainable Evaluation / Modelo de Valor Integrado para la Evaluación Sostenible): Un método MCDM que integra la toma de decisiones con el análisis de valor, utilizando dimensiones indexadas estandarizadas para comparar indicadores de diferente naturaleza.
  • MOORA (Multi-Objective Optimization by Ratio Analysis / Optimización Multiobjetivo por Análisis de Ratios): Un método MCDM que clasifica alternativas basándose en un ratio de rendimiento y una referencia de desviación.
  • Neutrosophic logic (Lógica neutrosófica): Una generalización de la lógica difusa que introduce la indeterminación (además de la verdad y la falsedad), permitiendo un manejo más completo de la incertidumbre en los procesos de decisión.
  • PROMETHEE (Preference Ranking Organization Method for Enrichment of Evaluations / Método de Organización de Preferencias para el Enriquecimiento de Evaluaciones): Un método MCDM de superación que permite clasificar alternativas según sus preferencias de los criterios.
  • Scoring methods (Métodos de puntuación): Métodos MCDM que asignan puntuaciones numéricas a los criterios relevantes para comparar y evaluar cantidades jerárquicamente estructuradas.
  • Sensitivity analysis (Análisis de sensibilidad): Un estudio que examina cómo la incertidumbre en la salida de un modelo puede atribuirse a diferentes fuentes de incertidumbre en sus entradas, utilizado para probar la robustez de un método y la validez de los resultados.
  • Social housing (Vivienda social): Viviendas diseñadas para ser accesibles a personas y familias de ingresos medios y bajos, asegurando estándares mínimos de habitabilidad y calidad de vida, y fomentando la inclusión social.
  • Sustainability (Sostenibilidad): Un enfoque que busca satisfacer las necesidades del presente sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades, abarcando dimensiones económicas, ambientales, sociales y técnicas.
  • SWARA (Scaled Weighted Assessment Ratio Analysis): Un método MCDM utilizado para determinar los pesos de los criterios.
  • TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution / Técnica para la Ordenación por Similitud con la Solución Ideal): Un método MCDM que clasifica alternativas basándose en su distancia a una solución ideal positiva y a una solución ideal negativa.
  • VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje / Optimización Multicriterio y Solución de Compromiso): Un método MCDM que clasifica alternativas basándose en su proximidad a una solución ideal.
  • WSM (Weighted Sum Model / Modelo de Suma Ponderada): Un método MCDM de puntuación que calcula una puntuación total para cada alternativa sumando las puntuaciones ponderadas de cada criterio

Cómo construir viviendas sociales más baratas y sostenibles y de forma más rápida

A continuación, os paso el contenido de una nota de prensa que ha lanzado la UPV sobre uno de nuestros trabajos de investigación relacionados con el proyecto RESILIFE. También os dejo enlaces a la noticia. Espero que os resulte interesante.

Investigadores de la UPV han desarrollado una nueva herramienta para ayudar a gobiernos y profesionales del sector de la construcción a edificar viviendas sociales de forma más eficiente, económica y respetuosa con el medio ambiente

La investigación, publicada en la revista Building and Environment, se enmarca en el proyecto RESILIFE

Investigadores de la Universitat Politècnica de València (UPV) han desarrollado una nueva herramienta para ayudar a gobiernos y profesionales del sector de la construcción a edificar viviendas sociales de forma más eficiente, económica y respetuosa con el medio ambiente. El trabajo, liderado por el investigador del Instituto ICITECH Víctor Yepes y la doctoranda Ximena Luque, se ha centrado en Perú, un país con un elevado déficit habitacional, si bien sus resultados podrían aplicarse a otros países con necesidades similares.

La investigación, publicada en la revista Building and Environment, se enmarca en el proyecto RESILIFE y analiza cinco sistemas constructivos diferentes —desde métodos tradicionales como el hormigón con ladrillo hasta métodos industrializados como el Light Steel Frame (LSF). Además, evalúa no solo costes de construcción, sino también los de mantenimiento, demolición e impacto ambiental durante todo el ciclo de vida de la vivienda.

“No se trata de solo construir más, sino de construir mejor. Por eso analizamos cada sistema de principio a fin, con el enfoque conocido como desde la cuna hasta la tumba, evaluando tanto el impacto técnico, económico y medioambiental de la construcción. Nuestro estudio no solo se centra en el precio o la velocidad de construcción. También analizó el impacto de cada tipo de vivienda a lo largo de toda su vida útil: desde la extracción de los materiales hasta su demolición”, explica Víctor Yepes

El sistema más eficiente: rápido, limpio y rentable

De los cinco modelos analizados, el sistema LSF —una estructura metálica prefabricada y liviana— es el más eficiente, según el estudio realizado por Víctor Yepes y Ximena Luque. Es el más barato a largo plazo (en construcción, mantenimiento y demolición); el que menos impacto ambiental genera y el que permite construir más rápido, lo que resulta clave para reducir el déficit habitacional en corto tiempo.

“Los sistemas tradicionales, aunque parecen más baratos al inicio, terminan siendo más costosos a largo plazo por sus residuos y su dificultad para ser reciclados. El estudio también señala que ningún sistema es perfecto. Por ejemplo, los paneles sándwich de hormigón son muy rápidos de montar, pero tienen mayores costes e impactos. El sistema convencional, aunque ampliamente empleado, tarda más en construirse y tiene un impacto ambiental alto. Sin embargo, necesita menos mano de obra especializada, lo que también es un factor que debemos considerar. Aun así, en más del 90 % de los escenarios evaluados, el LSF siguió siendo la mejor alternativa”, explica Yepes.

Guía práctica y modelo replicable

Además de identificar el “sistema para construir mejor”, el equipo de la UPV ha desarrollado una guía práctica para programas de vivienda social, planteando una metodología que se puede replicar en otros países en desarrollo.

Nuestro estudio ofrece una herramienta práctica y replicable que puede ayudar a ingenieros, arquitectos y autoridades a tomar decisiones más informadas. Al tener en cuenta todo el ciclo de vida de una vivienda y varios criterios de sostenibilidad, nuestro trabajo pretende contribuir a conseguir hacia soluciones habitacionales más justas, rápidas y respetuosas con el medio ambiente en aquellos países que lo necesitan”, añade Yepes.

Próximos pasos: sumar el factor humano

El equipo de la UPV trabaja ya en la siguiente fase del proyecto, que incorporará el impacto social de cada sistema constructivo, evaluando cómo influyen en la calidad de vida de las personas, el empleo local y la cohesión comunitaria.

“Construir bien, no es solo colocar ladrillos y hormigón. También es considerar a las personas que habitarán ese espacio y cómo la vivienda puede mejorar su bienestar y sus oportunidades”, concluye Víctor Yepes.

Referencia

LUQUE-CASTILLO, X.; YEPES, V. (2025). Life Cycle Assessment of Social Housing Construction: A Multicriteria Approach. Building and Environment, 282:113294. DOI:10.1016/j.buildenv.2025.113294

Noticia en À Punt:

Entrevistas en RNE y Ser

Noticia en medios:

La UPV plantea un modelo «replicable» para construir viviendas sociales baratas y sostenibles

https://cadenaser.com/comunitat-valenciana/2025/08/03/un-estudio-de-la-upv-propone-como-construir-viviendas-sociales-mas-baratas-y-sostenibles-y-de-forma-mas-rapida-radio-valencia/

https://www.larazon.es/comunidad-valenciana/mas-baratas-eficientes-upv-tiene-clave-construir-mas-viviendas_20250803688f1efac5e9fd602f666afd.html

https://www.20minutos.es/nacional/estudio-propone-construir-viviendas-sociales-baratas-sostenibles_6233824_0.html

https://valencia.elperiodicodeaqui.com/epda-noticias/un-estudio-de-la-upv-propone-como-construir-viviendas-sociales-mas-baratas-y-sostenibles/374196

https://www.noticiasde.es/comunidad-valenciana/la-upv-ha-propuesto-un-metodo-para-construir-viviendas-sociales-de-forma-mas-economica-sostenible-y-rapida/

https://www.ultimahora.es/noticias/comunidades/2025/08/03/2443119/estudio-upv-propone-como-construir-viviendas-sociales-mas-baratas-sostenibles-forma-mas-rapida.html

Un estudio de la UPV propone cómo construir viviendas sociales «más baratas y sostenibles» y de forma «más rápida»

https://alicanteplaza.es/alicanteplaza/innovacion-alicante/un-estudio-de-la-upv-propone-como-construir-viviendas-sociales-mas-baratas-y-sostenibles

Un estudio de la UPV propone cómo construir viviendas sociales más baratas y sostenibles | Murcia Plaza

https://economia3.com/2025/08/04/701578-upv-impulsa-una-nueva-forma-de-construir-viviendas-sociales-mas-eficientes/

https://www.ultimahora.es/noticias/comunidades/2025/08/03/2443119/estudio-upv-propone-como-construir-viviendas-sociales-mas-baratas-sostenibles-forma-mas-rapida.html

Nou estudi de la UPV revela com construir vivendes socials més econòmiques i sostenibles