Os dejo a continuación un vídeo explicativo donde os cuento los aspectos básicos del trabajo.
Referencia:
SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home.Journal of Cleaner Production, 258: 120556. DOI:10.1016/j.jclepro.2020.120556
La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Gestión de costes y producción de la maquinaria empleada en la construcción”.
El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Hay plazas limitadas.
Os paso un vídeo explicativo y os doy algo de información tras el vídeo.
Este es un curso básico sobre la gestión de los costes y la producción de los equipos y maquinaria empleada en la construcción, tanto en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado para que el estudiante pueda profundizar en aquellos aspectos que les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.
En este curso aprenderás los conceptos básicos sobre la gestión de la producción, la selección económica de los bienes de equipo, los costes de propiedad y operación de la maquinaria, su amortización, la disponibilidad y fiabilidad de los equipos, el mantenimiento y reparación, los parques de maquinaria y la gestión de instalaciones, almacenes e inventarios, el estudio del trabajo y la productividad, las políticas de incentivos, métodos de medición del trabajo y la producción de equipos de máquinas. El curso se centra especialmente en la comprensión de los fundamentos básicos que gobiernan la gestión de los costes y la producción de los equipos, mostrando especial atención a la maquinaria pesada de movimientos de tierras y compactación. Es un curso de espectro amplio que incide en el conocimiento de los fundamentos de la ingeniería de la producción. Resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de los métodos y técnicas empleadas en la gestión de los costes y el rendimiento de la maquinaria en casos concretos. El curso trata llenar el hueco que deja la bibliografía habitual, donde no se profundiza en el coste y la producción de conjuntos de equipos. Además, el curso está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.
El contenido del curso se organiza en 30 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. Además, se entregan 75 problemas resueltos que complementan la teoría estudiada en cada lección. La dedicación aproximada para cada lección se estima en 2-3 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos del tema abordado. Al final se han diseñado tres unidades adicionales para afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y su capacidad para resolver problemas reales. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.
El curso está programado para 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.
Objetivos
Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:
Comprender la utilidad y las limitaciones de las técnicas actuales para la gestión de costes y producción de los equipos de máquinas empleados para la construcción
Evaluar y seleccionar la maquinaria atendiendo a criterios económicos y técnicos
Conocer la gestión de los sistemas de almacenamiento de materiales en obra y los parques de maquinaria
Aplicar las técnicas de estudios de métodos y medición del trabajo para mejorar la eficiencia de los equipos
Aplicar técnicas de aprendizaje e incentivos a la producción para mejorar la productividad
Programa
– Lección 1. Mecanización de las obras
– Lección 2. Adquisición y renovación de la maquinaria
– Lección 3. La depreciación de los equipos y su vida económica
– Lección 4. Selección de máquinas y equipos
– Lección 5. La estructura del coste
– Lección 6. Costes de propiedad de las máquinas
– Lección 7. Costes de operación de las máquinas
– Lección 8. Fondo horario y disponibilidad de los equipos
– Lección 9. Fiabilidad de los equipos
– Lección 10. Mantenimiento y reparación de los equipos
– Lección 11. Instalación y organización interna de la obra
– Lección 12. Parques de maquinaria y gestión de inventarios
– Lección 13. Constructividad y constructibilidad
– Lección 14. Estudio del trabajo y productividad
– Lección 15. Los incentivos a la productividad en la construcción
– Lección 16. Estudio de métodos
– Lección 17. Medición del trabajo
– Lección 18. La curva de aprendizaje en la construcción
– Lección 19. Ciclo de trabajo y factor de acoplamiento
– Lección 20. Producción de los equipos
– Lección 21. Composición y clasificación de suelos
– Lección 22. Movimiento de tierras y factor de esponjamiento
– Lección 23. Producción de los buldóceres
– Lección 24. Producción de las cargadoras
– Lección 25. Producción de las motoniveladoras
– Lección 26. Producción de las mototraíllas
– Lección 27. Producción de las retroexcavadoras
– Lección 28. Producción de las dragalinas
– Lección 29. Producción de los equipos de acarreo
– Lección 30. Producción de los compactadores
– Supuesto práctico 1.
– Supuesto práctico 2.
– Supuesto práctico 3.
– Batería de preguntas final
Profesorado
Víctor Yepes Piqueras
Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València
Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 160 artículos en revistas indexadas en el JCR. Autor de 10 libros, 22 apuntes docentes y más de 350 comunicaciones a congresos. Ha dirigido 16 tesis doctorales, con 10 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social, así como el Premio a la Trayectoria Excelente en Investigación y el Premio al Impacto Excelente en Investigación, ambos otorgados por la Universitat Politècnica de València.
Lorena Yepes Bellver
Ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Universitat Politècnica de València.
Profesora Asociada en el Departamento de Mecánica de los Medios Continuos y Teoría de las Estructuras de la Universitat Politècnica de València. Es ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Ha trabajado en los últimos años en empresas constructoras y consultoras de ámbito internacional. Aparte de su dedicación docente e investigadora, actualmente se dedica a la consultoría en materia de ingeniería y formación.
En todo proyecto constructivo suele aparecer un anejo que trata del Plan de Obra donde se planifica la duración de cada una de las actividades que se van a desarrollar en una obra. Para ello, además de conocer las mediciones y los rendimientos de los equipos, es necesario establecer el número de días que son útiles para el trabajo, considerando tanto los datos climáticos como el calendario laboral del lugar.
La previsión de los días trabajables en función de la climatología, se puede estimar de acuerdo con las recomendaciones de la publicación “Isolíneas de coeficientes de reducción de los días de trabajo”, editada por la División de Construcción de la Dirección General de Carreteras del M.O.P.T., actual Ministerio de Fomento. Los datos climáticos necesarios para su redacción se pueden obtener de la publicación “Datos climáticos para Carreteras”, editado asimismo por la División de Construcción de la Dirección general de M.O.P.T. (1964). Según este método, para calcular el tiempo disponible en las distintas clases de obra, se establecen unos coeficientes de reducción aplicables al número de días laborables de cada mes.
No obstante, si se dispone de datos recientes de los regímenes de precipitaciones y temperaturas de estaciones meteorológicas suficientemente próximas a las obras, deben utilizarse dichos datos. Se trata de dar un orden de magnitud, pues en la práctica, durante la ejecución de las obras, la evolución del tiempo atmosférico en cada momento es impredecible. Sin embargo, con los resultados de este cálculo se podrá elaborar un plan de obra lo más ajustado posible, de forma que se reduzcan las desviaciones de plazo.
En la Figura 3 se muestra cómo los condicionantes climatológicos y los imprevistos influyen en el plazo de obra. También es necesario conocer el desglose de las actividades, sus mediciones y el rendimiento de los equipos elegidos.
Días aprovechables en la ejecución de las obras
Para estimar el número de días hábiles en la jornada laboral, se analizan los datos climáticos históricos registrados por estaciones meteorológicas cercanas al área de trabajo.
Condiciones límite
Para cada clase de obra, se entiende por día útil de trabajo, en cuanto a la climatología se refiere, el día en que la precipitación y la temperatura del ambiente sean inferior y superior, respectivamente, a los límites que se definen a continuación.
No se consideran las altas del ambiente que impidan la puesta en obra del hormigón, tanto por el número inapreciable de días que se dan como por caer dentro del microclima de una zona reducida.
Los límites que se dan a continuación son los correspondientes al método del MOP (1964). No obstante, se deberían adaptar a los condicionantes de las distintas disposiciones técnicas vigentes, así como lo que el propio proyecto pudiese considerar.
Temperatura límite para la ejecución de unidades bituminosas: Es aquella por debajo de la cual no se pueden ejecutar riegos, tratamientos superficiales o por penetración, y mezclas bituminosas. Normalmente, se considera 10 °C para tratamientos superficiales o por penetración y 5 ºC para mezclas bituminosas.
Temperatura límite para la manipulación de materiales húmedos: Se determina en 0 °C la temperatura límite del ambiente para la manipulación de materiales naturales húmedos.
Precipitación límite diaria: Se definen dos valores: 1 mm/día, que limita el trabajo en ciertas unidades sensibles a la lluvia ligera; y 10 mm/día para el resto de los trabajos. Se considera que, con 10 mm de precipitación al día, es necesaria una protección especial para realizar cualquier trabajo.
Coeficientes de reducción por condiciones climáticas durante los trabajos
El número total de días hábiles disponibles para cada tipo de trabajo se calcula multiplicando el número de días laborables del mes por sus respectivos coeficientes reductores. A continuación, se enumeran dichos coeficientes:
Cálculo de los días utilizables para cada clase de obra en la fase constructiva
Para obtener los coeficientes de reducción promedio para cada tipo de trabajo y su ubicación, se asocia un factor meteorológico que afecta a la obra, tal y como se representa en la Tabla 1.
Tabla 1. Factores climáticos
Suponiendo que estos sucesos son independientes entre sí, como el trabajo debe cancelarse cuando ocurra una de las condiciones adversas, los coeficientes de reducción se aplican de forma reiterada. La Tabla 2 indica el coeficiente de reducción de los días laborables que afecta a cada clase de obra.
Tabla 2. Coeficientes reductores
Tras aplicar las fórmulas anteriores, se obtienen los valores correspondientes a cada mes y a cada coeficiente para un determinado lugar y año.
Para determinar los días utilizables netos de cada mes se contemplan dos factores de reducción; uno, el de los días de climatología adversa, cuyo coeficiente de reducción coincide con cm, para cada clase de obra y, otro, el de los días no laborables cf y que dependen de los días festivos que varían según el año, la localidad y los convenios laborales. El coeficiente cf es el cociente entre los días laborables y los totales del mes correspondiente.
Dado que los días festivos también pueden ser de climatología adversa, se puede adoptar el criterio propuesto en la publicación de la Dirección General de Carreteras. En ese caso (1-cm) representa la probabilidad de que un día cualquiera del mes presente climatología adversa para dicha clase de obra; y (1-cm)·cf, la probabilidad de que un día laborable presente una climatología adversa.
El coeficiente de reducción total será, por tanto:Para obtener una mayor precisión que la obtenida en el coeficiente de reducción arriba indicado, se podría emplear la fórmula siguiente:que representa la probabilidad de que un día del mes presente climatología favorable (cm) y que sea laborable (cf).
YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.
Acaban de publicarnos en la revista Journal of Building Engineering, que está en el primer decil del JCR, un artículo de revisión sobre la integración del proyecto estructural en BIM. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
La revolución hacia la Industria 4.0 en el sector AECO ha tomado como uno de sus puntos centrales el Building Information Modelling (BIM). Las capacidades de BIM para la automatización, la interoperabilidad y la sostenibilidad juegan un papel clave en este cambio. En este artículo se presenta una revisión bibliográfica sobre la adopción de BIM para el proyecto estructural. El objetivo de la revisión presentada es establecer el estado actual del conocimiento de la implementación de la metodología BIM en el campo del análisis estructural. Se han seleccionado trabajos relacionados con estos dos temas simultáneamente, BIM y análisis de estructuras, durante los últimos 10 años. La literatura se ha analizado desde dos enfoques diferentes. En primer lugar, se ha realizado un análisis bibliométrico, estudiando la producción sobre el tema. En segundo lugar, se han seleccionado y analizado 81 artículos representativos, estableciendo áreas temáticas a través del análisis de clúster. También se han clasificado los artículos a partir de varias categorizaciones basadas en el ciclo de vida estructural y su objetivo. Por último, se efectúa un análisis DAFO a partir de estos datos para crear un marco completo que muestre el estado de la integración del proyecto estructural en entornos BIM y los posibles desarrollos y riesgos futuros. Este conjunto de estudios muestra una tendencia hacia las herramientas de diseño y las nuevas construcciones. Mientras que la automatización y el diseño asistido por ordenador han sido una tendencia en la investigación durante varios años, se ha señalado una laguna en la investigación sobre el análisis estructural a través de BIM para los edificios existentes y del patrimonio, mostrando su capacidad para mejorar el análisis de los edificios existentes y su mantenimiento.
Highlights:
The state-of-art of the integration of the structural project into BIM environments has been performed.
A quantitative approach has been performed studying the scientific production of the topic.
A qualitative analysis through proof-reading 81 articles relates the design phase and the agent involved in it to weigh the received attention.
A cluster analysis on keywords of 81 articles reveal the trends in BIM research.
Discussion through SWOT system reveals the different trends, weaknesses and further opportunities in the research area.
Abstract:
The revolution towards Industry 4.0 in the AECO Industry has taken Building Information Modelling (BIM) as one of its central points. BIM abilities for automatization, interoperability and sustainability play a key role in this change. In this paper, a literature review about BIM adoption for the structural project is presented. The aim of the presented review is to clearly establish the current state of knowledge of the implementation of the BIM methodology in the field of structural analysis. Papers related to these two topics simultaneously, BIM and structure analysis, during the last 10 years have been selected. The literature has been analysed from two different approaches. First, bibliometric analysis has been performed, studying the production on the topic. Secondly, 81 representative papers have been selected and analysed, establishing thematic areas via cluster analysis. The articles have also been classified upon several categorizations based on the structural life cycle and their aim. Finally, a SWOT analysis is performed from this data to create a complete framework that shows the state of the integration of the structural project in BIM environments and possible future developments and risks. This set of studies shows a tendency towards design tools and new buildings. While automatization and computer-aided design have been a trend in the research for several years, a research gap on the structural analysis via BIM for existing and heritage buildings has been pointed out, showing its ability to improve the analysis of existing buildings and its maintenance.
Keywords: BIM; Structural project; Building performance; Literature review; Life cycle
Seguimos examinando los contenidos del Código Estructural relacionados con el control de la calidad. Ya he comentado en este blog cómo los conceptos aparecen diseminados a lo largo del articulado, incluso con incongruencias que estoy tratando de sacar a la luz. La trazabilidad, el nivel de control y, en particular, el control de los procesos de ejecución aparecen en distintos artículos.
Ya os adelanto que, si alguien está esperando aprender cómo se gestionan los procesos constructivos leyendo este epígrafe del Código, se va a llevar una decepción.
Bajo este artículo se recogen tres aspectos que, si bien están relacionados de alguna forma con los procesos constructivos, son dispares entre sí. Se incluyen aquí las instalaciones ajenas a la obra, la gestión medioambiental de la ejecución y el nivel de control y clases de ejecución. De su lectura resulta evidente que no está aquí recogido todo lo relacionado con la gestión de la ejecución. Como suele ser habitual, se han integrado en este Artículo 14 el parte del contenido de algunos otros de la derogada Instrucción de Hormigón Estructural EHE-08. En particular, la EHE-08 dedicaba el Artículo 66.2 a la gestión de los acopios de materiales en la obra y el Artículo 66.3 a las consideraciones de carácter medioambiental y de contribución a la sostenibilidad. Por otra parte, y aunque en el actual Artículo 14.3 se indiquen los niveles de control del proyecto, realmente es el Artículo 55.1 el que lo desarrolla. A pesar de esta diáspora de conceptos, vamos a analizar los cambios más significativos que encontramos en el actual Código.
La primera novedad consiste en que el constructor debe disponer de unos procedimientos escritos para cada uno de los procesos de ejecución de la estructura, coherentes con el proyecto, acordes con la reglamentación que sea aplicable y conforme con sus propios medios de producción. Resulta curioso que aún se hable de “procedimientos escritos”, cuando los registros normalmente son digitales. Esta obligación se encuentra alineada con los requisitos que tiene cualquier empresa que tenga certificado su sistema de gestión de la calidad conforme a ISO 9001. Es decir, que la constructora puede no estar certificada, pero tiene la obligación de los procedimientos. Existe, por tanto, una presión implícita del Código para que las empresas constructoras tengan certificado su sistema de gestión de la calidad.
Aparece el concepto “clase de ejecución” que es similar al de “nivel de control“, ambos definidos en el proyecto. El primero tiene que ver con las estructuras de acero, y el segundo, con las de hormigón. Hubiera sido interesante unificar ambos términos para dar coherencia a la norma. Se trata de establecer unos niveles de trazabilidad en función de la clase o del control de ejecución. Ello obliga al constructor a disponer de un sistema de registro y seguimiento de las unidades ejecutadas. Se trata de relacionar cada partida o remesa con el elemento construido (nivel A) o con el lote de ejecución (nivel B).
Se ha introducido el Artículo 14.1 sobre instalaciones ajenas a la obra. Su inclusión es obvia, pues trata de asegurar la trazabilidad mediante una gestión de los acopios. Suelen proceder de instalaciones industriales ajenas a la obra que suministran productos elaborados o semielaborados como estructuras metálicas, prefabricados o ferralla.
Se proponen tres niveles de gestión ambiental que, si bien presentan una escala diferente de exigencias, bastaría con cumplir uno de ellos, salvo requisito adicional de la propiedad. El nivel de operatividad medioambiental exige simplemente que el constructor cumpla la legislación vigente. Esto es tan obvio que sobrarían el resto de niveles. No obstante, el Código apunta la tendencia futura a mayores exigencias. Así, se aspira a una certificación medioambiental bajo ISO 14001 o similar. Un paso intermedio sería el nivel de sensibilización medioambiental cuando, a falta de certificación, la dirección facultativa comprueba que el constructor cumple una serie de requisitos ambientales específicos recogidos en el proyecto, previo acuerdo con la propiedad. Es evidente, como vimos anteriormente, que existe una presión hacia la certificación de la gestión de la calidad y del medioambiente de las empresas constructoras.
Se añade el Artículo 14.3 sobre niveles de control y clases de ejecución. Como se ha comentado, son dos conceptos análogos desde el punto de vista del nivel de trazabilidad, para las estructuras de hormigón y de acero, respectivamente. Por cierto, las tablas 14 y 14.3.1 son redundantes. Otra oportunidad perdida para simplificar y mejorar la legibilidad del Código.
Por último, es muy importante recoger la exigencia para el caso de puentes, donde el nivel de control será siempre el intenso. Ciertamente, la redacción del artículo es confusa, pues exige “clase de ejecución” para los elementos de hormigón. Otra ocasión perdida para mejorar el texto.
Os he grabado un vídeo explicativo que espero os resulte de interés.
Os dejo a continuación la transcripción del Artículo 14 del Código Estructural para su consulta.
Artículo 14. Gestión de los procesos constructivos.
El constructor deberá disponer de:
a) unos procedimientos escritos para cada uno de los procesos de ejecución de la estructura, coherentes con el proyecto, acordes con la reglamentación que sea aplicable y conforme con sus propios medios de producción, y
b) un sistema de gestión de los materiales, productos y elementos que se vayan a colocar en la obra, de manera que se asegure la trazabilidad de los mismos. Dicho sistema de gestión deberá presentar, al menos, las siguientes características:
– disponer de un registro de suministradores de la obra, con identificación completa de los mismos y de los materiales y productos suministrados,
– disponer de un sistema de almacenamiento de los acopios en la obra que permita mantener, en su caso, la trazabilidad de cada una de las partidas o remesas que llegan a la obra, y
– disponer de un sistema de registro y seguimiento de las unidades ejecutadas que relacione estas con las partidas de productos utilizados y, en su caso, con las remesas empleadas en las mismas, de manera que se pueda mantener un determinado nivel de trazabilidad durante la ejecución de la obra, de acuerdo con el nivel de control y la clase de ejecución definido en el proyecto, de acuerdo con la tabla 14, donde:
• el nivel A de trazabilidad permite relacionar cada partida o remesa con el elemento construido, mientras que • el nivel B de trazabilidad permite relacionar cada partida o remesa con el lote de ejecución.
14.1 Instalaciones ajenas a la obra.
En el caso de instalaciones industriales ajenas a la obra que suministren productos elaborados o semielaborados a la misma (como por ejemplo, los talleres de estructura metálica, las industrias de prefabricados o los talleres de ferralla), deberán disponer de los sistemas adecuados de gestión de los acopios que les permitan mantener los niveles de trazabilidad establecidos para la estructura.
14.2 Gestión medioambiental de la ejecución.
Sin perjuicio del cumplimiento de la legislación de protección ambiental vigente, la propiedad podrá establecer que el constructor tenga en cuenta una serie de consideraciones de carácter medioambiental durante la ejecución de la estructura, al objeto de minimizar los potenciales impactos derivados de dicha actividad. A los efectos de este Código, se pueden contemplar tres niveles de gestión medioambiental, definidos de acuerdo con el siguiente criterio:
a) nivel de certificación medioambiental, cuando la obra se encuentre incluida en el alcance de la certificación del constructor de conformidad con UNE-EN ISO 14001 o norma equivalente ISO 14001, b) nivel de sensibilización medioambiental, cuando la obra no esté en posesión del certificado indicado en el punto a), pero la dirección facultativa compruebe que el constructor cumple una serie de requisitos ambientales específicos recogidos en el proyecto, previo acuerdo con la propiedad, y c) nivel de operatividad medioambiental, cuando el constructor se limite al cumplimiento de la legislación medioambiental vigente.
En su caso, dicha exigencia debería incluirse en un anejo de evaluación ambiental de la estructura, que formará parte del proyecto. En caso de que el proyecto no contemplara este tipo de exigencias para la fase de ejecución, la propiedad podrá obligar a su cumplimiento mediante la introducción de las cláusulas correspondientes en el contrato con el constructor.
En particular, el sistema de gestión medioambiental de la ejecución deberá identificar las correspondientes buenas prácticas medioambientales a seguir durante la ejecución de la obra. En el caso de que el proyecto haya establecido exigencias relativas a la contribución de la estructura a la sostenibilidad, de acuerdo con el capítulo 2, la ejecución deberá ser coherente con dichas exigencias.
En el caso de que algunas de las unidades de obra sean subcontratadas, el constructor, entendido este como el contratista principal, deberá velar para que se observe el cumplimiento de las consideraciones medioambientales en la totalidad de la obra.
14.3 Nivel de control y clases de ejecución.
El pliego de prescripciones técnicas particulares del proyecto incluirá la identificación del nivel de control de ejecución en el caso de estructuras de hormigón, y de las clases de ejecución que serán aplicables a cada elemento en el caso de estructuras de acero, necesarias para garantizar el nivel adecuado de seguridad.
Una estructura de acero puede incluir elementos de distinta clase. En dicho caso, debe procederse a agrupar los elementos por clases al objeto de simplificar la especificación de los criterios requeridos, la gestión de su comprobación y la valoración de su ejecución y control.
De acuerdo con los índices de fiabilidad adoptados en el apartado 5.2.1 de este Código, debe cumplirse una clase de fiabilidad RC2. Por ello, el nivel de inspección durante la ejecución según el apartado B5 del Anejo 18 debe ser, al menos, el IL2, lo que conlleva a que: – en los elementos de hormigón, un control de ejecución intenso o normal (según el apartado 22.4.1), y – en los elementos de acero, un control de ejecución intenso o normal, en función de la clase de ejecución, que deberá ser 2, 3 o 4 (según el apartado 91.2) (tabla 14.3.1).
Salvo indicación en contra de la reglamentación específica que le sea aplicable, en el caso de puentes, la clase de ejecución será: – para los elementos de hormigón, control de ejecución intenso, y – para los elementos de acero estructural, clase 3 o 4.
Recojo el comentario del Artículo 14 del código referido a la trazabilidad a efectos de entender mejor el concepto.
“Cuando el articulado se refiere a mantener la trazabilidad, al menos, en el nivel de los lotes de ejecución, se pretende que el sistema de gestión al que se hace referencia permita que, en el caso de que se produjera algún problema con alguna de las partidas de materiales o productos empleados en la obra, pueda identificarse inequívocamente en qué lotes de ejecución ha sido empleada dicha partida. Análogamente, si se produjera algún problema o patología en alguno de los elementos estructurales, una vez relacionado éste con su lote de ejecución correspondiente, deberá poderse identificar inequívocamente, qué partidas de materiales y productos han sido empleados para la ejecución del elemento estructural afectado“.
Como ya es conocido, el Real Decreto 470/2021, de 29 de junio, fue el que aprobó el vigente Código Estructural. Independientemente de la pertinencia de aprobar esta norma nacional en un momento donde deberíamos converger rápidamente hacia los Eurocódigos, lo cierto es que permite integrar en un solo documento los aspectos relacionados con el hormigón estructural, el acero y las estructuras mixtas. Además, posibilita conocer hacia dónde van las tendencias en este ámbito. No obstante, son necesarias más de 300 normas UNE para complementar el contenido del nuevo código en lo referente a la conformidad de los productos y procesos regulados en el mismo.
En un artículo anterior hablé del término “deconstrucción” y su empleo dentro del Código Estructural. Dejando al margen el acierto en el uso de determinadas palabras, lo cierto es que algo nuevo se respira en el ambiente en relación con el ciclo de vida de las estructuras, en especial cuando tratamos del final de la vida útil. En este caso, uno de los aspectos que se resalta en el nuevo código es el tratamiento de los residuos, tanto al final de la vida de la estructura como en su utilización como material reciclado. Repasemos, pues, el tratamiento que da el Código Estructural a los residuos. Por cierto, que un residuo de construcción y demolición es cualquier sustancia u objeto que, cumpliendo la definición de “residuo” de la Ley 10/1998, de 21 de abril, se genere en una obra de construcción o demolición.
En el artículo 5, referido a los requisitos de las estructura, y en particular en lo referente a la exigencia de calidad medioambiental de la ejecución, se exige tanto en proyecto, en ejecución y en las tareas de intervención sobre las estructuras existentes, la reducción en la generación de residuos.
En cuanto al uso de materiales en el hormigón, el artículo 30.8 referido a los áridos reciclados establece los requisitos para la utilización del árido reciclado procedente de los residuos del hormigón. Además, el artículo 32, sobre las adiciones, se refiere a las cenizas volantes como residuos sólidos.
Pero quizás lo más interesante a este respecto viene con los artículos referidos a la demolición y deconstrucción de las estructuras. Así, el Capítulo 16 se refiere a las estructuras de hormigón, y establece que en el proyecto de demolición de estas estructuras se deben definir los procedimientos de gestión de los residuos, las medidas previstas para la separación de los residuos generados y la retirada de posibles residuos peligrosos. Se añade la obligatoriedad de gestionar los residuos de forma eficiente durante el proceso de demolición. Lo novedoso es que el artículo 78 contempla medidas adicionales para lo que se viene en llamar “deconstrucción de estructuras de hormigón”. No se establece en el código cuándo es obligatorio proceder a la deconstrucción frente a la demolición, pues solo habla de esas medidas adicionales que diferencian ambos procesos, y que pasan por la reutilización y reciclado de la estructura existente. Para ello las medidas adicionales se basan en identificar los elementos reutilizables, los residuos generados y elaborar dos documentos: el Estudio de Gestión de Residuos, que contenga los destinos previstos para los residuos generados, y el Plan de Gestión de Residuos, orientado al reciclado. Además, esta deconstrucción solo la puede realizar una empresa con certificación medioambiental de conformidad con la norma UNE-EN ISO 14001.
El Capítulo 26 trata la demolición y deconstrucción de las estructuras de acero de forma similar a las de hormigón. Y del mismo modo, el Capítulo 36 lo hace con las estructuras mixtas hormigón-acero. Hubiera bastado un solo capítulo referido a la demolición y deconstrucción de las estructuras para no repetir tres veces prácticamente lo mismo.
En este contexto, por tanto, se podrían hacer los siguientes comentarios respecto al tratamiento de los residuos por parte del Código Estructural. Otra cosa es que la legislación o las normas de carácter voluntario definan con mayor claridad alguno de estos aspectos.
El proyecto constructivo de una estructura debe de justificar la reducción en la generación de residuos, no se define cómo ni dónde. La exigencia se amplía a la ejecución a la intervención de las estructuras, pero la indefinición es la misma.
El Código Estructural no aclara cuándo es obligatoria la deconstrucción frente a la demolición de una estructura. Pero, con los requisitos medioambientales actuales, ¿cabe hablar de una demolición que no contemple el reciclado y la gestión de los residuos? No es razonable, por tanto, distinguir el proceso de la demolición del de la deconstrucción. Hubiera bastado en el Código Estructural exigir a la demolición los requisitos adicionales citados.
Se hace necesario un proyecto de demolición, aunque no se habla de un proyecto de deconstrucción.
La reutilización de residuos procedentes de estructuras queda circunscrito en este código al árido reciclado. La reutilización, por tanto, queda indefinida fuera de este ámbito.
Se exigen dos documentos diferentes, el Estudio de Gestión de Residuos y el Plan de Gestión de Residuos, cuyo contenido y estructura no se definen en el código (hay que acudir a otra legislación vigente).
La deconstrucción la puede realizar solo una empresa con certificado ISO 14001. ¿Cualquier empresa, independientemente de su experiencia o capacidad para realizar demoliciones estructurales? No olvidemos que la deconstrucción es una demolición con unos requisitos adicionales.
La conclusión sobre el documento es bastante clara. Aunque se apuntan direcciones estratégicas respecto al ciclo de vida de las estructuras, la parte final queda algo desdibujada. No hay más remedio que acudir a otra normativa o legislación para aplicar con cierto rigor lo que establece el Código Estructural. Véase el Real Decreto 105/2008, de 1 de febrero, por el que se regula la producción y gestión de los residuos de construcción y demolición.
Aquí tenéis un vídeo sobre la demolición de estructuras en el Código Estructural. Organizado por el CITOP de Aragón.
Os dejo aquí un webminar que se desarrolló hace poco sobre el nuevo Código Estructural, organizado por el Colegio Oficial de Aparejadores y Arquitectos Técnicos de Madrid.
La optimización de puentes es un problema complejo debido al gran número de variables que intervienen. En este trabajo se ha realizado la optimización de un puente mixto en cajón considerando el coste como función objetivo. Para ello se ha aplicado el Recocido Simulado (SA) como ejemplo de algoritmo basado en la búsqueda de soluciones mediante trayectorias para la optimización de la estructura. Se observa que la adición de celdas a las secciones transversales del puente mejora no sólo el comportamiento de la sección sino también los resultados de la optimización. Finalmente, se observa que el diseño propuesto de doble acción compuesta materializando losas en el ala inferior sobre apoyos, permite eliminar los rigidizadores longitudinales continuos. Este método automatiza el proceso de optimización de un diseño inicial de un puente de material compuesto, que tradicionalmente se ha basado en la propia experiencia del técnico, permitiendo alcanzar resultados de forma más eficiente.
Referencia:
MARTÍNEZ-MUÑOZ, D.; SÁNCHEZ-GARRIDO, A.J.; MARTÍ, J.V.; YEPES, V. (2021). Composite bridge deck optimization with trajectory-based algorithms. 6th International Conference on Mechanical Models in Structural Engineering, CMMoST 2021, 1-3 December, Valladolid, Spain, pp. 174-187. ISNB: 978-84-09-39323-7
A lo largo de estos años hemos visto un buen cúmulo de métodos de evaluación de la sostenibilidad en la edificación (MEES). Se trata de un campo donde nos encontramos en plena evolución conceptual, desde un enfoque inicial centrado en los impactos ambientales, hasta la inclusión paulatina de aspectos sociales y económicos de la sostenibilidad.
Todo esto ha llevado a la creación de un nuevo marco establecido por la Comisión Europea en materia de edificación que se conoce con el nombre de Level(s) y que se ha lanzado este mismo año 2021. Pero vamos a empezar contextualizando este tema y veamos después, a grandes rasgos, qué es esto de Level(s).
Se han contabilizado más de 700 métodos, desde la década de los 70, que intentan evaluar el comportamiento y rendimiento del edificio y sus impactos (López et al., 2019). Todos ellos son instrumentos basados en indicadores cuantitativos del rendimiento ambiental, económico, social y de usabilidad de los edificios que, como no puede ser de otra forma, se actualizan constantemente. No se trata solo de evaluar un edificio terminado, sino que estos métodos MEES pretenden una visión holística de la sostenibilidad que empiece desde el proyecto y que termine con el fin de la vida útil del edificio. Resulta en este punto interesante hacer referencia a la tesis doctoral de Carmen Díaz (2021), que realizó una investigación exhaustiva de 101 MEESs y que clasificó estos métodos en tres grupos: Sistemas de evaluación de la edificación sostenible, Estándares de edificación sostenible y Herramientas de evaluación.
Los sistemas de evaluación de la edificación sostenible tratan de evaluar, clasificar y certificar los edificios atendiendo a una serie de parámetros o categorías. En estos sistemas se establece, por tanto, una gradación entre las edificaciones. Un ejemplo sería la certificación LEED (Liderazgo en Energía y Diseño Ambiental, por sus siglas en inglés).
Los estándares de edificación sostenible presentan una exigencia de requisitos mínimos de desempeño y, por tanto, no establece una gradación entre las edificaciones. Sería un catálogo de soluciones constructivas o de buenas prácticas. Tenemos, por ejemplo, el caso del estándar Passivhaus (del alemán, casa pasiva).
Las herramientas de evaluación no evalúan, clasifican o certifican, sino que son un apoyo a otros métodos. Se trata de programas informáticos que simplifican los cálculos. Como ejemplo podemos citar EnergyPlus.
Pues bien, en este contexto la Comisión Europea lanzó en 2021 un nuevo marco de evaluación voluntario denominado Level(s) que recoge los instrumentos y normas existentes con el objetivo de sensibilidad a las partes interesadas, incrementar el conocimiento, proporcionar un enfoque común, adaptarse al cambio climático y crear un marco de economía circular.
Cada indicador de Level(s) puede utilizarse para distintos tipos de evaluación del comportamiento, desde un nivel de base hasta un análisis del ciclo de vida (ACV) completo. Las prioridades que marcan los indicadores son las siguientes:
Emisiones de gases de efecto invernadero a lo largo del ciclo de vida del edificio.
Ciclos de vida de los materiales que sean circulares y eficientes en cuanto al uso de recursos.
Uso eficiente de los recursos hídricos.
Espacios sanos y confortables.
Adaptación y resiliencia al cambio climático
Coste y valor del ciclo de vida.
El proyecto se divide en 6 macroobjetivos y 16 indicadores distribuidos en tres áreas temáticas según su comportamiento. Además, Level(s) esta estructurado en tres niveles que se comportan de la siguiente manera:
Nivel 1: Nivel simple de tipo diseño conceptual del proyecto de construcción. Evaluación cualitativa para el diseño y la presentación de informes. Nivel 2: Nivel intermedio de tipo diseño detallado y desempeño de la construcción del edificio. Evaluación cuantitativa del rendimiento diseñado y el seguimiento de la construcción de acuerdo con unidades y métodos estandarizados. Nivel 3: Nivel avanzado de tipo desempeño tal como fue construido y el uso de cómo se desempeña el edificio después de la finalización y entrega al cliente. Evaluación cuantitativa del rendimiento del diseño y el seguimiento de la construcción de acuerdo con unidades y métodos estandarizados.
En este vídeo se explica, brevemente, en qué consiste Level(s).
Os paso un vídeo donde se explica la experiencia española sobre la propuesta Level(s). Espero que os sea de interés.
Referencias:
López, C. D., Carpio, M., Martín-morales, M., Díaz López, C., Carpio, M., Martín-morales, M., Zamorano, M. (2019). A comparative analysis of sustainable building assessment methods. Sustainable Cities and Society, 49, 101611. https://doi.org/10.1016/j.scs.2019.101611
Díaz-López, C. (2021). Sustainable building assessment methods: adaptation to climate change and implementation strategies. Tesis doctoral, Universidad de Granada.
Acaban de publicarnos un artículo en la revista Mathematics, revista indexada en el primer decil del JCR. En este caso se ha desarrollado una aplicación para la optimización de una estrategia sostenible en la gestión de un proyecto de ingeniería internacional. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
El objetivo de este artículo es establecer un marco internacional para la gestión sostenible de proyectos en ingeniería, completar la investigación en este campo y proponer una base teórica para el establecimiento de un nuevo sistema de gestión de proyectos. El artículo adopta como método de investigación la revisión de la literatura, un algoritmo de programación matemática y el estudio de casos. La revisión de la literatura analizó los resultados de 21 años de investigación en este campo. Como resultado, se constató que el sistema de gestión de proyectos presenta deficiencias. Se estableció un modelo matemático para analizar la composición y los elementos del sistema optimizado de gestión de proyectos internacionales. La investigación de casos seleccionó grandes puentes para su análisis y verificó la superioridad y viabilidad del sistema teórico propuesto. La aportación de esta nueva investigación radica en el establecimiento de un modelo de sistema de gestión de proyectos internacional completo; en la integración del desarrollo sostenible con la gestión de proyectos; y en la propuesta de nuevos marcos de investigación y modelos de gestión para promover el desarrollo sostenible de la industria de la construcción.
Abstract:
The aim of this paper is to establish an international framework for sustainable project management in engineering, to make up the lack of research in this field, and to propose a scientific theoretical basis for the establishment of a new project management system. The article adopts literature review, mathematical programming algorithm and case study as the research method. The literature review applied the visual clustering research method and analyzed the results of 21-year research in this field. As a result, the project management system was found to have defects and deficiencies. A mathematical model was established to analyze the composition and elements of the optimized international project management system. The case study research selected large bridges for analysis and verified the superiority and practicability of the theoretical system. Thus, the goal of sustainable development of bridges was achieved. The value of this re-search lies in establishing a comprehensive international project management system model; truly integrating sustainable development with project management; providing new research frames and management models to promote the sustainable development of the construction industry.
Nos acaban de publicar en la revista Sustainaibility (segundo cuartil en Web of Science) un artículo donde se aplica la toma de decisiones multicriterio y el análisis de ciclo de vida para seleccionar viviendas de bajo coste desde el punto de vista de la sostenibilidad en el contexto de Brasil.
Se trata del fruto del trabajo conjunto desarrollado por el profesor Moacir Kripka, catedrático de estructuras en la Universidade de Passo Fundo, que estuvo de estancia en nuestra universidad recientemente.
Este artículo forma parte de nuestra línea de investigación DIMALIFE en la que se pretenden optimizar estructuras atendiendo no sólo a su coste, sino al impacto ambiental y social que generan a lo largo de su ciclo de vida.
Como se trata de una publicación en abierto, os dejo a continuación el artículo completo para su descarga.