Evaluación de la vulnerabilidad urbana desde la perspectiva de la planificación estratégica

Destrucción causada por la DANA del 29 de octubre de 2024 en Valencia. https://www.iagua.es/blogs/jose-maria-bodoque/como-mejorar-gestion-riesgo-zonas-afectadas-dana-evitar-catastrofe

La evaluación de la vulnerabilidad urbana (EVA) se ha convertido en una herramienta esencial para la gestión de riesgos y la planificación estratégica de ciudades sostenibles. Un artículo publicado en el Journal of Cleaner Production describe los avances en este campo, abordando las metodologías más avanzadas, las líneas de investigación prioritarias y sus implicaciones para la práctica y la formulación de políticas. Este informe desglosa los hallazgos principales y resalta su impacto práctico y las aportaciones metodológicas. Destacamos la importancia de este trabajo, relacionado directamente con el desastre provocado por la DANA en Valencia, el 29 de octubre de 2024.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

¿Qué es la vulnerabilidad urbana y por qué evaluarla?

La vulnerabilidad urbana mide la susceptibilidad de las ciudades a impactos negativos como desastres naturales, cambios climáticos, fallos en la infraestructura y crisis sociales. Según el artículo, la vulnerabilidad de un sistema urbano depende de:

  • Exposición: Grado en que el sistema está sujeto a una amenaza.
  • Sensibilidad: Capacidad del sistema para ser afectado negativamente.
  • Capacidad adaptativa: Habilidad para responder y recuperarse de las amenazas.

La Evaluación de Vulnerabilidad Urbana (EVA) tiene como objetivo identificar estos factores para informar sobre la toma de decisiones en el ámbito de la planificación estratégica, orientando las acciones hacia la resiliencia y la sostenibilidad urbana.

Relación con la Planificación Estratégica Urbana (USP)

La planificación estratégica urbana, basada en enfoques que evolucionan desde la predicción y el control hacia la adaptabilidad y la inclusión, proporciona un marco idóneo para integrar la EVA. Ambas disciplinas comparten desafíos como la incertidumbre, la necesidad de enfoques multidimensionales y la participación de actores clave.

Evolución y marco conceptual

Tres etapas en la evolución de la EVA

El artículo traza la evolución de la EVA a través de tres etapas fundamentales:

  1. Etapa predictiva: Los métodos iniciales se enfocaban en evaluar impactos utilizando modelos simples y lineales. Estos se limitaban a prever riesgos y sugerir respuestas reactivas.
  2. Etapa de vulnerabilidad: Incorporó conceptos de capacidad adaptativa y sensibilidad. Comenzó a incluir enfoques más integrales que consideraban aspectos socioeconómicos y biológicos.
  3. Etapa adaptativa: Introduce una visión dinámica, aceptando la incertidumbre y adoptando estrategias que respondan a cambios continuos. Esta etapa se centra en la planificación adaptativa y el manejo de riesgos en múltiples escenarios.

Marco conceptual para la EVA

El análisis del artículo se estructura en torno a atributos genéricos y de investigación, que permiten categorizar y evaluar los métodos de EVA:

  • Atributos genéricos:
    1. Abordaje: Clasificado en biológico, social e integral. Este último combina ambos factores, proporcionando una evaluación más holística.
    2. Estímulos: Incluyen amenazas como terremotos, inundaciones y fallas de infraestructura, clasificadas como de primer o segundo orden según su origen.
    3. Etapa de desarrollo: Impacto (diagnóstico inicial), vulnerabilidad (caracterización de capacidades) o adaptación (formulación de estrategias adaptativas).
  • Atributos de investigación:
    1. Robustez: Habilidad del modelo para manejar incertidumbre.
    2. Procesos participativos: Incorporación de opiniones y experiencias de múltiples actores.
    3. Multiescala: Integración de diferentes niveles de análisis.
    4. Naturaleza dinámica: Consideración del cambio en el tiempo y el contexto.
    5. Capacidad multiobjetivo: Evaluación de múltiples intereses y conflictos.
    6. Enfoques cognitivos: Identificación de relaciones causa-efecto y apoyo al aprendizaje en la toma de decisiones.

Metodología aplicada en el análisis

El artículo utiliza una metodología sistemática en cuatro pasos para identificar y analizar métodos EVA:

  1. Búsqueda exhaustiva: En bases de datos como Scopus y Web of Science, enfocándose en estudios recientes (a partir de 2010).
  2. Revisión por contenido: Identificación de trabajos relevantes que incluyan métodos novedosos de EVA.
  3. Categorización: Clasificación según atributos genéricos y de investigación.
  4. Análisis cuantitativo: Uso de herramientas estadísticas para evaluar tendencias, correlaciones y vacíos en la investigación.

De los 65 estudios seleccionados, la mayoría se encuentra en la etapa de vulnerabilidad, lo que refleja una transición hacia enfoques más integrales y adaptativos.

Hallazgos principales

Los estudios actuales muestran un predominio de métodos integrales que combinan factores biológicos y sociales (35 %), superando a los enfoques exclusivamente biológicos (34 %) y sociales (31 %), lo que permite evaluaciones más precisas para la toma de decisiones. El atributo más investigado es la robustez (33 %), lo que refleja la prioridad de gestionar la incertidumbre y mejorar la fiabilidad de los resultados. Sin embargo, la participación ciudadana, que es fundamental para integrar las perspectivas sociales, está poco desarrollada (22 %), mientras que las dimensiones multiescalares y dinámicas, que son esenciales para entender la complejidad urbana, reciben poca atención (6 %).

Relación entre atributos y estímulos

Los métodos EVA se centran principalmente en amenazas naturales como terremotos (34 %) e inundaciones (24 %). Estas categorías tienen mayor presencia en enfoques biológicos e integrales, mientras que los estímulos sociales y relacionados con infraestructuras están menos representados.

Impacto de los enfoques integrales

Los enfoques integrales son eficaces para avanzar hacia etapas adaptativas. En el caso de los fallos de infraestructura, combinar simulaciones con análisis socioeconómicos permite identificar vulnerabilidades críticas y proponer soluciones integradas. En casos de inundaciones, los modelos de robustez y el análisis de participación comunitaria refuerzan la legitimidad de las estrategias adaptativas.

Implicaciones prácticas

Política y planificación

  1. Desarrollo de infraestructuras resilientes: Incorporar resultados de EVA en la planificación de sistemas urbanos adaptativos y flexibles.
  2. Participación comunitaria: Diseñar procesos inclusivos que canalicen las perspectivas ciudadanas hacia decisiones legítimas y eficaces.
  3. Integración de escalas: Conectar análisis locales con dinámicas regionales y globales, fomentando la coherencia entre niveles de planificación.

Investigación y tecnología

  1. Mejora de modelos de robustez: Implementar técnicas avanzadas como redes complejas y análisis de Monte Carlo.
  2. Promoción de métodos multiobjetivo: Usar enfoques heurísticos y de optimización para equilibrar múltiples intereses.
  3. Fomento de enfoques dinámicos: Incluir simulaciones basadas en el tiempo para anticipar cambios en la vulnerabilidad.

Conclusión

La evaluación de la vulnerabilidad urbana ha progresado significativamente hacia enfoques integrales y adaptativos, pero persisten desafíos, especialmente en lo que respecta a la participación ciudadana, la multiescala y la naturaleza dinámica. Los métodos EVA son fundamentales para abordar la complejidad de la planificación urbana en un mundo cada vez más incierto. El artículo destaca que la inversión en investigación interdisciplinaria y tecnología puede acelerar la transición hacia ciudades más resilientes y sostenibles.

Referencia:

SALAS, J.; YEPES, V. (2018). Urban vulnerability assessment: Advances from the strategic planning outlook. Journal of Cleaner Production, 179:544-558. DOI:10.1016/j.jclepro.2018.01.088

Os paso la versión autor del artículo completo, por si os interesa leerlo.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Losas aligeradas con análisis multivariante: innovación, eficiencia y sostenibilidad en los Métodos Modernos de Construcción

Innovación y optimización en el diseño estructural: losas aligeradas con análisis multivariante

La construcción moderna está en constante evolución para superar los retos asociados al alto consumo de materiales, la sostenibilidad ambiental y los costes elevados. En este contexto, las losas aligeradas con esferas o discos plásticos presurizados se presentan como una solución estructural innovadora que combina eficiencia, sostenibilidad y funcionalidad. Este artículo detalla, basándose en el análisis exhaustivo del documento presentado, cómo la metodología de análisis multivariante permite dimensionar con precisión este tipo de losas, optimizando recursos y reduciendo el impacto ambiental.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Losas de hormigón armado sin vigas, aligeradas con esferas o discos plásticos. https://www.prenovaglobal.com/index.php/es/losas-sin-vigas-con-esferas-o-discos/

Introducción a las losas aligeradas

Las losas de hormigón armado son elementos clave en cualquier edificación, diseñadas para soportar cargas verticales y transferirlas a los soportes principales. Sin embargo, su peso propio plantea un desafío técnico y económico, especialmente cuando hay grandes luces entre apoyos, ya que se necesitan más materiales y refuerzos, lo que aumenta los costos y el impacto ambiental.

El concepto de losas aligeradas

Este sistema estructural combina los Métodos Modernos de Construcción (MMC) con la sostenibilidad ambiental e integra aligeradores huecos de materiales reciclados, como discos o esferas plásticas presurizadas, en el núcleo de las losas. Estas estructuras reducen el peso propio, optimizan las cargas transmitidas y permiten utilizar menos hormigón y acero sin comprometer la resistencia estructural.

Innovación técnica: metodología para el dimensionamiento

Base del estudio

La metodología presentada analiza 67 edificios construidos con losas aligeradas y registra 75 observaciones de forjados. Estos datos se procesaron mediante análisis estadístico y modelos de regresión multivariante, lo que permitió desarrollar ecuaciones predictivas altamente precisas para calcular el espesor de las losas en función de sus características estructurales.

Variables clave

  1. Luz principal (L): Distancia entre los apoyos principales.
  2. Espesor de la losa (E): Variable dependiente del modelo.
  3. Altura del disco o diámetro de la esfera (H): Elemento aligerante.
  4. Sobrecarga (Q): Definida por el uso del edificio.
  5. Superficie construida: Influye en la carga total transferida.
  6. Número de plantas: Relacionado con la distribución de cargas.

Resultados del análisis

El estudio identificó una fuerte correlación entre estas variables, especialmente entre el espesor de la losa y la luz entre apoyos. Esto permitió formular una ecuación que explica hasta el 98,34 % de la variabilidad del espesor de las losas aligeradas.

Ecuación ajustada del modelo final:

Aspectos destacados:

  • La relación cuadrática entre la luz y el espesor refleja la carga que predomina en la sección.
  • La altura del disco aligerante influye directamente en el diseño, que está condicionada por los espesores comerciales disponibles.

Validación estadística

Se realizaron pruebas de normalidad (Shapiro-Wilk y Kolmogorov-Smirnov) y análisis de residuos. Los residuos siguieron una distribución normal, confirmando la robustez y validez del modelo propuesto.

Criterios de diseño

  • Para luces mayores de 7,2 m o sobrecargas superiores a 2 kN/m², el modelo proporciona cálculos más precisos que las reglas tradicionales.
  • Se recomienda utilizar este modelo como guía inicial para seleccionar el tamaño adecuado de los aligeradores.

Beneficios económicos y ambientales

El uso de losas aligeradas supone una mejora sustancial en términos de costes y sostenibilidad:

Ahorro de materiales

  • Se ha reducido el consumo de hormigón hasta en un 30 %, lo que equivale a 1000 m³ menos por cada 10 000 m² de losas construidas.
  • Disminución del uso de acero en un 20 %, lo que optimiza los refuerzos y las cimentaciones.

Impacto ambiental

  • Reducción de emisiones de CO₂: por cada 10 000 m² de losas, se evita la emisión de 220 toneladas de CO₂.
  • Uso de materiales reciclados para los aligeradores, lo que promueve la economía circular.
  • Se consume menos agua y energía durante la construcción.

Optimización de costes

  • Las estructuras más ligeras reducen la demanda de cimentaciones y elementos de soporte.
  • Se necesita menos cimbrado y los tiempos de construcción son más cortos.
  • Aumento de la eficiencia global del proyecto.

Aplicaciones y comparativas estructurales

Las losas aligeradas son particularmente útiles en edificios residenciales, comerciales e industriales donde se requieren luces amplias (de 5 a 16 m). Su flexibilidad y adaptabilidad permiten su uso en una amplia variedad de aplicaciones.

Comparación con losas macizas

  1. Peso y carga:
    • Las losas aligeradas reducen el peso propio hasta en un 30 %.
    • Al transferir menos cargas a los pilares y cimentaciones, se reduce el riesgo de daños.
  2. Resistencia estructural:
    • Ofrece una resistencia a la flexión y al punzonamiento comparable a la de las losas macizas.
    • Incorporación de zonas macizas alrededor de los pilares para mejorar la capacidad cortante.
  3. Flexibilidad en el diseño:
    • Permite mayores luces y diseños arquitectónicos más libres.
    • Facilita la apertura de huecos para instalaciones o reformas en el futuro.

Desafíos y perspectivas futuras

Aunque este sistema presenta numerosos beneficios, aún enfrenta ciertos retos que deben abordarse:

  1. Estandarización del diseño:
    • Es necesario desarrollar normas que regulen el uso de aligeradores en distintos contextos.
    • Hay que incorporar criterios adicionales, como la resistencia al fuego y la durabilidad, en los modelos de diseño.
  2. Optimización del sistema:
    • Explorar nuevos materiales reciclados para mejorar la sostenibilidad del sistema.
    • Desarrollar herramientas digitales basadas en dicho modelo para facilitar su aplicación.
  3. Estudios comparativos ampliados:
    • Evaluar el rendimiento de las losas aligeradas frente a sistemas tradicionales, como los forjados reticulares.
    • Realizar un análisis del ciclo de vida completo que tenga en cuenta el impacto económico, ambiental y social.

Conclusiones

Este estudio ofrece una herramienta innovadora para el dimensionamiento eficiente de losas aligeradas, basada en el análisis multivariante y en criterios estadísticos rigurosos. Estas estructuras no solo optimizan el uso de materiales, sino que también reducen el impacto ambiental y fomentan la sostenibilidad en la construcción.

Con un enfoque que combina diseño avanzado, ahorro de recursos y flexibilidad arquitectónica, las losas aligeradas están transformando la forma de construir edificios modernos. A medida que se perfeccionen los modelos y se amplíen sus aplicaciones, este sistema se perfilará como una solución fundamental para construir un futuro más sostenible y eficiente.

Os dejo la presentación que se hizo en el congreso:

Como está publicado en abierto, os dejo la comunicación completa a continuación:

Pincha aquí para descargar

Referencia:

SÁNCHEZ-GARRIDO, A.; GUAYGUA, B.; VILLALBA, P.; YEPES, V. (2024). Ingeniería de proyectos basada en modelos de análisis multivariante. Aplicación al dimensionamiento de losas planas aligeradas. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain), pp. 445-459. DOI:10.61547/2402013

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Losas aligeradas multiaxiales: innovación y sostenibilidad en los Métodos Modernos de Construcción

Vivienda unifamiliar con losas aligeradas multiaxiales «Unidome»

El artículo de investigación presentado en el 28th International Congress on Project Management and Engineering por los autores Sánchez-Garrido, Yepes-Bellver, Saiz y Yepes es un análisis de losas aligeradas multiaxiales empleadas en edificación.

En la actualidad, el sector de la construcción se enfrenta a desafíos significativos relacionados con la necesidad de optimizar recursos, minimizar el impacto ambiental y satisfacer demandas estructurales complejas. Ante este panorama, los Métodos Modernos de Construcción (MMC) han surgido como una alternativa disruptiva a las técnicas tradicionales. Este artículo analiza la implementación de losas aligeradas multiaxiales, y destaca su diseño, beneficios, impacto en la sostenibilidad y su comparación con estructuras convencionales.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El auge de los Métodos Modernos de Construcción

Los MMC, también conocidos como «construcción inteligente», introducen un enfoque industrializado que revoluciona la forma de diseñar y construir edificios. Este concepto, inicialmente popularizado en el Reino Unido, abarca tecnologías modulares y procesos automatizados que hacen que la construcción sea más rápida, económica y sostenible.

A diferencia de los métodos tradicionales, los MMC integran disciplinas como la ingeniería estructural, la arquitectura y la gestión de proyectos. Estas técnicas permiten aprovechar al máximo los materiales, reducir los residuos y acortar los plazos de ejecución. Dentro de este enfoque, destacan las losas aligeradas multiaxiales, una solución que combina eficiencia estructural y sostenibilidad.

Características técnicas de las losas aligeradas

Las losas aligeradas multiaxiales suponen una evolución frente a las losas macizas tradicionales. Su diseño incorpora elementos huecos, como los formadores «Unidome», que sustituyen el hormigón en áreas de baja capacidad portante, lo que genera importantes beneficios estructurales y medioambientales.

  1. Materiales:
    • Hormigón armado.
    • Aligeradores de plástico reciclado (HDPE o PP).
    • Barras de acero para refuerzo y fijación.
  2. Diseño:
    • Reducción de hasta el 35 % del hormigón empleado.
    • Aligeramiento del peso propio de la losa, lo que facilita su transporte y montaje.
    • Incorporación de zonas macizas en áreas críticas, como las cercanas a pilares, para garantizar la resistencia a cortante y al punzonamiento.
  3. Flexibilidad estructural:
    • Reducción de entre un 5-10 % en el canto del forjado.
    • Aumento de luces hasta un 40 % más respecto a las losas macizas.
    • Mejora en la distribución de cargas y en el comportamiento frente a sismos.
  4. Durabilidad:
    • Diseño optimizado para prevenir fallos estructurales por flexión, cortante o cargas axiales.
    • Resistencia al fuego gracias a recubrimientos específicos y diseño uniaxial o biaxial.

Comparativa: estructura convencional frente a MMC

Para evaluar el impacto de las losas aligeradas, se realizó un estudio de caso en un edificio residencial público de Chiclana (Cádiz), donde se compararon dos alternativas estructurales: una convencional y otra basada en MMC.

Opción A: Estructura convencional

  • Características:
    • 10 pilares para luces de 6,6 m.
    • Losas macizas de hormigón armado con espesores de 26-28 cm.
    • Mayor peso propio, que requiere cimentaciones más robustas.
  • Materiales utilizados:
    • 509,87 m³ de hormigón.
    • 59.837 kg de acero.

Opción B: Estructura MMC con losas aligeradas

  • Características:
    • 6 pilares soportan luces de hasta 13,2 m, eliminando filas intermedias.
    • Losas aligeradas de 40-44 cm con un 35 % menos de peso propio en áreas no críticas.
  • Materiales utilizados:
    • 532,60 m³ de hormigón (4,5 % más que la opción A).
    • 69.892 kg de acero (16 % más que la opción A).

Aunque la opción B requiere más materiales, su diseño permite reducir significativamente los elementos estructurales, como los pilares, lo que da como resultado una estructura más esbelta y eficiente. Además, al eliminar soportes intermedios, se obtienen beneficios adicionales como espacios diáfanos, flexibilidad en el diseño interior y menores tiempos de ejecución.

Sostenibilidad: Un enfoque imprescindible

La sostenibilidad es uno de los pilares de los MMC y las losas aligeradas no son una excepción. La implementación de estas losas tiene un impacto positivo que se refleja en diversos aspectos:

  1. Reducción de CO₂:
    • Cada módulo aligerado sustituye hasta un 35% del hormigón, lo que equivale a una reducción promedio de 46 toneladas de CO₂ por módulo construido.
    • Uso de plástico reciclado para los aligeradores, disminuyendo la dependencia de materiales vírgenes.
  2. Eficiencia energética:
    • Menor consumo de energía en la producción y transporte de materiales.
    • Reducción del 20% en el gasto energético durante la construcción.
  3. Optimización de recursos:
    • Ahorro de agua en el proceso de fabricación del hormigón.
    • Disminución del peso propio, lo que optimiza cimentaciones y reduce la cantidad de acero requerido.

Resultados concretos

En el estudio comparativo, las losas MMC redujeron las emisiones de CO₂ en un 25 % por metro cuadrado, mientras que su transporte requirió un 30 % menos de camiones en comparación con las losas macizas tradicionales.

Aplicaciones prácticas y retos futuros

Las losas aligeradas tienen un amplio rango de aplicaciones, desde edificios residenciales hasta rascacielos y escuelas. Su adaptabilidad permite implementarlas en forjados y cimentaciones con espesores que van desde los 20 cm hasta los 80 cm. No obstante, todavía enfrentan ciertos desafíos:

  • Aceptación del mercado: La estandarización y la capacitación de los profesionales son esenciales para su adopción masiva.
  • Optimización del diseño: Futuras investigaciones buscan extender las aplicaciones a cargas y luces mayores, comparando su desempeño con otras soluciones como forjados reticulares o postensados.

Beneficios adicionales para los proyectos

Además de los aspectos técnicos y sostenibles, las losas aligeradas ofrecen ventajas tangibles para los equipos de diseño y construcción:

  1. Simplificación del proyecto:
    • Geometrías más sencillas y menos complejas.
    • Reducción de cargas estructurales, lo que facilita el cálculo estático.
  2. Velocidad de construcción:
    • Los formadores de huecos llegan preensamblados o listos para instalar, reduciendo los tiempos de montaje.
    • El menor peso de los elementos acelera el proceso de hormigonado.
  3. Versatilidad arquitectónica:
    • Mayor libertad en la distribución de espacios interiores.
    • Facilidad para abrir huecos adicionales o modificar diseños.

Conclusiones

Los Métodos Modernos de Construcción, y específicamente las losas aligeradas multiaxiales, representan un cambio de paradigma en la ingeniería civil. Al reducir el uso de materiales y optimizar recursos, así como al mejorar el desempeño estructural, estas soluciones no solo son más sostenibles, sino también más adaptables a las necesidades contemporáneas de diseño y construcción.

Al combinar eficiencia, flexibilidad y sostenibilidad, las losas aligeradas ofrecen una respuesta sólida a los retos actuales del sector. Su implementación masiva tiene el potencial de transformar el panorama de la construcción y alinearse con objetivos globales como la reducción de emisiones y la industrialización sostenible.

Os dejo la presentación que se hizo en el congreso:

Como está publicado en abierto, os dejo la comunicación completa a continuación:

Pincha aquí para descargar

Referencia:

SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; SAIZ, D.; YEPES, V. (2024). Ingeniería de proyectos en Modernos Métodos de Construcción: El caso de edificios con losas planas mediante elementos aligerantes multiaxiales. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain), pp. 392-406. DOI:10.61547/2402009

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Predimensionamiento óptimo de tableros de puentes losa pretensados aligerados

Figura 1. Vista aérea de paso superior. Google Maps.

El artículo de investigación presentado en el 28th International Congress on Project Management and Engineering por los autores Yepes-Bellver, Martínez-Pagán, Alcalá, y Yepes es un análisis integral del predimensionamiento de los tableros de puentes losa pretensados aligerados.

Este informe detalla su importancia y sugiere mejoras en el diseño estructural mediante la optimización con métodos avanzados como el modelo Kriging y algoritmos de optimización heurística.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

1. Contexto del empleo de los puentes losa pretensados aligerados

Los puentes de losa pretensada son fundamentales en las infraestructuras de carreteras y vías ferroviarias debido a su capacidad para cubrir luces de entre 10 y 45 metros, lo que los hace más resistentes, duraderos y adaptables a distintos diseños geométricos. El coste de estos puentes suele representar entre un 5 % y un 15 % de los gastos totales de una infraestructura de transporte. Además, los puentes losa ofrecen una mayor flexibilidad y una apariencia estética superior, ya que eliminan las juntas de calzada, lo que mejora la comodidad y reduce el desgaste del tablero al tráfico.

Principales ventajas de los puentes losa pretensados:

  • Resistencia y durabilidad: estos puentes ofrecen una alta resistencia a la torsión y la flexión, por lo que son ideales para soportar cargas variables y condiciones climáticas adversas.
  • Versatilidad en el diseño: gracias a su construcción in situ, es posible adaptarlos a terrenos irregulares o a condiciones complejas, como curvas pronunciadas y anchos variados, lo que permite construirlos con rasantes bajas.
  • Ahorro de materiales y costes: Al diseñarse sin juntas y con posibilidades de aligeramiento, su mantenimiento resulta menos costoso en comparación con otras tipologías.

2. Predimensionamiento y limitaciones en los métodos actuales

El predimensionamiento es esencial en la fase preliminar del diseño de puentes con losas pretensadas. Tradicionalmente, los ingenieros utilizan reglas empíricas basadas en la experiencia para definir parámetros geométricos iniciales, como el espesor de la losa, la relación entre el canto y la luz y la cantidad de armadura activa y pasiva. Sin embargo, estos métodos tradicionales tienen limitaciones en cuanto a eficiencia y sostenibilidad, ya que no optimizan el uso de materiales ni reducen el impacto ambiental.

Desventajas de los métodos convencionales de predimensionamiento:

  • Rigidez en el diseño: los métodos empíricos pueden ser inflexibles, lo que limita las opciones de diseño y hace que la estructura no se adapte eficientemente a los criterios de optimización moderna.
  • Ineficiencia económica y ambiental: al no tener en cuenta factores de sostenibilidad y costes, estos métodos pueden provocar un uso excesivo de materiales, lo que aumenta la huella de carbono y el consumo energético.

3. Propuesta de optimización con modelos Kriging y metaheurísticas

La propuesta de los investigadores consiste en aplicar una optimización bifase mediante modelos Kriging combinados con el recocido simulado, un algoritmo heurístico. Esta técnica permite reducir el tiempo de cómputo en comparación con los métodos de optimización tradicionales sin perder precisión. La optimización se centra en tres objetivos clave:

  • Minimización del coste
  • Reducción de emisiones de CO₂
  • Disminución del consumo energético

El Kriging, un tipo de metamodelo, facilita la interpolación de datos en una muestra determinada, lo que permite que los valores estimados sean predictivos y evite el alto coste computacional que conllevan las simulaciones estructurales completas. Para implementar esta técnica, se usa un muestreo de hipercubo latino (LHS), que permite generar variaciones en el diseño inicial de los puentes y proporciona una base sobre la que se aplica el modelo Kriging para ajustar las alternativas optimizadas de diseño.

4. Resultados y comparación con diseños convencionales

A continuación, se exponen los principales hallazgos del estudio, basados en la optimización de puentes reales y en la comparación con métodos empíricos:

  • Esbeltez y espesor de la losa: la investigación recomienda que aumentar la relación entre el canto y la luz mejora la sostenibilidad del diseño. Los puentes optimizados presentan relaciones de hasta 1/30, en comparación con el rango usual de 1/22 a 1/25.
  • Volumen de hormigón y armaduras: los resultados muestran una disminución del volumen de hormigón y del número de armaduras activas necesarias, mientras que aumenta el número de armaduras pasivas. Este ajuste permite reducir tanto el coste como las emisiones.
  • Uso de materiales de construcción: se recomienda el uso de hormigón de resistencia entre 35 y 40 MPa para obtener una combinación óptima entre coste y sostenibilidad. La cantidad de aligeramientos interiores y exteriores también contribuye significativamente a la reducción del peso total sin comprometer la resistencia.

Comparativa de materiales:

  • Cuantía de hormigón: entre 0,55 y 0,70 m³ por m² de losa. La optimización reduce el consumo a 0,60 m³ para puentes económicos y a 0,55 m³ para priorizar la reducción de emisiones.
  • Armadura activa: la cantidad recomendada es inferior a 17 kg/m² de tablero. Esto representa una reducción significativa en comparación con los diseños tradicionales, que promedian alrededor de 22,64 kg/m².
  • Armadura pasiva: se debe aumentar la cuantía hasta 125 kg/m³ para proyectos de alta sostenibilidad, en contraste con los valores convencionales.

5. Herramientas prácticas para los proyectistas: nomogramas para el predimensionamiento

Uno de los aportes más valiosos del estudio es la creación de nomogramas que permiten a los ingenieros realizar predimensionamientos precisos con un mínimo de datos. Los nomogramas se desarrollaron mediante modelos de regresión múltiple y ofrecen una forma rápida de estimar:

  • La cantidad de hormigón necesaria.
  • El espesor de la losa.
  • La armadura activa en función de la luz del puente y los aligeramientos aplicados.

Estos nomogramas son útiles en las primeras fases de diseño, ya que permiten obtener valores cercanos a los óptimos de manera rápida y eficiente. Los gráficos incluyen secuencias de cálculo específicas con ejemplos de puentes con luces de 34 m y aligeramientos medios (interior de 0,20 m³/m² y exterior de 0,40 m³/m²), lo que facilita un proceso de diseño preliminar que cumple con criterios de sostenibilidad.

Figura 2. Nomograma para estimar el canto del tablero (m). Fuente: Yepes-Bellver et al. (2024)

6. Recomendaciones para el diseño sostenible de puentes losa pretensados aligerados

Basándose en los resultados de optimización, el estudio recomienda ajustar ciertos parámetros de diseño para mejorar la sostenibilidad y reducir los costes:

  • Aumento de la relación canto/luz: se debe aumentar la relación a 1/26 o incluso 1/30 para conseguir diseños sostenibles.
  • Reducción del hormigón utilizado: limitar el uso de hormigón a 0,60 m³/m², o menos si la prioridad es reducir las emisiones.
    Cuantía de armaduras: para la armadura pasiva, se recomienda un mínimo de 125 kg/m³, mientras que la armadura activa debe reducirse a 15 kg/m² de losa.
    Aligeramientos amplios: utilizar aligeramientos significativos (interior de 0,20 m³/m² y exterior de 0,50 m³/m²) para reducir el peso estructural y minimizar el material empleado.

7. Conclusión: innovación en el diseño de infraestructuras sostenibles

El uso de modelos predictivos, como el Kriging, y de técnicas de optimización avanzada en el diseño de puentes supone un gran avance hacia la construcción de infraestructuras sostenibles y eficientes. Estos métodos permiten reducir costes y minimizar el impacto ambiental, dos factores críticos en la ingeniería moderna. Al promover estos enfoques, la investigación allana el camino hacia políticas de infraestructura más responsables y sostenibles, un objetivo alineado con los Objetivos de Desarrollo Sostenible (ODS).

8. Perspectivas futuras: expansión de la metodología de optimización

Los autores proponen continuar esta línea de investigación aplicando el modelo Kriging y otros metamodelos a diversas estructuras de ingeniería civil, como marcos de carretera, muros de contención y otros tipos de puentes. Esta expansión podría sentar las bases para nuevos estándares en el diseño de infraestructuras sostenibles.

Este estudio se presenta como una herramienta esencial para ingenieros y proyectistas interesados en mejorar el diseño estructural mediante métodos modernos de optimización, ya que ofrece un enfoque práctico y avanzado para lograr una ingeniería civil más sostenible.

Os dejo la presentación que se hizo en el congreso:

Como está publicado en abierto, os dejo la comunicación completa a continuación:

Pincha aquí para descargar

Referencia:

YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P.; ALCALÁ, J.; YEPES, V. (2024). Análisis del predimensionamiento de tableros óptimos de puentes losa pretensados aligerados y su incidencia en el proyecto estructural. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain), pp. 407-419. DOI:10.61547/2402010

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Modelo para la construcción sostenible: reducción de emisiones y eficiencia estructural hacia 2100

Un artículo reciente en Sustainable Cities and Society revista del primer decil del JCR, explora un innovador modelo de evaluación de la sostenibilidad en la industria de la construcción, con aplicaciones de gran impacto a nivel global.

Esta investigación, llevada a cabo por un equipo de expertos de la Universidad de Ciencia e Ingeniería de Hunan (China) y de la Universitat Politècnica de València (España), introduce el «modelo de acoplamiento multidisciplinar», una metodología que integra conocimientos avanzados de matemáticas, ingeniería, ciencias ambientales y sociología económica para analizar, de manera más precisa, los efectos de la construcción sobre la sostenibilidad a largo plazo. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Objetivos y contexto de la investigación

El trabajo parte de un desafío global urgente: reducir las emisiones de carbono en la industria de la construcción, que representa un porcentaje significativo del consumo energético y de las emisiones contaminantes a nivel mundial. Según estimaciones previas, esta industria generará más del 50 % de las emisiones de carbono para 2050 si no se implementan políticas de mitigación eficaces. En este contexto, el equipo de investigación plantea un enfoque innovador para analizar el ciclo de vida completo de las construcciones, desde la selección de materiales y el diseño, hasta la construcción, el mantenimiento y el desmantelamiento, conocido como evaluación del ciclo de vida (LCA, por sus siglas en inglés).

Además, para obtener una visión integrada que abarque el impacto ambiental, social y económico de cada proyecto, se emplea la evaluación social del ciclo de vida (SIA), que permite analizar los efectos en la sociedad y en la economía. El objetivo principal de la investigación es ofrecer un marco más robusto que ayude a los gobiernos y a las empresas del sector a tomar decisiones informadas que favorezcan el desarrollo urbano sostenible.

Metodología y desarrollo del modelo

Para desarrollar este modelo, los investigadores implementaron una técnica de «acoplamiento multidisciplinar» novedosa que incorpora algoritmos avanzados y teorías de optimización de estructuras en tres dimensiones. Este enfoque se basa en el uso de algoritmos de interpolación y ajuste de datos, capaces de proyectar los impactos de la construcción de manera más precisa. Además, el modelo emplea herramientas de software de análisis ambiental, como OpenLCA, que permite integrar datos económicos y medioambientales para evaluar la sostenibilidad.

El equipo realizó pruebas del modelo en cuatro regiones económicas clave de China: las provincias de Hubei, Jiangsu, Henan y Guangdong, seleccionando puentes de gran escala en cada una como ejemplos de estudio. A través de análisis finitos y optimización de topología de estas estructuras, lograron proyectar cómo variará el impacto ambiental y social a lo largo de los próximos cien años.

Resultados más destacados y proyecciones futuras

Los resultados obtenidos indican que la industria de la construcción en China alcanzará su máximo de emisiones en el año 2030, con un estimado de 2,73 giga toneladas (GT) de CO₂. Tras este pico, se proyecta una significativa reducción de las emisiones, con niveles de -2,78 GT anuales entre 2061 y 2098, debido a la implementación de técnicas de construcción más eficientes y al uso de materiales más sostenibles. A nivel social, la evaluación SIA prevé un pico de impacto en 2048, con 4,26 GT de CO₂ equivalente en afectaciones sociales, seguido también de una reducción en las décadas posteriores.

Para obtener estas cifras, el estudio utilizó un algoritmo de optimización de la estructura en las distintas fases del ciclo de vida, con el que identificó puntos de mejora y áreas críticas de impacto. Así, el modelo no solo ofrece una herramienta para la proyección de emisiones, sino que también permite evaluar el desempeño de cada estructura en términos de durabilidad, coste y adaptabilidad a cambios estructurales, lo cual podría ser crucial en regiones urbanas que experimentan un crecimiento acelerado.

Conclusiones y aplicación global

Este trabajo es una contribución pionera en la investigación sobre sostenibilidad en construcción, ya que ofrece un marco metodológico con potencial para ser replicado en otros países y sectores de la construcción. Su aplicación no solo está dirigida a la reducción de emisiones, sino también a la mejora de la resiliencia estructural y a la reducción de costes a largo plazo mediante un diseño optimizado. Los investigadores destacan que este modelo podría adaptarse a otros países que, como China, se enfrentan a grandes desafíos en la gestión de la sostenibilidad urbana y que buscan avanzar hacia economías bajas en carbono.

En conclusión, el modelo de acoplamiento multidisciplinar de esta investigación establece un estándar robusto para el análisis de sostenibilidad en construcciones complejas. Con este enfoque, gobiernos y empresas de construcción podrían optimizar sus prácticas para reducir los impactos negativos, no solo ambientales, sino también sociales y económicos, en sintonía con las metas de desarrollo sostenible. Este estudio ofrece, además, una guía para que la industria de la construcción pueda abordar sus desafíos actuales y proyectar una trayectoria sostenible para las próximas décadas.

Referencia:

ZHOU, Z.; ZHOU, J.; ZHANG, B.; ALCALÁ, J.; YEPES, V. (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, 101:105201. DOI:10.1016/j.scs.2024.105201

Nuevo estudio propone solución clave para reducir la huella de carbono en grandes proyectos de construcción internacionales

Un estudio innovador, titulado «Research on coupling optimization of carbon emissions and carbon leakage in international construction projects» y publicado en la prestigiosa revista Scientific Reports, aborda un desafío crítico para la construcción internacional: cómo optimizar las emisiones y las fugas de carbono en grandes proyectos de infraestructura.

Liderado por Zhiwu Zhou, de la Hunan University of Science and Engineering, y colaboradores como Víctor Yepes de la Universitat Politècnica de València, el artículo desarrolla un modelo matemático avanzado para analizar y predecir las emisiones de carbono a lo largo de todo el ciclo de vida de los proyectos de construcción en diferentes países. Este estudio es especialmente relevante en un contexto donde la globalización y el comercio internacional están impulsando el crecimiento económico, pero también contribuyendo de manera significativa al cambio climático.

Contexto y relevancia del estudio

El fenómeno conocido como «fuga de carbono» se ha convertido en un problema clave en la lucha contra el cambio climático. Este término se refiere al traslado de actividades productivas intensivas en carbono desde países con regulaciones estrictas sobre emisiones a países con normativas más laxas, lo que, paradójicamente, puede aumentar las emisiones globales. A medida que los países desarrollados implementan políticas más estrictas para reducir sus emisiones, existe la preocupación de que esto pueda incentivar a las empresas a trasladar su producción a países en desarrollo, exacerbando el problema en lugar de solucionarlo.

La construcción es uno de los sectores que más contribuye a las emisiones de carbono a nivel mundial. De hecho, la infraestructura está vinculada al 50 % de las emisiones globales, y se prevé que la inversión en infraestructuras alcance los 94000 millones de dólares para 2040, lo que pone de manifiesto la importancia de abordar el problema en este sector. El estudio de Zhou y su equipo se centra en ofrecer una herramienta para medir y mitigar la fuga de carbono en los grandes proyectos internacionales de construcción.

Metodología del estudio

La investigación combina una revisión bibliográfica extensa con el desarrollo de un modelo matemático que tiene en cuenta múltiples factores de incertidumbre asociados a los proyectos internacionales. Para analizar las emisiones y fugas de carbono, los investigadores emplearon bases de datos de cadenas de suministro reconocidas a nivel internacional, como Ecoinvent y OpenLCA, conforme a los estándares ISO 14040 e ISO 14044. Estas bases de datos permiten rastrear el ciclo de vida completo de los materiales y la energía utilizados en un proyecto, desde la extracción de materias primas hasta el transporte, la construcción y la eventual demolición.

El estudio utilizó como caso práctico un importante proyecto de infraestructura: el puente transnacional China-Indonesia, un proyecto internacional clave gestionado bajo el modelo EPC (ingeniería, contratación y construcción). Este puente, que conecta ambos países, se convirtió en un ejemplo ideal para analizar la huella de carbono debido a su complejidad técnica y logística, así como su impacto transnacional. El análisis de este caso permitió a los autores validar la robustez de su modelo teórico.

Resultados más destacados

Uno de los hallazgos más importantes del estudio es la notable diferencia en la huella de carbono entre los países exportadores e importadores. En el caso del puente China-Indonesia, los datos revelaron que la proporción de emisiones de carbono entre los países exportadores e importadores era de 0,577:100, lo que indica que los países que producen materiales y maquinaria (en este caso, China) soportan una mayor parte de la carga de emisiones. Esto sugiere que los países importadores, que son los principales beneficiarios de los proyectos de infraestructura, deberían asumir una mayor responsabilidad en la compensación de estas emisiones.

Además, el estudio pone de relieve que la utilización de acero, cemento y otros materiales intensivos en carbono es una de las principales fuentes de emisiones en los proyectos de construcción internacionales. Sin embargo, los resultados mostraron que optimizar la cadena de suministro y aplicar técnicas de transporte más eficientes pueden reducir significativamente estas emisiones. Por ejemplo, el uso de transporte marítimo en lugar de aéreo o terrestre para mover grandes volúmenes de materiales redujo las emisiones de manera sustancial.

Otro resultado clave es que la fuga de carbono no solo se produce durante la fase de construcción, sino también a lo largo de todo el ciclo de vida del proyecto, desde el diseño hasta la demolición. Las emisiones asociadas al diseño, el transporte y el montaje de los materiales también representan una parte significativa del impacto ambiental total de los proyectos.

Implicaciones del estudio

Este estudio tiene importantes implicaciones para los responsables políticos y las empresas constructoras. En primer lugar, los autores destacan la necesidad de desarrollar políticas más eficaces para gestionar la fuga de carbono en el comercio internacional. Las políticas actuales, como los ajustes en las fronteras de carbono (Carbon Border Adjustment Mechanisms, CBAM), son un buen paso hacia la reducción de la fuga de carbono, pero no son suficientes si no se aplican de manera coordinada a nivel global. Los investigadores sugieren que las empresas que participan en proyectos internacionales de construcción deben tener en cuenta no solo el coste económico, sino también el impacto ambiental y la huella de carbono de sus operaciones.

Por otro lado, el estudio subraya la importancia de optimizar las cadenas de suministro internacionales para reducir las emisiones de carbono. Esto implica seleccionar cuidadosamente los materiales, gestionar de manera eficiente el transporte y adoptar tecnologías más limpias durante el proceso de construcción. Los investigadores argumentan que los esfuerzos por reducir las emisiones deben extenderse a todas las fases del proyecto, no solo a la construcción, y que las empresas deben colaborar más estrechamente con los gobiernos para diseñar estrategias eficaces de mitigación del carbono.

Conclusiones

En resumen, el estudio ofrece una herramienta valiosa para evaluar y mitigar las emisiones y fugas de carbono en proyectos de construcción internacionales. Al utilizar un enfoque matemático riguroso y bases de datos internacionales de alto nivel, este trabajo proporciona un marco científico sólido para ayudar a los gobiernos y a las empresas a tomar decisiones más informadas sobre cómo reducir el impacto ambiental de sus proyectos.

Este enfoque no solo es relevante para los proyectos de infraestructura a gran escala, sino que también tiene el potencial de influir en la forma en que las políticas de carbono se diseñan e implementan a nivel global. La investigación concluye que, aunque los costes iniciales de adoptar prácticas más sostenibles pueden ser elevados, los beneficios a largo plazo, tanto en términos económicos como ambientales, justifican plenamente esta inversión.

Referencia:

ZHOU, Z.; WANG, Y.; ALCALÁ, J.; YEPES, V. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, 14: 10752. DOI:10.1038/s41598-024-59531-4

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Pincha aquí para descargar

Técnica innovadora optimiza estructuras de hormigón y reduce emisiones de CO₂ al considerar la interacción suelo-estructura

El artículo científico, titulado «Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction» y publicado recientemente en Engineering Structures, una de las revistas de mayor impacto en ingeniería civil, aborda un desafío clave en la ingeniería estructural: cómo optimizar el diseño de estructuras de hormigón armado para minimizar su impacto ambiental, con especial atención a la reducción de las emisiones de CO₂.

Esta investigación es el resultado de una colaboración internacional realizada en el marco de los proyectos HYDELIFE y RESILIFE, cuyo investigador principal es Víctor Yepes, y es fruto de una colaboración internacional entre investigadores de Cuba, Brasil y España.

Contexto de la investigación

La optimización estructural ha sido ampliamente explorada en las últimas décadas debido a la creciente necesidad de reducir los costes de construcción y el uso de materiales, todo ello mientras se minimiza el impacto ambiental. En el caso de las estructuras de hormigón armado, que son esenciales en la construcción de edificios y obras de infraestructura, optimizar su diseño conlleva implicaciones significativas en cuanto al ahorro de recursos y la reducción de las emisiones de CO₂.

Los problemas de optimización estructural pueden resolverse mediante métodos exactos, como la programación matemática, o mediante métodos heurísticos que imitan procesos naturales (como la evolución genética o el comportamiento de enjambres). Aunque los métodos heurísticos son más eficientes para problemas complejos y no lineales, como los que involucran grandes estructuras tridimensionales, requieren un alto coste computacional. Para abordar este problema, los autores proponen el uso de metamodelos, que son modelos simplificados que permiten realizar simulaciones con un consumo computacional mucho menor sin sacrificar demasiada precisión. En este estudio, se utiliza un metamodelo basado en Kriging, una técnica que permite aproximar el comportamiento de estructuras complejas.

Además, el estudio introduce una novedad crucial: la inclusión de la interacción suelo-estructura (SSI, por sus siglas en inglés) durante el modelado. Esta interacción, que muchas veces se ignora en los modelos tradicionales, afecta significativamente al comportamiento de la superestructura (el marco de hormigón). Ignorarla puede dar lugar a diseños menos precisos que no tienen en cuenta los asentamientos diferenciales del suelo, lo que puede provocar tensiones adicionales y un mayor deterioro de las estructuras con el tiempo.

Metodología

La investigación emplea un enfoque combinado de optimización heurística convencional y una estrategia basada en Kriging para optimizar marcos espaciales de hormigón armado. El objetivo es reducir las emisiones de CO₂ de las estructuras optimizadas, en línea con los esfuerzos para disminuir el impacto ambiental del sector de la construcción. El estudio incluye tres estudios de caso, cada uno con diferentes configuraciones estructurales (variando la longitud de los vanos y el número de niveles de las estructuras) para generalizar los resultados.

El elemento clave en esta investigación es la inclusión de la interacción suelo-estructura, que afecta al comportamiento global del sistema. Los autores utilizan un modelo de Winkler, que representa el suelo como un conjunto de resortes con rigidez variable en función de las características del suelo, y lo implementan en dos tipos de suelos: uno cohesivo y otro granular. Esta diferenciación es importante porque cada tipo de suelo responde de manera distinta a las cargas, lo que provoca asentamientos que, en última instancia, influyen en las tensiones de la superestructura. La plataforma CSi-SAP2000 se utilizó como motor de cálculo, mientras que el análisis geotécnico y estructural se integró mediante MATLAB.

Resultados

Uno de los hallazgos más destacados del estudio es que la inclusión de la interacción suelo-estructura modifica significativamente los diseños estructurales. En general, las estructuras diseñadas teniendo en cuenta la interacción suelo-estructura requieren más material (mayores cantidades de hormigón y acero), lo que refleja el aumento de tensiones debido a los asentamientos diferenciales. Por ejemplo, en comparación con un modelo con soportes rígidos ideales, las estructuras que consideran la inclusión de la interacción suelo-estructura muestran un aumento del 12,03 % en las emisiones de CO₂ en suelos cohesivos y hasta un 18,81 % en suelos friccionales.

Los elementos estructurales más afectados por la interacción suelo-estructura son las columnas. Esto se debe a que los asentamientos diferenciales incrementan los momentos flectores en las columnas, lo que requiere un refuerzo adicional y secciones más grandes para resistir las nuevas tensiones. En algunos casos, las emisiones de CO₂ asociadas a las columnas aumentaron más del 60 % al considerar la interacción con el suelo. Los resultados son especialmente marcados en suelos granulares, donde los asentamientos diferenciales son más pronunciados.

Además, la metodología basada en metamodelos, asistida por la técnica de Kriging, demostró ser eficaz para lograr optimizaciones con un alto grado de precisión (hasta un 98,24 % en suelos cohesivos y un 98,10 % en suelos granulares), todo ello reduciendo el tiempo de cálculo en aproximadamente un 90 % en comparación con los métodos heurísticos convencionales.

Implicaciones

Este estudio tiene importantes implicaciones prácticas para el diseño de estructuras de hormigón armado. La inclusión de la interacción suelo-estructura permite obtener diseños más robustos y precisos, lo que reduce el riesgo de fallos prematuros y la necesidad de costosos trabajos de mantenimiento a largo plazo. Los modelos que no tienen en cuenta la interacción suelo-estructura pueden dar como resultado estructuras que inicialmente parecen eficientes, pero que con el tiempo se deterioran más rápidamente debido a las tensiones adicionales no previstas. Por tanto, incluir esta interacción desde el inicio del diseño mejora significativamente la durabilidad y la fiabilidad de las estructuras.

Desde el punto de vista ambiental, el uso de metamodelos para optimizar estructuras de hormigón supone un importante avance. Al reducir el material necesario y mejorar la eficiencia estructural, se contribuye a la reducción de las emisiones de CO₂, un objetivo clave en la lucha contra el cambio climático. Además, la metodología propuesta ofrece un enfoque más sostenible al disminuir los recursos computacionales necesarios para realizar simulaciones complejas.

En conclusión, la inclusión de la interacción suelo-estructura y el uso de metamodelos basados en Kriging suponen una contribución innovadora al campo de la ingeniería estructural. Esta investigación no solo proporciona mejores resultados de diseño, sino que también tiene el potencial de reducir el impacto ambiental de las estructuras de hormigón armado, lo que hace que el sector de la construcción sea más sostenible y eficiente.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

 

Nueva investigación cuantifica por primera vez el valor económico de los paisajes en la gestión de los puertos deportivos

Puerto deportivo Marina del Este. Imagen: R. Martín

Un estudio innovador, titulado «Valuation of landscape intangibles: Influence on the marina management» recientemente publicado en la prestigiosa revista Ocean and Coastal Management, aborda un tema de gran relevancia en la gestión de los puertos deportivos: la valoración económica de los intangibles paisajísticos, un factor clave pero a menudo subestimado en la planificación y sostenibilidad de las infraestructuras costeras.

La investigación, liderada por Ricardo Martín y Víctor Yepes, de la Universidad Politécnica de Valencia, emplea un enfoque innovador para cuantificar cómo las características no tangibles del paisaje, como las vistas al mar, la tranquilidad y la exclusividad, influyen en el valor económico de los puertos deportivos y su entorno.

Contexto de la investigación

Las áreas costeras albergan una interacción compleja entre los elementos naturales y las actividades humanas, generando paisajes únicos que combinan belleza escénica y oportunidades económicas, particularmente en sectores como el turismo náutico. Los puertos deportivos, además de ofrecer servicios para embarcaciones, actúan como puntos de entrada para descubrir el entorno costero, lo que convierte el paisaje en un activo fundamental para su gestión y rentabilidad. Sin embargo, hasta ahora no existía una metodología clara para poner en valor los elementos intangibles del paisaje, como las vistas o la serenidad de una ubicación, que no se transaccionan directamente en el mercado.

El propósito de esta investigación es llenar ese vacío, proporcionando un enfoque cuantitativo para medir estos intangibles paisajísticos y su impacto en el valor global de los puertos deportivos. Este trabajo se desarrolla en la Marina del Este, en La Herradura (Granada), un enclave que combina el atractivo natural del Mediterráneo con una ubicación estratégica entre montañas y el mar.

Metodología empleada

La investigación utilizó el método de precios hedónicos (HPM, por sus siglas en inglés) para estimar el valor económico de los elementos paisajísticos intangibles de la Marina del Este. Los precios hedónicos permiten desglosar el valor de una propiedad en función de atributos específicos, tanto estructurales (número de habitaciones, tamaño de la terraza, presencia de aire acondicionado) como intangibles (proximidad a la playa, vistas panorámicas al mar o a las montañas). Se recopilaron datos sobre las transacciones inmobiliarias de la zona durante el año 2023, analizando un total de 97 propiedades.

Además de las características físicas de las viviendas, se tuvieron en cuenta factores como la distancia al mar, la tranquilidad del entorno y la exclusividad de la zona. Estos factores, aunque no se comercializan directamente, influyen en las decisiones de compra y en el valor percibido de las propiedades.

Puerto deportivo Marina del Este. Imagen: R. Martín

Resultados

Los resultados del estudio indican que los elementos intangibles del paisaje, como las vistas al mar y la cercanía a la playa, son factores determinantes a la hora de valorar las propiedades costeras. Los compradores valoran altamente estas características, lo que incrementa notablemente el precio de las viviendas que cuentan con ellas. Por ejemplo, la proximidad a la playa puede aumentar el precio de una vivienda en un 0,21 % por cada 1 % que se reduce la distancia, y las vistas amplias al mar pueden incrementar su valor hasta en un 14 %.

El análisis reveló que los activos intangibles paisajísticos representan más de 2,4 millones de euros, lo que equivale al 7,91 % del valor total de la marina. Este valor destaca la importancia económica de elementos intangibles que a menudo se pasan por alto en la gestión tradicional de infraestructuras costeras.

Implicaciones

Esta investigación tiene importantes implicaciones tanto para los gestores de los puertos deportivos como para los responsables de políticas paisajísticas. Los gestores pueden utilizar esta metodología para cuantificar el valor de los elementos intangibles del paisaje en sus decisiones de planificación y desarrollo. Si no se preservan adecuadamente, estos elementos pueden provocar una disminución en el valor del puerto deportivo, lo que afectaría tanto a su atractivo como a sus posibles ingresos.

Por otro lado, los responsables de las políticas paisajísticas y urbanísticas tienen en este estudio una herramienta clave para medir el impacto económico de sus decisiones sobre el entorno costero. La conservación de los paisajes y sus características intangibles no solo es esencial para preservar el atractivo turístico y el bienestar de los residentes, sino también para impulsar el desarrollo económico sostenible de las zonas costeras.

En conclusión, este estudio aporta una perspectiva novedosa sobre la importancia de los intangibles paisajísticos en la valoración y gestión de los puertos deportivos. Al demostrar que estos factores influyen de manera significativa en el valor económico de estas infraestructuras, abre nuevas vías para integrar la sostenibilidad y la valoración del paisaje en la toma de decisiones en el ámbito costero.

Referencia:

MARTÍN, R.; YEPES, V. (2024). Valuation of landscape intangibles: Influence on the marina management. Ocean & Coastal Management, 259, 107416. DOI:10.1016/j.ocecoaman.2024.107416

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Pincha aquí para descargar

Métodos modernos de construcción mejoran la sostenibilidad de estructuras en entornos costeros agresivos

Un estudio reciente, titulado «Sustainable preventive maintenance of MMC-based concrete building structures in a harsh environment» ha sido publicado en el Journal of Building Engineering, una de las revistas de mayor prestigio en el ámbito de la ingeniería civil. Desarrollado en el marco del proyecto RESILIFE, investiga la sostenibilidad del mantenimiento preventivo de estructuras de hormigón armado en entornos agresivos, como las zonas costeras, donde la corrosión por cloruros representa una amenaza constante.

El trabajo se centra en aplicar métodos modernos de construcción (MMC) para optimizar el impacto ambiental, económico y social de las estructuras a lo largo de su ciclo de vida.

Contexto del estudio

La industria de la construcción es una de las mayores consumidoras de recursos no renovables y genera un impacto significativo en el medio ambiente. En la Unión Europea, el sector es responsable de más del 40 % del consumo energético y de un 36 % de las emisiones de CO₂. Ante este escenario, iniciativas como el Green Deal Europeo buscan mitigar estos impactos y alcanzar la neutralidad de carbono para 2050. En este contexto, los métodos de construcción sostenibles y eficientes han adquirido una gran relevancia. En este contexto, los MMC emergen como una alternativa innovadora que combina materiales convencionales con técnicas constructivas no convencionales, enfocadas en mejorar la eficiencia y reducir el impacto ambiental.

El objetivo de la investigación fue aplicar estos métodos a la construcción de estructuras de hormigón en áreas costeras, específicamente un edificio residencial público situado frente al mar en Sancti Petri (Cádiz). En el estudio se analizaron diez opciones de diseño para las losas de hormigón armado, considerando factores como la economía, el impacto ambiental y social, y los ciclos de mantenimiento preventivo que cada opción requeriría durante la vida útil del edificio, estimada en 50 años.

Metodología y opciones de diseño

El estudio se centró en evaluar la durabilidad y sostenibilidad de diferentes alternativas de diseño en condiciones adversas, como la exposición constante a cloruros, que aceleran la corrosión del refuerzo de acero en el hormigón. Para ello, se evaluaron varias técnicas, entre ellas la adición de humo de sílice al 5 %, cenizas volantes, el uso de cemento sulforresistente o el incremento de la capa de recubrimiento del hormigón. También se consideraron medidas como la protección catódica y el uso de inhibidores de corrosión hidrofóbicos, con el fin de minimizar los ciclos de mantenimiento necesarios para preservar la estructura.

Resultados más relevantes

Los resultados indicaron que el empleo de hormigón con un 5 % de humo de sílice fue la opción más sostenible en términos económicos y ambientales, ya que redujo significativamente los ciclos de mantenimiento. Este material mostró una excelente resistencia a la corrosión, por lo que se redujeron las reparaciones necesarias durante los 50 años de vida útil del edificio. Además, la impregnación hidrofóbica resultó eficaz para reducir los impactos sociales, puesto que requiere menos intervenciones durante la fase de mantenimiento, lo que reduce los riesgos laborales y los costes sociales asociados.

El estudio también subraya la importancia de adoptar un enfoque holístico en la evaluación de la sostenibilidad. En lugar de centrarse solo en los aspectos económicos o ambientales, los autores emplearon un método de toma de decisiones multicriterio que integra estos factores junto con el impacto social. De hecho, la investigación reveló que una opción basada en el uso de cemento sulforresistente logró un aumento del 86 % en su calificación de sostenibilidad en comparación con el diseño de referencia.

Implicaciones y conclusiones

Este trabajo tiene importantes implicaciones para el diseño y el mantenimiento de infraestructuras en entornos expuestos a condiciones agresivas. Los autores sugieren que el enfoque tradicional, que a menudo se centra en minimizar los costes iniciales de construcción, debe reorientarse hacia una estrategia a largo plazo que considere todo el ciclo de vida de la estructura. De este modo, no solo se puede garantizar la viabilidad económica, sino también la reducción del impacto ambiental y social de las construcciones.

Además, el estudio pone de relieve la necesidad de promover políticas y normativas que incentiven el uso de materiales duraderos y métodos de mantenimiento preventivo, especialmente en zonas costeras, donde los edificios son particularmente vulnerables a la corrosión. El uso de métodos modernos de construcción (MMC) y la evaluación integral del ciclo de vida podrían ser claves para cumplir con los objetivos de sostenibilidad globales y garantizar la durabilidad de las infraestructuras frente a los desafíos ambientales futuros.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2024). Sustainable preventive maintenance of MMC-based concrete building structures in a harsh environment. Journal of Building Engineering, 95:110155. DOI:10.1016/j.jobe.2024.110155

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Pincha aquí para descargar

Os dejo un podcast (en inglés) sobre este artículo. Espero que os guste.

Impacto social y económico de los resultados previstos del proyecto de investigación RESILIFE

Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En varios artículos anteriores ya presentamos muchos de los aspectos que justifican el proyecto de investigación RESILIFE: Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas, del cual soy investigador principal junto con el profesor Julián Alcalá. En este artículo queremos resaltar la línea de trabajo del grupo de investigación y las razones por las cuales este proyecto supone un salto cualitativo.

Entre los Objetivos de Desarrollo Sostenible (ODS) para 2030, destaca la necesidad de construir infraestructuras resilientes. Entre 2003 y 2013, los desastres naturales y humanos causaron más de 1,1 millones de muertes, afectaron a más de 2000 millones de personas y generaron pérdidas de 1,5 billones de dólares. Los apagones en las redes eléctricas por condiciones meteorológicas adversas costaron entre 18 000 y 33 000 millones de dólares entre 2003 y 2012. Los errores de construcción y diseño indujeron el 65 % de los casos de colapso progresivo. En Europa, solo la mitad de las reparaciones de los edificios de hormigón fueron efectivas, a pesar de que los costes de rehabilitación suponen casi la mitad de las inversiones anuales en construcción. El mercado mundial de construcción de infraestructuras, valorado en 2,242 mil millones de dólares en 2021, se proyecta a 3,267 mil millones para 2027, con un crecimiento anual del 6,48 %.

Ante este panorama, un diseño adecuado y medidas preventivas locales son cruciales para salvar vidas e infraestructuras, pero, además de reducir el riesgo, son una fuente de creación de empleo especializado que debe formarse en estas técnicas. Por tanto, se espera un impacto social y económico relevante del proyecto RESILIFE. Publicaciones previas del grupo de investigación centradas en la optimización multiobjetivo (sin considerar la toma de decisiones multicriterio derivada de la participación social) muestran ahorros de entre el 10 y el 50 % en costes, ahorro de materiales, reducción de emisiones de CO₂ y consumo de energía. Por otra parte, en proyectos anteriores se hizo hincapié en los aspectos sociales de la optimización de las infraestructuras. Ello supuso incluir aspectos relativos a la seguridad de las personas, la equidad social intergeneracional, aspectos relacionados con la salud, la educación, la integración del análisis de género, etc., que ahora se incluyen en este proyecto. El grupo dispone de la metodología para su inclusión en la construcción industrializada modular y las estructuras híbridas. En este sentido, la construcción modular industrializada (también llamada off-site) ofrece ventajas significativas, ya que permite ahorros de hasta el 50 % en los plazos, reduce el desperdicio, se fabrica con tolerancias estrictas y mejora la seguridad al estandarizar los procesos en fábrica. Permite ahorros de hasta el 50 % en los plazos, reduce el desperdicio, se fabrica con tolerancias estrictas y mejora la seguridad al estandarizar los procesos en fábrica. Además, la pandemia ha demostrado, por ejemplo, en la construcción de dos hospitales de campaña en Wuhan (China) en solo 12 días, que este tipo de construcción modular puede solucionar graves problemas de alto impacto social y económico en situaciones de crisis futuras. También, existe una creciente demanda social de vivienda que, en países como Suecia o Japón, ha utilizado la construcción modular de forma masiva.

Los resultados del proyecto RESILIFE pretenden profundizar en las ventajas sociales y económicas. Basta con observar cómo los desastres naturales y, por desgracia, los conflictos bélicos actuales están destruyendo las viviendas e infraestructuras de forma masiva, afectando principalmente a las mujeres y los niños. El esfuerzo por diseñar estructuras capaces de resistir alguno de estos eventos extremos, o en su caso, facilitar la reparación de forma rápida y eficaz, permite reducir considerablemente el sufrimiento de las personas. Además, optar por soluciones que minimicen el colapso progresivo de los edificios y mejoren la eficiencia de la rehabilitación puede tener un impacto significativo. Mejorar el diseño resiliente de las infraestructuras para reducir el impacto en un 10 % supondría una disminución de al menos 15 000 millones de dólares y 10 000 muertes anuales a nivel mundial. Asimismo, los resultados obtenidos por la optimización resiliente vendrían a completar la línea de investigación realizada en el ICITECH por el profesor José M. Adam y su equipo para evitar el colapso progresivo de las estructuras, investigación que cuenta con una fuerte inversión en modelización física y numérica. Esta especialización en la investigación del ICITECH sitúa a nuestro país en una posición tecnológica de gran importancia en el ámbito de la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.