Tuneladoras de frente en presión de lodos: los hidroescudos

Vista frontal de un hidroescudo. https://www.eurohinca.com/escudo-cerrado-hidroescudo.html

Los escudos de frente en presión de lodos, o hidroescudos (hydroshield, en inglés) son tuneladoras que emplea lodos tixotrópicos para garantizar la estabilidad del frente, con un sistema de conducción del escombro por vía húmeda mediante bombeo. Estas máquinas surgieron en los años sesenta para resolver el problema de la presurización de los frentes de excavación en materiales no cohesivos.

Actualmente, los hidroescudos son aptos para trabajar para excavar bajo nivel freático en terrenos complicados, formados por arenas y gravas u otros materiales blandos y fragmentados. El límite del tamaño máximo transportable hidráulicamente es de 80 a 100 mm. No obstante, si se incorpora una trituradora en la cabeza de la máquina, se puede abordar el desalojo de tamaños mayores. Cuando el porcentaje de finos (tamiz 200) supera el 20%, la solución no es económica por la dificultad de separar el escombro de la bentonita. Además, se trata de una máquina especialmente indicada para la perforación de pequeños diámetros. No obstante, siempre con los inconvenientes propios de este medio de estabilización: vertido de los lodos y sobrecoste de la instalación para su preparación, bombeo y recuperación.

Estos escudos son las más apropiados para excavar túneles en terrenos inestables sometidos a una elevada presión de aguas subterráneas o a filtraciones que deben contenerse proporcionando sostenimiento al frente de excavación con un fluido a presión. Este fluido de excavación normalmente es una suspensión de bentonita o bien una mezcla de arcilla y agua.

El fluido de perforación se bombea hacia el interior de la cámara de excavación, donde llega al frente de excavación y penetra en el suelo formando la torta de filtro o el mamparo impermeable en suelos finos, o la zona impregnada en suelos gruesos, que garantiza la presión en el frente. La función de los lodos, además de estabilizar el terreno, es facilitar la evacuación del escombro que, mezclado con ellos, se bombea y dirige hacia el exterior.

En estos escudos, la parte de la máquina que realiza la excavación, está separada del resto por una mampara completamente estanca. Los lodos ocupan una cámara con dos compartimentos: uno anterior lleno de lodos con el escudo en funcionamiento y otro posterior en el que se regula la presión por medio de un colchón de aire que está separado de la cámara por un diafragma. El volumen de lodos, se controla automáticamente con un regulador de nivel superior e inferior que actúa sobre los sistemas de alimentación y de extracción del detritus, de forma que cuando los lodos alcanzan uno de estos niveles, las bombas de impulsión o extracción se paran automáticamente.

En la Figura 2 se representan las distintas partes de la que consta un hidroescudo.

Figura 2. Esquema básico de un hidroescudo

La numeración de las partes del hidroescudo de la Figura 2 es la siguiente:

  1. Rueda de corte
  2. Accionamiento
  3. Suspensión de bentonita
  4. Sensor de presión
  5. Esclusa de aire comprimido
  6. Erector de dovelas
  7. Dovelas
  8. Cilindros de propulsión
  9. Burbuja de aire comprimido
  10. Mamparo sumergible
  11. Machacadora
  12. Tubería de extracción

Como en cualquier aplicación con lodos bentoníticos, la permeabilidad del terreno tiene un límite (k > 10-2 cm/s.) a partir del cual la capa de gel ya no se forma sobre el terreno y en consecuencia ha de recurriese a otro medio auxiliar de excavación.

La mezcla con los residuos se bombea desde la cámara de excavación hasta una planta de separación situada en la superficie, compuesta generalmente por cribas y ciclones, lo cual permite reciclar la suspensión de bentonita y arcilla.

Por último, resulta relevante comentar que los hidroescudos son la única forma de excavar un túnel bajo nivel freático cuando las presiones del agua son muy elevadas, por encima de los 5 Bar.

Os dejo a continuación la Figura 3, tomada de Mendaña y Fernández (2011), donde se pueden ver, de una forma aproximada, los rangos de utilización de los hidroescudos frente a los escudos EPB. A la izquierda de la figura tenemos en azul los terrenos cohesivos, donde lo ideal son los escudos EPB, mientras que a la derecha son terrenos no cohesivos con escasez de finos, donde lo más adecuado son los hidroescudos. Existe, como siempre, un campo intermedio donde se debe estudiar con mayor detenimiento la aplicación. En cualquier caso, es muy importante elegir bien los aditivos adecuados.

Figura 3. Campo de aplicación de los escudos presurizados (Mendaña y Fernández, 2011)

Os dejo a continuación un artículo de Mendaña y Fernández publicado en la Revista de Obras Públicas: http://ropdigital.ciccp.es/pdf/publico/2011/2011_octubre_3525_04.pdf

Descargar (PDF, 1.27MB)

Referencias:

  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • MENDAÑA, F.; FERNÁNDEZ, R. (2011). Hidroescudos y tuneladoras E.P.B. Campos de utilización. Revista de Obras Públicas, 3525:67-86.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Inyección de lechadas químicas

Figura 1. Inyección en presa Los Caracoles, San Juan (Argentina). www.fundacionesespeciales.com

La inyección de morteros líquidos se les conoce también por inyecciones químicas. Las lechadas químicas, también llamadas mezclas químicas, son soluciones puras sin partículas en suspensión, salvo que se añadan con alguna finalidad específica. Se caracterizan por su baja viscosidad, cercana al agua, por lo que penetran en los huecos por donde el agua puede filtrarse. Normalmente penetran en arenas finas, limos arenosos y fisuras de hasta 0,01 mm de apertura. La mezcla gelifica al cabo de cierto tiempo al cambiar bruscamente la viscosidad. Su mayor inconveniente es su alto precio, por lo que suelen utilizarse en casos específicos o combinados con otras técnicas, donde antes se ha inyectado con cemento.

Las mezclas líquidas se caracterizan por su viscosidad, que determina su penetrabilidad, por el tiempo que transcurre desde la fabricación de la mezcla hasta el comienzo de su gelificación y por las características del gel final como aglomerante del medio que recibe la inyección (Figura 2). Estas características se ven afectadas por las proporciones de la mezcla, incluida el agua y también de la temperatura, que modifica el tiempo de gelificación.

Figura 2. Cambio de viscosidad de algunas mezclas químicas (Sanz, 2000)

Las inyecciones químicas se componen de una base de inyección, un reactivo y un catalizador. Así, en el método de Joosten, una solución de silicato de sodio reacciona con una solución alcalina de cloruro cálcico para formar un concentrado de sílice, el llamado gel de sílice. Sin embargo, aparte de los geles de sílice, se pueden clasificar las mezclas químicas en otros tipos de genes y en resinas y espumas.

Se utilizan dos procesos de aplicación de las lechadas químicas. Las de doble acción (two-shot) consiste en inyectar el silicato sódico concentrado y luego una solución de cloruro cálcico que se inyecta a presión elevada que actúa como gelificante. Este procedimiento supone el coste de dos inyecciones y de los sondeos correspondientes. Para evitar esto, se utiliza el proceso de acción simple (one-shot) supone una única inyección de todos los productos, que se mezclan antes de inyectarse, pero diseñando la reacción de forma que la lechada solidifique o se convierta en gel en los huecos del suelo. Este segundo caso corresponde al caso de la reacción del silicato con acetato de etilo, formalmida, etc., o bien utilizando subproductos del tratamiento de las maderas, tales como las lejías lignosulfáticas coaguladas por adición de bicromatos alcalinos.

Los tipos más comunes de lechadas químicas son las siguientes (García Valcarce et al., 2003):

  • Geles duros (reactivos orgánicos):
    • A base de silicato de sodio
    • Mezcla de un lignosulfito y bentonita
  • Geles plásticos (reactivos inorgánicos):
    • A base de silicato de sodio y bentonita desfloculada
    • Geles de bentonita, arcilla o cemento
    • Resinas orgánicas
    • Monómeros acuosos, polímeros precondensados

Estas inyecciones no se aplican a terrenos con poros muy pequeños, como las arcillas y limos, que prácticamente no se pueden inyectar. Se podrían aplicar a arenas finas o loess, pero con costes muy elevados. Tampoco servirían con terrenos con huecos demasiado grandes ni cuando la mezcla presente una viscosidad elevada.

A continuación se describen los tres grandes grupos de lechadas químicas:

  • Geles de sílice: La base habitual es el silicato de sodio disuelto en agua. Esta base se mezcla con un reactivo endurecedor orgánico (geles duros) o mineral (gel o espuma), que, en función de la dosificación, regula la duración del fraguado. Las lechadas químicas de este tipo son las de mayor viscosidad, y su aplicación es adecuada en arenas finas o muy finas (k ϵ [10-3, 10-6] m/s). En roca se emplea cuando las fisuras son finas. Como reactivo inorgánico (fabricación de gel plástico), se usa principalmente el bicarbonato sódico, lo cual forma un gel blando de gelificación retardada, suficiente para la impermeabilización. Entre los reactivos orgánicos se puede mencionar el acetato de etilo, aunque hoy día se ha desplazado por otros productos, muchos bajo marcas comerciales.
  • Otros geles: Para aplicaciones particulares, se pueden utilizar otros tipos de lechadas químicas:
    • Geles mixtos: Mezcla de gel de sílice y resina acrílica, empleado para el tratamiento de fisuras activas.
    • Geles de arcilla: Mezcla de bentonita, silicato y un reactivo, muy utilizado en la impermeabilización de depósitos aluviales, para el remate de pantallas impermeables, así como proceso posterior a la inyección de lechadas de bentonita-cemento. También se utiliza cuando es difícil impermeabilizar con lechadas de cemento y cuando no se justifica el uso de gel.
    • Geles lignocromos: Mezclas de lignosulfatos que contienen un exhalante de cromo, altamente tóxico. Es habitual el lignosulfato de calcio y dicromato de sodio. Se usan también en la impermeabilización de depósitos aluviales complementando a las inyecciones de bentonita-cemento.
  • Resinas: Suelen ser soluciones de productos orgánicos en agua o en disolventes no acuosos, que polimerizan a temperatura ambiente en lugares cerrados. Se utiliza cuando no se puede inyectar otro producto por su viscosidad demasiado elevada. Se emplea en la impermeabilización de terrenos granulares finos o en el cierre de grietas de obras, especialmente presas y túneles. En estos últimos casos, o en la inyección en fisuras den estructuras de hormigón, aunque son muy caras, se pueden usar colas inyectadas, que son resinas de alta viscosidad como pueden ser las resinas epoxi especiales, poliéster, o productos acrílicos, que una vez polimerizan proporcionan mecánicas superiores a las del hormigón. Habría que hacer mención a los productos espumantes que incrementan su volumen con la formación de burbujas de gas (resinas de poliuretano). Un caso especial son los productos “sensibles al agua”, que permanecen líquidos hasta ser inyectados. Están formados por coloides orgánicos (poliol-isocianato) que pasan a espuma de poluiretano, en contacto con el agua, incrementando su volumen en más de 20 veces. Son las resinas de poluiretano acuarreactivas (resinas P.A.).

En la Figura 3 se representa el campo de aplicación de distintas inyecciones químicas en función de la permeabilidad del terreno. Puede verse que las mezclas químicas, especialmente las resinas acrílicas y fenólicas, presentan un mayor rango de aplicabilidad que las inyecciones de lechada de cemento o de arcilla-cemento. Los polímeros dan buen resultado cuando se requiere inyectar fracturas abiertas con agua en circulación, taponándose temporalmente las grietas para inyectar entonces las suspensiones de cemento, morteros y lechadas, que son más resistentes y de mayor durabilidad.

Figura 3. Tipos de inyecciones según la permeabilidad (Pérez Valcárcel, 2004)

En la Figura 4 se observa, con carácter orientativo, el límite de inyectabilidad en función de la permeabilidad del suelo y los diámetros de los granos de lechada (Cambefort, 1968).

Figura 4. Penetrabilidad de los morteros en función de la permeabilidad del medio (Cambefort, 1968)

En la Figura 5 se han representado los materiales que se emplearían en la inyección de acuerdo con el tamaño de los granos del terreno.

Figura 5. Materiales de inyección de acuerdo con el tamaño de las partículas (Bell, 1978)

A parte del coste de este tipo de tratamientos, hay que señalar que el agua marina puede modificar sustancialmente el tiempo de gelificación de varias soluciones de este tipo. Además, normalmente este tipo de tratamientos son provisionales, útiles durante la fase constructiva, pues la durabilidad de este tipo de productos puede ser muy variable.

Referencias:

  • BELL, F.G. (1978). Foundation engineering in difficult ground. Butterworths, London.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
  • SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización del mantenimiento del pavimento en carreteras mediante GRASP

La insuficiente inversión en el sector público junto con programas ineficaces de infraestructura de mantenimiento conducen a altos costos económicos a largo plazo. Por lo tanto, los responsables de la infraestructura necesitan herramientas prácticas para maximizar la eficacia a largo plazo de los programas de mantenimiento. En el artículo que os presento se describe una herramienta de optimización basada en un procedimiento híbrido de búsqueda aleatoria y adaptativa (GRASP) considerando la aceptación del umbral (TA) con restricciones relajadas. Esta herramienta facilita el diseño de programas de mantenimiento óptimos sujetos a restricciones presupuestarias y técnicas, explorando el efecto de diferentes escenarios presupuestarios en el estado general de la red. La herramienta de optimización se aplica a un estudio de caso, demostrando su eficiencia para analizar datos reales. Se demuestra que los programas de mantenimiento optimizado rinden un 40% más a largo plazo que los programas tradicionales basados en una estrategia reactiva. Para ampliar los resultados obtenidos en este estudio de caso, también se optimizaron un conjunto de escenarios simulados, basados en el rango de valores encontrados en el ejemplo real. El trabajo concluye que este algoritmo de optimización mejora la asignación de los fondos de mantenimiento con respecto a la obtenida con una estrategia reactiva tradicional. El análisis de sensibilidad de una gama de escenarios presupuestarios indica que el nivel de financiación en los primeros años es un factor impulsor a largo plazo de los programas de mantenimiento óptimo.

Referencia:

YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI:10.3846/13923730.2015.1120770

Os dejo a continuación la versión autor del artículo.

Descargar (PDF, 568KB)

 

 

 

Diseño de experimentos factorial completo aplicado al proyecto de muros de contención

En el congreso CMMoST 2019 (5th International Conference on Mechanical Models in Structural Engineering), celebrado en Alicante del 23 al 25 de octubre de 2019, tuvimos la ocasión de presentar varias comunicaciones. A continuación os paso una denominada “Diseño de experimentos factorial completo aplicado al proyecto de muros de contención“.

En este caso, se trataba aplicar una técnica estadística procedente del diseño de experimentos, el diseño factorial completo, para determinar las variables significativas y las interacciones entre las variables cuando se trata de calcular una estructura. En este caso, se trata de analizar las emisiones de CO2 en la construcción de un muro de contención de tierras. Esta metodología es muy interesante para los estudiantes de máster. Ya hemos publicado algún artículo sobre el mismo tema aplicado a puentes pretensados. Os dejo el artículo en abierto.

Referencia:

MARTÍNEZ-MUÑOZ, D.; YEPES, V.; MARTÍ, J.V. (2019). Diseño de experimentos factorial completo aplicado al proyecto de muros de contención. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain, pp. 201-213. ISBN: 978–84–17924–58–4

Descargar (PDF, 281KB)

 

Contención de agua mediante ataguías de tierras y escollera

Figura 1. Construcción de la ataguía en la represa de Salto Grande, sobre el río Uruguay. http://saltograndelaobra.blogspot.com/

Las ataguías de tierra son diques que se usan en obras que tengan suficiente espacio y que dispongan de materiales adecuados (Figura 1). Son idóneas para pequeñas alturas de agua (sobre 3 m) que no estén en movimiento. El material no debe contener tierra vegetal y se debe compactar para lograr la mayor impermeabilidad y estabilidad.

Se suelen usar taludes de 3/2 en el paramento de aguas arriba y de 2/1 en el de aguas abajo, con un ancho de coronación de al menos 1,50 m (Figura 2). Se preverá también una altura mínima de 1 m sobre las crecidas normales. Si el talud de la ataguía se somete a un flujo hidráulico, se debe proteger mediante un pedraplén o cualquier otro procedimiento que impida la socavación; pero en este caso hay que sopesar el coste económico de este recubrimiento frente a otros procedimientos constructivos.

Figura 2. Ataguía de tierra para contención de agua

Un mismo material puede ser idóneo o no en función de cómo se construya la ataguía. Por ejemplo, si se utiliza una arcilla que ha de descargarse bajo el agua, el ablandamiento que va a experimentar impedirá conseguir pendientes estables. En cambio, este mismo material dispuesto en seco y correctamente compactado es muy adecuado por su baja permeabilidad. Se pueden disponer también núcleos de material impermeable y dejar los lados con otro material, incluso escollera si se quiere proteger de las corrientes de agua.

En el caso de no ser suficiente la impermeabilidad del material empleado, también es posible una ataguía mixta colocando una tablestaca en el centro de la ataguía de tierra (Figura 3). Las tablestacas se atornillan en cabeza a un perfil metálico que las enlaza.

Figura 3. Ataguía mixta de tierra y tablestacas

Puede reducirse el espacio ocupado por la ataguía si se respalda la ataguía con un macizo de tierras aguas abajo, siempre y cuando las tablestacas presenten resistencia suficiente a los empujes (Figura 4). En este caso, es conveniente evitar las socavaciones de las tablestacas disponiendo escollera a su pie, aguas arriba.

 

Figura 4. Cortina de tablestacas y macizo de tierras aguas abajo

Aún se podría minimizar el espacio ocupado si utilizamos dos cortinas de tablestacas y entre ellas construimos un macizo de tierras que de estabilidad al conjunto, y que mejore la estanqueidad de las cortinas si el material es arcilloso (Figura 5). En este caso, también se dispone escollera aguas arriba y una berma de tierras aguas abajo.

Figura 5. Ataguía con doble cortina de tablestacas, con berma incluida

Siempre que se utilicen tablestacas, se debe garantizar su estabilización mediante apuntalamiento, arriostradas por tirantes, anclajes o cualquier otro procedimiento. Además, el empotramiento deberá ser suficiente para soportar los empujes, contener el flujo hidráulico y evitar el fenómeno del sifonamiento, entre otros. Hay que tener presente que el nivel freático desciende más rápido en el interior de la tablestaca que en el exterior, lo cual implican gradientes hidráulicos que pueden desestabilizar el fondo. Se recomienda cubrir el fondo de la excavación con una capa de arena y de grava. El agua que queda contenida en el recinto debe ser evacuada, normalmente por bombeo.

Cuando no se tenga la necesidad de crear recintos estancos, sino zonas de aguas tranquilas, no hay necesidad de crear ataguías impermeables, pues su función es únicamente romper la corriente o el oleaje. En estos casos se pueden utilizar las ataguías de escollera y de gaviones. En este último caso, se pueden usar también como protección del espaldón las ataguías (Figura 6).

Figura 6. Gaviones usados como protección de una ataguía. https://www.gabion-cage.com/technology/galvanized-steel-gabion-cofferdam.html

En la Figura 7 se puede observar una ataguía formada por sacos de arena.

Figura 7. Ataguía formada por sacos de arena. http://www.shdarun.com/WebPage_set/Page-ShowText.asp?id=2540&Language=cn

Las ataguías de escollera (rock-fill cofferdam) se construyen de forma similar a las ataguías de tierra, pero con la posibilidad de pendientes más pronunciadas. La escollera se dispone de forma que los huecos se pueden rellenar parcialmente con tierra y material granular. Si se quiere conseguir impermeabilidad, tanto la coronación como la pendiente aguas arriba requieren de una membrana impemeabilizante protegida con un pedraplén para proteger la ataguía contra el oleaje. La altura puede ser de hasta 3 m, con una pendiente entre 1:1,5 y 1:1,25. En caso de rebase por oleaje, el daño no es tan importante como en el caso de ataguías de tierra. Esta tipología se utiliza si la escollera está disponible en las cercanías.

Figura 8. Sección de ataguía de escollera. https://theconstructor.org/water-resources/types-of-cofferdams-construction-details/13807/

REFERENCIAS:

  • GALABRÚ, P. (2004). Cimentaciones y túneles. Tratado de procedimientos generales de construcción. Editorial Reverte, Barcelona.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Procedimientos para la contención del agua

Figura 1. Ejecución de muro pantalla. https://spezialtiefbau.implenia.com/

En muchas obras realizadas bajo el terreno puede ser necesario el empleo de procedimientos constructivos para impedir que el agua llegue al tajo (exclusion methods).

Estos procedimientos se pueden utilizar por sí solos o bien combinados con técnicas de agotamiento o rebajamiento del nivel freático.

Se trata de métodos basados en barreras o pantallas (ground water cutoff structures) tales como ataguías, tablestacas, muros pantalla (Figura 1), pantallas de pilotes secantes, pantallas de lodo, jet-grouting, barreras de inyección, pantallas pláticas, pantallas de suelo estabilizado in situ, o congelación del terreno.

Lo habitual es que estas barreras lleguen, en la medida de lo posible, tal y como se observa en la Figura 2, a las capas de muy baja permeabilidad (arcillas o rocas no fracturadas).

Figura 2. Pantalla impermeable en presa de materiales sueltos.

Estos métodos se pueden agrupar en tres categorías (Cashman y Preene, 2012):

  • Barreras o muros de muy baja permeabilidad que se hincan o construyen en el terreno, tales como tablestacas o muros pantalla.
  • Procedimientos que reducen la permeabilidad del terreno in situ (como la inyección y la congelación artificial del suelo)
  • Procedimientos que utilizan la presión de un fluido en cámaras confinadas para contrarrestar las presiones intersticiales (como las cámaras de presión de tierras en tuneladoras)

Las barreras hincadas, como las tablestacas, desplazan el terreno y, por tanto, afectan menos al terreno adyacente. En cambio, las barreras excavadas, como los muros pantalla, implican un vaciado que se debe sustituir por la propia barrera. Las barreras formadas por inyección bloquean el flujo del agua subterránea. Por otra parte, la congelación del suelo forma una barrera con el agua intersticial helada. De todas formas, la selección del método más adecuado dependerá de las condiciones de la obra, sin descartar la combinación de varios procedimientos. Además, algunas estructuras de contención pueden formar parte de la estructura definitiva, como es el caso de los sótanos de edificación.

La forma más habitual de utilizar estos procedimientos de contención del agua es la construcción de un muro impermeable alrededor del perímetro de excavación que penetre hasta la capa de baja permeabilidad, tal y como se observa en la Figura 3.

Figura 3. Contención de agua con muros pantalla que llegan a capa de baja permeabilidad. Adaptado de Cashman y Preene (2012)

Los costes y la aplicabilidad de una pantalla impermeable depende en gran medida de la profundidad y de la naturaleza de los estratos subyacentes. Si no existe una capa de baja permeabilidad o bien se encuentra a gran profundidad, las filtraciones pueden desestabilizar el fondo de la excavación. En estos casos se deben combinar las barreras con el bombeo (Figura 4a) o bien construir un tapón o barrera horizontal (jet-grouting, por ejemplo) para evitar las filtraciones (Figura 4b).

Figura 4. Combinación de pantallas con (a) bombeo convencional o (b) con barreras horizontales. Adaptado de Cashman y Preene (2012)

Uno de los aspectos más interesantes de las barreras de contención es que modifican en menor medida el nivel freático alrededor de la excavación frente a los bombeos convencionales. Ello implica menores incidencias en estructuras próximas, fundamentalmente por subsidencias.

No obstante, uno de los problemas a evitar son las fugas a través de las barreras. Estas filtraciones pueden interferir en los trabajos del tajo y, por tanto, son necesarios sumideros y drenajes; pero otra posibilidad más grave son los sifonamientos localizados (Figura 5) o asentamientos por encima de los previstos.

Figura 5. Sifonamiento localizado por defectos puntuales en un muro pantalla. Elaboración propia basado en Pérez Valcárcel (2004).

Las aplicaciones que hemos visto anteriormente (Figuras 1 a 5) son las más habituales, con barreras o muros verticales alrededor de una excavación. Sin embargo, algunos procedimientos como las inyecciones o la congelación del suelo, pueden utilizarse en geometrías no verticales (Figuras 6a y 6b), e incluso para sellar la base de las excavaciones (Figura 4b).

Figura 6. Barreras inclinadas y barreras horizontales en túnel. Adaptado de Cashman y Preene (2012)

A continuación os dejo un folleto de la empresa Implentia sobre barreras de contención que puede complementar la información sobre las barreras de contención al agua.

Descargar (PDF, 4.34MB)

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater lowering in construction. A practical guide to dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater control: design and practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Algoritmo híbrido de búsqueda del cuco para optimizar muros de contrafuertes

Acaban de publicarnos un artículo en la revista Mathematics,  revista indexada en el primer cuartil del JCR. En este artículo se presenta un algoritmo híbrido de búsqueda del cuco y de clasificación no supervisada para optimizar el coste y las emisiones de CO2 de un muro de contrafuertes. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La Búsqueda Cuco se basa en la estrategia de reproducción de algunas especies de pájaros cucos. Éstos pájaros dejan sus huevos en los nidos de otros pájaros de otras especies para que éstas los críen, expulsando incluso los huevos del nido invadido. Si el pájaro anfitrión se percata que el huevo no es el propio, lo sacará del nido o directamente lo abandonará y construirá otro nido.

Por su parte, K-means es un algoritmo de clasificación no supervisada (clusterización) que agrupa objetos en k grupos basándose en sus características. El agrupamiento se realiza minimizando la suma de distancias entre cada objeto y el centroide de su grupo o cluster.

En este artículo se propone un algoritmo híbrido, en el que la metaheurística de búsqueda del cuco se utiliza como mecanismo de optimización en espacios continuos y la técnica de aprendizaje no supervisada k-means para discretizar las soluciones. Se diseña un operador aleatorio para determinar la contribución del operador k-means en el proceso de optimización. Se comparan los mejores valores, los promedios y los rangos intercuartiles de las distribuciones obtenidas. Los resultados muestran que el operador k-means contribuye significativamente a la calidad de las soluciones y que nuestro algoritmo es altamente competitivo.

Abstract

The counterfort retaining wall is one of the most frequent structures used in civil engineering. In this structure, optimization of cost and CO2 emissions are important. The first is relevant in the competitiveness and efficiency of the company, the second in environmental impact. From the point of view of computational complexity, the problem is challenging due to the large number of possible combinations in the solution space. In this article, a k-means cuckoo search hybrid algorithm is proposed where the cuckoo search metaheuristic is used as an optimization mechanism in continuous spaces and the unsupervised k-means learning technique to discretize the solutions. A random operator is designed to determine the contribution of the k-means operator in the optimization process. The best values, the averages, and the interquartile ranges of the obtained distributions are compared. The hybrid algorithm was later compared to a version of harmony search that also solved the problem. The results show that the k-mean operator contributes significantly to the quality of the solutions and that our algorithm is highly competitive, surpassing the results obtained by harmony search.

Keywords

CO2emission; earth-retaining walls; optimization; k-means; cuckoo search

Referencia:

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics,  8(4), 555. DOI:10.3390/math8040555

Descargar (PDF, 1.24MB)

 

 

Drenaje de excavaciones mediante bombeo desde pozos eyectores

Figura 1. Bombeo desde pozos eyectores. https://wjgroup.org/our-services/ejector-dewatering/

El sistema de pozos eyectores combina las ventajas de los pozos profundos y de las lanzas de drenaje (wellpoints), pero con algunas desventajas. Los pozos profundos precisan un diámetro suficiente para alojar en su interior una bomba sumergible, con el coste correspondiente, además, presentan una relativa fragilidad que puede solucionarse con el sistema de pozos profundos con eyectores. En este caso, la elevación del agua se realiza inyectando agua a alta presión hasta el fondo del sondeo, donde el efecto venturi succiona el agua y la eleva al exterior. Trabaja por succión, pero a diferencia de los wellpoints, ésta se produce en el fondo del pozo. La ventaja respecto a los pozos profundos es que los eyectores presentan un diámetro pequeño. Las bombas de presión se sitúan en superficie y son del tipo normal, lo cual resulta de interés por su fácil vigilancia y facilidad de mantenimiento y sustitución. Además, a diferencia de las electrobombas sumergibles, que pueden quemarse rápidamente si funcionan en seco, los eyectores pueden bombear mezclas de aire y agua sin problemas. Por tanto, el coste unitario de los eyectores es significativamente menor que el de los pozos profundos, por lo que pueden utilizarse en espaciamientos más pequeños cuando las condiciones son adecuadas.

La desventaja es su rendimiento energético bajo y su aplicabilidad se centra en caudales bajos. En efecto, en suelos con cierta cantidad de finos, con más del 5%, los métodos de drenaje gravitacionales son muy lentos y los conos de depresión tardan en formarse. Por tanto, el sistema es adecuado cuando se quiere rebajar el nivel freático en terrenos de baja permeabilidad (limo o arena fina) a más de 5 m, que sería el límite de un wellpoint de una sola etapa. En estos terrenos con conductividad tan baja, el uso de vacío garantiza un mejor drenaje del suelo. Además, si la columna del filtro en el pozo se sella con bentonita, el vacío se transmite por entero al terreno, acelerando el drenaje en los suelos finos que se encuentren atravesados por capas más permeables, aumentando la resistencia al corte del terreno.

Sin embargo, a profundidades mayores a 45-50 m, este sistema llega a ser ineficiente, optándose por un pozo profundo con bomba en el fondo. Además, los sistemas eyectores son sensibles a distintos componentes del agua subterránea como el hierro o el manganeso, que si precipitan pueden atascar el sistema, perdiendo rendimiento, al igual que por bioincrustaciones o por el desgaste de la boquilla, lo cual implica un mantenimiento regular del equipo.

La instalación consta de una serie de pozos, con una sola instalación de bombeo, cuya disposición depende de las condiciones del suelo. Los pozos están equipados por conductos o tuberías de alimentación, un expulsor (venturi), y un conducto de retorno. En la cabeza del pozo, la tubería de alimentación es conectada a una línea de alimentación de alta presión, y la tubería de retorno es conectada a una tubería de evacuación de baja presión. Las líneas de retorno están conectadas a una planta especial de bombeo la cual abastece a la línea de alimentación con agua a gran presión, y recoge el agua de la línea de evacuación. La elevada presión de agua que pasa a través del venturi, succionará el agua del suelo y la enviará a la superficie a través de la tubería de retorno. Pueden ser de dos tipos: de tubería única (dos concéntricas) o de dos tuberías. Este sistema se usa en suelos con baja permeabilidad (Figura 2).

Figura 2. Esquemas de eyector de dos tuberías o de tubería única (Powers, 1992)

A pesar del alto costo de la instalación de estos pozos, pueden resultar en algunos casos más económicos y fáciles de operar que los wellpoints. Los pozos pueden ser instalados en la superficie de la tierra fuera del área de construcción bajando el nivel de agua en una sola etapa. La distancia entre eyectores es similar a la utilizada en el sistema de wellpoints. En un principio, las profundidades de operación no están limitadas por la altura de succión, habiendo eyectores capaces de trabajar hasta 150 m de profundidad, aunque lo normal es estar entre los 30 y los 50 m en una sola etapa. Cuando se utilizan eyectores de una sola conducción, el diámetro interno de la perforación puede llegar a ser tan pequeño como 50 mm, lo que hace que este sistema sea  muy factible económicamente.

Una estación de bombeo suele constar de un tanque y una o más bombas, con válvulas y tuberías de conexión. La bomba toma agua del tanque y la impulsa a presión a la línea de abastecimiento, a las que están conectadas las tuberías de inyección de cada eyector. El agua inyectada y extraída del terreno vuelve al tanque a través de la línea general de retorno, a la que se conectan las tuberías de descarga de los eyectores. Una sola estación puede abastecer hasta 75 pozos eyectores.

Os paso una animación para que veáis cómo funciona un eyector. Espero que os sea útil.

REFERENCIAS:

  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Metodología para valorar la sostenibilidad con baja influencia de los decisores

En el congreso CMMoST 2019 (5th International Conference on Mechanical Models in Structural Engineering), celebrado en Alicante del 23 al 25 de octubre de 2019, tuvimos la ocasión de presentar varias comunicaciones. A continuación os paso una denominada “Metodología para valorar la sostenibilidad con baja influencia de los decisores“.

En este artículo se aborda una metodología para reducir al mínimo la influencia subjetiva que tienen los decisores a la hora de tomar decisiones, en este caso, utilizando criterios relacionados con la sostenibilidad. Para este fin se ha utilizado el análisis de componentes principales (ACP), la optimización basada en kriging y el método AHP para buscar soluciones sostenibles, eliminando la relación entre criterios dependientes y asegurando la obtención de una solución sostenible frente a las diferentes perspectivas de los responsables de la toma de decisiones. Os dejo el artículo en abierto.

Referencia:

PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2019). Metodología para valorar la sostenibilidad con baja influencia de los decisores. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain, pp. 461-473. ISBN: 978–84–17924–58–4

Descargar (PDF, 327KB)

 

Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio

Figura 1. https://www.groundwatereng.com/dewatering-techniques/relief-wells

Los pozos de alivio, también conocidos como pozos de descarga de presión o pozos de purga, (pressure relief wells) se utilizan para reducir la presión intersticial en acuíferos confinados o en condiciones de suelo estratificado. Es típico de un estrato de baja permeabilidad (como una arcilla o roca de baja permeabilidad sin fisuras) situado sobre un acuífero confinado, lo cual puede provocar que el fondo de la excavación se vuelva inestable. Se trata del fenómeno conocido como “levantamiento de fondo” o “taponazo”, donde el peso del terreno no es capaz de equilibrar al empuje del agua.

Estos pozos se perforan normalmente antes de que la excavación hay alcanzado nivel piezométrico del acuífero. A medida que la excavación continúa, los pozos comenzarán a desbordarse, aliviando las presiones intersticiales asegurando su estabilidad. El agua que fluye de los pozos de descarga se bombea desde un sumidero. Se puede utilizar una capa granular de drenaje y una red de desagües para dirigir el agua a los sumideros y evitar que se estanque en la excavación y ablande el fondo. Es habitual que los pozos de descarga se perforen en cuadrícula dentro del recinto excavado, con una separación que dependerá del caudal previsto, pero que normalmente no es mayor a 5-10 m.

Figura 2. Pozo de alivio

Los pozos de alivio también se clasifican como “pozos pasivos“, pues no necesitan un bombeo directo, más allá de las bombas de achique en los sumideros. Suelen presentar diámetros relativamente grandes (100 a 450 mm), que suelen rellenarse con material granular e incluso con tubo perforado. El material granular, normalmente una grava gruesa uniforme redondeada de tamaño nominal entre 10-20 mm, se introduce mediante una tubería tremie o incluso desde el propio nivel del suelo si esta grava tiene una clasificación muy uniforme, para evitar la segregación por tamaños. Son, por tanto, pozos simples de coste relativamente bajo de perforación, instalación y mantenimiento.

Los pozos de alivio son muy adecuados en recintos tablestacados o limitados por muros pantalla. Otras veces son drenajes permanentes en estructuras situadas sobre acuíferos confinados, como pudiera ser una estación subterránea de metro. En el caso de instalaciones permanentes, los pozos de descarga se instalan con rejillas y tuberías para permitir su limpieza.

Por último, cabe destacar que los pozos de alivio no pueden utilizarse donde la altura artesiana del agua en las capas permeables inferiores sea tal que el flujo en el interior de los pozos erosione el suelo inmediatamente debajo de ellos y a su alrededor.

Figura 3. Sistema de pozos de alivio (Cashman y Preene, 2012)

Os dejo un vídeo explicativo que os he grabado explicando este tipo de pozos.

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2004). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.