Tesis doctoral: Optimal deep learning assisted design of socially and environmentally efficient steel concrete composite bridges under constrained budgets

Hoy 19 de julio de 2023 ha tenido lugar la defensa de la tesis doctoral de D. David Martínez Muñoz titulada “Optimal deep learning assisted design of socially and environmentally efficient steel concrete composite bridges under constrained budgets“, dirigida por Víctor Yepes Piqueras y José V. Martí Albiñana. La tesis recibió la máxima calificación de sobresaliente «cum laude» y presenta la mención internacional. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

El diseño de infraestructuras está fuertemente influido por la búsqueda de soluciones que tengan en cuenta el impacto en la economía, el medio ambiente y la sociedad. Estos criterios están muy relacionados con la definición de sostenibilidad que hizo la Comisión Brundtland en 1987. Este hito supuso un reto para técnicos, científicos y legisladores. Este reto consistía en generar métodos, criterios, herramientas y normativas que permitieran incluir el concepto de sostenibilidad en el desarrollo y diseño de nuevas infraestructuras. Desde entonces, se han producido pequeños avances en la búsqueda de la sostenibilidad, pero se necesitan más a corto plazo. Como plan de acción, las Naciones Unidas establecieron los Objetivos de Desarrollo Sostenible, fijando el año 2030 como meta para alcanzarlos. Dentro de estos objetivos, las infraestructuras se postulan como un punto crítico. Tradicionalmente, se han desarrollado métodos para obtener diseños óptimos desde el punto de vista del impacto económico. Sin embargo, aunque en los últimos tiempos se ha avanzado en la aplicación y utilización de métodos de análisis del ciclo de vida completo, aún falta un consenso claro, especialmente en el pilar social de la sostenibilidad. Dado que la sostenibilidad engloba diferentes criterios, que en principio no van necesariamente de la mano, el problema de la búsqueda de la sostenibilidad se plantea no solo como un problema de optimización, sino también como un problema de toma de decisiones multi-criterio.

El objetivo principal de esta tesis doctoral es proponer diferentes metodologías para la obtención de diseños óptimos que introduzcan los pilares de la sostenibilidad en el diseño de puentes mixtos acero-hormigón. Como problema estructural representativo se sugiere un puente viga en cajón de tres vanos mixto. Dada la complejidad de la estructura, en la que intervienen 34 variables discretas, la optimización con métodos matemáticos resulta inabordable. Por ello, se recomienda el uso de algoritmos metaheurísticos. Esta complejidad también se traduce en un alto coste computacional para el modelo, por lo que se implementa un modelo de redes neuronales profundas que permite la validación del diseño sin necesidad de computación. Dada la naturaleza discreta del problema, se proponen técnicas de discretización para adaptar los algoritmos al problema de optimización estructural. Además, para mejorar las soluciones obtenidas a partir de estos algoritmos discretos, se introducen métodos de hibridación basados en la técnica K-means y operadores de mutación en función del tipo de algoritmo. Los algoritmos utilizados se clasifican en dos ramas. La primera son los basados en trayectorias como el Simulated Annealing, Threshold Accepting y el Algoritmo del Solterón. Por otra parte, se emplean algoritmos de inteligencia de enjambre como Jaya, Sine Cosine Algorithm y Cuckoo Search. La metodología de Análisis del Ciclo de Vida definida en la norma ISO 14040 se usa para evaluar el impacto social y medioambiental de los diseños propuestos. La aplicación de esta metodología permite evaluar el impacto y compararlo con otros diseños. La evaluación mono-objetivo de los diferentes criterios lleva a la conclusión de que la optimización de costes está asociada a una reducción del impacto medioambiental y social de la estructura. Sin embargo, la optimización de los criterios medioambientales y sociales no reduce necesariamente los costes. Por ello, para realizar una optimización multi-objetivo y encontrar una solución de compromiso, se implementa una técnica basada en la Teoría de Juegos, recomendando una estrategia de juego cooperativo. La técnica multi-criterio empleada es la Teoría de la Entropía para asignar pesos a los criterios para la función objetivo agregada. Los criterios considerados son los tres pilares de la sostenibilidad y la facilidad constructiva de la losa superior. Aplicando esta técnica se obtiene un diseño óptimo relativo a los tres pilares de la sostenibilidad y a partir del cual se mejora la facilidad constructiva.

Referencias:

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2023). Hybrid swarm intelligence optimization methods for low-embodied energy steel-concrete composite bridges. Mathematics, 11(1):140. DOI:10.3390/math11010140

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Structural and Multidisciplinary Optimization, 65:312. DOI:10.1007/s00158-022-03393-9

GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges. Engineering Structures, 266:114607. DOI:10.1016/j.engstruct.2022.114607

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

NAVARRO, I.J.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; REMPLING, R.; YEPES, V. (2020). Life cycle sustainability assessment for multi-criteria decision making in bridge design: A review. Journal of Civil Engineering and Management, 26(7):690-704. DOI:10.3846/jcem.2020.13599.

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020:8823370. DOI:10.1155/2020/8823370

PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265

YEPES, V.; DASÍ-GIL, M.; MARTÍNEZ-MUÑOZ, D.; LÓPEZ-DESFILÍS, V.J.; MARTÍ, J.V. (2019). Heuristic techniques for the design of steel-concrete composite pedestrian bridges. Applied Sciences, 9(16), 3253; DOI:10.3390/app9163253

Comunicaciones presentadas al 27th International Congress on Project Management and Engineering AEIPRO 2023

Durante los días 10-13 de julio de 2023 tiene lugar en Donostia-San Sebastián (Spain) el 27th International Congress on Project Management and Engineering AEIPRO 2023. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.

BRUN-IZQUIERDO, A.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2023). Optimización energética de tableros tipo losa pretensados aligerados mediante modelos Kriging. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

El objetivo de este trabajo es desarrollar una metodología para optimizar la energía en la construcción de tableros losa pretensado aligerados. Se lleva a cabo un análisis de la sección transversal para determinar los parámetros de diseño a través de un estudio del estado del arte. A partir de ese análisis, se identifican las variables de diseño que mejorarán la eficiencia energética del tablero. La metodología se divide en dos fases: primero, se utiliza una técnica estadística llamada hipercubo latino para muestrear las variables del tablero y determinar una superficie de respuesta; y en segundo lugar, se optimiza la superficie de respuesta mediante un modelo de optimización basado en Kriging. Como resultado, se ha desarrollado una metodología que reduce el costo energético en la construcción de tableros losa pretensado aligerados. Las recomendaciones para mejorar la eficiencia energética incluyen emplear esbelteces elevadas (alrededor de 1/28), reducir el consumo de hormigón y armadura activa, y aumentar la cantidad de armadura pasiva.

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Durability assessment and re-design of coastal concrete bridge through a non-destructive damage detection method. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

Los expertos y los gobiernos llevan tiempo centrándose en reducir los costes de reparación y mantenimiento de estructuras cruciales como los puentes mediante un mantenimiento y una reparación continuos. Este estudio explora la rentabilidad de dos métodos de predicción de daños mediante el método de densidad espectral de potencia (PSD) en comparación con el método convencional de detección de daños mediante el rediseño de diferentes espesores de recubrimiento de hormigón para un puente costero de hormigón armado. El estudio evalúa el impacto de los iones cloruro en la localización y extensión de los daños a lo largo de la vida útil del puente y compara los costes totales de mantenimiento y reparación. Los resultados muestran que, si bien el método PSD es eficaz para estructuras de hormigón con recubrimientos de hormigón bajos, el aumento del espesor del recubrimiento de hormigón puede dar lugar a mayores costes de reparación.

YEPES, V.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.J.; BLIGHT, T. (2023). Códigos abiertos basados en Python para la construcción de nomogramas y su aplicación en la ingeniería de proyectos. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

La Nomografía es una disciplina científica que se encarga de representar gráficamente fórmulas complejas mediante nomogramas, permitiendo el cálculo de tres o más variables matemáticas. Durante el siglo XX, esta técnica fue ampliamente utilizada en áreas como la ingeniería, medicina, electrónica, ciencias físicas, biológicas, etc. Sin embargo, con la llegada de las calculadoras y computadoras, la construcción de nuevos nomogramas y su enseñanza en la universidad disminuyeron. En los últimos años, la nomografía ha resurgido gracias a la ayuda de códigos de programación como PyNomo y Nomogen, basados en Python, que pueden generar un nomograma en cuestión de segundos, frente a las horas que antes requerían. En este trabajo se presentan estos códigos abiertos y algunos nomogramas generados con ellos, analizando su usabilidad, precisión y contribución a la relación entre las variables de las expresiones matemáticas. Finalmente, se destacan las posibilidades del uso de los nomogramas en la enseñanza e ingeniería de proyectos.

Puente pórtico, entre el arco y las vigas

Figura 1. El puente sobre el río Arga de la A-12, en Puente la Reina (Navarra), de Javier Manterola, de 120 m de luz. https://www.hortacoslada.com/es/proyectos/puente-rio-arga/

El puente pórtico se caracteriza por ser un sistema estructural en el que el dintel trabaja en conjunto con las pilas, presentándose como un caso intermedio entre un puente arco y un puente viga. Estos puentes se caracterizan por su belleza estética. Al igual que los puentes de vigas, están formados por un tablero y pilas, y el tablero está sujeto a flexión. Sin embargo, a diferencia de los puentes de vigas, las pilas generan empujes horizontales significativos en los cimientos, por lo que se requiere un terreno resistente para minimizar los desplazamientos horizontales. Si el terreno no cumple los requisitos necesarios, por ejemplo, si es blando, las pilas pueden abrirse, colapsar o reducir el empuje horizontal, por lo que la ley de momentos se asemejaría nuevamente a la de una viga con dos apoyos.

El objetivo principal del sistema de aporticado es reducir los momentos flectores generados en el puente mediante el empotramiento parcial proporcionado por la rigidez de las pilas. Como resultado de esta configuración, se originan momentos negativos en la unión entre los pilares y el dintel. Al reducir los momentos máximos en el dintel, es posible construir puentes con luces más amplias. Sin embargo, la unión rígida del tablero con los estribos o las pilas para formar pórticos plantea desafíos en cuanto a las fuerzas axiales generadas por las cargas térmicas y las reacciones horizontales que el sistema del pórtico ejerce sobre las cimentaciones.

Con el fin de evitar el desplazamiento horizontal de la base de las pilas, es esencial contar con un terreno capaz de soportar las reacciones horizontales. Este requisito implica que el dintel del puente esté sometido a compresión. Esta respuesta estructural se conoce comúnmente como efecto pórtico, que presenta ligeras diferencias respecto al efecto arco, donde todo el puente en arco se somete a compresión.

Figura 2. El viaducto Sfalassà es un viaducto de 254 metros de altura situado cerca de Bagnara Calabra, Calabria, Italia. https://es.wikipedia.org/wiki/Viaducto_Sfalass%C3%A0

Existen diferentes tipologías básicas de puentes pórtico, que se describen a continuación:

  1. Pórtico de dos o tres vanos con pilares verticales y apoyos deslizantes en los estribos. Este tipo de estructura se utiliza cuando se requiere un gálibo muy estricto. Las pilas pueden dividirse en dos elementos en forma de V, lo que logra un resultado estético agradable y mayor esbeltez en el vano (Figura 3).
  2. Pórtico en forma de “pi” de tres vanos con pilares inclinados y apoyos deslizantes en los estribos. Esta solución es típica para la construcción de pasos superiores de autopistas.
  3. Pilas altas y flexibles, desde las cuales parten dos dinteles construidos mediante voladizos simétricos. Estos dinteles se unen en el centro de los vanos para formar pórticos. Normalmente, se emplean apoyos deslizantes en los estribos.
Figura 3. Nuevo puente de Anyos (Andorra, 2002). https://www.cfcsl.com/portfolio/nuevo-puente-de-anyos-andorra-2002/

La inclinación de las pilas de un puente pórtico cumple dos funciones principales. En primer lugar, reduce la longitud del vano central del dintel e introduce una importante componente axial en esa sección. Además, permite un mejor empotramiento en el vano central, compensado mediante la continuidad de los vanos laterales del dintel. Cuando las pilas están inclinadas, la respuesta estructural se asemeja a la de un puente en arco con un tablero conectado al arco sin montantes intermedios. En realidad, la forma en que estas dos estructuras soportan las cargas es muy similar, por lo que la distinción entre ellas es en gran medida arbitraria.

Por otro lado, si las pilas del puente pórtico son altas y esbeltas en comparación con la longitud del vano central, el empotramiento entre las pilas y el dintel se reduce. En este caso, el tablero funciona más como una viga continua apoyada en las pilas. En esta configuración, el efecto pórtico se reduce considerablemente, lo que implica una pérdida de la eficacia buscada en la estructura.

Si la unión entre las pilas y el dintel es de articulación simple, la deformación del tablero bajo cargas verticales será similar a la de una viga simplemente apoyada. Si la unión es empotrada, la deformación seguirá el patrón indicado en la Figura 4, lo que dependerá de si el terreno ejerce empujes horizontales.

Figura 4. En la izquierda el terreno no resiste los empujes horizontales, en la derecha, sí (Jurado, 2016).

En el caso de un puente pórtico biarticulado, la deformación es similar a la de una viga continua con tres vanos. El vano central corresponde a la longitud del pórtico, mientras que las luces de los vanos laterales representan la altura de las pilas. Se puede imaginar como si el pórtico se hubiera dividido en una viga recta apoyada en los puntos de unión entre la viga y el pilar y en los extremos, y sometida a la carga presente en el vano central. En este tipo de puente se producen interacciones constantes entre el suelo y la estructura, similares a las de los puentes en arco. A medida que el puente es más pequeño, estas interacciones son más importantes.

Referencias:

JURADO, C. (2016). Puentes (I). Evolución, tipología, normativa, cálculo. 2.ª edición, Madrid.

MANTEROLA, J. (2006). Puentes II. Apuntes para su diseño, cálculo y construcción. Colección Escuelas. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Proceso constructivo de un puente colgante

Figura 1. Gran Puente de Akashi Kaikyō, el puente colgante de mayor vano del mundo. Wikipedia.

El sistema de construcción de puentes colgantes tiene un impacto significativo en su estructura. Las fases principales en la ejecución de un puente colgante pasa por la construcción de las torres y contrapesos, el montaje de los cables principales y la ejecución del tablero.

Lo habitual es que el proceso constructivo comience con la ejecución de los anclajes y las torres. Los anclajes implican trabajos importantes de movimiento de tierras. Las torres o mástiles pueden ser de acero o de hormigón, presentando el desafío de la construcción en altura. En el caso del acero, se emplean técnicas bien desarrolladas de unión, como soldadura y tornillos de alta resistencia. Las torres de acero se montan por módulos prefabricados que se elevan mediante grúas trepadoras ancladas a la propia torre. En el caso del hormigón, se utilizan encofrados trepadores o deslizantes. En cualquier caso, se deben considerar los medios necesarios para elevar cargas de peso considerable a grandes alturas. Las grúas pueden ir creciendo a medida que las torres se elevan, estando ancladas a ellas.

Cuando los cables se anclan externamente, los contrapesos se vuelven indispensables y constituyen un elemento fundamental en la ejecución de la estructura. Los contrapesos requieren una precisa colocación de las piezas metálicas que servirán de anclaje al cable. En el caso de los puentes colgantes autoanclados, los cables principales se anclan al tablero, lo que elimina la necesidad de contrapesos. Por tanto, el tablero se convierte en el primer elemento a construir. Sin embargo, esta configuración conlleva la pérdida de una de las principales ventajas de la construcción de puentes colgantes, que es la capacidad de construir el tablero por etapas, sin importar la ubicación del puente.

Una vez ejecutadas las torres y los anclajes, es necesario proceder al montaje del cable principal, el cual constituye el elemento fundamental de la estructura resistente del puente colgante. El montaje de los cables principales es la fase más compleja, pues implica superar el vano existente entre las dos torres, lo que requiere tenderlo en el vacío. Se comienza lanzando unos cables guía, que son los primeros en abarcar la luz del puente y alcanzar los puntos de anclaje. En la mayoría de los puentes colgantes ubicados en áreas navegables, es posible pasar estos cables iniciales utilizando un remolcador. En la actualidad, este proceso ya no representa un problema gracias al uso de helicópteros e incluso drones.

Figura 2. Montaje de los cables en un puente colgante. https://www.ihi.co.jp/iis/en/technology/airspining/index.html

A partir del cable inicial, se instalan las pasarelas que se emplean para devanar los alambres del cable, ya sea mediante alambres individuales “in situ” (air spinning) o por cordones. Durante esta etapa, el viento representa el desafío más significativo, ya que puede ocasionar grandes desplazamientos laterales en la polea móvil. En algunas ocasiones, esto ha llevado a detener el proceso de montaje del puente, generando retrasos significativos en la construcción. Finalmente, se compacta el cable principal de manera discontinua por bandas de presión o de forma continua mediante recubrimiento de alambre.

En cuanto al montaje del tablero, se suele realizar por voladizos sucesivos, avanzando simétricamente desde una torre hacia el centro del vano y hacia los extremos. También es posible llevar las dovelas a su posición definitiva mediante flotación y elevarlas desde los cables principales con cabrestantes, colgándolas en su ubicación final con las péndolas.

Una vez se han montado los cables principales, adoptando la curva catenaria correspondiente a su propio peso, se procede al montaje del tablero. El proceso de montaje del tablero se suele realizar por voladizos sucesivos, avanzando simétricamente desde una torre hacia el centro del vano y hacia los extremos. Este método requiere el uso de grúas ubicadas sobre el tablero ya construido, capaces de elevar piezas de diferentes tamaños. También es posible llevar las dovelas estancas que se transportan flotando hasta su posición y elevarlas desde los cables principales con cabrestantes, colgándolas en su ubicación final con las péndolas. Este sistema de montaje resulta más económico que el anterior y, en este caso, la secuencia de montaje se ejecuta desde el centro del vano hacia las torres, de manera simétrica.

Una vez finalizado el montaje estructural, se pasa a una fase de ajustes y comprobaciones, en la que se controlan las tensiones de los cables, la nivelación del tablero y la geometría de la catenaria. También se realizan las pruebas de carga estática y dinámica necesarias para verificar el comportamiento global antes de ponerlo en servicio.

El mantenimiento de un puente colgante comienza en el momento de su inauguración. Los cables principales, las péndolas y los anclajes están sometidos a esfuerzos continuos y a la acción de agentes ambientales agresivos, por lo que deben inspeccionarse periódicamente. Las operaciones de mantenimiento habituales incluyen la limpieza y repintado de los cables, el control de la corrosión, la sustitución de péndolas o alambres deteriorados y la supervisión del comportamiento aerodinámico frente al viento.

Una correcta planificación de estas operaciones es esencial para garantizar la durabilidad del puente y la seguridad de los usuarios a lo largo de su vida útil, que puede superar fácilmente los cien años si se mantienen adecuadamente sus componentes estructurales.

Os dejo algún vídeo sobre la construcción de este tipo de puentes. También os recomiendo mi artículo sobre la construcción del puente del Estrecho de Mackinac.

Referencias:

JURADO, C. (2016). Puentes (I). Evolución, tipología, normativa, cálculo. 2.ª edición, Madrid.

MANTEROLA, J. (2006). Puentes II. Apuntes para su diseño, cálculo y construcción. Colección Escuelas. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Premio para Mehrdad Hadizadeh-Bazaz en el VIII Encuentro de Estudiantes de Doctorado

Mehrdad Hadizadeb-Bazaz, junto al trabajo galardonado.

Quisiera felicitar públicamente a nuestro estudiante de doctorado Mehrdad Hadizadeb-Bazaz por su Premio al mejor trabajo en la modalidad de póster otorgado por la Escuela de Doctorado de la Universitat Politècnica de València, dentro del VIII Encuentro de Estudiantes de Doctorado. Tengo el honor y el placer de dirigir su tesis doctoral junto con el profesor Ignacio J. Navarro. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal.

En la actualidad, debido a los altos costos de construir grandes estructuras como puentes, resulta sumamente importante prestar atención a la reparación y mantenimiento de dichas estructuras, con el fin de aumentar su vida útil y utilizar los métodos adecuados para reducir los costos asociados a su mantenimiento y reparación. En este sentido, resulta crucial emplear métodos apropiados y no destructivos para diagnosticar y predecir los daños en estas estructuras. Además, es importante considerar la evaluación del ciclo de vida y la sostenibilidad de los diferentes métodos de detección de daños.

En este estudio, se examina la precisión de diversos métodos de detección de daños, tanto dinámicos como no destructivos, para identificar la magnitud, ubicación y momento en que se produce el daño en la estructura a lo largo de su vida útil. Se evalúa la precisión y posibles variaciones de cada uno de los métodos de detección de daños en distintos entornos, especialmente en ambientes costeros y ambientes agresivos. Además, se realiza una evaluación del desempeño y comparación de diferentes métodos de detección de daños no destructivos, teniendo en cuenta casos de sostenibilidad de diseño y evaluación del ciclo de vida, incluyendo aspectos económicos, ambientales e impactos sociales.

Os dejo el póster completo, para que lo podáis leer.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tesis doctoral: Life cycle optimization analysis of bridge sustainable development

Hoy 13 de enero de 2023 ha tenido lugar la defensa de la tesis doctoral de D. Zhi Wu Zhou titulada “Life cycle optimization analysis of bridge sustainable development“, dirigida por Víctor Yepes Piqueras y Julián Alcalá González. La tesis recibió la máxima calificación de sobresaliente “cum laude”. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

En el núcleo de la industria mundial de la construcción radica el uso excesivo de materiales, especialmente de combustibles fósiles. En esta línea de investigación, muchos investigadores y diseñadores han reducido significativamente la proporción de materiales y han minimizado la cantidad destinada al diseño en función de los criterios de investigación y las especificaciones de diseño. Teniendo en cuenta que las medidas anteriores pueden reducir los materiales de manera efectiva, es necesario investigar más a fondo algunas cuestiones: a) ¿En qué etapas del ciclo de vida de los materiales de construcción se consumen más?, b) ¿Cómo utilizar el método científico más adecuado para reducir el consumo de materiales en la fase de mayor uso?, c) ¿Cómo completar científicamente la evaluación de la optimización del consumo de materiales bajo la influencia de la superación de muchos eventos discretos y factores de influencia externos durante la etapa de diseño?, d) En la fase de construcción, ¿cómo optimizar al máximo el proceso de gestión del proyecto y lograr el mayor ahorro de material para garantizar la calidad, la seguridad y el coste?, e) ¿Cuánto material se puede ahorrar mediante la optimización del diseño y la gestión del proyecto?, f) ¿Cuál es el impacto final del sistema teórico de investigación y de los datos de análisis mencionados en el desarrollo sostenible de la industria de la construcción?
Al examinar publicaciones relevantes sobre el ciclo de vida completo de la industria de la construcción (Capítulo 2), la tesis encontró que las etapas de diseño y construcción son clave para reducir efectivamente el consumo de materiales. El objetivo principal de esta tesis es resolver los problemas de optimización propuestos. Mediante el establecimiento de un marco de modelo de investigación multidimensional y un modelo de optimización de gestión de proyectos sistemático, la tesis reduce el peso de varios componentes estructurales del puente estáticamente indeterminado y realiza la optimización ligera de la estructura del puente.

La tesis establece varios modelos teóricos básicos de innovación en el marco del modelo de investigación: el modelo de acoplamiento bibliométrico, el modelo matemático ComplexPlot; el modelo matemático integral multifactorial; el modelo de optimización de acoplamiento micro y macrodimensional de elementos finitos, y el modelo de evaluación de optimización de la gestión de proyectos dominó del método de la entropía. El sistema de investigación teórica supera la interferencia de la discreción del objeto de investigación, la complejidad y los factores de influencia inciertos y analiza la solidez de la evaluación y la mejora. El sistema de investigación teórica supera la interferencia de la discreción del objeto de investigación, la complejidad y los factores de influencia inciertos y consigue la solidez de la evaluación y la mejora. Asimismo, mejora ampliamente la resistencia del modelo a los factores naturales, humanos, accidentales e inciertos y el problema de la interferencia externa de las emergencias. Por último, el sistema formó un conjunto completo de sistemas de modelos de optimización de prevención y control conjuntos maduros y alcanzó los objetivos y enfoques de la investigación.

El estudio de caso demuestra la solidez del sistema del modelo teórico establecido, que reduce el coste del ciclo de vida (LCC) = 1.081.248,68 Chino yuan (CNY); Evaluación del ciclo de vida (LCA) = 212.566,94 tonelada (t); Evaluación del impacto social (SIA) = 17.783.505,12 hora de riesgo medio (Mrh) del análisis del estudio de impacto económico. Reducción del coste del ciclo de vida (LCC) = 739.612,19 Chino yuan (CNY); Evaluación del ciclo de vida (LCA) = 278.455,12 tonelada (t); Evaluación del impacto social (SIA) = 23.262.239,52 hora de riesgo medio (Mrh) del análisis del impacto en el desarrollo sostenible. Las preguntas formuladas en esta tesis están correctamente planteadas desde la perspectiva teórica y están fuertemente respaldadas por los datos.

El valor de la investigación de esta tesis: a) llena el vacío de la investigación en este campo. b) innova en una variedad de nuevos modelos teóricos de investigación. c) resuelve los problemas de discreción, incertidumbre e interferencia de factores externos en la optimización de la topología y la optimización de la gestión de proyectos. Las interferencias de los factores externos de mutación y la sensibilidad de las emergencias se compensan y corrigen. d) La investigación mejora la captura de datos discretos y la escasez de compensación del sistema de análisis de software Monte Carlo. En esta tesis, se aplican varios tipos de métodos avanzados de gestión de proyectos y esquemas de construcción avanzados en el caso de estudio, lo que proporciona un importante valor de referencia para la optimización de puentes estáticamente indeterminados del mismo tipo. Hay algunas dificultades para los lectores sin una experiencia práctica para comprender y aplicar el modelo. El lector debe leer atentamente este caso, que es también una de las limitaciones de este trabajo.

La futura dirección de la investigación del autor es continuar investigando en profundidad el desarrollo sostenible de los puentes de gran tamaño y la optimización de la prevención de problemas, los materiales avanzados y la investigación de recuperación de energía renovable en el desarrollo sostenible de los puentes y otros campos.

Referencias:

  1. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Experimental Research on Diseases of Emulsified Asphalt Mortar Board for Ballastless Tracks. Journal of Materials in Civil Engineering (accepted, in press)
  2. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on Sustainable Development of the Regional Construction Industry Based on Entropy Theory. Sustainability, 14(24): 16645. DOI:10.3390/su142416645
  3. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on the optimized environment of large bridges based on multi-constraint coupling. Environmental Impact Assessment Review, 97:106914. DOI:10.1016/j.eiar.2022.106914
  4. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Regional sustainable development impact through sustainable bridge optimizationStructures, 41, 1061-1076. DOI: 10.1016/j.istruc.2022.05.047
  5. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633
  6. ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916
  7. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122
  8. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental Research and Public Health, 17(16):5953. DOI:10.3390/ijerph17165953

Conferencia en el JSAEE 2022: Diseño y mantenimiento sostenible de estructuras y puentes considerando su ciclo de vida

Con motivo de la celebración del XXXIX Congreso Sudamericano de Ingeniería Estructural JSAEE 2022, fui invitado a impartir una conferencia denominada «Diseño y mantenimiento sostenible de estructuras y puentes considerando su ciclo de vida«. En esta conferencia explico lo que está realizando nuestro grupo de investigación con proyectos como DIMALIFEHYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. Espero que os sea de interés.

La conferencia del profesor Víctor Yepes aborda la integración de la sostenibilidad en el diseño y mantenimiento de estructuras y puentes, enfatizando la necesidad de considerar todo el ciclo de vida. Yepes, catedrático en Ingeniería de la Construcción en la Universitat Politècnica de València, argumenta que se requiere un cambio de paradigma respecto a las prácticas tradicionales. Destaca la importancia económica, social y ambiental del sector de la construcción y presenta la optimización, especialmente a través de la Inteligencia Artificial (IA) y las metaheurísticas, como una herramienta clave para lograr diseños más eficientes y sostenibles. Explora la complejidad de la optimización combinatoria en ingeniería estructural y las limitaciones de los métodos de resolución exactos. Presenta la optimización multiobjetivo y la frontera de Pareto como herramientas para evaluar soluciones que consideran múltiples criterios (coste, sostenibilidad, fiabilidad, etc.). Introduce el concepto de metamodelos y Smart Data como alternativas para optimizar con menos datos y recursos computacionales. Finalmente, enfatiza la necesidad de integrar el análisis del ciclo de vida y la toma de decisiones multicriterio para una gestión sostenible de los activos, señalando los desafíos en la evaluación social y la variabilidad.

Glosario de términos clave:

  • Sostenibilidad: En el contexto de la ingeniería, se refiere a la capacidad de diseñar, construir y mantener estructuras de manera que se satisfagan las necesidades actuales sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades, considerando dimensiones económicas, sociales y ambientales.
  • Ciclo de Vida (Life Cycle): El período completo desde la concepción de una estructura hasta su demolición y disposición final, incluyendo diseño, construcción, uso, mantenimiento, reparación y fin de vida útil.
  • Optimización: Proceso de encontrar la mejor solución posible a un problema, generalmente minimizando o maximizando una función objetivo (como coste, emisiones, etc.) sujeto a un conjunto de restricciones (como requisitos estructurales o geométricos).
  • Inteligencia Artificial (IA): Sistemas informáticos diseñados para realizar tareas que normalmente requieren inteligencia humana, como aprendizaje, resolución de problemas y toma de decisiones.
  • Metaheurística: Algoritmo o técnica que guía un proceso de búsqueda para encontrar soluciones aproximadamente óptimas a problemas complejos, a menudo inspirados en procesos naturales o biológicos (ej: algoritmos genéticos).
  • Optimización Combinatoria: Tipo de optimización donde las variables de decisión son discretas (toman valores de un conjunto finito), lo que a menudo resulta en un gran número de posibles soluciones.
  • Función Objetivo: La medida de rendimiento o criterio que se busca optimizar en un problema de optimización (ej: minimizar coste, maximizar durabilidad).
  • Restricciones: Condiciones o limitaciones que deben cumplirse en un problema de optimización (ej: límites de deformación, resistencia mínima).
  • Frontera de Pareto: En optimización multiobjetivo, es el conjunto de soluciones óptimas no dominadas, donde no es posible mejorar un objetivo sin empeorar al menos otro.
  • Metamodelo (o Modelo Subrogado): Un modelo simplificado (a menudo una función matemática o un modelo de aprendizaje automático) que aproxima la relación entre las variables de entrada y salida de un modelo más complejo, utilizado para acelerar la optimización o el análisis.
  • Smart Data: En contraste con Big Data, se refiere a la extracción de información útil y patrones a partir de conjuntos de datos más pequeños o selectivos, a menudo utilizando técnicas estadísticas o de modelado avanzado (como Kriging).
  • Análisis del Ciclo de Vida (ACV o LCA): Metodología para evaluar los impactos ambientales, sociales y económicos asociados con todas las etapas del ciclo de vida de un producto o servicio.
  • Toma de Decisión Multicriterio (MCDM): Conjunto de técnicas para evaluar y seleccionar entre alternativas que involucran múltiples criterios de evaluación, a menudo contrapuestos.
  • Gestión de Activos: En el contexto de infraestructuras, es el enfoque sistemático y estratégico para gestionar el ciclo de vida completo de los activos (como puentes o carreteras) con el objetivo de optimizar su rendimiento, coste y riesgo.
  • Fiabilidad: La probabilidad de que una estructura cumpla con sus requisitos de rendimiento bajo condiciones específicas durante un período de tiempo determinado.
  • Gemelo Digital (Digital Twin): Una representación virtual de una estructura o sistema físico que se actualiza con datos en tiempo real de sensores, permitiendo monitorización, análisis y predicción de su comportamiento a lo largo del tiempo.

Ciclo de vida de puentes de hormigón en regiones costeras basada en el proceso analítico en red (ANP)

Acaban de publicarnos un artículo en Sustainability, revista indexada en el segundo cuartil del JCR. Se trata de aplicar la técnica de toma de decisiones en red ANP para evaluar la sostenibilidad del ciclo de vida de los puentes de hormigón en las regiones costeras. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Desde que se establecieron los Objetivos de Desarrollo Sostenible en 2015, la evaluación de la sostenibilidad de las infraestructuras ha estado en el punto de mira de la comunidad científica. Esto se debe a que el sector de la construcción es esencial para promover el bienestar social y el desarrollo económico de los países, pero también es uno de los principales factores de estrés ambiental. Sin embargo, la evaluación de la sostenibilidad de las infraestructuras a lo largo de su ciclo de vida sigue siendo un reto importante, pues los criterios que intervienen en el diseño sostenible suelen ser complejos y contradictorios. El Proceso Analítico en Red (ANP) es una poderosa herramienta de toma de decisiones para modelar tales problemas. En este caso, se evalúa la sostenibilidad del ciclo de vida de diferentes alternativas de puentes de hormigón en ambiente costero utilizando el ANP. Los resultados obtenidos se comparan con los obtenidos mediante el Proceso Analítico Jerárquico (AHP) convencional. Los resultados obtenidos mediante ANP son más fiables que los derivados del AHP en términos de consistencia de los expertos y del número de comparaciones realizadas.

Abstract:

Since establishing the Sustainable Development Goals in 2015, the assessment of the sustainability performance of existing and future infrastructures has been in the spotlight of the scientific community. This is because the construction sector is essential for promoting the social welfare and economic development of countries, but is also one of the main environmental stressors existing to date. However, assessing infrastructure sustainability throughout its life cycle remains a significant challenge, as the criteria involved in sustainable design are often complex and conflicting. The Analytic Network Process (ANP) is recognized as a powerful decision-making tool to model such problems. Here, the life cycle sustainability performance of different design alternatives for a concrete bridge near the shore is evaluated using ANP. The obtained results are compared with those obtained using the conventional Analytical Hierarchy Process (AHP). The results obtained using ANP are more reliable than those derived from the conventional AHP in terms of the expert’s consistency and the number of comparisons made.

Keywords:

Sustainability; Analytic Network Process; bridge design; life cycle assessment; TOPSIS; multi-criteria decision making

Reference:

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2022). Analytic Network Process-based sustainability life cycle assessment of concrete bridges in coastal regions. Sustainability, 14(17):10688. DOI:10.3390/su141710688

Como el artículo está publicado en abierto, os lo podéis descargar aquí mismo:

Pincha aquí para descargar

Aplicación de optimización kriging para la búsqueda de estructuras óptimas robustas

Redheugh Bridge, Newcastle. © Copyright Stephen Richards and licensed for reuse under this Creative Commons Licence.

En todos los problemas estructurales existe una variabilidad o incertidumbre asociada. En el diseño de estructuras hay parámetros de diseño como las dimensiones de la estructura, las características mecánicas de los materiales o las cargas de diseño que pueden tener variaciones respecto al valor de diseño. Lo mismo ocurre a la hora de valorar una función objetivo asociada la estructura. Por un lado, a la hora de diseñar una estructura, el valor nominal utilizado es aquel que tiene una baja probabilidad de ocurrir (por ejemplo, la resistencia característica del hormigón es aquella que tiene una probabilidad del 5% de fallo). Además, se asignan coeficientes de seguridad asociados a una probabilidad de fallo determinada. Por otro lado, a la hora de valorar una función objetivo, como el coste o algún impacto medioambiental, el valor unitario de esta función suele ser la media. Dado este enfoque, la optimización estructural se convierte en una optimización determinista que desprecia los efectos de la incertidumbre asociada. Esto significa que la estructura tiene un comportamiento óptimo solo bajo las condiciones definidas inicialmente, pudiendo la respuesta variar significativamente cuando los valores se alejan de los valores de diseño.

A continuación os dejo una comunicación que presentamos en el 5th International Conference on Mechanical Models in Structural Engineering, que se celebró del 23 al 25 de octubre de 2019 en Alicante (España). Se trata de la optimización de un puente de sección en cajón de hormigón postesado utilizando un metamodelo tipo Krigring.

Abstract:

All the structural problems have an associated variability or uncertainty. In the design of structures, there are parameters such as the dimensions of the structure, the mechanical characteristics of the materials, or the loads that can have variations concerning the design value. The goal of robust design optimization is to obtain the optimum design and be less sensitive to variations of these uncertain initial parameters. The main limitation of the robust design optimization is the high computational cost required due to the high number of optimizations that must be made to assess the sensitivity of the objective response of the problem. For this reason, the kriging model is applied to carry out the optimization process more efficiently. This work will apply robust design optimization to a continuous pedestrian bridge of prestressed concrete and box sections.

Keywords:

Post-tensioned concrete; Box-girder bridge; Robust design optimization; RDO; Kriging

Reference:

YEPES, V.; PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T. (2019). Aplicación de optimización Kriging para la búsqueda de estructuras óptimas robustas. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain, pp. 81-94. ISBN: 978–84–17924–58–4

Pincha aquí para descargar

Comunicaciones presentadas al 26th International Congress on Project Management and Engineering AEIPRO 2022

Durante los días 5-8 de julio de 2022 tendrá lugar en Terrasa (Spain) el 26th International Congress on Project Management and Engineering AEIPRO 2022. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2022). ANP-based sustainability-oriented indicator for bridges in aggressive environments. 26th International Congress on Project Management and Engineering, AEIPRO, 5-8 de julio, Terrassa (Spain).

La presente comunicación presenta un indicador de sostenibilidad para la evaluación de las infraestructuras de puentes basado en el uso del Proceso Analítico en Red (ANP). Se presenta un análisis de sensibilidad sobre los resultados, discutiendo la aplicación del AHP convencional y de los procedimientos ANP más generales. Formulando el problema de decisión de forma cuantitativa, el método ANP ha arrojado resultados con una consistencia de más del doble que la obtenida mediante la técnica AHP frente al mismo problema de decisión, resultando ser más fiable al simplificar las comparaciones pareadas del experto.

NAVARRO, I.J.; VILLALBA, I.; YEPES, V. (2022). Development of social criteria for the social life cycle assessment of railway infrastructures. 26th International Congress on Project Management and Engineering, AEIPRO, 5-8 de julio, Terrassa (Spain).

El diseño sostenible de las infraestructuras requiere la consideración de los impactos económicos, ambientales y sociales. Desde la firma del Acuerdo de París, se han hecho grandes esfuerzos para desarrollar las metodologías orientadas a evaluar los impactos económicos y ambientales a lo largo del ciclo de vida de las infraestructuras. Sin embargo, la evaluación de la dimensión social en el diseño de las infraestructuras todavía requiere un desarrollo significativo. La presente comunicación propone un conjunto de indicadores sociales orientados a la evaluación del ciclo de vida de las infraestructuras ferroviarias. En particular, se presenta la evaluación de los impactos sociales de una vía férrea convencional con balasto. A continuación, se recomienda un indicador basado en la aplicación de procedimientos de toma de decisión multicriterio que ayudará en la elección del diseño de vía más ventajoso en términos sociales.

YEPES-BELLVER, V.J.; ALCALÁ, J.; YEPES, V. (2022). Study of solutions for the design of a footbridge based on a hierarchical analytical process. 26th International Congress on Project Management and Engineering, AEIPRO, 5-8 de julio, Terrassa (Spain).

El presente trabajo muestra la aplicación de la metodología AHP (Analytic Hierarchy Process) para realizar el estudio de soluciones necesario para el proyecto de una pasarela. Para ello se han planteado cuatro alternativas: viga de hormigón, hormigón ejecutado “in situ”, viga metálica y celosía metálica. Tras efectuar un estudio cualitativo de las ventajas e inconvenientes de las tipologías planteadas, se procede a establecer una jerarquía de criterios basados en la economía, la facilidad constructiva, la funcionalidad, la integración en el entorno, la estética y la durabilidad. A su vez, se han analizado once subcriterios dependientes de aquellos. Para evaluar las matrices de comparación pareada se ha procedido a una ronda de consultas a un grupo de cinco expertos que, por aproximaciones sucesivas, han acordado las valoraciones de comparación. Se ha comprobado, a su vez, la consistencia de todas las matrices de comparación utilizadas. Tras aplicar la metodología completa de toma de decisiones, la solución elegida, por su mayor valoración final, fue la pasarela en celosía.