Cálculo del transporte hidráulico de pulpas

Figura 1. Bomba horizontal de pulpas (Bouso y Martínez-Pagán, 2023)

Una pulpa es una mezcla líquida que contiene partículas sólidas en suspensión. Las características de la pulpa dependen de la naturaleza, tamaño, forma, densidad y cantidad de las partículas sólidas, así como de la naturaleza, densidad y viscosidad del líquido. El flujo de las pulpas es diferente al de los líquidos homogéneos, donde su naturaleza (laminar, transitorio o turbulento) se determina a partir de las propiedades físicas del líquido y su conductividad. Para calcular un sistema de transporte hidráulico de pulpa, compuesto por una bomba y una tubería, es esencial conocer previamente parámetros como la densidad de sólido y líquido, viscosidad, concentración de sólidos, tipo de tubería y topografía del terreno.

La caracterización de una pulpa es más compleja que la de un líquido debido a la presencia de partículas sólidas y su influencia en la mezcla. Es importante tener en cuenta que una pulpa no es una disolución, sino una suspensión de sólidos en líquidos donde cada componente está claramente definido. Debemos considerar el fenómeno de sedimentación de los sólidos en el líquido, especialmente cuando las turbulencias son bajas o no existen. Este fenómeno puede causar acumulaciones de sólidos y dificultar las operaciones de transporte o almacenamiento. En términos generales, las pulpas se pueden clasificar en dos grupos: pulpas sin sedimentación y pulpas con sedimentación.

Figura 2.  Bomba de pulpas. https://www.mogroup.com/es/informacion/e-books/manual-de-bombas–para-pulpa/

Las pulpas sin sedimentación, también conocidas como pulpas homogéneas, están compuestas por partículas finas (menores de 50 mm) y forma una mezcla homogénea y estable. No causan desgaste significativo, pero requieren una atención especial en la selección y funcionamiento de las bombas debido a su aumento de viscosidad. Cuando el contenido de partículas es alto, su reología se asemeja a la de líquidos No-Newtonianos. Ejemplos de este tipo de pulpa incluyen lodos espesados de la extracción de áridos, lechadas de cemento y lodos de perforación.

Las pulpas con sedimentación están formadas por partículas gruesas que tienden a crear una mezcla inestable y se comportan como líquidos Newtonianos. Generalmente, causan un elevado desgaste y requieren una selección cuidadosa de las tuberías, debido a su tendencia a sedimentar y causar obstrucciones. Este tipo de pulpa es común en el transporte de pulpas y se conoce como pulpa heterogénea, ya que los sólidos no se distribuyen uniformemente en conducciones horizontales a lo largo de su eje vertical a altas velocidades. Las fases sólida y líquida mantienen su propia identidad y el aumento de viscosidad es generalmente de poca importancia. Las pulpas heterogéneas suelen ser de menor concentración de sólidos y con partículas de mayor diámetro que las pulpas homogéneas. Ejemplos incluyen pulpas en plantas de tratamiento de áridos y minerales, equipos de dragado, etc.

En el transporte de pulpas minerales por tubería, la naturaleza de las partículas y las velocidades de flujo determinan los regímenes de flujo, que pueden ser tanto turbulentos como laminares. Sin embargo, en la mayoría de las aplicaciones, el régimen turbulento, que se produce cuando las partículas son gruesas y tienden a sedimentar, es el más común. Este tipo de fluido se conoce como fluido newtoniano. En cambio, las pulpas con partículas finas y uniformes suelen producir regímenes de flujo laminar.

Os dejo a continuación un artículo, elaborado por Juan Luis Bouso y Pedro Martínez-Pagán, donde se presenta un ejemplo de cálculo para una operación de bombeo de pulpas. Se exploran las diferentes alternativas de cálculo, que pueden variar debido a las preferencias personales de los técnicos o a la adaptabilidad de un procedimiento específico a las características de la operación de bombeo. Al final del trabajo, se incluye un anexo con gráficos y cálculos, que pueden ser muy útiles. Espero que os sea de interés.

Descargar (PDF, 36.36MB)

Referencias:

ANDREA, E. (2014). Tecnología metalúrgica. Universidad de Cantabria. https://ocw.unican.es/course/view.php?id=261

BOUSO, J.L.; MARTÍNEZ-PAGÁN, P. (2023). Bombeo de pulpas minerales. Diferentes procedimientos de cálculo. Rocas y Minerales, 605:56-73.

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

MARTÍNEZ-PAGÁN, P.; PERALES, A. (2020). Tecnología metalúrgica, 2ª edición. Universidad Politécnica de Cartagena. https://ocw.bib.upct.es/course/view.php?id=178

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fórmula de Hazen-Williams para calcular las pérdidas por fricción en tuberías

Ecuación de Hazen-Williams. Pérdida de carga en m, caudal en m3/s, longitud y diámetro interno de la tubería en m.

La ecuación de Hazen-Williams apareció en la primera década del siglo XX (1905), respaldada por los experimentos de sus autores. Se trata de un método muy empleado, pues es una fórmula empírica sencilla, dimensional, siendo su cálculo simple, debido a que su coeficiente de rugosidad C no depende de la velocidad ni del diámetro de la tubería. Sin embargo, solo es válida siendo el agua el fluido circulante a temperaturas entre 5 °C y 25 °C. Su uso está a conductos mayores de dos pulgadas (50,8 mm) y menores de seis pies (1.828,8 mm) de diámetro. Por otro lado, se recomienda utilizarla para valores de velocidades de circulación inferiores a los 10 pies por segundo (3,05 m/s). La aplicación de la fórmula es adecuada solo para la operación de tuberías en regímenes laminar o de transición.

Os dejo a continuación un nomograma que he elaborado conjuntamente con el profesor Pedro Martínez Pagán. En este caso, en la fórmula, la perdida de carga se expresa en m, el caudal en m3/h, el diámetro de la tubería en mm y la longitud de la tubería en m, que son medidas habituales. Es posible en el nomograma usar medidas anglosajonas, pues hemos colocado una escala también para esas unidades. Espero que os sea útil.

 

También os dejo un problema resuelto que, espero, os sea de interés.

Descargar (PDF, 1.08MB)

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Problema del drenaje en el vaciado de un solar. Corrección de Jacob a la fórmula de Dupuit-Thiem

Resulta habitual en edificación tener que realizar la excavación de un solar cuando tenemos un nivel freático somero. En este caso es común el uso de pozos drenantes para ejecutar la excavación en seco. En la asignatura de Procedimientos de Construcción hay un tema dedicado al control del nivel freático.

En el problema que os paso a continuación, utilizo un solo pozo para mantener el nivel piezométrico controlado. Para eso he empleado la conocida fórmula de Dupuit-Thiem. Sin embargo, dicha expresión se ha deducido para acuíferos confinados, donde es más sencillo simplificar las condiciones de contorno. En el caso de acuíferos libres, especialmente cuando su espesor no es muy grande, se puede usar dicha ecuación aplicando la corrección de Jacob.

He querido irme al caso en que desconozco la permeabilidad del terreno. Para eso debo medir los descensos en, al menos, un par de puntos, para obtener la Transmisividad, que es uno de los parámetros empleados en la fórmula de Dupuit-Thiem. Espero que este problema os sea de interés.

Descargar (PDF, 367KB)

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales, nº 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curso en línea de “Procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención y control del agua subterránea en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-contencion-y-control-del-agua-subterranea-en-obras/?fbclid=IwAR0d1Ga2q6tuY_AfplyREj4TIOjMztLSRsy6aykXT-X4X903Mc8ERBw6TyY

Os paso un vídeo explicativo y os doy algo de información tras el vídeo: https://www.youtube.com/watch?v=Z1mkod8SPns

Este es un curso básico de procedimientos de contención y control del agua subterránea en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas tipologías y aplicabilidad de los procedimientos de contención y control del agua utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de sistemas de control del agua (ataguías, pantallas, escudos, drenajes superficiales, bombeos profundos, congelación del suelo, electroósmosis, inyecciones, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso está organizado en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada Lección didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado tres unidades adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.

El curso está programado para una dedicación de 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Éste curso único impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de los procedimientos de contención y control del agua en obras de ingeniería civil y de edificación
  2. Evaluar y seleccionar el mejor tipo de procedimiento necesario para una construcción con problemas de agua en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Conceptos básicos del agua en medio poroso
  • – Lección 2. El problema del agua en las excavaciones
  • – Lección 3. La magia de las tensiones efectivas en geotecnia
  • – Lección 4. El sifonamiento en las excavaciones: el efecto Renard
  • – Lección 5. Clasificación de las técnicas de control del agua en excavaciones
  • – Lección 6. Selección del sistema de control del nivel freático
  • – Lección 7. Drenaje de excavaciones mediante bombeos superficiales y sumideros
  • – Lección 8. Drenaje de excavaciones mediante zanjas perimetrales
  • – Lección 9. Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem
  • – Lección 10. Cálculo de un agotamiento mediante pozos
  • – Lección 11. Tipología de las estaciones de bombeo
  • – Lección 12. Altura neta positiva de aspiración de una bomba
  • – Lección 13. Bombas empleadas en el control del nivel freático de una excavación
  • – Lección 14. Procedimientos constructivos de pozos profundos para drenaje
  • – Lección 15. Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio
  • – Lección 16. Drenaje de excavaciones mediante bombeo desde pozos filtrantes
  • – Lección 17. Drenaje de excavaciones mediante bombeo desde pozos eyectores
  • – Lección 18. Drenajes horizontales instalados mediante zanjadoras
  • – Lección 19. Pozos horizontales ejecutados mediante perforación horizontal dirigida
  • – Lección 20. Drenes de penetración transversal: drenes californianos
  • – Lección 21. Control del nivel freático mediante lanzas de drenaje (wellpoints)
  • – Lección 22. Drenaje horizontal con pozos radiales
  • – Lección 23. Galerías de drenaje en el control del nivel freático
  • – Lección 24. Electroósmosis como técnica de drenaje del terreno
  • – Lección 25. Procedimientos para la contención del agua
  • – Lección 26. Evaluación aproximada de caudales de bombeo en excavación de solares
  • – Lección 27. Contención de aguas mediante ataguías en excavaciones
  • – Lección 28. Contención del agua mediante ataguías de tierras y escollera
  • – Lección 29. Contención del agua mediante tablestacas
  • – Lección 30. Contención del agua mediante ataguías celulares
  • – Lección 31. Contención del agua mediante cajones indios
  • – Lección 32. Contención del agua mediante cajones de aire comprimido
  • – Lección 33. Contención del agua mediante muros pantalla
  • – Lección 34. Contención del agua mediante pantallas de pilotes secantes
  • – Lección 35. Contención del agua mediante pantallas plásticas de bentonita-cemento
  • – Lección 36. Contención del agua mediante pantallas de suelo-bentonita
  • – Lección 37. Contención del agua mediante pantallas de suelo-cemento con hidrofresa
  • – Lección 38. Contención del agua mediante pantallas de lodo autoendurecible armado
  • – Lección 39. Contención del agua mediante pantallas realizadas por mezcla profunda de suelos
  • – Lección 40. Contención del agua mediante pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
  • – Lección 41. Contención del agua mediante pantallas de geomembranas
  • – Lección 42. Contención del agua mediante inyección del terreno
  • – Lección 43. Contención del agua mediante inyección de lechadas de cemento
  • – Lección 44. Contención del agua mediante inyección de lechadas de arcilla
  • – Lección 45. Contención del agua mediante inyección de lechadas químicas
  • – Lección 46. Contención del agua mediante inyecciones de alta presión: jet-grouting
  • – Lección 47. Contención del agua mediante congelación de suelos
  • – Lección 48. Contención del agua mediante escudos presurizados con aire comprimido
  • – Lección 49. Contención del agua mediante escudos presurizados con lodos
  • – Lección 50. Contención del agua mediante escudos de presión de tierras
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 115 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido cuatro ediciones. También destaca el curso sobre “Procedimientos de construcción de cimentaciones y estructuras de contención en obra civil y edificación”, que ya va por su segunda edición.

Clasificación de las técnicas de control del agua en excavaciones

Figura 1. Bajo nivel freático. https://www.keller.com.es/experiencia/soluciones/bajo-nivel-freatico

Cuando se realiza una excavación, la presencia de agua subterránea siempre provoca problemas. No solo dificulta el desarrollo de los trabajos, sino que también debilita los taludes o el fondo, comprometiendo su estabilidad.

Las aguas interfieren el desarrollo de los trabajos, por lo que hay que evitar que lleguen a los tajos mediante captaciones locales, ataguía, canaletas, drenajes, etc., evacuándolas por gravedad, y reduciendo el bombeo a lo estrictamente necesario.

El impacto del agua es de tal relevancia que condiciona el diseño de la estructura y del procedimiento constructivo, afectando consecuentemente al coste. Por tanto, no hay más remedio que impedir en lo posible la entrada de agua en la excavación (barreras físicas permanentes o provisionales) y expulsar fuera la que pudiese entrar (bombeos), o bien modificando las propiedades en el terreno y el agua (inyecciones en el terreno, congelación).

Todas las técnicas que permiten excavar en presencia de agua, tanto sea creando barreras impermeables al abrigo de las cuales es posible drenar la excavación, o bien extrayendo el agua con un caudal mayor al que el terreno puede proporcionar, se van a denominar técnicas de control del nivel freático. No obstante, y en términos estrictos, el “control del nivel freático” (dewatering) solo se debería aplicar a acuíferos libres formados por suelos de grano grueso. En acuíferos libres de grano fino o en acuíferos confinados deberíamos hablar de “control de la presión intersticial” (pore water pressure).

Figura 2. Posibilidades de control del nivel freático mediante extracción del agua o por barreras impermeables

Pérez Valcárcel (2004) clasifica las técnicas en (a) sistemas de contención de agua: tablestacas, ataguías, muros pantalla, congelación o inyección del terreno; y (b) sistemas de drenaje de excavaciones: bombeo desde zanjas perimetrales, bombeo desde pozos filtrantes, bombeo con agujas filtrantes (wellpoint) y electroósmosis. Por su parte, García Valcarce et al. (1995), además de los sistemas de contención de agua mencionados, subdivide los sistemas de drenaje en sistemas de drenaje propiamente dichos y sistemas de agotamiento, donde entrarían los drenajes profundos.

No obstante, existen más clasificaciones. Por ejemplo, Powers (1992) clasifica dichas técnicas en cuatro grupos:

  • Sistemas de bombeo abierto (sump pumping): el flujo del agua de una excavación se recoge en zanjas y sumideros y posteriormente se bombea al exterior.
  • Sistemas de predrenaje o drenaje previo del terreno (predrainage): antes de excavar se drena el suelo mediante pozos de bombeo, wellpoints, eyectores o drenes. Se pretende una excavación en seco.
  • Sistemas de diafragmas o de contención del agua (cut off): mediante tablestacas, muros pantalla, pantallas de lodos, congelación del terreno o inyecciones. Suelen usarse en combinación con los sistemas de bombeo.
  • Sistema de exclusión del agua (excluded): mediante aire comprimido, una entibación de lechada o con una entibación de presión de tierras, muy utilizados en la construcción de túneles mediante escudos presurizados.

Se podrían resumir las clasificaciones anteriores en la propuesta de la Figura 3. En esta clasificación, la contención del agua se realiza mediante barreras físicas como ataguías o pantallas, o bien mediante métodos de exclusión; mientras que el drenaje se puede realizar antes o durante la excavación, diferenciando de esta forma el agotamiento del rebajamiento del nivel freático.

Figura 3. Clasificación de las técnicas de control del agua. Elaboración propia.

En el caso de la extracción del agua, tenemos dos posibilidades en función del momento en que realiza en relación con la excavación:

  1. Agotamiento del nivel freático, cuando se evacua el agua que se filtra al recinto de la excavación conduciéndola a una zanja o un sumidero, donde se bombea. Las filtraciones se controlan y evacúan durante la excavación, sin depresión previa del freático.
  2. Rebajamiento del nivel freático, cuando se hace descender el nivel freático por debajo de los taludes y el fondo del recinto de la excavación. Se controla y evacua el agua antes de la excavación.

El procedimiento a utilizar depende de los caudales a bombear, que a su vez dependen de la importancia de los acuíferos y del coeficiente de permeabilidad del terreno. Normalmente el rebajamiento es preferible al agotamiento directo, entre otras, por las siguientes razones:

  • En el caso del agotamiento, el recinto excavado está más o menos blando y encharcado, lo cual dificulta el paso de operarios y maquinaria. Con un rebajamiento previo, la excavación puede realizarse prácticamente en seco e incluso con un terreno ligeramente cohesionado debido a las fuerzas capilares. Además, es más sencillo excavar y transportar un terreno más bien seco que empapado.
  • El agotamiento puede provocar sifonamiento y tubificación, puede descomprimir el terreno o degradarlo por arrastre de finos, convirtiéndolo en colapsable.
  • El rebajamiento contribuye a aumentar la estabilidad de los taludes y disminuye los empujes sobre las estructuras de contención (entibación, pantallas o tablestacas). El rebajamiento puede utilizarse, incluso, para aumentar la presión efectiva y provocar su consolidación.

Pero también existen algunos inconvenientes con el rebajamiento del nivel freático:

  • Si falla el dispositivo que mantiene el rebajamiento, puede entrar en poco tiempo agua en la excavación, desmoronándose taludes o levantando el fondo.
  • Como el rebajamiento no se realiza en un área muy concreta, en los alrededores se producirá un aumento de las tensiones efectivas, y por tanto, asientos que pueden producir daños en estructuras próximas.

Los métodos apropiados de control del nivel freático dependerán de la naturaleza del suelo y de la profundidad de la excavación. Así, en función de la permeabilidad del terreno, la remoción del agua puede hacerse por gravedad, por aplicación de vacío o por electroósmosis. Así, el agotamiento se utilizará en gravas, pues presentan una elevada permeabilidad, con caudales importantes y terrenos poco erosionables. Una permeabilidad entre 10-1 < k < 10 (m/s) permite el agotamiento desde la misma excavación, si ésta penetra menos de 3 m en el nivel freático. Para mayores permeabilidades o mayores profundidades de excavación, habría que recurrir a otros procedimientos constructivos. En cambio, el rebajamiento será útil en arenas o arenas limosas, con una permeabilidad entre 10-6 < k < 10-1 (m/s). En el caso de arcillas y limos, con permeabilidades entre  10-7 < k < 10-6 (m/s), el rebajamiento suele realizarse por vacío o electroósmosis, pues el caudal es bajo y el cono formado por la depresión del nivel freático se realiza lentamente. Para permeabilidades menores, comprendidas entre 10-9 < k < 10-7 (m/s)  basta con hacer algún agotamiento periódico de la excavación. Para permeabilidades menores a 10-9 (m/s), se puede excavar en seco.

Os dejo un Polimedia explicativo sobre este tema. Espero que os sea de interés.

Como complemento, os dejo también, por su interés, un artículo de Ferrer, Davila y Sahuquillo donde se analiza el proceso de drenaje en obra civil ubicada en zona urbana. Espero que os sea útil.

Descargar (PDF, 2.01MB)

REFERENCIAS:

  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem

Figura 1. Agua en excavación. http://www.saboredo.com/el-agua-en-la-obra-civil/

Cuando se quiere construir bajo el nivel freático, es necesario desecar el subsuelo antes de realizar la excavación para permitir que los trabajos se efectúan en condiciones relativamente secas (Figura 1). La ausencia de agua (sin llegar a un estado completamente seco) en la excavación estabiliza el fondo y los taludes, reduce las cargas laterales en los taludes, hace que el material de excavación sea más ligero y fácil de manejar y evita un fondo movedizo y lodoso, muy inconveniente para las actividades posteriores.

Para conservar una excavación libre de agua, en casi todos los tipos de suelos, el nivel freático se debe mantener a una profundidad, por lo menos de 60 cm o, preferentemente, a 150 cm por debajo del fondo de la excavación.

Aunque son los contratistas especializados en este tipo de trabajos los que determinan con mayor detalle las necesidades y los posibles rendimientos de la operación, siempre es necesario un análisis simplificado que definir “a priori” qué equipos serían necesarios y la viabilidad de la operación.

En la Figura 2 se muestra un esquema simplificado de la operación del abatimiento del nivel freático. En él se puede ver cómo varía la depresión en el nivel freático con la distancia al punto de bombeo. Se pueden utilizar pozos de observación o piezómetros a ciertas distancias (como r1 y r2) para controlar la depresión realizada.

Figura 2. Esquema del abatimiento del nivel freático mediante un pozo

El proceso de bombeo es un fenómeno de régimen variable, que evoluciona con el tiempo, hasta llegar a estabilizarse en un régimen permanente. A efectos prácticos, las fórmulas referentes al régimen estable son útiles para estudiar el rebajamiento provisional del nivel freático. El estudio del pozo aislado se realiza planteando el problema con simetría radial. Se supone que a suficiente distancia, las líneas de corriente son horizontales y las equipotenciales son verticales, supuesto que se conoce como hipótesis de Dupuit. Según la fórmula empírica de Sichardt, se puede calcular la distancia R a la cual se supone que termina la influencia del pozo con la siguiente expresión dimensional, donde R se expresa en m, k en m/s y sw es el descenso del nivel freático en el pozo, en m :

Un análisis simplificado del fenómeno implica, tal y como indica Dupuit (Harr, 1962) asumir que (a) para una pequeña inclinación de la línea de filtración, las líneas de flujo son horizontales y (b), que el gradiente hidráulico es igual a la inclinación de la superficie libre y es independiente de la profundidad.

La ecuación que rige el caudal en este caso es la siguiente:

En este caso, se asume que el régimen es permanente en un acuífero libre, siendo toda la capa de terreno homogénea con un coeficiente de permeabilidad hidráulica “k“.

Si se cumple que “q” es constante a lo largo del flujo, la ecuación anterior se puede integrar entre las distancias r1 y r2, obteniéndose la siguiente expresión (fórmula de Dupuit-Thiem):

Por tanto, una vez se ha determinado la extensión de la excavación, usando los parámetros r1, r2, h1 y h2, se puede utilizar la expresión anterior para determinar la capacidad requerida por la bomba. Asimismo, se podría utilizar la expresión anterior para determinar el coeficiente medio de permeabilidad del terreno sabiendo el caudal bombeado.

Es evidente que, en un caso real, existen muchas capas de terreno, con diferentes propiedades, por lo que la ecuación anterior debe particularizarse. Remitimos al lector al trabajo de Cedergreen (1989) para situaciones diferentes a las descritas. También podéis ver algunos problemas resueltos que pusimos en su momento en una entrada anterior.

Referencias

Cedergreen, H.R., 1989, Seepage, Drainage and Flow Nets, John Wiley, New York.

Harr, M., 1962, Groundwater and Seepage, McGraw-Hill, New York.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.