Impacto social y económico de los resultados previstos del proyecto de investigación RESILIFE

Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En varios artículos anteriores ya presentamos muchos de los aspectos que justifican el proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo queremos resaltar la línea de trabajo del grupo de investigación y las razones por las cuales este proyecto supone un salto cualitativo.

Entre los Objetivos de Desarrollo Sostenible (ODS) para 2030, destaca la necesidad de construir infraestructuras resilientes. Entre 2003 y 2013, los desastres naturales y humanos causaron más de 1,1 millones de muertes, afectaron a más de 2000 millones de personas y generaron pérdidas de 1,5 billones de dólares. Los apagones en las redes eléctricas por condiciones meteorológicas adversas costaron entre 18 000 y 33 000 millones de dólares entre 2003 y 2012. Los errores de construcción y diseño indujeron el 65 % de los casos de colapso progresivo. En Europa, solo la mitad de las reparaciones de los edificios de hormigón fueron efectivas, a pesar de que los costes de rehabilitación suponen casi la mitad de las inversiones anuales en construcción. El mercado mundial de construcción de infraestructuras, valorado en 2,242 mil millones de dólares en 2021, se proyecta a 3,267 mil millones para 2027, con un crecimiento anual del 6,48 %.

Ante este panorama, un diseño adecuado y medidas preventivas locales son cruciales para salvar vidas e infraestructuras, pero, además de reducir el riesgo, son una fuente de creación de empleo especializado que debe formarse en estas técnicas. Por tanto, se espera un impacto social y económico relevante del proyecto RESILIFE. Publicaciones previas del grupo de investigación centradas en la optimización multiobjetivo (sin considerar la toma de decisiones multicriterio derivada de la participación social) muestran ahorros de entre el 10 y el 50 % en costes, ahorro de materiales, reducción de emisiones de CO₂ y consumo de energía. Por otra parte, en proyectos anteriores se hizo hincapié en los aspectos sociales de la optimización de las infraestructuras. Ello supuso incluir aspectos relativos a la seguridad de las personas, la equidad social intergeneracional, aspectos relacionados con la salud, la educación, la integración del análisis de género, etc., que ahora se incluyen en este proyecto. El grupo dispone de la metodología para su inclusión en la construcción industrializada modular y las estructuras híbridas. En este sentido, la construcción modular industrializada (también llamada off-site) ofrece ventajas significativas, ya que permite ahorros de hasta el 50 % en los plazos, reduce el desperdicio, se fabrica con tolerancias estrictas y mejora la seguridad al estandarizar los procesos en fábrica. Permite ahorros de hasta el 50 % en los plazos, reduce el desperdicio, se fabrica con tolerancias estrictas y mejora la seguridad al estandarizar los procesos en fábrica. Además, la pandemia ha demostrado, por ejemplo, en la construcción de dos hospitales de campaña en Wuhan (China) en solo 12 días, que este tipo de construcción modular puede solucionar graves problemas de alto impacto social y económico en situaciones de crisis futuras. También, existe una creciente demanda social de vivienda que, en países como Suecia o Japón, ha utilizado la construcción modular de forma masiva.

Los resultados del proyecto RESILIFE pretenden profundizar en las ventajas sociales y económicas. Basta con observar cómo los desastres naturales y, por desgracia, los conflictos bélicos actuales están destruyendo las viviendas e infraestructuras de forma masiva, afectando principalmente a las mujeres y los niños. El esfuerzo por diseñar estructuras capaces de resistir alguno de estos eventos extremos, o en su caso, facilitar la reparación de forma rápida y eficaz, permite reducir considerablemente el sufrimiento de las personas. Además, optar por soluciones que minimicen el colapso progresivo de los edificios y mejoren la eficiencia de la rehabilitación puede tener un impacto significativo. Mejorar el diseño resiliente de las infraestructuras para reducir el impacto en un 10 % supondría una disminución de al menos 15 000 millones de dólares y 10 000 muertes anuales a nivel mundial. Asimismo, los resultados obtenidos por la optimización resiliente vendrían a completar la línea de investigación realizada en el ICITECH por el profesor José M. Adam y su equipo para evitar el colapso progresivo de las estructuras, investigación que cuenta con una fuerte inversión en modelización física y numérica. Esta especialización en la investigación del ICITECH sitúa a nuestro país en una posición tecnológica de gran importancia en el ámbito de la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Salto cualitativo del proyecto de investigación RESILIFE respecto a resultados previos

Figura 1. Instituto de Ciencia y Tecnología del Hormigón (ICITECH)
Laboratorio de materiales del Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En varios artículos anteriores ya presentamos muchos de los aspectos que justifican el proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo queremos resaltar la línea de trabajo del grupo de investigación y las razones por las cuales este proyecto supone un salto cualitativo.

El equipo de investigación presenta una trayectoria que respalda su capacidad para abordar este nuevo reto, con experiencia en proyectos previos. En efecto, el IP1 del proyecto RESILIFE también fue IP en los 4 proyectos anteriores y dirigió 17 tesis doctorales relacionadas. El IP2 participó en todos estos proyectos. Los resultados obtenidos han sido consistentemente significativos y progresivos. El proyecto HORSOST (BIA2011-23602) generó 15 artículos JCR, 5 Q1, y de ellos, 2 D1. BRIDLIFE (BIA2014-56574-R) produjo 20 artículos JCR, 15 de ellos en la categoría Q1 y, de estos, 7 en la categoría D1. DIMALIFE (BIA2017-85098-R) produjo 33 artículos JCR, 20 de ellos Q1 y, de estos, 12 D1. HYDELIFE (PID2020-117056RB-I00) ha producido hasta ahora 42 artículos JCR, 26 de ellos Q1 y 15 D1. En estos proyectos se concedieron cuatro contratos predoctorales, tres de los cuales culminaron con éxito y el último está en ejecución. También existe una patente (Alcalá y Navarro, 2020) sobre vigas en cajón mixtas de acero y hormigón.

Objetivos y resultados ya alcanzados en proyectos previos

Antes de resumir los resultados de proyectos previos, queremos destacar que nuestra línea de investigación va más allá de la simple optimización económica del hormigón estructural, un objetivo atractivo a corto plazo para las empresas constructoras o de prefabricados. En proyectos anteriores, se abordó el diseño eficiente de estructuras con hormigones no convencionales, utilizando criterios sostenibles multiobjetivo y técnicas de minería de datos. También se analizó la toma de decisiones en la gestión del ciclo de vida de puentes pretensados, priorizando la eficiencia social y medioambiental con presupuestos ajustados. Para ello, se emplearon metamodelos, diseño óptimo robusto y fiabilidad para generar diseños automáticos de puentes e infraestructuras, considerando hormigones con baja huella de carbono y abordando aspectos de durabilidad, consumo energético, huella de carbono y seguridad a lo largo del ciclo de vida. Se utilizaron técnicas de decisión multicriterio para elegir la mejor tipología constructiva de un puente y decidir entre las opciones resultantes de la frontera de Pareto. Se incorporaron técnicas emergentes de aprendizaje profundo (DL) en la hibridación de metaheurísticas y se exploró la construcción industrializada modular en edificación y obra civil. Además, se analizaron en detalle puentes mixtos y estructuras híbridas frente a soluciones de hormigón en un análisis de ciclo de vida completo que incluye la sostenibilidad social y medioambiental.

La producción científica de estos proyectos fue significativa (ver algunos artículos en las referencias aportadas). Se abordó la optimización multiobjetivo (coste, CO2 y energía) en puentes con vigas artesa y cajón, así como en el mantenimiento de puentes y redes de pavimento. También se exploró la sostenibilidad social de las infraestructuras y se aplicaron metodologías innovadoras, como la lógica neutrosófica y las redes bayesianas en la toma de decisiones. La optimización se respaldó en metamodelos de redes neuronales, modelos kriging y análisis de fiabilidad. Se propusieron indicadores para evaluar la sostenibilidad social y ambiental. Además, se aplicó diseño robusto a puentes, se analizó la resiliencia de las infraestructuras y se realizaron análisis del ciclo de vida para estructuras óptimas. Se obtuvo la patente «Viga en cajón mixta de acero y hormigón, P202030530».

Sin embargo, para avanzar es necesario abordar las limitaciones y el alcance de estos proyectos. El proyecto RESILIFE busca dar un salto cualitativo en nuestra línea de investigación y superar algunas de las limitaciones actuales en cuanto al alcance. Para respaldar la innovación propuesta y plantear este nuevo proyecto, nuestro grupo llevó a cabo seis estudios sobre el estado del arte en relación con BIM en estructuras (Fernández-Mora et al., 2022), la aplicación de la inteligencia artificial a la construcción (García et al., 2022), sobre estructuras modulares (Sánchez-Garrido et al., 2023), sobre estructuras prefabricadas frente a sismo (Guaygua et al., 2023), sobre estructuras híbridas de acero (Terreros-Bedoya et al., 2023) y sobre metamodelos (Negrín et al., 2023). Esto ha permitido detectar la oportunidad de optimizar el ciclo de vida de las estructuras incorporando, desde el diseño, la ocurrencia de eventos extremos, de forma que dichas estructuras pudieran recuperar su funcionalidad en el menor tiempo posible y con el menor coste social y ambiental. Tanto las estructuras híbridas de acero como las basadas en MMC tienen el potencial de mejorar la resiliencia estructural, siendo estos campos de investigación fecundos y de gran repercusión social. Además, el uso de la inteligencia artificial, la toma de decisiones multicriterio que consideran incertidumbres, el uso de metamodelos, la incorporación de la teoría de juegos en la optimización multiobjetivo y el empleo del BIM y la realidad virtual en la modelización suponen barreras que superar en la investigación de estas estructuras. A ello hay que añadir el uso de técnicas no destructivas para detectar daños en dichas estructuras (Hadizadeh-Bazaz et al., 2023), así como tecnologías de reparación eficiente de estructuras (Ortega et al., 2018).

Por tanto, RESILIFE pretende superar una serie de limitaciones en la investigación:

  • Análisis del ciclo de vida de estructuras híbridas de acero basadas en Modernos Métodos de Construcción (MMC) ante situaciones extremas (aumento de temperatura, explosiones, seísmos, etc.), de forma que aumente la resiliencia.
  • En el diseño óptimo, prever la reparación y el mantenimiento de las MMC ante eventos extremos, de forma que los elementos estructurales no se dañen o se puedan reparar de manera eficiente y rápida, centrándose en los problemas sociales y ambientales.
  • Utilizar metaheurísticas híbridas basadas en la inteligencia artificial, metamodelos y la teoría de juegos para mejorar la calidad de las soluciones al incorporar el aprendizaje profundo en la base de datos generada en la búsqueda de los algoritmos y reducir los tiempos de cálculo.
  • Explorar el efecto de la aleatoriedad de los parámetros con la incorporación del diseño óptimo resiliente y basado en fiabilidad para evitar que los proyectos reales optimizados sean infactibles ante pequeños cambios.
  • Profundizar en el estudio de la distribución de los impactos sociales y ambientales en las estructuras MMC.
  • Analizar la sensibilidad de las políticas presupuestarias poco sensibles a la realidad del sector en la gestión de las estructuras.

Lo indicado hasta ahora se podría sintetizar en los siguientes aspectos:

  1. El tema de la investigación se ha ido profundizando en cada uno de los proyectos realizados, de acuerdo con los objetivos previstos.
  2. Los estudios anteriores se basaban en la optimización multiobjetivo, la toma de decisiones a lo largo del ciclo de vida, el diseño robusto y basado en la fiabilidad y la incorporación del aprendizaje profundo. Ahora es el momento de ampliar la investigación a nuevas construcciones industrializadas modulares y estructuras híbridas optimizando su resiliencia ante eventos extremos.

Referencias

  • ADAM, J.M.; PARISI, F.; SAGASETA, J.; LU, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Struct., 173:122-149.
  • ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.
  • BORGHESE, V.; CONTIGUGLIA, C.P.; LAVORATO, D.; SANTINI, S.; BRISEGHELLA, B. (2023). Sustainable retrofits on reinforced concrete infrastructures. Bulletin of Geophysics and Oceanography, https://doi.org/10.4430/bgo00436
  • CAREDDA, G.; MAKOOND, N.; BUITRAGO, M.; SAGASETA, J.; CHRYSSANTHOPOULOS, M.; ADAM, J.M. (2023). Learning from the progressive collapse of buildings. Built Environ., 15:100194.
  • DONG, H.; HAN, Q.; DU, X.; ZHOU, Y. (2022). Review on seismic resilient bridge structures. Struct. Eng., 25(7):1565-1582.
  • FANG, C.; WANG, W.; QIU, C.; HU, S.; MacRAE, G.A.; EARTHERTON, M.R. (2022). Seismic resilient steel structures: A review of research, practice, challenges and opportunities. J Constr Steel Res, 191,107172.
  • FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Build. Eng., 53:104318.
  • GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Constr., 142:104532.
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Multidiscip. Optim., 56(1):139-150.
  • GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598.
  • HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Eng. Mech., 85(2):197-206.
  • HAO, H.; BI, K.; CHEN, W.; PHAM, T.M.; LI, J. (2023). Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures. Struct., 277:115477.
  • HAO, H.; LI, J. (2019). Sustainable High-Performance Resilient Structures. Engineering, 5(2):197-198.
  • KELES, M.; ARTAR, M.; ERGÜN, M. (2024). Investigation of temperature effect on the optimal weight design of steel truss bridges using Cuckoo Search Algorithm. Structures, 59:105819.
  • KHALOO, A.; MOBINI, M. (2016). Towards resilient structures. Iran., 23(5), 2077-2080.
  • MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges. Struct., 266:114607.
  • MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Multidiscip. Optim., 65:312
  • MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Multidiscip. Optim., 65:46.
  • MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879.
  • MORENO, J.D.; PELLICER, T.M.; ADAM, J.M.; BONILLA, M. (2018). Exposure of RC building structures to the marine environment of the Valencia coast. Build. Eng., 15: 109-121.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Struct Infrast Eng, 16(7): 949-967.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023a). Design optimization of welded steel plate girders configured as a hybrid structure. J Constr Steel Res, 211:108131.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023b). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023c). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Struct., 293:116657
  • ORTEGA, A.I.; PELLICER, T.M.; CALDERÓN, P.A.; ADAM, J.M. (2018). Cement-based mortar patch repair of RC columns. Comparison with all-four-sides and one-side repair. Constr Build Mater., 186: 338-350.
  • PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Struct., 209: 109968.
  • SALAS, J.; YEPES, V. (2022). Improved delivery of social benefits through the maintenance planning of public assets. Infrastruct. Eng., DOI:10.1080/15732479.2022.2121844
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725.
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Clean. Prod., 330:129724.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Clean. Prod., 176:521-534.
  • SOJOBI, A.O.; LIEW, K.M. (2023). Multi-objective optimization of high performance concrete columns under compressive loading with potential applications for sustainable earthquake-resilient structures and infrastructures. Struct., 315:117007.
  • TANG, Y.; WANG, Y.; WU, D.; CHEN, M.; PANG, L.; SUN, J.; FENG, W.; WANG, X. (2023). Exploring temperature-resilient recycled aggregate concrete with waste rubber: An experimental and multi-objective optimization analysis. Adv. Mater. Sci., 62(1):20230347.
  • TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Constr., 49:123-134.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Civ. Mech. Eng., 17(4):738-749.
  • YUAN, W.; WANG, J.; QIU, F.; CHEN, C.; KANG, C.; ZENG, B. (2016). Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters. IEEE Trans Smart Grid, 7(6):2817-2826.
  • ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Carbon impact assessment of bridge construction based on resilience theory. Civ. Eng. Manag., 29(6):561-576.
  • ZHOU, Z.; ZHOU, J.; ALCALÁ, J.; YEPES, V. (2024). Thermal coupling optimization of bridge environmental impact under natural conditions. Impact Assess. Rev., 104:107316.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Metodología del proyecto de investigación RESILIFE

Figura 1. Instituto de Ciencia y Tecnología del Hormigón (ICITECH). http://congress.cimne.com/SAHC2020/frontal/JoseM.Adam.asp

En varios artículos anteriores ya presentamos el resumen, la justificación, las hipótesis de partida y los objetivos del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo justificaremos brevemente la metodología de este proyecto.

El análisis del estado de la técnica, desarrollado específicamente por el grupo para formular este proyecto, reveló la existencia de importantes lagunas de investigación. Por un lado, no se ha abordado de manera integral la optimización del diseño de estructuras híbridas y basadas en MMC que incorporan daños por eventos extremos, lo que dificulta una recuperación rápida y la minimización de impactos sociales y ambientales. Estas estructuras presentan un alto potencial (Terreros-Bedoya et al., 2023; Sánchez-Garrido et al., 2023), pero aún no se han explorado metaheurísticas híbridas con DL y teoría de juegos en la optimización de su resiliencia. Además, la lógica neutrosófica y las redes bayesianas abren puertas en el ámbito de la decisión multicriterio. Estas innovaciones se fusionan en nuestra metodología con técnicas, como el análisis del ciclo de vida, el análisis basado en la fiabilidad, el diseño óptimo robusto, los metamodelos y las técnicas de minería de datos. La metodología propuesta busca priorizar el diseño de estructuras, su reparación o mantenimiento, considerando criterios de sostenibilidad social y ambiental dentro de restricciones presupuestarias, teniendo en cuenta la variabilidad inherente a los desafíos prácticos.

La Figura 2 muestra el esquema metodológico propuesto para RESILIFE, vinculando las fases con los objetivos específicos. Se adopta un enfoque mixto e interactivo en el que el decisor proporciona información sobre sus preferencias al analista. Posteriormente, mediante una optimización multiobjetivo basada en la fiabilidad y los metamodelos, el analista genera un conjunto de soluciones eficientes que el decisor evalúa antes de tomar una decisión. Por tanto, la novedad de la propuesta metodológica trifase se basa en la integración de técnicas de información a priori, en las que el decisor (grupos de interés) informa de las preferencias al analista, abarcando métodos constructivos, reparación, conservación, etc. La optimización multiobjetivo, apoyada en la variabilidad de parámetros, variables y restricciones, produce alternativas eficientes. La última fase implica un proceso de información a posteriori para que el decisor considere aspectos no contemplados en la optimización, que da como resultado la solución final completa.

Figura 2. Esquema metodológico diseñado para RESILIFE en relación con los objetivos

La metodología se aplicará, como mínimo, a los siguientes casos de estudio. En primer lugar, a la optimización de pórticos de edificios altos con estructura de acero híbrido y de hormigón armado sometida a un incremento fuerte de temperatura. De hecho, Keles et al. (2024) optimizan estructuras de acero tradicional, en las que la temperatura altera las propiedades mecánicas, y Negrín et al. (2023a) comparan las ventajas de las estructuras híbridas frente a las tradicionales. El segundo caso se aplica a pórticos de edificios, tanto de hormigón armado como de estructuras híbridas, donde se optimiza suponiendo el fallo completo de uno o varios de los soportes, de forma que el entramado siga manteniendo su funcionalidad. Esto permite, con ligeros cambios en el diseño, mantener cierta funcionalidad estructural capaz de evacuar a las personas con seguridad y, a su vez, realizar tareas de reparación o mantenimiento de los elementos dañados. El objetivo es mejorar no solo la optimización, sino también los aspectos de diseño que impidan el colapso progresivo. Un aspecto similar ha sido estudiado por Negrín et al. (2023c) para el caso de fuertes interacciones suelo-estructura. Otro caso de estudio es la optimización resiliente de viviendas sociales prefabricadas en zonas sísmicas, que deben resistir acciones extremas y, además, poder reparar rápidamente los daños (Guaygua et al., 2023). Otro caso previsto es la optimización resiliente del mantenimiento y la reparación de patologías resultantes de eventos extremos. Los casos anteriores, que se centran en gran medida en viviendas, también se extenderán en este proyecto a otras estructuras, como puentes híbridos o estructuras modulares, en consonancia con la experiencia previa del equipo de investigación. La optimización siempre es multiobjetivo y se apoya en técnicas de deep learning a lo largo del ciclo de vida, con la novedad del uso de la teoría de juegos.

Referencias

  • GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598.
  • KELES, M.; ARTAR, M.; ERGÜN, M. (2024). Investigation of temperature effect on the optimal weight design of steel truss bridges using Cuckoo Search Algorithm. Structures, 59:105819.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023a). Design optimization of welded steel plate girders configured as a hybrid structure. J Constr Steel Res, 211:108131.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023b). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023c). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Struct., 293:116657
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725
  • TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Objetivos del proyecto de investigación RESILIFE

Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En artículos anteriores ya presentamos el resumen, la justificación y las hipótesis de partida del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo expondremos los objetivos generales y específicos de este proyecto.

El objetivo general perseguido consiste en afrontar el reto social y ambiental que supone el proyecto, el mantenimiento y la reparación de estructuras híbridas y MMC frente a situaciones extremas, mediante la optimización de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas. Para alcanzar este objetivo, es necesario avanzar en la ciencia, integrando a diversos actores y grupos de expertos en la toma de decisiones, con el fin de tener en cuenta criterios de sostenibilidad social y ambiental a lo largo de todo el ciclo de vida de las estructuras, teniendo en cuenta la variabilidad inherente al mundo real. Para abordar las incertidumbres que afectan al sistema, se propone la aplicación de metamodelos y metaheurísticas híbridas basadas en fiabilidad. Estas se aplicarán no solo al diseño de nuevas estructuras, sino también al mantenimiento y la reparación de las existentes. Un análisis de sensibilidad de los escenarios presupuestarios y de las hipótesis de los inventarios del ciclo de vida proporcionará conocimientos significativos sobre las mejores prácticas. Cabe destacar que esta metodología podrá adaptarse a otros tipos de infraestructuras.

El objetivo general se desarrollará mediante los objetivos específicos mostrados en la Figura 2 y que se describen a continuación, de los cuales serán responsables los investigadores principales:

• OE-1: Análisis de las funciones de distribución de eventos extremos para el diseño óptimo basado en la fiabilidad que integre aspectos ambientales, sociales y económicos para la toma de decisiones multicriterio.
• OE-2: Cuantificación de la resiliencia de las estructuras ante múltiples amenazas con el fin de garantizar la integración de la sostenibilidad en el diseño, mantenimiento y reparación de estructuras híbridas de acero y modulares.
• OE-3: Identificación de estrategias de reparación y mantenimiento robusto óptimo de estructuras híbridas de acero y modulares resilientes.
• OE-4: Formulación y resolución del problema de optimización multiobjetivo que contemple el ciclo completo de estructuras híbridas de acero y modulares mediante metaheurísticas híbridas.
• OE-5: Comparación de las estructuras y los sistemas en términos de su resiliencia respecto a la optimización heurística, teniendo en cuenta incertidumbres presupuestarias en su ciclo de vida.
• OE-6: Difusión de resultados y redacción de informes.

Figura 2. Objetivos específicos del proyecto RESILIFE

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hipótesis de partida del proyecto de investigación RESILIFE

ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Universitat Politècnica de València

En artículos anteriores ya presentamos un resumen y la justificación del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo justificaremos las hipótesis de partida de este proyecto.

La hipótesis principal de partida de RESILIFE es que un diseño óptimo y una construcción con estructuras híbridas basadas en los modernos métodos de construcción (MMC) son efectivos desde el punto de vista social y ambiental, y resilientes ante eventos extremos. La novedad radica en el empleo de la inteligencia artificial para optimizar la resiliencia y la sostenibilidad, con el fin de hacer frente a eventos extremos y evitar el colapso progresivo, protegiendo así la vida y la economía. De hecho, las estructuras híbridas de acero y las estructuras modulares son tipologías con elevadas posibilidades de generación de conocimiento (Sánchez-Garrido et al., 2023; Terreros-Bedoya et al., 2023). Además, existe un déficit de investigaciones que incorporen metaheurísticas híbridas emergentes y aprendizaje profundo (deep learning, DL) en la optimización multiobjetivo resiliente de este tipo de estructuras. Estas técnicas extraen información no trivial de las inmensas bases de datos procedentes de la optimización y mejoran la calidad y el tiempo de cálculo. Otra novedad en este proyecto es el uso de la teoría de juegos en la optimización multiobjetivo, empleada en la última tesis doctoral del grupo. Con esta propuesta metodológica se pretende abordar las incertidumbres del mundo real, planteando la optimización resiliente basada en la fiabilidad y en diseños robustos. Esta hipótesis debe extenderse a la toma de decisiones multicriterio que atienda a la sostenibilidad social y ambiental del ciclo de vida completo, que contemple las fluctuaciones tanto de los parámetros como de los escenarios posibles, especialmente con fuertes restricciones presupuestarias. La resolución del problema planteado presenta serias dificultades, por lo que se deben explorar metamodelos y DL capaces de acelerar el cálculo (Negrín et al., 2023).

Para alcanzar los objetivos del proyecto se basan en determinadas hipótesis:

  • Hipótesis 1: Es rentable diseñar estructuras innovadoras, resilientes y robustas frente a eventos extremos, que se puedan reparar cuando se optimizan a lo largo de su ciclo de vida.
  • Hipótesis 2: Las estructuras modulares permiten instaurar o restaurar infraestructuras rápidamente tras un evento extremo, y son eficientes desde el punto de vista social y ambiental.
  • Hipótesis 3: Las estructuras de acero híbridas mejoran las prestaciones de las estructuras de acero convencionales, mejorando la resiliencia ante eventos extremos, con niveles óptimos de sostenibilidad.
  • Hipótesis 4: Las metaheurísticas mejoran la calidad de las soluciones y reducen el tiempo de cálculo cuando se combinan con el aprendizaje profundo (DL).
  • Hipótesis 5: La optimización multiobjetivo de las estructuras híbridas de acero reduce los impactos sociales y ambientales a lo largo del ciclo de vida, siendo la teoría de juegos una técnica efectiva.
  • Hipótesis 6: La optimización multiobjetivo puede dar lugar a soluciones inviables con pequeñas variaciones en los parámetros o en las restricciones.
  • Hipótesis 7: Tanto el diseño óptimo basado en fiabilidad como el diseño óptimo robusto conducen a soluciones menos sensibles a la variabilidad y a los cambios en los escenarios (especialmente presupuestarios), pero se basan en funciones de probabilidad poco realistas por falta de datos.
  • Hipótesis 8: Es posible utilizar metamodelos y DL en el diseño óptimo robusto y en el diseño basado en fiabilidad para el proyecto y para el mantenimiento de estructuras híbridas y modulares.
  • Hipótesis 9: Las soluciones de mantenimiento óptimo de estructuras híbridas y modulares son diferentes si el análisis del ciclo de vida se incluye o no en la fase de proyecto.
  • Hipótesis 10: Dado un horizonte temporal para una estructura, es posible encontrar un diseño y una gestión posterior de dicho activo que mejore otras alternativas, incluso con presupuestos restrictivos.
  • Hipótesis 11: Las medidas de proyecto y preventivas derivadas de un sistema de apoyo a la toma de decisiones son preferibles por su menor coste social y ambiental a la reparación severa de las estructuras. La dimensión social incluye la integración del análisis de género en la investigación (IAGI).
  • Hipótesis 12: Es posible encontrar buenas prácticas en el diseño, la conservación, el mantenimiento y el desmantelamiento de estructuras híbridas y modulares que sean robustas ante cambios presupuestarios y resilientes ante eventos extremos.

Referencias

  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725.
  • TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Justificación del proyecto de investigación RESILIFE

Figura 1. Instituto de Ciencia y Tecnología del Hormigón (ICITECH)
Laboratorio de materiales del Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En un artículo anterior ya presentamos un resumen del proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo justificaremos brevemente la necesidad de este proyecto.

Entre 2003 y 2013, diversos desastres naturales (terremotos, tsunamis, tifones, deslizamientos e inundaciones) y provocados por el ser humano (explosiones, vertidos o impactos) ocasionaron más de 1,1 millones de muertes, afectaron a más de 2000 millones de personas y provocaron pérdidas estimadas en 1,5 billones de dólares (Hao y Li, 2019). Estos eventos, que siguen presentes en los últimos años, resaltan la urgencia de desarrollar estructuras resilientes, sostenibles y de alto rendimiento que protejan la vida y la economía. Además, los eventos extremos requieren adaptaciones eficaces y económicas en el diseño, construcción, reparación y mantenimiento de infraestructuras, lo que impulsa la investigación en construcción sostenible para reducir la huella de carbono y otros impactos.

Los eventos extremos, junto con errores de diseño, construcción y falta de mantenimiento, suelen provocar daños estructurales locales que pueden desencadenar el colapso progresivo del edificio (Adam et al., 2018). Caredda et al. (2013) determinaron que este tipo de colapso se debió a errores de construcción y diseño en el 65 % de los casos estudiados. Algunos eventos han demostrado que las intervenciones locales preventivas pueden salvar tanto vidas de usuarios como infraestructuras, resaltando así la importancia del mantenimiento. La falta de eficacia en las reparaciones de hormigón es uno de los principales problemas en ingeniería estructural. En Europa, solo el 50 % de las operaciones de restauración en edificaciones de hormigón es efectiva, a pesar de que la rehabilitación representa casi la mitad de las inversiones en construcción (Borghese et al., 2023).

El crecimiento económico, el aumento de la población y de la urbanización, así como el calentamiento global y el agotamiento de los recursos naturales implican que la construcción de estructuras deba considerar la sostenibilidad, la durabilidad y una gestión inteligente del ciclo de vida, además de la seguridad, el rendimiento y la resiliencia. Para ello, es necesario emplear materiales sostenibles y residuos industriales en la construcción; nuevas formas y diseños estructurales para controlar las vibraciones y mitigar los efectos de las cargas; tecnologías de prefabricación innovadoras mediante impresión 3D y construcción modular para minimizar las interrupciones en la obra y mejorar el control de calidad; así como nuevos conceptos de diseño y construcción, estructuras desplegables y estructuras de sacrificio para mejorar la resiliencia y la resistencia a cargas extremas.

La recuperación de estructuras dañadas implica recursos y emisiones considerables. Por tanto, el diseño y la construcción de estructuras deben enfocarse en la sostenibilidad, la durabilidad, la resistencia múltiple, la resiliencia y la monitorización inteligente del ciclo de vida. Este enfoque es esencial para cumplir los ODS de las Naciones Unidas y abordar los desafíos climáticos y ambientales.

No obstante, la modernización de las infraestructuras conlleva un coste prohibitivo, lo que resalta la necesidad de asignar eficazmente los limitados recursos presupuestarios. Ante la complejidad de este desafío, se plantean propuestas de optimización resiliente para facilitar la toma de decisiones considerando la aleatoriedad e incertidumbres inherentes. Por ejemplo, esto se aplica a las redes eléctricas, donde los apagones derivados de condiciones meteorológicas adversas generaron costes anuales de entre 18 000 y 33 000 millones de dólares entre 2003 y 2012 (Yuan et al., 2015).

Una estructura resiliente bien diseñada puede no requerir reparación o bien puede recuperarse con reparaciones menores después de un evento extremo, como puede ser el caso de puentes con resiliencia sísmica (Dong et al., 2022). Guaygua et al. (2023) revelaron la correlación entre los edificios prefabricados y aspectos como las conexiones secas, la disipación de energía, el diseño óptimo y el colapso progresivo. Los últimos avances en estructuras industrializadas pasan por mejoras en las uniones de las estructuras prefabricadas, que son los puntos más vulnerables ante los seísmos. De este modo, se están creando edificios que, a través de ingeniosos métodos de disipación de energía, están equiparando sus prestaciones y seguridad a las estructuras tradicionales sancionadas por la práctica. Sánchez-Garrido et al. (2023) detectan lagunas en la investigación, incluida la necesidad de aplicar más las estructuras innovadoras basadas en métodos modernos de construcción (Modern Methods of Construction, MMC). Asimismo, resaltan la importancia de abordar la mejora del entorno construido a través del paradigma del diseño regenerativo. Se necesita más investigación para comprender los sistemas de construcción interdependientes mediante el uso de gemelos digitales.

Las estructuras de acero se consideraban resistentes a los terremotos, pero esta percepción cambió tras los eventos de Northridge en 1994 y Kobe en 1995, que revelaron fracturas frágiles, especialmente en las conexiones viga-columna. Desde entonces, se ha explorado el uso de materiales emergentes y diseños innovadores para reducir el riesgo de fallo frágil temprano (Fang et al., 2022). Los cambios extremos de temperatura afectan a la resistencia y la rigidez de las estructuras de acero, por lo que es necesario aumentar el tamaño de la sección transversal para compensar la reducción de la rigidez y evitar fallos estructurales (Keles et al., 2024). Esta reducción de la capacidad resistente con la temperatura también ocurre con las estructuras de hormigón (Tang et al., 2023). Las vigas de acero híbridas optimizan la resistencia a la flexión y al cortante, y mejoran a los elementos de acero homogéneos. No obstante, la investigación debe cubrir las lagunas existentes en su aplicación a estructuras complejas y su capacidad de resistir acciones extremas (Terreros-Bedoya et al., 2023). Otra oportunidad son los materiales compuestos multifuncionales que se aplican en columnas y permiten reducir el peso y mejorar la resistencia en edificios altos y entornos agresivos. Estas innovaciones superan las limitaciones de las estructuras tradicionales de acero y hormigón, así como de las tecnologías convencionales de construcción (Sojobi et al., 2023).

No obstante, no todas las estructuras pueden diseñarse para resistir cualquier evento extremo, por lo que se tiende a incrementar su funcionalidad todo lo posible. El diseño de estructuras resilientes requiere esfuerzos colaborativos e interdisciplinarios para formular nuevos enfoques y métricas que consideren el rendimiento y los aspectos funcionales posteriores al evento. Las estructuras resilientes deben contemplar su vida útil en relación con los impactos de los desastres, las reparaciones, el mantenimiento y la evolución de las acciones sobre ellas. Actualmente no existen procedimientos explícitos para cuantificar la resiliencia de las estructuras e infraestructuras en el contexto de múltiples amenazas ni para comparar las estructuras y los sistemas en términos de su resiliencia (Khaloo y Mobini, 2016). Surge la oportunidad de implementar aspectos de la resiliencia estructural, como la funcionalidad técnico-socioeconómica, los principios de diseño basados en el riesgo probabilístico y la resiliencia, las dependencias ambientales y los sistemas de apoyo a la toma de decisiones basados en la resiliencia. Para ello, resulta fundamental integrar el proyecto estructural dentro del paradigma de modelos de información en la construcción (BIM) (Fernández-Mora et al., 2022).

Referencias

  • ADAM, J.M.; PARISI, F.; SAGASETA, J.; LU, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Struct., 173:122-149.
  • ALCALÁ, J.; NAVARRO, F. (2020). Viga en cajón mixta acero-hormigón. Patente P202030530, 4 junio 2020.
  • BORGHESE, V.; CONTIGUGLIA, C.P.; LAVORATO, D.; SANTINI, S.; BRISEGHELLA, B. (2023). Sustainable retrofits on reinforced concrete infrastructures. Bulletin of Geophysics and Oceanography, https://doi.org/10.4430/bgo00436
  • CAREDDA, G.; MAKOOND, N.; BUITRAGO, M.; SAGASETA, J.; CHRYSSANTHOPOULOS, M.; ADAM, J.M. (2023). Learning from the progressive collapse of buildings. Built Environ., 15:100194.
  • DONG, H.; HAN, Q.; DU, X.; ZHOU, Y. (2022). Review on seismic resilient bridge structures. Struct. Eng., 25(7):1565-1582.
  • FANG, C.; WANG, W.; QIU, C.; HU, S.; MacRAE, G.A.; EARTHERTON, M.R. (2022). Seismic resilient steel structures: A review of research, practice, challenges and opportunities. J Constr Steel Res, 191,107172.
  • FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Build. Eng., 53:104318.
  • GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Constr., 142:104532.
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Multidiscip. Optim., 56(1):139-150.
  • GUAYGUA, B.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58; 105598.
  • HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Eng. Mech., 85(2):197-206.
  • HAO, H.; LI, J. (2019). Sustainable High-Performance Resilient Structures. Engineering, 5(2):197-198.
  • KELES, M.; ARTAR, M.; ERGÜN, M. (2024). Investigation of temperature effect on the optimal weight design of steel truss bridges using Cuckoo Search Algorithm. Structures, 59:105819.
  • KHALOO, A.; MOBINI, M. (2016). Towards resilient structures. Iran., 23(5), 2077-2080.
  • MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges. Struct., 266:114607.
  • MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Multidiscip. Optim., 65:312
  • MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Multidiscip. Optim., 65:46.
  • MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879.
  • MORENO, J.D.; PELLICER, T.M.; ADAM, J.M.; BONILLA, M. (2018). Exposure of RC building structures to the marine environment of the Valencia coast. Build. Eng., 15: 109-121.
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Struct Infrast Eng, 16(7): 949-967.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023a). Design optimization of welded steel plate girders configured as a hybrid structure. J Constr Steel Res, 211:108131.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023b). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631.
  • NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023c). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Struct., 293:116657
  • ORTEGA, A.I.; PELLICER, T.M.; CALDERÓN, P.A.; ADAM, J.M. (2018). Cement-based mortar patch repair of RC columns. Comparison with all-four-sides and one-side repair. Constr Build Mater., 186: 338-350.
  • PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Struct., 209: 109968.
  • SALAS, J.; YEPES, V. (2022). Improved delivery of social benefits through the maintenance planning of public assets. Infrastruct. Eng., DOI:10.1080/15732479.2022.2121844
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Build. Eng., 73:106725.
  • SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Clean. Prod., 330:129724.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Clean. Prod., 176:521-534.
  • SOJOBI, A.O.; LIEW, K.M. (2023). Multi-objective optimization of high performance concrete columns under compressive loading with potential applications for sustainable earthquake-resilient structures and infrastructures. Struct., 315:117007.
  • TANG, Y.; WANG, Y.; WU, D.; CHEN, M.; PANG, L.; SUN, J.; FENG, W.; WANG, X. (2023). Exploring temperature-resilient recycled aggregate concrete with waste rubber: An experimental and multi-objective optimization analysis. Adv. Mater. Sci., 62(1):20230347.
  • TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. J Constr Steel Res, 207:107976.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Constr., 49:123-134.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Civ. Mech. Eng., 17(4):738-749.
  • YUAN, W.; WANG, J.; QIU, F.; CHEN, C.; KANG, C.; ZENG, B. (2016). Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters. IEEE Trans Smart Grid, 7(6):2817-2826.
  • ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Carbon impact assessment of bridge construction based on resilience theory. Civ. Eng. Manag., 29(6):561-576.
  • ZHOU, Z.; ZHOU, J.; ALCALÁ, J.; YEPES, V. (2024). Thermal coupling optimization of bridge environmental impact under natural conditions. Impact Assess. Rev., 104:107316.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Proyecto de investigación RESILIFE (2024-2027)

Los desastres naturales y humanos ocasionan pérdidas humanas y económicas considerables. Las estructuras dañadas deben diseñarse para recuperar su funcionalidad lo antes posible, lo que implica recursos y emisiones significativas. Por tanto, el diseño y la construcción de estructuras deben enfocarse en la sostenibilidad, la durabilidad, la resistencia múltiple, la resiliencia y la monitorización inteligente del ciclo de vida. Los eventos extremos, junto con errores de diseño, construcción y falta de mantenimiento, suelen provocar daños estructurales locales que pueden desencadenar el colapso progresivo de las infraestructuras. RESILIFE afronta el reto social que suponen el mantenimiento y la reparación de estructuras frente a situaciones extremas, mediante la optimización de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas. La hipótesis de partida es que un diseño óptimo y la construcción con estructuras híbridas basadas en los modernos métodos de construcción, en especial las modulares, son efectivos desde el punto de vista social y ambiental, y resilientes ante eventos extremos. El reto será incorporar mejoras en el diseño para afrontar eventos extremos y equiparar estas estructuras en prestaciones y en seguridad a las estructuras tradicionales. La innovación central consiste en plantear procedimientos explícitos para cuantificar la resiliencia de las estructuras en el contexto de múltiples amenazas y comparar las estructuras y los sistemas en términos de resiliencia. Para ello, se aplicarán técnicas de inteligencia artificial para optimizar la resiliencia, lo que demostrará su eficacia en términos sociales y ambientales frente a eventos extremos. La novedad metodológica radica en la utilización de metaheurísticas híbridas emergentes y Deep Learning en la optimización multiobjetivo, así como de la teoría de juegos, con el fin de lograr la pronta recuperación de su funcionalidad con costes sociales y ambientales reducidos, evitando su colapso progresivo. Además, se pretende profundizar en las técnicas de decisión multicriterio emergentes, como la lógica neutrosófica y otras, como las redes bayesianas. Esto no solo mejora la calidad y la velocidad de cálculo en el diseño, el mantenimiento y la reparación de estructuras, sino que también aborda las incertidumbres del mundo real y propone una optimización resiliente basada en la fiabilidad y en diseños robustos. En este contexto, en el mundo real existen incertidumbres, imperfecciones o desviaciones respecto a los parámetros utilizados en los códigos. Una estructura óptima se encuentra cercana a la región de infactibilidad, por lo que es necesario incorporar las incertidumbres para proporcionar diseños más robustos y fiables. Por otra parte, la fuerte limitación presupuestaria presente en momentos de crisis compromete seriamente las políticas de creación y conservación de las infraestructuras, sobre todo si hay incrementos de costes al introducir la resiliencia en el diseño. Los resultados esperados, tras un análisis de sensibilidad de distintas políticas presupuestarias asociadas a un horizonte temporal, pretenden detallar qué tipologías, actuaciones concretas de reparación y conservación, y alternativas de demolición y reutilización son adecuadas para minimizar los impactos ambientales y sociales considerando la variabilidad.

Natural and human disasters cause considerable human and economic losses. Damaged structures must be designed to recover their functionality quickly, which involves significant resources and emissions. Therefore, the design and construction of structures must focus on sustainability, durability, multiple resistance, resilience, and intelligent life-cycle monitoring. Extreme events, design, construction, and lack of maintenance errors often cause local structural damage that can trigger the progressive collapse of infrastructures. RESILIFE addresses the social challenge of maintaining and repairing structures in extreme situations by optimizing the complex problems posed at the level of public and private decisions. The starting hypothesis is that optimal design and construction with hybrid structures based on modern construction methods, especially modular ones, are socially and environmentally effective and resilient to extreme events. The challenge will be to incorporate design improvements to cope with extreme events and to bring these structures on par with traditional structures regarding performance and safety. The central innovation is to develop explicit procedures to quantify the resilience of structures in the context of multiple hazards and to compare structures and systems in terms of resilience. To this end, artificial intelligence techniques will be applied to optimize resilience, demonstrating its effectiveness in social and environmental terms in the face of extreme events. The methodological novelty lies in using emerging hybrid metaheuristics and Deep Learning in multi-objective optimization and game theory to achieve early recovery of its functionality with reduced social and environmental costs, avoiding its progressive collapse. In addition, it is intended to deepen emerging multi-criteria decision techniques, such as neutrosophic logic, and others, such as Bayesian networks. This not only improves the quality and speed of computation in the design, maintenance, and repair of structures but also addresses real-world uncertainties and proposes resilient optimization based on reliability and robust designs. In this context, uncertainties, imperfections, or deviations from the parameters used in the codes exist in the real world. An optimal structure is close to the infeasibility region, so it is necessary to incorporate the uncertainties to provide more robust and reliable designs. On the other hand, the strong budget constraints present in times of crisis seriously compromise infrastructure creation and maintenance policies, especially if there are cost increases when introducing resilience in the design. After a sensitivity analysis of different budgetary policies associated with a time horizon, the expected results aim to detail which typologies, specific repair and conservation actions, and demolition and reuse alternatives are adequate to minimize environmental and social impacts considering variability.

PROYECTO DE INVESTIGACIÓN:

Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas. (RESILIFE). [Resilient life-cycle optimization of socially and environmentally efficient hybrid and modular structures under extreme conditions]. PID2023-150003OB-I00. Investigadores principales: Víctor Yepes y Julián Alcalá.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

De «Fundación» de Asimov, a los Beatles y los atardeceres de Formentera a los desafíos de la ingeniería civil

Paola Villalba (Universidad Central del Ecuador) y Víctor Yepes (Universitat Politècnica de València)

Es muy agradable ver cómo desde la Universitat Politècnica de València se ponen en marcha iniciativas para divulgar el trabajo que realizan los que trabajamos en ella. En este caso, la iniciativa se llama “Revisado por pares”, dirigido por el periodista Luis Zurano, que presenta también con Celia Marín. Este espacio cuenta con la colaboración de la Fundación Española para la Ciencia y la Tecnología (FECYT) del Ministerio de Ciencia e Innovación. Se trata de una serie de podcasts que realiza nuestra universidad, donde:

Queremos conocer al personal investigador de la UPV: sus trayectorias profesionales, qué les decantó por la ciencia y la investigación, los entresijos de la carrera científica… Dale al play y conoce, de dos en dos, a un investigador y una investigadora de la UPV“.

Os paso el enlace y el texto donde podéis ver este tipo de publicaciones: https://podcast.upv.es/programa/revisado-por-pares/

Esta nueva entrega de Revisado por pares tiene como protagonistas a Víctor Yepes y Paola Villalba. Víctor es catedrático de la UPV e investigador del Instituto ICITECH y uno de los científicos de referencia en nuestro país de la ingeniería civil. Mientras, Paloma es doctoranda de la UPV también en el ICITECH, donde llegó procedente de la Universidad Central del Ecuador.

En este podcast, descubrimos un poco de su lado más personal, viajando a Formentera y Florencia y hablando también de los Beatles o de Fundación de Isaac Asimov, entre otras muchas cuestiones. Hablamos también de su trayectoria, de profesores y profesoras que les marcaron. Y abordamos los retos y desafíos de la ingeniería civil y las claves para dedicarse al “apasionante” mundo de la investigación.

Lo podéis escuchar aquí:

 

David Martínez Muñoz y Zhiwu Zhou, Premios Extraordinarios 2024 a sus tesis doctorales

Foto de la izquierda: Lectura de tesis doctoral del Zhou. Foto de la derecha: Lectura de tesis doctoral de David.

No es fácil obtener el Premio Extraordinario a la tesis doctoral en la Universitat Politècnica de València. De hecho, solo se han premiado tres tesis doctorales en el área de ingeniería civil. Pues bien, de esas tres premiadas, dos son de nuestro grupo de investigación. Tuve el honor de dirigir, junto con el profesor Julián Alcalá, la tesis al Dr. Zhiwu Zhou, cuyo título fue “Life Cycle Optimization Analysis of Bridge Sustainable Development”, y que se defendió el 13 de enero de 2023. Asimismo, también tuve ese mismo honor de dirigir, junto con el profesor José V. Martí, la tesis al Dr. David Martínez Muñoz, cuyo título fue “Optimal deep learning assisted design of socially and environmentally efficient steel concrete composite bridges under constrained budgets”, y que se defendió el 19 de julio de 2023.

Este premio extraordinario se suma al ya conseguido por otros de mis doctorandos como Ignacio Payá, Cristina Torres, Leonardo Sierra, Jorge Salas o Ignacio Navarro. Seguro que no serán los únicos.

Desde mi blog quiero expresar mi enhorabuena tanto a Zhou como a David por dichos premios, merecidos, sin duda. En artículos anteriores ya presenté tanto el resumen de una tesis como de la otra. Ahora os paso también algunas de las publicaciones de mayor impacto fruto de dichos trabajos de investigación. Lo mejor está por venir.

Referencias de Zhou:

ZHOU, Z.; WANG, Y.; ALCALÁ, J.; YEPES, V. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, 14: 10752. DOI:10.1038/s41598-024-59531-4

ZHOU, Z.; ZHOU, J.; ZHANG, B.; ALCALÁ, J.; YEPES, V. (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, 101:105201. DOI:10.1016/j.scs.2024.105201

ZHOU, Z.; ZHOU, J.; ALCALÁ, J.; YEPES, V. (2024). Thermal coupling optimization of bridge environmental impact under natural conditions. Environmental Impact Assessment Review, 104:107316. DOI:10.1016/j.eiar.2023.107316

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Carbon impact assessment of bridge construction based on resilience theory. Journal of Civil Engineering and Management, 29(6):561-576. DOI:10.3846/JCEM.2023.19565

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Experimental Research on Diseases of Emulsified Asphalt Mortar Board for Ballastless Tracks. Journal of Materials in Civil Engineering, 35(6):04023156. DOI:10.1061/JMCEE7.MTENG-15149

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on Sustainable Development of the Regional Construction Industry Based on Entropy Theory. Sustainability, 14(24): 16645. DOI:10.3390/su142416645

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on the optimized environment of large bridges based on multi-constraint coupling. Environmental Impact Assessment Review, 97:106914. DOI:10.1016/j.eiar.2022.106914

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Regional sustainable development impact through sustainable bridge optimizationStructures, 41, 1061-1076. DOI: 10.1016/j.istruc.2022.05.047

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental Research and Public Health, 17(16):5953. DOI:10.3390/ijerph17165953

 

Referencias de David:

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2023). Deep learning classifier for life cycle optimization of steel-concrete composite bridges. Structures, 57:105347. DOI:10.1016/j.istruc.2023.105347

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2023). Hybrid swarm intelligence optimization methods for low-embodied energy steel-concrete composite bridges. Mathematics, 11(1):140. DOI:10.3390/math11010140

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Optimal design of steel-concrete composite bridge based on a transfer function discrete swarm intelligence algorithm. Structural and Multidisciplinary Optimization, 65:312. DOI:10.1007/s00158-022-03393-9

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2022). Discrete swarm intelligence optimization algorithms applied to steel-concrete composite bridges. Engineering Structures, 266:114607. DOI:10.1016/j.engstruct.2022.114607

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020:8823370. DOI:10.1155/2020/8823370

PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265

YEPES, V.; DASÍ-GIL, M.; MARTÍNEZ-MUÑOZ, D.; LÓPEZ-DESFILÍS, V.J.; MARTÍ, J.V. (2019). Heuristic techniques for the design of steel-concrete composite pedestrian bridges. Applied Sciences, 9(16), 3253; DOI:10.3390/app9163253

¡Portada en Nature! Investigadores de la UPV idean un nuevo método de diseño de edificios que evita colapsos catastróficos

De vez en cuando se recibe una buena noticia que marca un punto de inflexión en la investigación. Es un honor para mí pertenecer al Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y a la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Valencia. En este contexto, el equipo del catedrático José Miguel Adam ha logrado un hito al publicar un artículo en la revista de mayor impacto por excelencia: NATURE. No solo eso, sino que, además, es portada de dicha revista. Mi más sincera enhorabuena a José Miguel y a su equipo. Os paso la noticia completa.

Un equipo del Instituto ICITECH de la Universitat Politècnica de València (UPV) ha publicado en Nature los últimos resultados de su “radical” propuesta para conseguir edificios ultrarresistentes, que sean capaces de aguantar situaciones extremas causadas por desastres naturales –riadas, inundaciones, deslizamiento de laderas…- explosiones, su propio envejecimiento, o un mantenimiento y conservación inadecuados. Esta propuesta añade al diseño de la estructura de los edificios una última línea de defensa para evitar colapsos catastróficos.

El nuevo método se inspira en cómo los lagartos se protegen de los depredadores al liberar sus colas cuando son atacados.

Los métodos de diseño actuales se basan en mejorar la conectividad entre los componentes de la estructura. En el caso de que algún componente falle, esta conectividad permite que las cargas que soportaban los componentes que fallan se redistribuyan al resto del sistema estructural. Aunque estos métodos resultan eficaces en el caso de pequeños fallos iniciales, pueden aumentar el riesgo de colapso progresivo tras grandes fallos iniciales, conduciendo así a colapsos completos o de gran magnitud. Así sucedió, por ejemplo, en las Champlain Towers y en el derrumbe de un edificio en Peñíscola en 2021, o en la ciudad iraní de Abadan en 2022. Y esto es lo que evita la propuesta surgida del ICITECH de la UPV.

“Nuestro novedoso método de diseño proporciona una solución para superar esta alarmante limitación y conseguir edificios más resilientes, capaces de aislar el colapso a solo la parte de la estructura que ha sufrido el fallo inicial, y salvaguardar el resto del edificio. El nuevo método de diseño ha sido verificado con un ensayo sobre un edificio real. Por tanto, se trata de la primera solución contra la propagación de colapsos en edificios tras grandes fallos iniciales que ha sido probado y verificado a escala real. Con la aplicación del nuevo método de diseño se conseguirá prevenir colapsos catastróficos, protegiendo así vidas humanas y minimizando los costes materiales que supondría un colapso completo de la estructura”, destaca José M. Adam, coautor de la publicación con Nirvan Makoond, Andri Setiawan y Manuel Buitrago; todos ellos miembros del ICITECH de la UPV.

Unos “fusibles” evitan el colapso total

La clave del método ideado por el equipo de la UPV reside en usar el concepto de fusible estructural, que permite aislar las partes dañadas de un edificio con el fin de evitar la propagación de grandes fallos a toda la construcción.

“Esta nueva filosofía es parecida a la forma en que las redes eléctricas se protegen frente a sobrecargas, al conectar diferentes segmentos de la red mediante fusibles eléctricos. Con nuestros diseños, el edificio presenta continuidad estructural bajo condiciones normales de funcionamiento, pero se segmenta cuando la propagación de un fallo es inevitable, reduciendo así el alcance del colapso y evitando el derrumbe total”, apunta Nirvan Makoond.

“La implementación del método repercutirá levemente, o incluso de forma despreciable, en el coste de la estructura, ya que utiliza detalles constructivos y materiales convencionales”, señala Andri Setiawan.

En su estado de desarrollo actual, el nuevo diseño de estos investigadores se puede aplicar a prácticamente cualquier edificio de nueva construcción. “Su eficacia ha sido verificada y demostrada para edificios con estructura prefabricada de hormigón. Actualmente, trabajamos en la aplicación de la metodología a edificios ejecutados con hormigón in situ y a edificios con estructura de acero”, concluye Manuel Buitrago.

Validado en un ensayo pionero a nivel mundial

El desarrollo de este nuevo método de diseño es uno de los resultados más destacados hasta la fecha del proyecto Endure, financiado por el European Research Council – ERC (Consejo Europeo de Investigación) con una ayuda Consolidator Grant de más de 2,5 millones de euros. Fue precisamente en el marco de este proyecto donde se llevó a cabo, en junio del año pasado, un ensayo pionero a nivel mundial que permitió validar sus prestaciones. Las pruebas se hicieron con un edificio completo, a escala real, en el que un gran fallo inicial en la estructura se aisló en una parte del edificio, evitando su propagación a toda la estructura. Cabe resaltar que la investigación se lleva a cabo al 100% en la UPV, siendo los cuatro autores de la publicación investigadores también de la UPV.

Portada de Nature

Nature ha publicado el trabajo del equipo del Instituto ICITECH de la UPV en la portada de su número de hoy. Además, es la primera vez que la revista publica un artículo de investigación en el campo del diseño y construcción de edificios.

Primeros pasos gracias a un proyecto financiado por la Fundación BBVA

El germen de este proyecto surgió de una Beca Leonardo que en 2017 otorgó la Fundación BBVA a José M. Adam. Ahora, siete años más tarde, el investigador del ICITECH – UPV continua con este proyecto revolucionario, de la mano del Consejo Europeo de Investigación, que permitirá levantar edificios más seguros y salvar vidas humanas.

Endure se desarrollará hasta 2026 en el laboratorio de estructuras del ICITECH de la Universitat Politècnica de València, uno de los mayores de Europa para el ensayo de grandes elementos estructurales.

Referencia

Makoond, N., Setiawan, A., Buitrago, M. et al. Arresting failure propagation in buildings through collapse isolation. Nature 629, 592–596 (2024). https://doi.org/10.1038/s41586-024-07268-5

Os dejo el vídeo y el artículo completo, pues está publicado en abierto.

Descargar (PDF, 23.79MB)