Prefabricados de hormigón: Procesos, tecnologías y ventajas de los métodos modernos de construcción

Figura 1. Planta de prefabricados de hormigón. https://www.prilhofer.com/aumento-de-la-eficiencia-en-la-produccion-de-prefabricados-de-hormigon

La prefabricación de hormigón ha revolucionado el sector de la construcción al ofrecer soluciones eficientes, duraderas y altamente personalizadas. Al permitir la fabricación en serie de elementos estructurales y ornamentales fuera del lugar de la obra, este método optimiza tanto los tiempos de ejecución como los costes. A lo largo de este artículo, resumiremos las etapas, instalaciones y tecnologías utilizadas en la fabricación de elementos prefabricados de hormigón, así como en los aspectos de automatización y control de calidad que aseguran la precisión y la eficiencia en cada pieza.

1. ¿Qué es la prefabricación de hormigón y cuáles son sus ventajas?

La prefabricación de hormigón consiste en producir elementos en plantas especializadas, fuera de su ubicación final, lo que permite un control exhaustivo de las condiciones de fabricación y garantiza una calidad uniforme. Este enfoque implica la creación de piezas que, tras su transporte y montaje en la obra, conforman, total o parcialmente, la estructura de edificios, puentes, pavimentos, etc.

Las principales ventajas de la prefabricación son las siguientes:

  • Reducción de tiempos de obra: Los prefabricados se fabrican en paralelo a otros trabajos en obra, lo que reduce la duración total del proyecto.
  • Alta calidad y durabilidad: El control exhaustivo en planta permite obtener acabados uniformes y una resistencia elevada, incluso en condiciones ambientales desfavorables.
  • Sostenibilidad: Al reducir los residuos de obra y aprovechar eficientemente los materiales, la prefabricación se alinea con prácticas sostenibles.
  • Versatilidad de diseño: La fabricación en planta permite producir elementos con diferentes formas, texturas y colores, lo que amplía las posibilidades arquitectónicas.
Figura 2. Principales ventajas de la prefabricación

2. Las plantas de prefabricados de hormigón: configuración y logística

La planta es el corazón del proceso de prefabricación. Su ubicación y configuración son decisiones clave que influyen en la eficiencia y la viabilidad económica del proyecto. Una planta típica incluye zonas de almacenamiento de materias primas, áreas de dosificación y mezclado, espacios de moldeo y compactación, y cámaras de curado, además de áreas de logística y de almacenamiento final.

La ubicación de la planta depende de varios factores estratégicos:

  • Proximidad al mercado: La planta debe ubicarse cerca de la zona de influencia para minimizar los costos de transporte.
  • Distancia a los proveedores: El acceso a materiales básicos, como cemento, áridos y acero, afecta la competitividad.
  • Infraestructuras y vías de transporte: La cercanía a carreteras o ferrocarriles facilita el transporte de elementos a obra.
  • Condiciones climáticas: En zonas con clima extremo, la prefabricación reduce los riesgos y los retrasos en la obra, siendo especialmente útil en países con estaciones frías.
Figura
Figura 3. Fabricación de viguetas de hormigón pretensado. http://preforsa.es/

3. Materias primas y su almacenamiento

La calidad de los prefabricados de hormigón depende de la gestión cuidadosa de sus materias primas, que incluyen cemento, áridos, aditivos y agua.

  • Cemento: Se almacena en silos cerrados para protegerlo de la humedad y el polvo ambiental. Generalmente, se emplean varios tipos de cemento, cada uno almacenado por separado para evitar mezclas accidentales.
  • Áridos: Se clasifican y se almacenan por granulometría (arena, gravilla, grava) en depósitos separados y protegidos de la contaminación y del agua. Este cuidado es esencial, ya que la humedad afecta directamente a la durabilidad del hormigón.
  • Aditivos: Los aditivos pueden ser pulverulentos o líquidos y se almacenan en condiciones específicas. Los pulverulentos se guardan en recipientes impermeables, mientras que los líquidos se conservan en garrafas protegidas de las heladas para mantener sus propiedades.
  • Agua: En muchas plantas, el agua proviene de redes de suministro locales, aunque también se emplean sistemas de reutilización de agua de lluvia o de limpieza de moldes para reducir el consumo.

4. Procesos de fabricación: dosificación, mezclado y vertido

La dosificación y la mezcla de los componentes son fases críticas para obtener un hormigón homogéneo. Las plantas modernas utilizan amasadoras automáticas de alta precisión que ajustan las proporciones de los materiales según las especificaciones del proyecto. El agua y los aditivos se miden con cuidado y, en los áridos, se emplean medidores de humedad para asegurar la consistencia y evitar errores.

  • Control de humedad: Los medidores de humedad ayudan a ajustar la cantidad de agua en la mezcla, lo cual es fundamental para alcanzar la resistencia y la durabilidad requeridas.
  • Amasadoras: Existen amasadoras de doble eje horizontal y planetarias, que garantizan un mezclado homogéneo en un tiempo mínimo, optimizando el uso de materiales y evitando la segregación de los componentes.

Una vez obtenida la mezcla, el hormigón se vierte en moldes que definirán las dimensiones y los acabados del prefabricado. Los moldes, generalmente de acero, deben soportar la presión del hormigón y facilitar el desmolde.

  • Compactación: El hormigón se compacta mediante vibración para eliminar las bolsas de aire y lograr una densidad uniforme. En algunos casos, se utiliza hormigón autocompactante, lo que elimina la necesidad de vibración.
  • Tipos de moldes: Los moldes metálicos son ideales para prefabricados estructurales, mientras que los moldes de plástico o de materiales desechables se emplean para elementos ornamentales.

El hormigón se vierte en los moldes mediante dispositivos como cubilotes, cubas aéreas o incluso mangueras, en sistemas automatizados. Estas herramientas distribuyen el hormigón a lo largo de la planta, manteniendo un flujo constante y reduciendo los tiempos de ciclo. La correcta dosificación y el vertido garantizan que cada elemento cumpla con los estándares de calidad y de consistencia requeridos.

Figura 4. Mesa basculante. https://www.seea.com.br/imagens/downloads/moldtech-catalogo-espanhol.pdf

5. El curado: clave para la durabilidad del hormigón

El curado es esencial para lograr la resistencia y la durabilidad del hormigón. En las plantas de prefabricación, el curado se realiza en ambientes controlados que aceleran la hidratación del cemento.

  • Cámaras de curado: Elementos como baldosas y bloques suelen curarse en cámaras con condiciones de temperatura y humedad óptimas, lo que permite un curado uniforme y minimiza el riesgo de fisuración.
  • Moldes calefactados: En algunos casos, los moldes están equipados con sistemas de calefacción para mantener una temperatura constante durante el curado, optimizar la reacción del hormigón y reducir los tiempos de fabricación.

6. Control de calidad y automatización en la producción

Las plantas modernas han implementado sistemas de automatización que permiten un control exhaustivo de cada etapa de la producción. La automatización no solo aumenta la precisión y reduce los errores, sino que también facilita la trazabilidad de cada pieza prefabricada.

El sistema de carrusel es un método industrializado que permite fabricar elementos superficiales, como losas y paneles de fachada, en línea. Las bandejas de los carruseles pasan por estaciones de trabajo automatizadas, desde la limpieza y la aplicación de desencofrante hasta el vertido y el acabado del hormigón.

Un software de gestión supervisa cada paso del carrusel, optimiza los tiempos de producción y permite ajustar cada proceso en función de las especificaciones del cliente. De esta forma, se mantiene una trazabilidad completa y se gestiona eficientemente el inventario de piezas terminadas.

El control de calidad se realiza mediante ensayos de resistencia y de consistencia. En muchos casos, las plantas cuentan con laboratorios internos para realizar pruebas de resistencia a la compresión y verificar que el hormigón cumple con las normativas. Los parámetros, como la densidad, el contenido de aire y la resistencia a la compresión, se revisan para asegurar que las piezas cumplan con los estándares de calidad requeridos.

7. Logística y almacenamiento: La última fase del proceso

Una vez fabricados, los elementos pueden transportarse directamente a la obra o almacenarse temporalmente en la planta. La logística es clave para garantizar una entrega puntual y en condiciones óptimas.

  • Almacenamiento en planta: Las plantas disponen de áreas de acopio donde los elementos se almacenan de forma segura, evitando daños y manteniendo la organización.
  • Transporte a obra: Los prefabricados más grandes o pesados requieren el uso de puentes-grúa para su carga en camiones, mientras que las piezas más pequeñas pueden paletizarse y transportarse en volúmenes mayores. El almacenamiento y el transporte son esenciales para reducir los costes y cumplir los plazos de entrega.
Figura 5. Transporte de elementos prefabricados a acopio. https://imi.com.pa/planta-de-prefabricados-de-concreto/#!

Conclusión

La fabricación de prefabricados de hormigón es un proceso industrializado que combina el control de calidad, la automatización y la logística para ofrecer soluciones constructivas de alta eficiencia. Este método permite construir con precisión y rapidez, optimizar los recursos y permitir una personalización considerable en los proyectos. Con el avance de las tecnologías de automatización y la mejora en el control de calidad, la prefabricación de hormigón seguirá siendo una pieza fundamental en la construcción moderna, ya que permite realizar obras de forma más rápida, sostenible y con mejores acabados arquitectónicos.

Os dejo algunos vídeos de estas plantas de prefabricados.

Dejo a continuación un folleto sobre moldes para elementos prefabricados de hormigón.

Pincha aquí para descargar

Referencias:

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Modelo para la construcción sostenible: reducción de emisiones y eficiencia estructural hacia 2100

Un artículo reciente en Sustainable Cities and Society revista del primer decil del JCR, explora un innovador modelo de evaluación de la sostenibilidad en la industria de la construcción, con aplicaciones de gran impacto a nivel global.

Esta investigación, llevada a cabo por un equipo de expertos de la Universidad de Ciencia e Ingeniería de Hunan (China) y de la Universitat Politècnica de València (España), introduce el «modelo de acoplamiento multidisciplinar», una metodología que integra conocimientos avanzados de matemáticas, ingeniería, ciencias ambientales y sociología económica para analizar, de manera más precisa, los efectos de la construcción sobre la sostenibilidad a largo plazo. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Objetivos y contexto de la investigación

El trabajo parte de un desafío global urgente: reducir las emisiones de carbono en la industria de la construcción, que representa un porcentaje significativo del consumo energético y de las emisiones contaminantes a nivel mundial. Según estimaciones previas, esta industria generará más del 50 % de las emisiones de carbono para 2050 si no se implementan políticas de mitigación eficaces. En este contexto, el equipo de investigación plantea un enfoque innovador para analizar el ciclo de vida completo de las construcciones, desde la selección de materiales y el diseño, hasta la construcción, el mantenimiento y el desmantelamiento, conocido como evaluación del ciclo de vida (LCA, por sus siglas en inglés).

Además, para obtener una visión integrada que abarque el impacto ambiental, social y económico de cada proyecto, se emplea la evaluación social del ciclo de vida (SIA), que permite analizar los efectos en la sociedad y en la economía. El objetivo principal de la investigación es ofrecer un marco más robusto que ayude a los gobiernos y a las empresas del sector a tomar decisiones informadas que favorezcan el desarrollo urbano sostenible.

Metodología y desarrollo del modelo

Para desarrollar este modelo, los investigadores implementaron una técnica de «acoplamiento multidisciplinar» novedosa que incorpora algoritmos avanzados y teorías de optimización de estructuras en tres dimensiones. Este enfoque se basa en el uso de algoritmos de interpolación y ajuste de datos, capaces de proyectar los impactos de la construcción de manera más precisa. Además, el modelo emplea herramientas de software de análisis ambiental, como OpenLCA, que permite integrar datos económicos y medioambientales para evaluar la sostenibilidad.

El equipo realizó pruebas del modelo en cuatro regiones económicas clave de China: las provincias de Hubei, Jiangsu, Henan y Guangdong, seleccionando puentes de gran escala en cada una como ejemplos de estudio. A través de análisis finitos y optimización de topología de estas estructuras, lograron proyectar cómo variará el impacto ambiental y social a lo largo de los próximos cien años.

Resultados más destacados y proyecciones futuras

Los resultados obtenidos indican que la industria de la construcción en China alcanzará su máximo de emisiones en el año 2030, con un estimado de 2,73 giga toneladas (GT) de CO₂. Tras este pico, se proyecta una significativa reducción de las emisiones, con niveles de -2,78 GT anuales entre 2061 y 2098, debido a la implementación de técnicas de construcción más eficientes y al uso de materiales más sostenibles. A nivel social, la evaluación SIA prevé un pico de impacto en 2048, con 4,26 GT de CO₂ equivalente en afectaciones sociales, seguido también de una reducción en las décadas posteriores.

Para obtener estas cifras, el estudio utilizó un algoritmo de optimización de la estructura en las distintas fases del ciclo de vida, con el que identificó puntos de mejora y áreas críticas de impacto. Así, el modelo no solo ofrece una herramienta para la proyección de emisiones, sino que también permite evaluar el desempeño de cada estructura en términos de durabilidad, coste y adaptabilidad a cambios estructurales, lo cual podría ser crucial en regiones urbanas que experimentan un crecimiento acelerado.

Conclusiones y aplicación global

Este trabajo es una contribución pionera en la investigación sobre sostenibilidad en construcción, ya que ofrece un marco metodológico con potencial para ser replicado en otros países y sectores de la construcción. Su aplicación no solo está dirigida a la reducción de emisiones, sino también a la mejora de la resiliencia estructural y a la reducción de costes a largo plazo mediante un diseño optimizado. Los investigadores destacan que este modelo podría adaptarse a otros países que, como China, se enfrentan a grandes desafíos en la gestión de la sostenibilidad urbana y que buscan avanzar hacia economías bajas en carbono.

En conclusión, el modelo de acoplamiento multidisciplinar de esta investigación establece un estándar robusto para el análisis de sostenibilidad en construcciones complejas. Con este enfoque, gobiernos y empresas de construcción podrían optimizar sus prácticas para reducir los impactos negativos, no solo ambientales, sino también sociales y económicos, en sintonía con las metas de desarrollo sostenible. Este estudio ofrece, además, una guía para que la industria de la construcción pueda abordar sus desafíos actuales y proyectar una trayectoria sostenible para las próximas décadas.

Referencia:

ZHOU, Z.; ZHOU, J.; ZHANG, B.; ALCALÁ, J.; YEPES, V. (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, 101:105201. DOI:10.1016/j.scs.2024.105201

Materiales para pavimentos de hormigón

Figura 1. Construcción de pavimento de hormigón. https://obrasurbanas.es/como-controlar-el-alabeo-en-losas-de-pavimentos-de-hormigon/

En este artículo se ofrece una visión detallada de los materiales empleados en los pavimentos de hormigón, así como de los requisitos técnicos que estos deben cumplir para asegurar una construcción de calidad en carreteras, autopistas y aeropuertos, vías peatonales, carriles ciclistas, zonas de almacenamiento y, en general, todos los firmes sometidos al tráfico. Se centra en los pavimentos de hormigón ejecutados in situ, dejando aparte los pavimentos de hormigón compactado con rodillo. Basado en la norma UNE-EN 13877-1:2013, se ha estructurado el contenido en tres grandes apartados: especificaciones de los materiales del hormigón, requisitos básicos del hormigón y requisitos básicos para otros materiales en pavimentos de hormigón. Este texto se ha redactado de forma accesible para facilitar el aprendizaje de los estudiantes de ingeniería civil, quienes podrán aplicarlo en proyectos de diseño y construcción de infraestructuras.

1. Especificaciones para los materiales del hormigón

Para garantizar la resistencia y durabilidad del hormigón en pavimentos, los materiales que lo componen deben cumplir los requisitos de calidad que aseguran un rendimiento adecuado frente a las exigencias del tráfico y las condiciones ambientales. A continuación, se describen los componentes principales y sus especificaciones según la UNE-EN 13877-1:2013.

  • Cemento:
    • La elección del tipo de cemento es fundamental, ya que este actúa como el aglutinante que da cohesión al resto de materiales en la mezcla. De acuerdo con la norma EN 206-1, el cemento utilizado debe ser adecuado para la clase de resistencia requerida. La especificación concreta del tipo de cemento puede variar según las normativas nacionales o regionales aplicables al lugar de aplicación.
    • El cemento debe poseer propiedades que permitan una resistencia adecuada al tráfico y a la exposición ambiental del pavimento, evitando problemas como la desintegración o la pérdida de capacidad estructural con el paso del tiempo.
  • Áridos:
    • Los áridos, tanto gruesos como finos, son la base sólida del hormigón y deben cumplir con la norma EN 12620 para asegurar su idoneidad en cuanto a tamaño, forma y dureza. La selección y el tipo de áridos influyen directamente en la resistencia, la durabilidad y la trabajabilidad de la mezcla.
    • Es importante que el tamaño máximo de los áridos no supere un tercio (1/3) del espesor de la capa de hormigón, ya que así se evita que el agregado interfiera con la uniformidad del pavimento. En pavimentos armados con juntas o armados continuos, el tamaño del árido no debe superar un tercio de la distancia entre las armaduras longitudinales, lo que previene obstrucciones y asegura una correcta distribución de la mezcla.
  • Agua de amasado:
    • La calidad del agua de amasado es crucial, ya que influye en las reacciones químicas de hidratación del cemento y en la cohesión de la mezcla. La norma UNE-EN 1008 establece los parámetros que debe cumplir el agua, incluyendo aspectos como la presencia de cloruros o sulfatos, que pueden afectar a la durabilidad.
    • Además de evitar posibles contaminantes, el agua debe mezclarse en proporciones controladas para asegurar que el hormigón adquiera la resistencia y la consistencia deseadas. Es importante mantener una relación agua/cemento equilibrada, ya que una cantidad excesiva de agua puede generar porosidad y debilitar el material.
  • Otros materiales:
    • En algunos proyectos, pueden añadirse otros materiales, como adiciones y aditivos, para mejorar ciertas propiedades del hormigón. Estos deben cumplir con la norma EN 206-1, que establece los requisitos de conformidad para dichos materiales.
    • Los aditivos pueden ser superfluidificantes, retardadores o aceleradores de fraguado, entre otros, y ayudan a optimizar el manejo, la durabilidad y la resistencia de la mezcla en condiciones específicas de uso. Las adiciones, como las cenizas volantes o el humo de sílice, pueden mejorar la densidad del hormigón y su resistencia a agentes externos como el cloruro y la humedad.

2. Requisitos básicos del hormigón

Las propiedades del hormigón, tanto fresco como endurecido, son fundamentales para asegurar la calidad y el rendimiento del pavimento. A continuación, se detallan los requisitos básicos que debe cumplir el hormigón, según la norma.

  • Hormigón fresco:
    • Consistencia: La consistencia determina la fluidez de la mezcla y su capacidad de manipularla durante el proceso de colocación. Para garantizar que el hormigón sea adecuado para el equipo de colocación, la norma permite especificar una clase de consistencia o un valor objetivo. La consistencia es importante no solo para la colocación, sino también para evitar problemas de compactación y reducir la formación de poros.
    • Densidad: La densidad del hormigón fresco debe determinarse mediante el cálculo de la masa de todos sus componentes en un volumen específico. La densidad se especifica con una tolerancia del 1,5 % respecto del valor deseado, lo que permite adaptarse a ligeras variaciones en la mezcla. Esta propiedad influye en la resistencia y la durabilidad de la estructura final.
    • Contenido de aire: El volumen de aire atrapado en el hormigón es importante para prevenir problemas derivados de las congelaciones y descongelaciones. El contenido de aire debe medirse en el lugar de la obra según la norma EN 12350-7 y puede establecerse un porcentaje mínimo de aire en función de la normativa de cada país.
    • Contenido de cemento y partículas finas: La cantidad de cemento debe ser suficiente para darle resistencia al hormigón, mientras que el contenido de partículas de menos de 0,25 mm debe controlarse para evitar una textura excesivamente fina. Esto garantiza un equilibrio adecuado entre la manejabilidad y la resistencia final.
    • Contenido de cloruros: Si el hormigón incorpora elementos de acero sin protección, como barras de unión o pasadores, el contenido de cloruros no debe superar el 0,40 % de la masa del cemento. Esto previene la corrosión de los elementos metálicos y prolonga la vida útil de la estructura.
  • Hormigón endurecido:
    • Resistencia a ciclos de hielo y deshielo: En áreas donde el hormigón está expuesto a variaciones térmicas importantes, es necesario que el material resista los ciclos de congelación y descongelación sin sufrir deterioro. La norma especifica la resistencia que debe cumplir el hormigón en estas condiciones, de acuerdo con la EN 206-1.
    • Resistencia mecánica: La resistencia a la compresión, la tracción indirecta y la flexotracción del hormigón endurecido se miden a los 28 días. Estos parámetros se evalúan mediante ensayos específicos, como los ensayos de compresión (EN 12390-3), de tracción indirecta (EN 12390-6) y de flexotracción (EN 12390-5), que permiten clasificar el hormigón en distintas clases de resistencia y asegurar su adecuación al tráfico y al uso proyectado.
Figura 2. Pavimento postesado. VSL Sistemas Especiales de Construcción Argentina S.A.

3. Requisitos básicos para otros materiales en pavimentos de hormigón

Además del hormigón, existen otros materiales que desempeñan funciones específicas en los pavimentos y deben cumplir normativas específicas para garantizar su rendimiento.

  • Materiales de curado:
    • Los productos de curado son esenciales para evitar la pérdida de humedad en el hormigón fresco, lo que previene la formación de fisuras y asegura una ganancia de resistencia adecuada. Estos productos deben cumplir con la especificación técnica CEN/TS 14754-1, que evalúa su eficacia en la retención de agua.
    • Además, es recomendable que estos materiales de curado protejan el hormigón de cambios bruscos de temperatura, especialmente en climas extremos, para evitar tensiones internas que puedan provocar fisuras prematuras.
  • Retardadores de superficie:
    • En acabados de pavimentos con textura de árido expuesto, se utilizan retardadores de superficie que permiten revelar el árido grueso al retirar el mortero superficial. Estos retardadores deben estar diseñados específicamente para esta función y protegerse contra la evaporación hasta completar el proceso de fraguado.
  • Productos de sellado de juntas:
    • Las juntas en el pavimento son esenciales para permitir la expansión y contracción del hormigón y los selladores de juntas deben prevenir la infiltración de agua. Los materiales de sellado deben cumplir con la norma EN 14188-1, EN 14188-2 o EN 14188-3, según si el sellado es en caliente, en frío o preformado. Esto evita la entrada de agua que puede congelarse y causar daños a largo plazo.
  • Barras de unión y pasadores:
    • Estos elementos de acero aseguran la transmisión de carga en las juntas y ayudan a prevenir el deslizamiento entre las losas adyacentes. Deben cumplir con la norma EN 10080 y especificar un nivel de resistencia de B250 para barras lisas y de B500 para barras corrugadas. Las dimensiones de estas barras deben seleccionarse según las tablas de la norma, teniendo en cuenta factores como el espesor del pavimento.
  • Armaduras:
    • La armadura de acero, que controla las fisuras y proporciona resistencia a las tensiones de tracción, debe cumplir con la norma EN 10080. En pavimentos armados continuos, la continuidad de la armadura puede lograrse mediante soldaduras, solapes o conectores, lo que garantiza una estructura sólida y sin fisuras que resista el paso constante de vehículos.

Este artículo aborda los detalles técnicos necesarios para comprender y aplicar las especificaciones de materiales para pavimentos de hormigón. Su selección y cumplimiento son esenciales para construir estructuras duraderas, seguras y adecuadas a las demandas de tráfico actuales y futuras.

Referencias:

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CALO, D.; SOUZA, E.; MARCOLINI, E. (2015). Manual de diseño y construcción de pavimentos de hormigón. Instituto del Cemento Portland Argentino (ICPA).

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C. (1965) Pavimentos de hormigón normal y pretensado. Experiencia española en el tramo de ensayo. Publicación n.º 18 del Laboratorio de Transporte y Mecánica del Suelo. Centro de Estudios y Experimentación de Obras Públicas (CEDEX). Madrid.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

RECUENCO, E. (2014). Firmes y pavimentos de carreteras y otras infraestructuras. Garceta grupo editorial, Colección Escuelas, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Aplicación del modelo del queso suizo en la gestión de desastres

Introducción al modelo del queso suizo en la gestión de desastres

Imagen del desastre provocado por la DANA. Imagen: V.J. Yepes

El modelo del queso suizo, desarrollado por James T. Reason, es un marco ampliamente adoptado en sectores como la aviación, la ingeniería y la sanidad para analizar la causalidad de accidentes. Este modelo representa los sistemas complejos mediante varias capas de defensa o barreras, cada una de ellas simbolizada como una rebanada de queso suizo. Cada rebanada contiene agujeros que representan deficiencias o errores en cada nivel de defensa. Estos agujeros no son estáticos, sino que sus posiciones y tamaños varían constantemente. Cuando los agujeros de varias capas se alinean, crean una «trayectoria de oportunidad de accidente», lo que permite que un peligro atraviese todas las barreras y se materialice en un accidente o desastre.

Aplicado a un escenario de inundación catastrófica provocada por una DANA (depresión aislada en niveles altos), este modelo ayuda a comprender cómo una serie de debilidades preexistentes en infraestructuras, sistemas de alerta, políticas y organización de la respuesta pueden alinearse para agravar los efectos de las lluvias intensas. Las capas de defensa que deberían reducir el impacto de un evento extremo no funcionan como es debido cuando todas las vulnerabilidades se presentan simultáneamente y sin obstáculos. Este informe explica cómo los fallos en distintos niveles pueden contribuir al desencadenamiento de una inundación devastadora. Este análisis tiene carácter general, y no significa que alguno de los fallos descritos sea uno de los que provocó el desastre del 29 de noviembre de 2024 en muchos municipios de la provincia de Valencia.

Dominios de fallo en escenarios de inundación

El modelo de Reason identifica cuatro dominios principales de fallo que pueden adaptarse a la gestión de inundaciones para comprender cómo se generan las condiciones de vulnerabilidad. A continuación, se detallan cada uno de estos dominios en el contexto de una inundación:

  1. Influencias organizativas:

    • Las decisiones organizativas y políticas, como la distribución de presupuestos o la priorización de proyectos, influyen en la ejecución y el mantenimiento de inversiones para las defensas contra inundaciones. Por ejemplo, en un contexto de austeridad, las instituciones pueden reducir la inversión en infraestructuras de protección, como diques, sistemas de drenaje o presas. Esta falta de inversión se convierte en un punto débil del sistema.
    • Estas decisiones también afectan a la capacitación del personal de emergencia y a la actualización de las tecnologías de alerta temprana, que son factores esenciales para mitigar el impacto de una inundación. Del mismo modo que en sanidad la falta de formación o recursos afecta a la seguridad del paciente, en un contexto de inundaciones, la escasez de inversiones y recursos reduce la resiliencia de las infraestructuras y la eficacia de la respuesta.
  2. Fallos de supervisión y control:
    • La supervisión y el cumplimiento de las normativas son esenciales para la gestión de riesgos y las deficiencias en este ámbito representan un factor crítico de vulnerabilidad. En muchas áreas propensas a inundaciones, la falta de control sobre el desarrollo urbano, la construcción en zonas inundables o el mantenimiento de infraestructuras de contención puede crear situaciones de riesgo significativo.
    • Además, la falta de actualización y revisión de los planes de emergencia y evacuación puede provocar que estos protocolos sean ineficaces ante eventos extremos. Como en sanidad, donde una supervisión inadecuada puede provocar errores graves, la falta de control normativo y planificación en el contexto de riesgos de inundación incrementa la probabilidad de que los daños sean graves en un evento extraordinario.
  3. Condiciones ambientales y de infraestructura previas:
    • Las condiciones de infraestructura y medioambientales previas a un evento extremo suponen otro ámbito de riesgo. Factores como sistemas de drenaje obsoletos, deterioro en las defensas fluviales, estructuras en mal estado o infraestructuras críticas con capacidad de drenaje insuficiente agravan el impacto de las lluvias intensas.
    • Estas condiciones, que pueden pasar desapercibidas o considerarse menores durante periodos sin incidentes, se denominan «condiciones latentes». Permiten que un evento extremo, como una DANA, exponga sus debilidades y desborde sus capacidades, similar a los riesgos latentes en los sistemas sanitarios que solo se evidencian en situaciones críticas.
  4. Acciones inseguras o errores en la respuesta de emergencia:
    • Las decisiones y acciones que se toman en el momento de la emergencia suponen un fallo activo. Estos errores incluyen retrasos en la emisión de órdenes de evacuación, mala comunicación con el público, asignación incorrecta de recursos de rescate o falta de personal cualificado. En el caso de una inundación, estos fallos pueden tener consecuencias graves, ya que una respuesta inadecuada puede incrementar las pérdidas humanas y materiales.
    • Por ello, es fundamental coordinar y clarificar la respuesta de emergencia, ya que una gestión desorganizada de la situación puede resultar en caos, confusión y, en consecuencia, agravar el impacto del desastre. Al igual que en el contexto sanitario, donde los errores activos pueden tener un impacto directo, en un desastre natural estos fallos inmediatos repercuten significativamente en el desenlace y la gravedad del evento.

Los agujeros en el modelo del queso suizo: vulnerabilidades en la gestión de inundaciones

Cada una de las capas de defensa del modelo tiene agujeros o fallas por donde puede pasar el riesgo a través de los diferentes niveles de protección. En caso de inundación, los agujeros en estas barreras pueden incluir:

  • Deficiencias en los sistemas de alerta temprana:
    • Un sistema de alerta temprana deficiente o con baja cobertura es una vulnerabilidad crítica. Si el sistema no es lo suficientemente preciso, no llega a todas las zonas afectadas o se activa demasiado tarde, las comunidades y las autoridades no disponen del tiempo necesario para reaccionar. Esta debilidad equivale a un gran agujero en una capa de defensa que permite que el peligro avance sin obstáculos.
  • Infraestructura insuficiente o deteriorada:
    • La infraestructura, como encauzamientos, embalses y sistemas de drenaje, constituye una barrera física fundamental. Cuando estas estructuras no existen, no se mantienen o actualizan, se vuelven vulnerables a eventos climáticos extremos y su colapso puede agravar el efecto de una inundación. Estos problemas son especialmente peligrosos en un evento de DANA, cuando el volumen de agua excede la capacidad de estas defensas obsoletas o mal mantenidas.
  • Falta de concienciación y preparación en la comunidad:
    • La falta de preparación de la población ante un desastre también supone un punto débil en las barreras de defensa. Sin una educación adecuada sobre los riesgos de inundación y las medidas de autoprotección, los residentes pueden reaccionar con pánico o no tomar las decisiones oportunas, lo que aumenta su vulnerabilidad. Esta falta de concienciación es una debilidad difícil de solucionar a corto plazo y requiere esfuerzos continuados de formación.
  • Fallos en la coordinación y comunicación de emergencia:
    • La comunicación efectiva entre las autoridades, los equipos de rescate y la población es crucial en situaciones de desastre. Cuando esta comunicación falla, ya sea por falta de canales adecuados o por mensajes contradictorios, aumenta el riesgo de cometer errores y sufrir pérdidas. Esta barrera defectuosa hace que la confusión y la desorganización predominen en una situación de emergencia, lo que aumenta el impacto del evento.

Cuando ocurre una DANA, el rápido e inesperado incremento del volumen de precipitaciones incrementa la probabilidad de que todos estos agujeros se alineen. Si el sistema de alerta falla, las infraestructuras colapsan y la respuesta de emergencia no está coordinada, el resultado acumulativo es un evento de inundación con consecuencias devastadoras.

De Ian M MacKay – https://figshare.com/articles/figure/The_Swiss_Cheese_Respiratory_Virus_Defence/13082618, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=97096004

Fallos activos y condiciones latentes

Una de las claves del modelo del queso suizo es la diferenciación entre fallos activos y condiciones latentes. Ambos tipos de fallo contribuyen al desenlace del desastre, aunque de manera diferente:

  • Fallos activos:
    • Los fallos activos son errores o decisiones inadecuadas que se toman en el momento de la emergencia, como retrasos en la evacuación, fallos en la comunicación o una mala asignación de recursos. En el caso de una inundación, estos fallos tienen un impacto directo, ya que aumentan la exposición de la población al riesgo y la probabilidad de que se produzcan daños.
  • Condiciones latentes:
    • Las condiciones latentes son fallos preexistentes que permanecen en el sistema sin producir daños visibles hasta que un evento extremo los pone de manifiesto. En el contexto de las inundaciones, algunos ejemplos de condiciones latentes son los problemas de infraestructura que no se han abordado, las normativas de construcción que no se cumplen y los planes de emergencia obsoletos. Estas condiciones acumuladas contribuyen al desastre, aunque no se evidencian hasta que una situación crítica como una DANA las revela.

Aplicaciones prácticas del modelo del queso suizo en la prevención y mitigación de inundaciones

El modelo del queso suizo sugiere que la acumulación de barreras robustas y bien diseñadas reduce la probabilidad de que todas las debilidades se alineen. En el contexto de una inundación, estas son algunas de las medidas que refuerzan cada capa de defensa:

  1. Mejorar la política y los recursos organizativos:
    • Aumentar el presupuesto destinado a la resiliencia de las infraestructuras situadas en zonas inundables, prestando especial atención a la actualización y el refuerzo de barreras y sistemas de drenaje.
    • Desarrollar y actualizar políticas de gestión de riesgos de inundación que incluyan las lecciones aprendidas de eventos previos y prioricen las áreas con antecedentes de vulnerabilidad.
  2. Fortalecer la supervisión y el cumplimiento normativo:
    • Implantar regulaciones estrictas para la construcción en zonas inundables y para el mantenimiento periódico de infraestructuras críticas.
    • Promover la transparencia y la responsabilidad en la supervisión de las infraestructuras públicas, incluyendo auditorías periódicas sobre la preparación para desastres..
  3. Fomentar la preparación de la comunidad y la educación en riesgos:
    • Realizar campañas de concienciación pública en zonas de alto riesgo para promover el conocimiento sobre los riesgos de inundación, las rutas de evacuación y las medidas preventivas.
    • Proporcionar formación y recursos a las autoridades locales y a los líderes comunitarios para fortalecer la respuesta ante desastres naturales y garantizar una reacción coordinada en eventos de DANA.
  4. Optimizar la respuesta de emergencia y los protocolos de actuación:
    • Desarrollar protocolos de respuesta con roles definidos para todas las entidades implicadas en la gestión de emergencias y garantizar una evacuación y distribución de ayuda efectiva.
    • Invertir y mejorar constantemente en tecnologías de la información y la comunicación, como mapas en tiempo real y sistemas de alerta a través de dispositivos móviles, para mejorar la coordinación y la capacidad de respuesta de las autoridades.

Conclusión

El modelo del queso suizo es un marco eficaz para comprender cómo los eventos catastróficos de inundación, como los causados por una DANA extraordinaria, resultan de la acumulación de vulnerabilidades latentes y fallos activos. La combinación de políticas, infraestructura, formación y respuesta son capas de defensa que, si presentan fallos simultáneos, facilitan el avance de una amenaza climática. La clave para reducir el impacto de estos eventos radica en mejorar cada una de estas capas, minimizando la posibilidad de que se alineen debilidades y fortaleciendo la resiliencia de las comunidades. Una gestión proactiva del riesgo, basada en la prevención, la adaptación y el aprendizaje continuo, es esencial para evitar que se repitan tragedias como las de las inundaciones futuras.

Os dejo algunos vídeos sobre este modelo del queso suizo. Pero podéis encontrar muchísima más información por internet.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Gestión del riesgo de inundación en infraestructuras críticas: estrategias y medidas de resiliencia

Las inundaciones suponen una amenaza significativa para las infraestructuras críticas (IC), como el suministro de electricidad, las telecomunicaciones, el agua potable, el tratamiento de aguas residuales y el gas. La gestión del riesgo de inundación en las infraestructuras críticas cobra mayor importancia en un contexto de cambio climático, en el que los eventos extremos son más frecuentes e intensos. Este informe aborda la gestión del riesgo de inundación en las infraestructuras críticas y expone medidas específicas para incrementar su resiliencia, la aplicación de modelos para evaluar el impacto de estos eventos y la implementación de estrategias para mejorar la capacidad de recuperación.

Infraestructuras críticas y el riesgo de inundación: marco de referencia

Las infraestructuras críticas son sistemas esenciales para el funcionamiento de una sociedad, que incluyen sectores clave como la energía, las telecomunicaciones, el agua y los servicios de saneamiento. Estos sectores son interdependientes y se organizan en redes complejas, por lo que una interrupción en uno de ellos puede desencadenar efectos en cascada que afecten a múltiples sistemas, comprometiendo la seguridad y el bienestar de la población. La gestión del riesgo de inundación (GRI) en estas infraestructuras es fundamental, pues permite reducir la vulnerabilidad y mejorar la capacidad de recuperación ante eventos adversos.

Papel de las infraestructuras hidráulicas en la gestión del riesgo de inundación

Las infraestructuras hidráulicas, como las presas, los tanques de tormenta, las canalizaciones y los corredores verdes, desempeñan un papel crucial en la gestión de inundaciones y en la protección de las infraestructuras críticas (IC). Estas infraestructuras ayudan a gestionar el flujo de agua y evitan que las lluvias torrenciales y las crecidas de los ríos afecten directamente a las IC y a las áreas urbanas densamente pobladas.

  1. Presas y embalses: Estas estructuras permiten almacenar grandes volúmenes de agua y controlar el caudal de los ríos, además de regular el flujo hacia áreas vulnerables. Durante una tormenta, las presas pueden retener el exceso de agua y liberarla de forma gradual una vez que los niveles han disminuido, lo que reduce el riesgo de desbordamientos y minimiza el impacto aguas abajo.
  2. Tanques de tormenta: Son estructuras de almacenamiento subterráneo que recogen el agua de lluvia durante eventos intensos. Actúan como amortiguadores temporales, evitando que el sistema de alcantarillado se sature y se reduzca el riesgo de inundaciones en las áreas urbanas. Posteriormente, el agua acumulada puede liberarse de manera controlada hacia los sistemas de tratamiento o directamente a los cuerpos de agua cuando el caudal ha disminuido.
  3. Canalizaciones y sistemas de drenaje: Canalizar los ríos y desarrollar sistemas de drenaje bien planificados es esencial para redirigir el agua de inundación de manera segura, reduciendo la velocidad del flujo y mitigando el riesgo de erosión y daños estructurales en las áreas urbanas..
  4. Corredores verdes y zonas de retención natural: Estos espacios, a menudo ubicados en áreas urbanas o suburbanas, están diseñados para absorber y retener el exceso de agua de lluvia, y funcionan como «esponjas» naturales que reducen el caudal de agua que llega a los sistemas de alcantarillado. Además, estas zonas verdes actúan como amortiguadores, reteniendo el agua y liberándola lentamente, lo cual es particularmente útil para proteger infraestructuras sensibles a las inundaciones.
  5. Áreas de infiltración y pavimentos permeables: En las ciudades, los pavimentos permeables y las áreas de infiltración permiten que el agua de lluvia penetre en el suelo, recargando los acuíferos y reduciendo la escorrentía superficial. Esto alivia la presión sobre los sistemas de drenaje y evita que el agua llegue rápidamente a las áreas de IC, lo que disminuye el riesgo de inundación.

Ciclo de gestión de riesgos de desastres (GRD) en infraestructuras críticas

El proceso de GRI en IC suele estructurarse en cinco fases, que permiten implementar medidas específicas en cada etapa:

  1. Preparación: Incluye todas las acciones de planificación y recursos necesarios para reducir el impacto de las inundaciones, incluyendo la incorporación de infraestructuras hidráulicas y la capacitación del personal.
  2. Prevención y mitigación: Consiste en la implementación de infraestructuras hidráulicas, medidas de control y sistemas de drenaje para minimizar la vulnerabilidad de las IC frente a las inundaciones.
  3. Impacto: Se refiere a la capacidad de las infraestructuras para soportar los efectos de una inundación y a cómo estas protegen a las IC regulando el flujo de agua.
  4. Respuesta: Acciones de emergencia implementadas para reducir los daños y restaurar los servicios críticos.
  5. Recuperación y rehabilitación: Estrategias para devolver a las IC su estado funcional o mejorado, integrando lecciones aprendidas y mejorando la infraestructura para incrementar su resistencia a futuros eventos.

Impacto de las inundaciones en las infraestructuras críticas y la función de las infraestructuras hidráulicas

Las infraestructuras críticas, al depender de una red de servicios interconectados, son especialmente vulnerables a las inundaciones. Las infraestructuras hidráulicas desempeñan un papel esencial en la mitigación de estos efectos, ya que protegen los sistemas de IC de daños directos o indirectos:

  • Electricidad: El contacto con el agua puede provocar cortocircuitos, daños en estaciones de transformación y la interrupción del suministro a gran escala. Esto no solo afecta al servicio eléctrico, sino que también genera riesgos para la salud debido a la posibilidad de descargas eléctricas en áreas inundadas.
  • Telecomunicaciones: La infraestructura de telecomunicaciones incluye componentes activos (como nodos de red y antenas) que dependen de la electricidad y, por tanto, son altamente vulnerables a las interrupciones de suministro eléctrico. La interrupción de las comunicaciones complica la coordinación de emergencias y la respuesta rápida.
  • Suministro de agua: Las inundaciones pueden introducir contaminantes en el sistema de suministro de agua, especialmente en instalaciones de captación de agua cercanas a ríos u otras fuentes de agua superficial. Además, los sistemas de bombeo pueden verse interrumpidos, lo que afecta a la presión y la calidad del agua suministrada.
  • Tratamiento de aguas residuales: Este sector es especialmente vulnerable, ya que las inundaciones pueden dañar las plantas de tratamiento y provocar que las aguas residuales no tratadas se liberen al medio ambiente, con consecuencias ambientales y para la salud pública.
  • Gas: Aunque los sistemas de tuberías de gas suelen estar más protegidos, las estaciones de regulación y control pueden verse afectadas por las inundaciones, lo que interrumpiría el servicio y supondría posibles riesgos de seguridad.

Estrategias y medidas de resiliencia en la gestión del riesgo de inundación

Una estrategia integral de resiliencia frente a las inundaciones para infraestructuras críticas abarca una combinación de medidas estructurales y no estructurales. Estas medidas se estructuran de acuerdo con el ciclo de gestión del riesgo de desastre, como se detalla a continuación:

1. Preparación

La fase de preparación incluye la planificación y el equipamiento para mejorar la respuesta ante una emergencia. Algunas medidas clave son:

  • Planes de contingencia: Crear planes detallados para responder a situaciones de emergencia, incluyendo la designación de roles y responsabilidades para cada tipo de infraestructura.
  • Almacenamiento de equipos de emergencia: Disponer de generadores, bombas y otras unidades de repuesto listas para usar en caso de interrupciones.
  • Entrenamiento y simulacros: Capacitar al personal para que lleve a cabo los planes de emergencia y realizar simulacros periódicos de inundación.
  • Monitoreo y colaboración meteorológica: Establecer una estrecha colaboración con los servicios meteorológicos para monitorizar el riesgo de inundaciones en tiempo real, utilizando sistemas avanzados de alerta.

2. Prevención y mitigación

Las medidas de prevención y mitigación incluyen la infraestructura necesaria para controlar el flujo de agua y proteger las IC:

  • Construcción de infraestructuras resilientes: Elevar o construir instalaciones en áreas con menor riesgo de inundación, y utilizar materiales resistentes al agua en instalaciones críticas.
  • Barreras físicas: Instalar barreras móviles o permanentes alrededor de infraestructuras clave para protegerlas de las aguas de inundación.
  • Redundancia de sistemas: Desarrollar redundancias en la red para que, si un componente falla, otros puedan compensar la pérdida de servicio.
  • Planificación territorial y zonificación: Garantizar que las infraestructuras críticas se sitúen fuera de las zonas de alto riesgo de inundación, siempre que sea posible.

3. Impacto

La fase de impacto contempla la reducción de los efectos de una inundación mediante infraestructuras hidráulicas que controlen y disminuyan el caudal en zonas urbanas.

  • Gestión de flujos con presas y embalses: Control de la liberación de agua en embalses, asegurando que no se libere de manera repentina y que el flujo se distribuya para minimizar el impacto en las áreas críticas.
  • Desviación del flujo en canalizaciones: Redirigir el agua de inundación mediante canalizaciones y drenajes que la alejen de áreas vulnerables, como plantas de tratamiento y subestaciones eléctricas.
  • Evaluación de vulnerabilidad: Identificar los puntos más débiles en las infraestructuras para priorizar las medidas de protección y mitigación.
  • Medición y control de los niveles de agua: Implementar sensores para controlarlos en tiempo real, lo que permite respuestas más informadas y rápidas.

4. Respuesta

La respuesta es clave para minimizar el tiempo de interrupción de los servicios críticos y reducir los posibles daños adicionales. Las medidas que se deben tomar en esta etapa son:

  • Despliegue de unidades de reemplazo: Utilizar generadores móviles, bombas y sistemas de comunicación alternativos para restaurar  temporalmente los servicios mientras se repara la infraestructura dañada.
  • Prioridades en la restauración: Establecer listas de prioridades para el despliegue de recursos en las áreas de mayor impacto y donde se vean afectadas poblaciones vulnerables.
  • Comunicación pública: Informar a la comunidad sobre las interrupciones y los tiempos estimados de restauración, ofreciendo recomendaciones de seguridad.

5. Recuperación y rehabilitación

La fase de recuperación y rehabilitación se centra en restaurar los servicios de infraestructura de manera eficaz y reforzar su resiliencia futura. Las medidas en esta etapa incluyen:

  • Reparación y sustitución de componentes dañados: Restablecer los servicios lo antes posible mediante la reparación de las instalaciones dañadas y la sustitución de componentes.
  • Evaluación posterior al evento: Realizar un análisis detallado del impacto de la inundación y de la eficacia de las medidas implementadas, documentando lecciones aprendidas para mejorar los planes futuros.
  • Mejoras en la infraestructura: Donde sea posible, aplicar el principio de «reconstruir mejor», introduciendo mejoras en la infraestructura para aumentar su resistencia frente a futuros eventos.
  • Revisión y mantenimiento de las infraestructuras hidráulicas: Evaluar el estado de las presas, los tanques de tormenta y los sistemas de drenaje, y realizar mejoras en función de los eventos recientes.
  • Evaluación de la eficacia de las medidas implementadas: Análisis del impacto de las infraestructuras hidráulicas en la contención del flujo y ajuste del sistema de almacenamiento y drenaje según los datos recopilados.

Modelado del riesgo y evaluación de medidas hidráulicas

Para optimizar la planificación de la resiliencia, el modelado de redes de infraestructura crítica permite evaluar el impacto potencial de las inundaciones y probar diferentes medidas de mitigación. Este tipo de modelado incluye:

  • Análisis de impacto en redes: Representación de las interdependencias entre sectores críticos mediante modelos de red que simulan cómo los fallos en un sector pueden afectar a otros.
  • Evaluación de vulnerabilidades: Determinar los componentes más sensibles a las inundaciones dentro de cada red, como estaciones de bombeo o transformadores eléctricos, para priorizar su protección.
  • Simulación de medidas de resiliencia: Implementar simulaciones que muestran cómo diferentes medidas (como barreras de contención o sistemas de redundancia) pueden reducir los daños y acelerar la recuperación.
  • Cálculo de riesgo poblacional: Integrar datos de densidad poblacional para cuantificar el impacto de las interrupciones en términos de personas afectadas y tiempo de recuperación, lo que facilita la toma de decisiones informadas para la implementación de medidas.
  • Simulación de impacto y respuesta: Permite simular diferentes escenarios de inundación y evaluar la eficacia de las infraestructuras hidráulicas para proteger las IC, comparando opciones de almacenamiento, liberación controlada y desviación de agua.
  • Optimización del sistema de retención y almacenamiento: Determina la cantidad óptima de agua que debe almacenarse en embalses y tanques de tormenta para minimizar el riesgo de desbordamiento y daños a las IC.

Desafíos y recomendaciones para la resiliencia ante inundaciones

La gestión del riesgo de inundación en infraestructuras críticas plantea varios desafíos, entre los cuales se encuentran:

  • Interdependencias complejas: La dependencia mutua entre diferentes sectores hace que el fallo en uno de ellos pueda generar efectos en cascada que agraven el impacto global.
  • Cambio climático y eventos extremos: La mayor frecuencia e intensidad de las inundaciones requieren que las infraestructuras se diseñen y operen considerando escenarios extremos.
  • Disponibilidad de datos: La falta de datos integrados y fiables sobre las características de las infraestructuras y su vulnerabilidad ante las inundaciones limita la precisión de los modelos y la planificación de resiliencia.

Para enfrentar estos desafíos, se recomienda:

  1. Fortalecer la colaboración intersectorial: Establecer redes de cooperación entre operadores de infraestructura crítica para mejorar la planificación y la respuesta.
  2. Integrar herramientas de predicción y alerta temprana: Aprovechar tecnologías avanzadas de monitoreo y modelado climático para anticipar inundaciones y activar respuestas más eficaces.
  3. Aumentar la inversión en infraestructura resiliente: Priorizar la construcción y adaptación de infraestructuras críticas con materiales y diseños capaces de soportar inundaciones.
  4. Desarrollar políticas de zonificación y regulación más estrictas: Promover la construcción fuera de zonas de riesgo y fomentar diseños urbanos que integren espacios de absorción de agua.

Conclusión

La gestión del riesgo de inundación en infraestructuras críticas es fundamental para la resiliencia de las ciudades y la seguridad de la población. Al implementar un enfoque integral basado en el ciclo de gestión del riesgo de desastre (GRD), es posible identificar y aplicar medidas específicas en cada fase, desde la preparación hasta la recuperación. Los modelos de red permiten evaluar y mejorar la capacidad de respuesta de las infraestructuras ante las inundaciones, y ayudan a los operadores y a los gobiernos a tomar decisiones informadas que minimicen el impacto de estos eventos. Al integrar infraestructuras hidráulicas, como presas, tanques de tormenta y zonas de retención natural, en el ciclo de gestión del riesgo de desastres, es posible aumentar la protección de los servicios esenciales y reducir el impacto de las inundaciones. Además, combinar infraestructuras hidráulicas con medidas de resiliencia específicas para cada sector refuerza la capacidad de respuesta y recuperación, minimizando los efectos en cascada y garantizando la continuidad de los servicios esenciales y el bienestar de la población.

Os dejo un domuento denominado «Principios para la infraestructura resiliente», de Naciones Unidas. Espero que os resulte de interés.

Pincha aquí para descargar

Este otro, del Ministerio para la Transición Ecológica, trata de la «Evaluación de la resiliencia de los núcleos urbanos frente al riesgo de inundación: redes, sistemas urbanos y otras infraestructuras».

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Presas y control de inundaciones: estrategias integradas para la reducción de riesgos hídricos

Presa de Forata, en el río Magro. Fuente: Confederación Hidrográfica del Júcar

Las presas son estructuras artificiales que, en todo o en parte, limitan el contorno de un recinto enclavado en el terreno y están destinadas al almacenamiento de agua. Se trata de infraestructuras esenciales para el control de las inundaciones, especialmente dentro del marco de la Gestión Integrada de Inundaciones (GII). Las inundaciones, que representan uno de los desastres naturales más recurrentes y devastadores, se han incrementado en frecuencia e intensidad en las últimas décadas, debido en gran medida al cambio climático, la deforestación y el aumento de la urbanización en zonas vulnerables. A continuación, resumiré un artículo escrito por Luis Berga que profundiza en el papel fundamental de las presas en la gestión de los riesgos de inundación. En él se abordan sus beneficios, su funcionamiento, sus limitaciones y algunos ejemplos de su aplicación en distintos lugares.

Importancia de las presas en el control de inundaciones

A nivel global, las inundaciones representan aproximadamente el 30 % de todos los desastres naturales y son responsables de un 20 % de las muertes y de un 30 % de los daños económicos generados por eventos naturales extremos. Según el análisis del Comité Internacional de Grandes Presas (ICOLD), en el periodo comprendido entre 1975 y 2001 se produjeron cada año unas 100 inundaciones significativas, que afectaron a 150 millones de personas y causaron una media anual de 11 000 muertes. En este contexto, las presas desempeñan un papel crucial, especialmente en regiones con grandes poblaciones y actividades económicas en zonas de riesgo.

Funcionamiento de las presas en la mitigación de inundaciones

Las presas regulan el flujo de agua, especialmente en casos de caudales extremos, mediante la laminación de avenidas. Este proceso consiste en retener temporalmente el agua de los ríos o torrentes en embalses y liberarla posteriormente de forma controlada para reducir el caudal pico y minimizar los daños aguas abajo. La laminación permite que las zonas de riesgo puedan soportar caudales menores y menos destructivos, lo que protege tanto a las comunidades como a los ecosistemas circundantes.

Dependiendo de su objetivo, las presas pueden clasificarse en varios tipos en relación con su papel en la laminación de avenidas:

  1. Presas de regulación general: Su objetivo principal es el abastecimiento de agua, la generación de energía o el riego, y tienen un impacto limitado en la reducción de crecidas.
  2. Presas de usos múltiples con laminación secundaria: Estas presas consideran la laminación de avenidas como un objetivo importante, pero secundario a otros usos, como el abastecimiento de agua o la producción de electricidad.
  3. Presas de usos múltiples con prioridad en laminación: En este tipo, la laminación de avenidas es el objetivo principal, combinado con otros fines menores.
  4. Presas dedicadas exclusivamente a la laminación de avenidas: Estas presas están diseñadas exclusivamente para reducir los caudales pico durante las inundaciones, proporcionando la mayor capacidad de mitigación posible.

Cada tipo de presa cumple su función de acuerdo con las características de la cuenca y la magnitud de las crecidas, así como con el tipo de infraestructura y las necesidades de la región.

Beneficios de las presas en la gestión de inundaciones.

El impacto positivo de las presas va más allá de la mitigación de los picos de caudal. Entre los beneficios adicionales se incluyen:

  • Reducción de las áreas inundadas: Al disminuir el caudal punta, se reducen significativamente las áreas que quedan bajo el agua, con lo que se minimizan los daños en zonas urbanas, agrícolas y ecosistemas importantes.
  • Protección de infraestructuras críticas: Las presas ayudan a evitar que el agua afecte infraestructuras estratégicas como carreteras, puentes y redes de transporte, lo que a su vez permite una respuesta de emergencia más rápida y eficiente.
  • Prevención de daños económicos: Al mitigar el impacto de las crecidas, se reducen las pérdidas en propiedades y cultivos, lo que beneficia a la economía local y regional. Por ejemplo, la presa de Oroville, en EE. UU., ha evitado daños económicos valorados en más de 1300 millones de dólares en las últimas décadas.
  • Reducción de la pérdida de vidas humanas y de las afecciones a la salud: Al controlar los caudales y evitar inundaciones masivas, se minimizan los riesgos para la vida humana y se evitan problemas de salud asociados con aguas estancadas e insalubres.

Sin embargo, es importante no promover una falsa sensación de seguridad total. Aunque las presas son altamente efectivas, siempre existe un riesgo residual, especialmente en eventos climáticos extremos que pueden superar la capacidad de almacenamiento del embalse.

Ejemplos de eficacia de las presas en el control de inundaciones

Diversos casos a nivel mundial evidencian la eficacia de las presas en la gestión de inundaciones:

  • El huracán Mitch y la Presa de El Cajón (Honduras): En 1998, el huracán Mitch provocó enormes crecidas en Centroamérica, pero la presa de El Cajón retuvo un caudal de entrada de 9800 m³/s, liberando solo 1200 m³/s. Esta reducción del 88 % en el caudal punta evitó daños catastróficos aguas abajo, protegiendo a las poblaciones ubicadas en las llanuras aluviales del país.
  • El tifón Rusa en Corea del Sur (2002): Las presas en Corea del Sur redujeron el caudal pico en el río Han en un 32 % y en el río Nakdong en un 51 %, protegiendo a las ciudades y zonas agrícolas de graves inundaciones. Los embalses principales retuvieron 1,4 km³ de agua, lo que mitigó el impacto de las lluvias torrenciales.
  • Presa de Danjiangkou (China): Desde su construcción en 1968, esta presa ha evitado graves inundaciones en el río Yangtsé, reduciendo el caudal punta en un promedio del 64 % y protegiendo a la ciudad de Wuhan. La laminación de avenidas en este embalse ha transformado crecidas importantes en eventos menores, salvaguardando la vida y los bienes de millones de personas.

Limitaciones y consideraciones en el uso de presas

Pese a sus múltiples beneficios, las presas también presentan limitaciones que deben tenerse en cuenta. Algunas de las más relevantes son:

  • Riesgo de eventos extremos: En situaciones de lluvias extremadamente intensas o prolongadas, una presa puede llegar a su capacidad máxima de almacenamiento, lo que obliga a verter agua sin laminación adicional, lo que podría generar inundaciones aguas abajo.
  • Impactos ambientales: Las presas alteran el flujo natural de los ríos y afectan a los ecosistemas acuáticos y terrestres. Además, pueden bloquear la migración de especies acuáticas y modificar la calidad del agua debido a la sedimentación en el embalse.
  • Costo económico y social: La construcción y el mantenimiento de una presa suponen una inversión elevada, que debe justificarse con los beneficios obtenidos en términos de mitigación de riesgos y otros usos complementarios, como la generación de energía o el abastecimiento de agua.
  • Gestión y coordinación de zonas aguas abajo: Las zonas cercanas a la presa deben contar con planes de emergencia, así como con sistemas de alerta temprana y zonificación adecuada para evitar asentamientos en áreas de riesgo.

Para maximizar los beneficios de las presas, es fundamental complementarlas con otras medidas de gestión de inundaciones, tanto estructurales (como diques y canales) como no estructurales (zonificación de uso del suelo, creación de zonas de almacenamiento controladas y sistemas de alerta temprana).

La gestión integrada de inundaciones y el papel complementario de las presas

La Gestión Integrada de Inundaciones considera tanto medidas estructurales como no estructurales para ofrecer una respuesta holística al riesgo de inundación. Dentro de este enfoque, las presas juegan un papel esencial, pero necesitan ser complementadas por:

  • Zonificación de áreas de riesgo: Al restringir los asentamientos en zonas propensas a inundaciones y promover el uso agrícola o recreativo en estas áreas, se reduce la exposición de las personas y propiedades al riesgo.
  • Planes de emergencia y sistemas de alerta temprana: Las presas pueden incluir sistemas de monitoreo que, junto con datos climáticos, permiten anticipar crecidas y alertar a la población.
  • Medidas de conservación del suelo y reforestación: La conservación del suelo y la vegetación en las cuencas contribuyen a disminuir la escorrentía superficial, reduciendo así la cantidad de agua que llega al embalse en eventos de lluvias intensas.

Conclusión

Las presas constituyen una solución efectiva y probada para mitigar los riesgos de inundación, ya que permiten controlar los caudales en momentos críticos y reducir así el impacto sobre las áreas vulnerables. La laminación de avenidas y la capacidad de almacenamiento controlado son fundamentales para la protección de las comunidades y los ecosistemas. Sin embargo, para una gestión del riesgo completa y sostenible, es necesario considerar un enfoque integral que combine el uso de presas con otras estrategias de gestión, a fin de proteger la vida humana, el bienestar social y la preservación del entorno natural.

Las presas no deben verse como infraestructuras aisladas, sino como elementos clave de un sistema coordinado de gestión de cuencas y respuesta a emergencias, de manera que se maximicen sus beneficios y se minimicen los posibles impactos adversos. Este enfoque integral permite hacer frente a los crecientes desafíos que plantean las inundaciones en un contexto de cambio climático y urbanización acelerada, y construir resiliencia y promover la seguridad a largo plazo para las generaciones futuras.

Referencia:

BERGA, L. (2006). El papel de las presas en la mitigación de las inundaciones. Ingeniería Civil, 144: 7-13.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Defensa integral contra inundaciones: un esbozo de las estrategias para la gestión de riesgos

Introducción: el problema de las inundaciones y la necesidad de estrategias integrales

Los eventos naturales de inundación, que pueden ser resultado de lluvias intensas o crecidas de ríos, pueden tener efectos devastadores en las comunidades y los ecosistemas. En las últimas décadas, se ha incrementado tanto la frecuencia como la gravedad de las inundaciones en muchas regiones del mundo. En este contexto, es fundamental implementar un conjunto de estrategias integradas que combinen medidas estructurales y no estructurales para minimizar los daños materiales, ambientales y humanos.

 

Criterios de actuación para la gestión del riesgo de inundaciones

Antes de elegir o diseñar medidas de defensa, es necesario establecer criterios de actuación para maximizar su efectividad:

  1. Coordinación: Las administraciones deben actuar de forma conjunta, definiendo claramente objetivos y responsabilidades para asegurar que las medidas se apliquen de forma eficiente.
  2. Descentralización: Los riesgos se gestionan mejor a nivel local en zonas no críticas, mientras que la administración central debe asumir la protección de las áreas de primer orden. Este aspecto se refleja en la legislación
  3. Separación de daños: Los programas deben diferenciar entre tipos de riesgos y áreas, priorizando la seguridad humana en zonas habitadas y protegiendo bienes agrícolas a través de seguros.
  4. Realismo y transparencia: Es fundamental aceptar un riesgo residual dado que ninguna medida puede ofrecer protección total. Asimismo, se debe comunicar de forma clara el alcance de cada intervención, tanto a nivel técnico como a los ciudadanos, incluyendo la divulgación de mapas de riesgo.
  5. Respeto al medio ambiente y prevención: Siempre que sea posible, las medidas deben procurar la mínima intervención posible en los ecosistemas fluviales, priorizando la ordenación territorial y evitando la ocupación de zonas inundables​.

Medidas estructurales: infraestructura para el control de las inundaciones.

Las medidas estructurales buscan alterar el flujo y la acumulación del agua mediante infraestructuras diseñadas específicamente para reducir la magnitud de las crecidas y proteger áreas críticas. Estas medidas se dividen en tres categorías principales:

  • Reducción de caudales punta: Este tipo de medidas tienen como objetivo reducir los picos de caudal durante una crecida:
    • Presas de laminación: Al almacenar temporalmente el exceso de agua, las presas de laminación liberan caudales regulados hacia aguas abajo, lo que disminuye la presión en las zonas vulnerables.
    • Zonas de almacenamiento controladas y cauces de emergencia: Estas áreas de almacenamiento pueden recibir el agua excedente en momentos críticos, lo que reduce la probabilidad de inundación en áreas habitadas. Pueden ser tanques de tormentas o parques inundables, entre otros.
    • Reforestación y conservación de suelos: Aunque no son medidas de infraestructura pesada, también ayudan a reducir el flujo de agua y el transporte de sedimentos hacia las llanuras de inundación.
  • Reducción de los niveles de inundación: Estas medidas se centran en mantener el nivel de las aguas bajo control durante una crecida:
    • Encauzamientos: Modificar el cauce de ríos y arroyos ayuda a dirigir el flujo y evita desbordamientos en áreas específicas. Sin embargo, debe manejarse con cuidado para no incrementar el riesgo aguas abajo.
    • Reducción de remansos y limpieza de cauces: Permiten un flujo continuo del agua y reducen la acumulación de niveles altos en puntos críticos.
  • Reducción de la duración de la inundación: Algunas infraestructuras, como las viales, se diseñan para facilitar el drenaje rápido en zonas anegadas, ya que las carreteras y las vías de transporte pueden actuar como barreras. Por ello, es crucial incluir obras de drenaje adecuadas para evitar que el agua se acumule y prolongue la duración de la inundación en las áreas circundantes.

Medidas no estructurales: estrategias de prevención y gestión del territorio

Las medidas no estructurales complementan a las estructurales, ya que se centran en la reducción de la vulnerabilidad y la exposición de las personas y sus bienes ante posibles inundaciones. Son especialmente útiles para gestionar el riesgo en áreas con niveles de protección más bajos o cuando el coste de las infraestructuras no justifica su instalación.

  • Cartografía de riesgo: proporciona una base esencial para la gestión del territorio y la toma de decisiones. Los mapas de riesgo identifican las áreas con mayor probabilidad de inundación, así como su gravedad, lo que permite a las autoridades y a la población planificar y adoptar medidas adecuadas. Además, constituyen una herramienta clave para los planes de emergencia, ya que ayudan a establecer zonas de evacuación y puntos de seguridad.
  • Ordenación de las zonas inundables: es fundamental en la planificación territorial para evitar el desarrollo de infraestructuras en áreas de alto riesgo. Las estrategias de ordenación incluyen la zonificación de la llanura de inundación, que establece límites claros para el desarrollo urbano y protege tanto la infraestructura como la población, así como restricciones de uso del suelo, donde la legislación define los usos permitidos en áreas inundables, como parques y terrenos agrícolas. Esto disminuye la exposición al riesgo de los asentamientos humanos y minimiza los daños materiales en caso de inundación.
  • Los sistemas de alerta temprana: son esenciales para la gestión eficaz de las emergencias por inundación. En España, el Sistema Automático de Información Hidrológica (SAIH) ofrece datos en tiempo real sobre precipitaciones y niveles de agua en diferentes puntos de control. Esto permite anticipar la magnitud de la crecida y alertar a la población a tiempo, lo que reduce significativamente el riesgo de pérdidas humanas y materiales. Estos sistemas utilizan modelos hidrológicos avanzados para predecir el comportamiento de las cuencas.
  • Seguros contra inundaciones: son un mecanismo efectivo para proteger las propiedades agrícolas y los bienes en zonas de riesgo moderado a alto, en especial cuando el coste de una infraestructura de protección supera el valor del área. En España, el Consorcio de Compensación de Seguros cubre los siniestros ocasionados por inundaciones en casos extraordinarios, lo que permite a los agricultores y otros propietarios recibir compensación sin tener que asumir por completo el coste de los daños.
  • La planificación de protección civil: es fundamental para responder de manera organizada y eficaz a situaciones de emergencia, estableciendo una estructura organizativa que define las responsabilidades de cada administración según la gravedad de la emergencia y delineando fases de actuación que en España se dividen en tres: preemergencia, que comienza con alertas meteorológicas; emergencia, que se activa ante riesgos inminentes; y normalización, que inicia tras la emergencia para restaurar servicios y realizar las primeras reparaciones, además de enfatizar la operatividad y formación del personal involucrado mediante capacitación y simulacros periódicos para garantizar la ejecución eficiente de los planes.

Conclusión: la importancia de una gestión integral del riesgo de inundación.

La combinación de medidas estructurales y no estructurales es clave para mitigar el riesgo de inundaciones de forma efectiva. Mientras que las medidas estructurales actúan directamente sobre el comportamiento de las aguas, las no estructurales permiten gestionar el uso del territorio y mejorar la resiliencia de las comunidades. Esta estrategia integral no solo minimiza los daños materiales y humanos, sino que también contribuye a la sostenibilidad y a la convivencia armoniosa con los ecosistemas fluviales. La gestión de riesgos de inundación debe ser una prioridad para las administraciones, que deben coordinar sus esfuerzos y garantizar que la población esté informada y preparada para hacer frente a estos fenómenos.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Introducción a las crecidas en ingeniería hidráulica

Las crecidas son fenómenos hidrológicos complejos que tienen un impacto significativo en las áreas naturales y urbanas. Comprender los factores que influyen en las crecidas y saber cómo predecirlas es crucial para el diseño de infraestructuras hidráulicas y para la planificación de la gestión de los recursos hídricos. En este artículo se explica en detalle qué son las crecidas, cómo se caracterizan mediante el hidrograma de crecida, las fases del proceso y los métodos avanzados de cálculo y modelización.

1. Definición y clasificación de las crecidas

Una crecida es el aumento brusco del caudal de un río o arroyo, generalmente debido a una gran cantidad de agua que llega al cauce en un periodo de tiempo corto, provocada por lluvias intensas o el deshielo de grandes acumulaciones de nieve. Este incremento del caudal puede provocar el desbordamiento del río y causar inundaciones en las áreas aledañas.

Clasificación de las crecidas

Las crecidas se pueden clasificar según diversos criterios:

  1. Crecidas fluviales: Son aquellas que se producen en grandes ríos y se deben a la acumulación de agua de precipitación en toda la cuenca. Suelen ser eventos de larga duración.
  2. Crecidas urbanas: Son más comunes en áreas urbanizadas, donde la impermeabilización del suelo limita la infiltración y aumenta la escorrentía superficial. Las crecidas urbanas tienden a ocurrir con rapidez y pueden provocar graves inundaciones.
  3. Crecidas repentinas: Conocidas también como flash floods, ocurren con rapidez en zonas de cuencas pequeñas y de gran pendiente. Se producen cuando una lluvia intensa y breve genera una escorrentía rápida hacia el cauce.
  4. Crecidas por deshielo: Frecuentes en zonas montañosas y frías, son causadas por el derretimiento acelerado de la nieve y el hielo, que aportan grandes volúmenes de agua a los ríos.

 

2. Factores que determinan una crecida

Las crecidas dependen de una combinación de factores físicos y meteorológicos que determinan el volumen y la velocidad del flujo de agua. Los factores más importantes son los siguientes:

  • Intensidad y duración de la precipitación: La cantidad de agua caída y su duración son determinantes. Una precipitación de alta intensidad y corta duración puede ser suficiente para causar una crecida repentina.
  • Área de la cuenca: Las cuencas grandes tienden a acumular agua lentamente, mientras que en las cuencas pequeñas el tiempo de respuesta es más rápido y las crecidas ocurren con mayor rapidez.
  • Pendiente de la cuenca: La pendiente influye en la velocidad de desplazamiento del agua. Las cuencas de alta pendiente generan crecidas rápidas, mientras que en las pendientes suaves el agua fluye más despacio.
  • Cobertura del suelo y tipo de vegetación: La vegetación ayuda a interceptar la lluvia, lo que aumenta la infiltración y reduce la escorrentía. En zonas deforestadas o urbanizadas, la escorrentía es mayor, lo que incrementa la posibilidad de crecidas.

3. El hidrograma de crecida: análisis y componentes

El hidrograma de crecida es una representación gráfica que muestra la variación del caudal de un río o corriente a lo largo del tiempo durante una crecida. Este gráfico permite analizar el comportamiento de la crecida desde el inicio de la precipitación hasta el retorno del caudal a niveles normales.

Componentes del hidrograma

  1. Crecida: La fase de ascenso en el hidrograma, en la que el caudal aumenta rápidamente debido al aporte de la escorrentía superficial.
  2. Caudal pico: El punto máximo de caudal en el hidrograma, que indica el momento de mayor flujo de agua en el cauce.
  3. Descenso: La fase de reducción del caudal después de alcanzar el pico, en la que el flujo disminuye gradualmente.
  4. Tiempo al pico (tp): El tiempo que transcurre desde el inicio de la crecida hasta alcanzar el caudal máximo. Este parámetro es clave para dimensionar estructuras de protección y prever los tiempos de reacción.
De FerranTatachan – Trabajo propio, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=4480943

Parámetros característicos del hidrograma

Además de los componentes, existen parámetros característicos que ayudan a comprender mejor el comportamiento de la crecida:

  • Tiempo de concentración (tc): Es el tiempo máximo que tarda el agua en llegar desde el punto más lejano de la cuenca hasta el cauce principal. Este tiempo es esencial para estimar el caudal máximo.
  • Tiempo de base (tb): Es el intervalo total que dura la crecida, desde el inicio de la subida del caudal hasta que regresa a su nivel base.

4. Fases de la crecida: procesos hidrológicos

Las crecidas pasan por varias fases, cada una con características hidrológicas distintas.

  • Producción de escorrentía: La fase inicial de una crecida se produce cuando la precipitación supera la capacidad de infiltración del suelo, lo que genera escorrentía superficial. Las abstracciones iniciales son mínimas en eventos extremos, por lo que casi toda la lluvia contribuye al flujo hacia el cauce.
  • Traslación y propagación en laderas: Una vez generada, el agua se desplaza por las laderas hasta alcanzar los canales de drenaje o el río. Este proceso de traslado es más importante en cuencas pequeñas, donde el agua fluye directamente por el terreno inclinado y puede llegar con rapidez al cauce.
  • Fase fluvial y almacenamiento: En la fase fluvial, el agua se desplaza por el cauce del río. En esta fase, el caudal puede atenuarse al encontrar embalses o zonas de almacenamiento temporal. Este amortiguamiento suaviza el hidrograma, reduciendo el pico de caudal y extendiendo la duración de la crecida.

5. Modelos de propagación de crecidas

Los modelos de propagación de crecidas permiten predecir cómo se desplazará el caudal de un río o cuenca después de una lluvia intensa. Existen diferentes tipos de modelos en función del nivel de detalle en la simulación:

  • Modelos agregados: Consideran la cuenca como una sola unidad y simplifican los procesos hidrológicos, aplicando valores promedio para la infiltración, la escorrentía y otros factores.
  • Modelos pseudo-distribuidos: Dividen la cuenca en subcuencas y simulan cada una de ellas de manera independiente, lo que permite una mejor aproximación de la variabilidad espacial.
  • Modelos distribuidos: Dividen la cuenca en celdas de análisis que representan zonas pequeñas. Este tipo de modelo simula los procesos hidrológicos en cada celda, lo que resulta en una mayor precisión.
Fuente: Eduardo Albentosa, Departamento de Ingeniería Hidráulica y Medioambiente, UPV.

Modelos matemáticos de propagación

Los modelos matemáticos se utilizan para resolver ecuaciones que describen el movimiento del flujo de agua en la cuenca. Algunos de los modelos más comunes son:

  • Ecuaciones de Saint-Venant: Se emplean en la fase fluvial de la propagación y son aplicables en cauces con flujo permanente. Estas ecuaciones describen la variación del caudal y de la altura del agua en función del tiempo y de la distancia en el cauce.
  • Teoría de la Onda Cinética: Se utiliza en la fase de escorrentía superficial en laderas inclinadas. Este modelo calcula la velocidad del flujo en función de la pendiente y la intensidad de la lluvia.

6. Métodos de cálculo de caudales en crecidas

Para el cálculo del caudal máximo en crecidas, se emplean métodos específicos que simplifican el comportamiento de la escorrentía en cuencas pequeñas o medianas. Los métodos más comunes son:

6.1. Método Racional

El Método Racional es uno de los métodos más usados en ingeniería para estimar el caudal máximo de crecida en cuencas pequeñas. Este método utiliza la siguiente ecuación:

Q = C · I · A

donde:

  • Q: Caudal pico (m³/s),
  • C: Coeficiente de escorrentía, que depende del tipo de suelo y la cobertura vegetal,
  • I: Intensidad de la lluvia (mm/h) obtenida de curvas IDF,
  • A: Área de la cuenca (km²).

6.2. Método de Témez

El Método de Témez es una adaptación del método racional que incluye factores adicionales, como el coeficiente de reducción areal y el tiempo de concentración de la cuenca. Este método se usa en cuencas pequeñas y medianas, y su aplicación es especialmente frecuente en España.

El Método de Témez incluye correcciones en la intensidad de la lluvia y en el coeficiente de escorrentía, lo que mejora la precisión en cuencas donde la variabilidad espacial es moderada. Además, permite incorporar el coeficiente de uniformidad temporal, que ajusta la intensidad de la lluvia para reflejar mejor la distribución temporal de la precipitación.

Las limitaciones del método racional (MR) incluyen una simplificación en la consideración de la variabilidad temporal y espacial de la lluvia, lo que puede afectar a la precisión en ciertas aplicaciones. Este método no permite la desagregación espacial de la cuenca, por lo que es adecuado para cuencas pequeñas. Además, solo proporciona el caudal pico, por lo que es útil únicamente cuando no se requiere un hidrograma completo de crecida. También utiliza la curva IDF de Témez, aplicable exclusivamente a cuencas con tiempos de concentración entre 15 minutos y 24 horas.

7. Aplicaciones prácticas del análisis de crecidas

El análisis de crecidas es fundamental para el diseño y construcción de infraestructuras hidráulicas, como:

  • Presas y embalses: Dimensionadas para contener caudales de crecida sin desbordar.
  • Sistemas de drenaje urbano: Para evacuar el agua de lluvia y evitar inundaciones.
  • Caminos y puentes: Diseñados para resistir la presión y el volumen de agua en eventos de crecida.

Conclusión

La gestión de crecidas es crucial en ingeniería hidráulica para prevenir daños y proteger vidas y bienes. La labor de los ingenieros pasa por comprender los procesos hidrológicos que provocan las crecidas y aplicar modelos de propagación y métodos de cálculo adecuados para diseñar infraestructuras seguras y resistentes a eventos extremos.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Precipitación en ingeniería hidráulica: conceptos, medición y análisis

El cambio climático está transformando los patrones de precipitación en todo el mundo y aumentando tanto la frecuencia como la intensidad de los eventos extremos. Esto supone un gran desafío para la ingeniería y la gestión de los recursos hídricos, ya que las estructuras e infraestructuras se diseñan, por lo general, en función de periodos de retorno determinados, que son intervalos estimados de recurrencia de eventos como tormentas intensas o inundaciones. Estos periodos de retorno se calculan a partir de registros históricos, asumiendo que el clima permanece constante. Sin embargo, el cambio climático altera esa estabilidad histórica, lo que implica que las proyecciones de precipitaciones basadas en periodos de retorno tradicionales podrían resultar insuficientes o imprecisas.

Es importante recordar que el periodo de retorno no es una predicción exacta de cuándo ocurrirá un evento, sino una probabilidad de ocurrencia. Un evento con un periodo de retorno de 100 años no significa que ocurrirá exactamente cada 100 años, sino que tiene una probabilidad del 1 % de ocurrir en cualquier año dado. En un clima cambiante, esta probabilidad podría aumentar si los eventos extremos se vuelven más frecuentes y desafían los márgenes de seguridad para los que están diseñadas muchas infraestructuras.

Todo esto nos plantea la necesidad de adaptar los métodos de cálculo y planificación de periodos de retorno, incorporando datos actualizados y modelos que contemplen escenarios futuros, en lugar de depender únicamente de registros históricos. Veamos, a continuación, qué es la precipitación en ingeniería hidráulica: conceptos, medición y análisis.

La precipitación es un fenómeno meteorológico esencial que alimenta los recursos hídricos y afecta directamente al diseño de obras civiles, especialmente a las relacionadas con el drenaje y el control de inundaciones. El objetivo de este artículo es explicar detalladamente qué es la precipitación, cómo se mide y se analiza, y cómo se utiliza el concepto de periodo de retorno para planificar y mitigar los riesgos en las infraestructuras.

1. ¿Qué es la precipitación?

La precipitación se define como cualquier tipo de agua que cae desde la atmósfera hasta la superficie terrestre, incluyendo la lluvia, la nieve, el granizo y la llovizna. La medida de precipitación suele expresarse en milímetros (mm), lo que indica la altura de agua que se acumularía si no hubiera escorrentía ni infiltración en el suelo. Un valor de 1 mm de precipitación equivale a un litro de agua por metro cuadrado de superficie.

La precipitación es crucial para el ciclo hidrológico y afecta a numerosos sistemas naturales y humanos, incluidos el abastecimiento de agua potable, la agricultura y el diseño de infraestructuras de transporte y drenaje.

2. Métodos de medición de la precipitación

2.1. Pluviómetros

El pluviómetro es un dispositivo común para medir la cantidad de lluvia en un lugar específico. Se instala en el exterior y captura el agua de lluvia, midiendo su cantidad en milímetros. Los pluviómetros son esenciales para generar registros continuos de precipitación y permiten estimar los patrones anuales y mensuales, entre otros datos útiles para el análisis de lluvias extremas.

2.2. Pluviogramas y hietogramas

  • Pluviograma: Es un gráfico que muestra la acumulación de precipitaciones en función del tiempo. El eje vertical representa la altura de la precipitación acumulada, mientras que el eje horizontal muestra el tiempo. Esto permite visualizar cómo se acumula la lluvia durante un evento específico, como una tormenta.
Fuente: Eduardo Albentosa, Departamento de Ingeniería Hidráulica y Medioambiente, UPV.
  • Hietograma: Es un gráfico que representa la intensidad de la precipitación en un intervalo de tiempo determinado. A diferencia del pluviograma, el hietograma se centra en la tasa de precipitación (en mm/h). Esta información es crucial en ingeniería para analizar eventos de precipitación intensos y de corta duración, como las tormentas, que pueden provocar inundaciones y desbordamientos.
Fuente: Eduardo Albentosa, Departamento de Ingeniería Hidráulica y Medioambiente, UPV.

2.3. Redes de pluviometría y densidad de medición

Una red de estaciones pluviométricas permite recoger datos de precipitación en múltiples puntos de una región. La densidad de esta red es importante para obtener una representación precisa de la distribución espacial de la precipitación. Cuantas más estaciones pluviométricas haya, mayor será la precisión en la interpolación de datos y en el análisis de la variabilidad de la precipitación en áreas amplias.

3. Análisis de la distribución temporal de la precipitación

La distribución temporal de la precipitación se refiere a cómo varía la intensidad de la lluvia a lo largo del tiempo. Para comprender estos cambios, en ingeniería se utilizan herramientas y modelos que ayudan a prever el comportamiento de la lluvia y su potencial impacto en las infraestructuras.

3.1. Curvas IDF: Intensidad-Duración-Frecuencia

Las curvas IDF (Intensidad-Duración-Frecuencia) son representaciones estadísticas que relacionan tres factores clave de la precipitación:

  • Intensidad (I): Cantidad de lluvia por unidad de tiempo (mm/h).
  • Duración (D): Tiempo durante el cual se mide la precipitación.
  • Frecuencia (F): Probabilidad de que se repita un evento en un intervalo de tiempo determinado.
Fuente: Eduardo Albentosa, Departamento de Ingeniería Hidráulica y Medioambiente, UPV.

Estas curvas se desarrollan a partir del análisis estadístico de eventos históricos de lluvia. En general, la probabilidad de que ocurra un evento de alta intensidad disminuye conforme aumentan la duración y el intervalo de retorno. Por ejemplo, una lluvia de alta intensidad con un periodo de retorno de 100 años es mucho menos frecuente que una lluvia moderada en el mismo intervalo.

3.2. Hietogramas de diseño

Los hietogramas de diseño son modelos simplificados que representan la distribución de la intensidad de la precipitación durante un evento de diseño. En ingeniería, estos diagramas permiten estimar el volumen total de precipitación en un evento y prever el comportamiento de los sistemas de drenaje y de almacenamiento de agua.

Algunos tipos de hietogramas de diseño son:

  • Hietograma rectangular: Representa una intensidad de precipitación constante durante toda la duración del evento.
  • Hietograma triangular: Muestra una distribución con un pico de intensidad en un momento específico, lo cual es más realista para muchas tormentas naturales.
  • Hietograma de bloques alternos: Descompone el evento en bloques de intensidad variable, alternando entre períodos de alta y baja intensidad, lo que proporciona una representación más detallada.

3.3. Importancia de las curvas IDF en el diseño de infraestructuras

Las curvas IDF son fundamentales para el diseño de infraestructuras de drenaje, canales y presas. Permiten calcular la capacidad de estas obras para gestionar los caudales generados por eventos de lluvia extremos. Si no se realiza un análisis adecuado de estas curvas, las infraestructuras pueden resultar vulnerables a desbordamientos y fallos durante eventos de precipitación intensa.

4. Análisis de la distribución espacial de la precipitación

La precipitación varía de un lugar a otro, especialmente en regiones con condiciones topográficas complejas, como montañas y valles. Para representar adecuadamente esta variabilidad en proyectos de ingeniería, se emplean métodos de interpolación espacial para estimar la precipitación en puntos sin mediciones directas.

4.1. Métodos de interpolación y promediación

  • Método de Thiessen: Divide el área de estudio en polígonos de influencia basados en la proximidad de las estaciones pluviométricas. Este método permite asignar una estimación de la precipitación a cualquier punto dentro de un polígono en función de los valores registrados en la estación más cercana.
  • Inverso de la Distancia: Calcula la precipitación en puntos no medidos asignando mayor peso a las estaciones más cercanas. Este método es especialmente útil cuando la densidad de estaciones es baja, aunque no considera las variaciones topográficas.

4.2. Factor de reducción areal

En grandes áreas, como cuencas hidrográficas, es improbable que las precipitaciones se distribuyan uniformemente en toda la región. Por esta razón, se emplea un factor de reducción areal que disminuye la intensidad de la precipitación puntual al extrapolarla a áreas más grandes. Este factor depende del tamaño de la cuenca y de las condiciones meteorológicas de la región.

5. El periodo de retorno y su importancia en hidrología e ingeniería

El periodo de retorno es un concepto estadístico que define el tiempo promedio entre eventos extremos de una magnitud específica. En hidrología, este concepto es fundamental para evaluar la frecuencia y la probabilidad de eventos como tormentas intensas o inundaciones.

5.1. Definición y cálculo del periodo de retorno

El periodo de retorno se define como:

donde P[X>x] es la probabilidad anual de que un evento de precipitación exceda un valor umbral x. Por ejemplo, si una tormenta tiene un periodo de retorno de 50 años, esto significa que hay un 2% de probabilidad de que ocurra en cualquier año específico.

5.2. Uso del periodo de retorno en el diseño de infraestructuras

En la práctica, los ingenieros diseñan infraestructuras de drenaje y de almacenamiento de agua basándose en periodos de retorno específicos. Por ejemplo, una presa de retención puede construirse para soportar eventos de 100 años, lo que implica una probabilidad de fallo del 1 % cada año.

Este cálculo se ajusta a los requisitos de seguridad y de tolerancia al riesgo de cada infraestructura, con el fin de minimizar las probabilidades de fallo, especialmente en áreas densamente pobladas o con activos económicos significativos.

5.3. Riesgo a largo plazo y el periodo de retorno

Aunque un periodo de retorno largo (como 100 años) sugiere una baja probabilidad de ocurrencia anual, es importante entender que, en periodos de tiempo prolongados, la probabilidad acumulada de que el evento ocurra aumenta. Para calcular el riesgo acumulado durante un periodo de N años, se usa la siguiente fórmula:

donde p=1/T  es la probabilidad anual del evento y es el periodo en años. Esto permite estimar la probabilidad de que un evento supere la capacidad de una infraestructura durante un número de años especificado. Por ejemplo, el riesgo de que una estructura diseñada para un periodo de retorno de 100 años falle al menos una vez en un periodo de 50 años es de aproximadamente 40 %. En la gráfica que dejo a continuación tenéis la probabilidad de que ocurra un evento en función del número de años y del periodo de retorno.

Riesgo y periodo de retorno. Elaboración propia.

Nota importante: Una infraestructura no falla exactamente a los 100 años si está diseñada para un periodo de retorno de 100 años. De hecho, su probabilidad es del 63 %. Incluso existe una probabilidad del 10 % de que falle a los 10 años de su construcción. Que te toque la lotería de Navidad tiene una probabilidad del 0,001 %, pero de hecho, hay gente a la que le ha tocado la lotería varias veces seguidas. Por tanto, hay que ser cautos con la estadística.

6. Aplicación de la precipitación en el contexto del cambio climático

El cambio climático está afectando a los patrones de precipitación en todo el mundo, incrementando la frecuencia e intensidad de los eventos extremos. Este fenómeno plantea nuevos retos a los ingenieros, ya que las estructuras diseñadas en condiciones climáticas históricas pueden no ser adecuadas para las condiciones futuras.

Adaptar las infraestructuras al cambio climático implica revisar los periodos de retorno y los valores de las curvas IDF para considerar eventos más intensos o frecuentes. En este contexto, es fundamental contar con bases de datos a largo plazo y modelos predictivos que permitan simular condiciones futuras.

Conclusión

El análisis de la precipitación es crucial en la ingeniería hidráulica para prevenir y mitigar riesgos. Desde los métodos de medición y los análisis temporales y espaciales hasta el uso del periodo de retorno, estos conceptos permiten a los ingenieros diseñar infraestructuras resilientes. Dado el impacto creciente del cambio climático, la actualización y adaptación de estos métodos serán cada vez más importantes para garantizar la seguridad y la sostenibilidad de las infraestructuras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Efectos de las inundaciones en las estructuras de las edificaciones

Figura 1. Efectos de la DANA en Valencia. https://www.diariodesevilla.es/sociedad/catastrofe-inundaciones-valencia-directo_10_2002684877.html

Para comprender los efectos de las inundaciones en las estructuras de las edificaciones y cómo responder ante ellas, es fundamental entender tanto los factores que incrementan la vulnerabilidad de los edificios como las acciones preventivas y correctivas necesarias. Las inundaciones pueden afectar seriamente a las estructuras, dependiendo de la magnitud de las aguas, su salinidad, la saturación del suelo y la calidad de los materiales y de las prácticas constructivas empleados. La identificación de estos daños requiere evaluaciones técnicas detalladas y precisas. Este conocimiento es útil tanto para los propietarios como para los técnicos y el personal de emergencias que deben tomar decisiones rápidas y bien fundamentadas en situaciones críticas.

1. Efectos de las inundaciones en la estructura de las edificaciones

Las inundaciones representan una amenaza significativa para la integridad de los edificios y pueden afectar la estructura de diversas maneras. Estos no siempre son visibles de inmediato y pueden empeorar con el tiempo si no se toman medidas correctivas. En las zonas propensas a las inundaciones, los edificios pueden sufrir diversos daños estructurales, como:

  • Socavación y fallos en la cimentación: La erosión causada por la corriente de agua disminuye la estabilidad de los cimientos. Cuando una inundación causa socavones cerca de una edificación, esto afecta directamente a la capacidad portante de los cimientos, ya que se pierde el soporte horizontal y lateral del suelo. Esto puede provocar inclinaciones en las estructuras, grietas en los muros y, en casos extremos, el colapso parcial o total del edificio.
  • Erosión del suelo y pérdida de capacidad portante: La capacidad del suelo para soportar cargas se reduce debido a la erosión, lo que puede conducir al fallo de la cimentación.
  • Saturación del suelo: La acumulación de agua provoca saturación, lo que aumenta el riesgo de deslizamientos, derrumbes y avalanchas y afecta a la estabilidad del conjunto de cimentación y estructura. El suelo que rodea los cimientos de una edificación, al saturarse de agua, pierde densidad y estabilidad. Este fenómeno es especialmente crítico en áreas cercanas a cuerpos de agua (ríos, lagos o mares), donde el agua puede provocar que el suelo pierda su capacidad de soporte. Esto puede provocar fenómenos como deslizamientos, derrumbes y licuefacción. En casos graves, el terreno bajo la edificación se comporta casi como un líquido, perdiendo su capacidad de soportar el peso de la estructura y poniendo en riesgo su estabilidad.
  • Pérdida de soporte lateral y horizontal: Al disminuir la capacidad portante del suelo, la estructura pierde los soportes laterales y horizontales, lo que compromete su estabilidad y su capacidad de carga.
  • Deterioro de los muros exteriores: Cuando el nivel de las inundaciones supera el metro de altura, la descompensación de presiones puede provocar fallos en los muros exteriores..
  • Inestabilidad estructural por impacto de escombros: Los escombros arrastrados por el agua, combinados con la presión hidrostática o hidrodinámica, pueden impactar en los elementos estructurales y provocar inestabilidad.
  • Aparición de grietas en muros, losas y columnas: Dependerá de la magnitud de la inundación y podría ocasionar daños que van desde reparables hasta irreparables.
  • Daños por capilaridad y humedad en las paredes: El fenómeno de capilaridad permite que el agua suba a través de los materiales porosos de los muros, debilitándolos progresivamente. Este problema es más frecuente en estructuras construidas directamente sobre el suelo, sin barreras de impermeabilización ni sobrecimientos. El agua absorbida por capilaridad puede afectar a la durabilidad y la resistencia de los materiales, provocando grietas y desprendimientos del revestimiento.
  • Deterioro de materiales de construcción: La exposición al agua contaminada o salina provoca corrosión en los materiales, especialmente en elementos metálicos no protegidos, galvanizados o inoxidables.
Figura 2. Presión hidrostática.

Para reducir estos riesgos, las nuevas construcciones en zonas de inundación deben diseñarse y construirse con especificaciones a prueba de inundaciones. Estas mejoras en la resistencia estructural no solo reducen el riesgo de fallos, sino que también disminuyen significativamente la probabilidad de víctimas en escenarios de inundación.

2. Problemática: daños y consecuencias

  • Daños estructurales: Las inundaciones generan múltiples efectos en la estabilidad de los edificios, afectando su integridad estructural. Entre estos daños destacan:
    • Presión hidrostática: La acumulación de agua en el perímetro de la edificación ejerce una presión horizontal sobre los muros, proporcional al calado de la inundación. Este tipo de presión puede levantar los suelos o la cimentación cuando el agua se acumula de un lado del edificio. En casos en que el agua ingresa al edificio, esta presión se neutraliza, pero introduce una carga gravitatoria que afecta elementos horizontales como forjados y soleras, lo que puede conducir al colapso de la estructura.
    • Presión hidrodinámica: El flujo de agua de un río desbordado puede alcanzar velocidades considerables y generar impactos en los muros, que deben diseñarse para soportar estas cargas dinámicas.
    • Impactos de objetos arrastrados: El agua arrastra escombros, vehículos y mobiliario urbano que impactan contra la edificación, generando daños considerables en sus elementos​.
    • Durabilidad y corrosión: El agua, especialmente si contiene minerales y sales, puede corroer el acero de refuerzo de las estructuras de hormigón, debilitando su capacidad de carga. En materiales como la madera, la humedad reduce significativamente su resistencia estructural. Estos daños son más difíciles de detectar cuando los elementos están cubiertos o enterrados.
    • Erosión del material y del terreno: La exposición prolongada al agua, especialmente si el flujo es constante, puede erosionar materiales como ladrillo y bloque, deteriorando el mortero de unión y comprometiendo la estabilidad del edificio. El terreno también se ve afectado, sobre todo en su capacidad de soporte, lo que agrava el riesgo de asentamientos diferenciales en la cimentación​.
  • Daños constructivos y estéticos: Las inundaciones afectan no solo a los elementos estructurales, sino también a los acabados y componentes funcionales de los edificios:
    • Daños en cerramientos y tabiques: Los paramentos exteriores e interiores pueden experimentar corrosión en elementos metálicos, pérdida de adhesión en revestimientos y daños en los aplacados​.
    • Pérdida de estabilidad en fachadas y tabiques: Los impactos de objetos arrastrados por el agua o la reducción de las propiedades de los materiales debido a la humedad pueden hacer que las fachadas o los tabiques colapsen .
    • Daños en pavimentos: La prolongada presencia de agua produce abombamientos y deformaciones en los suelos, especialmente en los pavimentos de madera, causando el levantamiento de los materiales de agarre​.
    • Desperfectos estéticos: La humedad genera manchas y decoloración en las superficies, mientras que los impactos pueden provocar la rotura de elementos ornamentales​.
    • Disfunción de instalaciones: Las instalaciones eléctricas, redes de saneamiento, sistemas de agua potable y equipos de ventilación y climatización pueden colapsar o fallar debido a la exposición a la humedad y a la obstrucción por residuos, lo cual compromete la funcionalidad del edificio​.
  • Daños al contenido: El ingreso de agua en el interior de un edificio provoca, inevitablemente, daños en su contenido, desde pérdidas materiales como aparatos electrónicos, mobiliario y documentos, hasta daños económicos significativos en edificaciones comerciales e industriales. Además, los edificios que almacenan bienes sensibles, como bibliotecas o museos, pueden sufrir daños irreparables en sus colecciones culturales o documentales.
  • Daños funcionales: Las inundaciones pueden afectar gravemente al funcionamiento de los edificios, especialmente en instalaciones críticas como hospitales o estaciones de bomberos, donde cualquier interrupción implica riesgos adicionales. Esto incluye la interrupción de servicios esenciales que comprometen la capacidad de respuesta en situaciones de crisis, la inactividad prolongada en edificaciones comerciales o industriales, que ocasiona pérdidas económicas, y la obstrucción de vías de acceso y evacuación, lo que dificulta las operaciones de emergencia y la seguridad de los ocupantes.
  • Daños relacionados con el entorno: Además de los daños directos a la estructura, las inundaciones pueden afectar a la parcela circundante y a los elementos del entorno inmediato, provocando erosión y desgaste en áreas sin edificación, como jardines o zonas comunes, donde se acumulan sedimentos y residuos que deterioran el terreno, el mobiliario y la vegetación. Asimismo, elementos del entorno, como vehículos o vegetación arrastrada, pueden afectar la edificación y provocar asientos diferenciales debido a los desplazamientos del terreno. Finalmente, los residuos y contaminantes de instalaciones industriales o agrícolas arrastrados por el agua pueden afectar tanto al entorno natural como a la propia edificación.
  • Daños a largo plazo: Además de los daños inmediatos, las inundaciones pueden causar problemas que se manifiestan con el tiempo, como la corrosión en elementos estructurales debido a la humedad residual en materiales como el hormigón, lo que debilita las armaduras de acero y compromete la estructura gradualmente; también pueden surgir problemas de humedad persistente en áreas de difícil acceso, como los forjados sanitarios, donde el agua estancada crea condiciones favorables para el crecimiento de hongos y otros problemas fitosanitarios.

Estos puntos resaltan la complejidad de los efectos de una inundación en las edificaciones y su entorno, y subrayan la importancia de contar con medidas preventivas y de rehabilitación efectivas para mitigar sus consecuencias.

3. Identificación de los posibles daños en edificaciones debido a inundaciones

Este capítulo detalla los daños que pueden producirse en una edificación durante una inundación. Abarca la identificación de puntos vulnerables, la inspección de elementos de valor y la evaluación de los daños en función del nivel de agua.

  • Identificación e inventario de puntos débiles: La ubicación y el riesgo del edificio son determinantes para identificar sus puntos débiles y reducir la vulnerabilidad ante las inundaciones. Los principales puntos de entrada del agua en las construcciones son los defectos en el mortero de ladrillo o mampostería, que facilitan la infiltración; las grietas en fachadas y juntas estructurales, especialmente en las uniones entre materiales diferentes, como paredes y losas; las ventanas y puertas, donde las fallas en el sellado y el contacto de los marcos permiten filtraciones; y las escaleras y entradas a sótanos, que al estar en niveles inferiores favorecen la acumulación de agua.
  • Comprobación de estabilidad estructural: Es crucial evaluar la capacidad de resistencia de los elementos estructurales frente a las fuerzas del agua, ya que las presiones desiguales pueden dañar paredes y pisos. La diferencia en la rapidez de entrada y salida del agua entre el exterior y el interior del edificio puede generar presión adicional, ocasionando daños estructurales importantes en muros y suelos.
  • Inspección de los elementos de valor del edificio: Realizar un inventario de los elementos clave del edificio permite diagnosticar posibles daños y planificar su aseguramiento. Estos elementos se clasifican en: seres vivos (personas, mascotas y animales en actividades agropecuarias), continente (estructura y equipamiento, como cimientos, muros, sistemas de electricidad, agua y ventilación) y contenido (que varía según el uso del edificio e incluye mobiliario, documentos y materiales peligrosos).
  • Diagnóstico de daños en función de la altura del agua: El nivel del agua en el edificio influye directamente en el grado de daño. Ejemplos de daños según el nivel son:
    • 0 a 0,3 m (debajo del nivel de la planta baja): posibles erosiones en los cimientos, corrosión de elementos metálicos, acumulación de limo y formación de moho.
    • 0,3 a 0,5 m: saturación de revestimientos de paredes y suelos, problemas de humedad y daños en puertas internas y externas.
    • Más de 0,5 m: daños estructurales graves debido a la presión del agua, la corrosión y a fallos generalizados en los sistemas eléctricos y sanitarios.

Estos daños evidencian la importancia de realizar un diagnóstico exhaustivo para implementar medidas de mitigación eficaces que garanticen la seguridad estructural del edificio y la protección de sus ocupantes y su contenido.

Figura 3. Inventario de puntos de entrada del agua de inundación. Fuente: Preparing for Flood, Interim guidance for improving the flood resistance of domestic and small business properties. Office of the Deputy Prime Minister. 2003. Environment Agency – UK.

4. Factores de vulnerabilidad que agravan los daños por inundaciones

Las características constructivas y de mantenimiento de una edificación influyen en su vulnerabilidad frente a las inundaciones. Algunos factores clave incluyen:

  • Ausencia de sobrecimiento e impermeabilización: El sobrecimiento es una barrera de 30-50 cm de altura que se coloca en la base de los muros y cuya función es proteger contra la humedad que asciende del suelo. La ausencia de este elemento en una construcción permite que el agua entre en contacto directo con las paredes, lo que facilita la absorción de agua por capilaridad. Además del sobrecimiento, la impermeabilización de los cimientos y los muros de la planta baja es vital para prevenir que el agua dañe las estructuras.
  • Calidad de los materiales: Cada material de construcción reacciona de manera distinta ante la exposición prolongada al agua. La calidad del cemento, la arena y otros materiales utilizados en la construcción de los bloques y los cimientos influye en la resistencia de la edificación frente a las inundaciones. Los materiales de baja calidad se desintegran más rápidamente al entrar en contacto con el agua. En áreas con edificaciones antiguas de tapial, por ejemplo, estas tienden a disolverse tras un contacto prolongado con el agua, lo que provoca la descomposición de la estructura. El bahareque, compuesto tradicionalmente por madera, cañas y barro, presenta baja resistencia a la humedad y se deteriora rápidamente, con desprendimientos del revestimiento y deformaciones en la estructura de madera o de caña, lo que puede causar inclinaciones o incluso el desplome de las viviendas. En el caso de la mampostería, aunque aparenta ser resistente, los bloques de cemento, debido a su porosidad y a la falta de cocción de algunos materiales, son vulnerables al agua. La humedad puede deteriorar las primeras hiladas, debilitar la base y provocar el desplome parcial o total de la estructura, especialmente en zonas donde los bloques son de baja calidad o presentan una proporción insuficiente de cemento.
  • Errores en la construcción: En algunas construcciones, se cometen errores técnicos que comprometen la estabilidad de la estructura, especialmente en zonas inundables. Por ejemplo, el uso incorrecto de aparejos en mampostería o la falta de conocimientos técnicos en la ejecución de los cimientos puede resultar en problemas estructurales graves cuando la edificación enfrenta una inundación.

5. Medidas preventivas para minimizar daños en situaciones de inundación

La implementación de medidas preventivas ayuda a minimizar el impacto de las inundaciones en las edificaciones. Estas son algunas acciones recomendadas:

  • Inspección y mantenimiento regulares: Es crucial que las edificaciones en zonas propensas a inundaciones reciban mantenimiento constante y revisiones estructurales periódicas. Las inspecciones técnicas pueden identificar signos de desgaste o debilidades estructurales antes de que se conviertan en problemas graves. Esto incluye revisar los cimientos, las paredes y los elementos de soporte clave.
  • Empleo de materiales resistentes al agua: Al construir o rehabilitar una vivienda en una zona propensa a las inundaciones, se recomienda emplear materiales menos porosos y resistentes al agua. Asimismo, en áreas vulnerables, se recomienda aplicar revestimientos y pinturas impermeables en paredes y cimientos para evitar la absorción de humedad.
  • Adecuación del terreno y del sistema de drenaje: El sistema de drenaje del terreno circundante a una edificación es fundamental para evitar que el agua se acumule y afecte a los cimientos. En zonas propensas a las inundaciones, es importante crear canales de drenaje y pendientes que faciliten la salida del agua hacia áreas de menor riesgo.

6. Recomendaciones de emergencia para responder a inundaciones en edificaciones

En caso de inundación, estas son algunas recomendaciones prácticas para garantizar la seguridad de las personas y proteger, en la medida de lo posible, la estructura del edificio:

  • Inspección inmediata de daños: Una vez que el nivel del agua haya descendido, es fundamental realizar una inspección detallada del edificio para identificar daños visibles y ocultos. Los técnicos deben evaluar los cimientos y la estabilidad de las paredes para identificar signos de debilitamiento estructural que puedan suponer un riesgo.
  • Secado y limpieza de estructuras: Es crucial eliminar el agua acumulada y permitir que las estructuras afectadas se sequen. El secado evita que la humedad siga dañando los materiales de construcción. Además, se debe limpiar la suciedad y los restos dejados por la inundación, ya que estos pueden acelerar el deterioro de los materiales.
  • Refuerzo y reparación de cimientos y paredes: Si las inspecciones revelan daños en los cimientos o en las paredes, es necesario realizar refuerzos inmediatos para evitar colapsos. Los cimientos debilitados pueden reforzarse con elementos estructurales adicionales y las paredes pueden requerir tratamientos impermeabilizantes o refuerzos de mampostería.

Conclusión

Entender los efectos de las inundaciones en las edificaciones es fundamental para aplicar medidas de prevención y reparación eficaces. Estos eventos pueden causar daños severos en la estructura, la estabilidad y el contenido de los edificios, lo que subraya la necesidad de realizar un diagnóstico preciso y de implementar acciones correctivas. La identificación de las áreas vulnerables, junto con el uso de materiales adecuados y sistemas de drenaje eficientes, es esencial para reducir los riesgos. Asimismo, el mantenimiento regular y una respuesta rápida ante las inundaciones son cruciales para proteger tanto la seguridad de los ocupantes como la integridad del edificio. La implementación de técnicas constructivas apropiadas mejora la resistencia de las estructuras frente a estos desastres.

A continuación, dejo algunos documentos que creo que podrían ser de interés.

Pincha aquí para descargar

Pincha aquí para descargar

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.