Hoy, 6 de mayo de 2025, ha tenido lugar la defensa de la tesis doctoral de D. Ashwani Kumar Malviya, titulada “Optimization of LCA and LCCA for a novel NiZn battery through multi-objective particle swarm optimization (MOPSO) and its application in e-mobility and smart building infrastructure”, dirigida por los profesores Ignacio Villalba Sanchis y Víctor Yepes. La tesis ha obtenido la máxima calificación de sobresaliente «cum laude». A continuación, presentamos un pequeño resumen de la misma.
En el contexto de la urgente transición hacia un sistema eléctrico descarbonizado, el almacenamiento energético se ha convertido en un pilar fundamental para integrar fuentes renovables intermitentes, como la solar y la eólica, en la red eléctrica y en aplicaciones de e-movilidad y edificios inteligentes. La tesis de Ashwani Kumar Malviya explora por primera vez de manera integrada la viabilidad de las baterías recargables de níquel-zinc (RNZB), que combinan materias primas abundantes (níquel y zinc), electrólitos acuosos no inflamables y un proceso de producción simplificado que prescinde de salas blancas. Gracias a recientes innovaciones en la formulación de los electrodos, estas celdas de 10 Ah y 60 Wh/kg alcanzan más de 2000 ciclos al 100 % de profundidad de descarga, superando uno de los principales obstáculos de esta tecnología.
El trabajo se estructura en torno a cinco preguntas clave:
¿Cuál es el coste total de ciclo de vida (LCC) de una batería de litio de níquel (RNZB), desde la extracción de materia prima hasta su fin de vida, medido tanto en €/kg como en €/kWh entregado?
¿Qué impacto ambiental (LCA) —evaluado en 18 categorías midpoint y 3 endpoint con ReCiPe 2016— genera la RNZB en comparación con baterías de plomo-ácido, LFP y NMC?
¿Es posible que un algoritmo multiobjetivo (MOPSO) identifique configuraciones de suministro y reciclaje que minimicen simultáneamente el coste de ciclo de vida (LCC) y el impacto ambiental (LCA)?
¿Hasta qué punto estas soluciones son resistentes ante variaciones de ±20 % en parámetros críticos, tales como la mezcla eléctrica en uso y la eficiencia del ciclo?
¿En qué medida las preferencias de un panel de expertos, analizadas mediante el proceso de jerarquía analítica (AHP), coinciden con la clasificación de Pareto generada por el MOPSO?
Esta tesis presenta un modelo estructurado que integra ecuaciones de LCC —que incluyen CAPEX, OPEX y fin de vida en función de la masa de batería y la energía suministrada— con un LCA exhaustivo basado en datos de la base Ecoinvent y OpenLCA. La implementación de MOPSO en MATLAB para optimizar ambos indicadores constituye una innovación metodológica de gran valor, pues genera un frente de Pareto de soluciones no dominadas que equilibra coste y huella ambiental. Además, la comparación efectuada demostró que la RNZB puede ofrecer un coste medio de ciclo de vida de aproximadamente 120 €/kWh, en comparación con los 150 €/kWh de LFP y los 180 €/kWh de plomo-ácido, manteniendo un GWP de 0,24 kg CO₂ eq/kWh —inferior a los 0,30 kg CO₂ eq/kWh del plomo-ácido—, lo que sitúa a la RNZB como la opción económicamente más competitiva sin renunciar a un desempeño ambiental favorable.
El estudio establece un alcance «cradle-to-grave», que comprende la extracción de níquel y zinc, la formulación de electrodos (cátodo de NiOOH con un 11,6 % de peso y ánodo de ZnO con un 7,5 %), el transporte, el ensamblaje de celdas de 10 Ah y 60 Wh/kg, los escenarios de uso con diferentes mezclas eléctricas (0-100 % RES) y el fin de vida, que incluye el reciclaje metalúrgico de metales y la valorización energética de plásticos. Para el LCA, se implementó el enfoque ReCiPe 2016 en 18 categorías midpoint (GWP, ODP, entre otras) y 3 endpoint (salud, ecosistemas, recursos). Para el LCC, se desarrollaron fórmulas validadas mediante el uso de OpenLCA. El MOPSO implementado explora variables de origen de materias primas y rutas de reciclaje, manteniendo un archivo diverso de soluciones no dominadas. Una vez concluido el proceso, se realizó un análisis de sensibilidad, que incluyó la evaluación de la variación del mix eléctrico y la eficiencia del ciclo. Posteriormente, se llevó a cabo una validación AHP con un grupo de doce expertos, quienes contrastaron sus preferencias con el ranking de Pareto obtenido.
Los resultados obtenidos evidencian que, en condiciones de mix eléctrico base (100 % red convencional), la RNZB registra un LCC de 120 €/kWh y un GWP de 0,24 kg CO₂ eq/kWh. El MOPSO ha identificado 10 soluciones óptimas que reducen hasta un 15 % el LCC y un 20 % el GWP respecto a la configuración estándar. Al integrar el 75 % de energía renovable en la fase de uso, el GWP desciende a 0,18 kg CO₂ eq/kWh, lo que resulta en una reducción del CED en un 30 %. El análisis de sensibilidad confirmó que estas ventajas se mantienen con variaciones de hasta ±20 % en mix y eficiencia. Asimismo, la validación AHP mostró un 85 % de coincidencia entre las preferencias de los expertos y el ranking de Pareto.
La tesis confirma que las RNZB ofrecen un equilibrio excepcional entre coste y sostenibilidad para aplicaciones estacionarias (almacenamiento residencial, edificios inteligentes y e-movilidad), especialmente si se combinan con un uso mayoritario de RES y se aplican técnicas de «recuperación verde» en el reciclaje. La simplicidad del proceso acuoso y la ausencia de elementos críticos (cobalto) reducen significativamente los riesgos y los costes de suministro. Sin embargo, la dependencia del níquel sugiere la necesidad de diversificar las fuentes de suministro y establecer circuitos cerrados para la recuperación de metales. Desde una perspectiva metodológica, la integración de LCA, LCC, MOPSO y AHP constituye un marco sólido y adaptable a otros sistemas de ingeniería que requieran optimizar múltiples indicadores de manera simultánea.
Tras el análisis llevado a cabo, esta tesis concluye que la RNZB es la opción de ciclo de vida más económica (con un coste aproximado de 120 €/kWh) y que presenta una huella ambiental competitiva (0,24 kg CO₂ eq/kWh). Asimismo, se ha comprobado que un MOPSO bien configurado puede generar frentes de Pareto robustos que reducen hasta un 20 % el GWP y un 15 % el coste. La validación mediante sensibilidad y AHP garantiza la aplicabilidad práctica de las recomendaciones. Se propone como líneas futuras la incorporación de datos en tiempo real de operación, la exploración de electrodos con menor proporción de níquel y la extensión de la metodología a sistemas híbridos de energía para potenciar la circularidad y la resiliencia del sector.
En el contexto económico español, el sector de la construcción está experimentando un período de notable actividad, influenciado por las fluctuaciones globales y, cada vez más, por factores estructurales relacionados con la sostenibilidad. Un factor clave en esta tendencia es el creciente interés por edificios que sigan los principios ESG (ambientales, sociales y de gobernanza), lo que está reconfigurando las prioridades tanto de la promoción inmobiliaria como de la inversión.
Esta tendencia hacia la sostenibilidad resulta de particular importancia, dada la significativa repercusión ambiental del sector. Se estima que los edificios representan cerca del 40 % del consumo energético y de las emisiones de gases de efecto invernadero, lo que los convierte en un sector clave dentro de la estrategia europea de neutralidad climática a 2050. En España, este desafío cobra especial relevancia, dado que aproximadamente el 70 % del parque edificado presenta obsolescencia funcional o energética, lo que representa un importante margen para mejorar su desempeño ambiental.
El avance hacia un modelo constructivo más sostenible es impulsado, en parte, por ciertos actores institucionales que actúan como catalizadores para la adopción de prácticas responsables. AENOR ha desempeñado un papel clave en la promoción de la sostenibilidad en el sector de la edificación, desarrollando y aplicando sistemas de certificación específicos. Esta situación ha guiado la actividad constructiva hacia estándares más rigurosos, alineados con las expectativas sociales y ambientales actuales, fortaleciendo la confianza en el cumplimiento de las buenas prácticas y facilitando la transición del sector hacia un modelo comprometido con la protección del entorno y el bienestar colectivo.
En el contexto de las iniciativas de AENOR destinadas a fomentar la sostenibilidad en el ámbito de la construcción, se ofrece una gama de certificaciones para abordar diversas intervenciones en el sector de la edificación. Iniciativas como la Marca AENOR N Sostenible, Edificio Sostenible, Reforma Sostenible, Rehabilitación Sostenible o el Índice de Contribución a la Sostenibilidad de Constructoras, entre otras, son respuestas a enfoques diferenciados según el tipo y alcance del proyecto. Sin embargo, todas comparten un objetivo común: integrar principios de sostenibilidad en el ciclo de vida de los edificios y reconocer prácticas que contribuyan a una construcción más responsable desde el punto de vista ambiental, social y económico.
Entre las iniciativas más notables, destaca la Marca AENOR N Sostenible, que se erige como un referente pionero en España al incorporar de manera explícita el análisis de indicadores ESG (ambientales, sociales y de gobernanza) en sus procesos de certificación. Esta distinción amplía el alcance de la reconocida marca AENOR N, tradicionalmente asociada con la calidad del producto, al integrar parámetros que evalúan de manera integral el desempeño sostenible de las organizaciones. El modelo de evaluación en cuestión abarca aproximadamente veinte indicadores de sostenibilidad, los cuales, al ser ponderados, generan una calificación cuantitativa que permite diagnosticar el nivel de compromiso y establecer una hoja de ruta para la mejora continua. Esta certificación no solo es fundamental para la estrategia de sostenibilidad de los fabricantes, sino que también facilita el acceso a los fondos de financiación del programa Next Generation EU.
La certificación AENOR de Edificio Sostenible se enfoca en la utilización de materiales en el proceso de construcción, reconociendo a los fabricantes que han demostrado un compromiso con la evaluación integral de factores sociales, económicos y ambientales. En el ámbito social, se valoran las prácticas laborales relacionadas con el empleo, la salud y seguridad en el trabajo, la formación continua, los beneficios sociales, la igualdad de oportunidades, la libertad de asociación, la integración comunitaria, el buen gobierno y la protección de la privacidad del cliente. En el ámbito económico, se evalúa el desempeño de los fabricantes, los impactos directos e indirectos derivados de sus actividades y sus esfuerzos en innovación y desarrollo. En lo que respecta a la dimensión ambiental, se evalúan aspectos como el consumo de energía y agua, las emisiones y vertidos, el uso de sustancias peligrosas, la contaminación del suelo y las inversiones en iniciativas medioambientales. Esta certificación se encuentra en consonancia con los indicadores de sostenibilidad Level(s) de la Unión Europea, que abarcan áreas como la eficiencia energética, el ahorro de agua, la gestión de residuos, la huella de carbono y el bienestar de los usuarios. Esta compatibilidad con la taxonomía verde comunitaria garantiza que la certificación cumple con los más altos estándares internacionales, lo que fortalece su credibilidad ante los inversores internacionales. Este enfoque exhaustivo asegura que cada elemento de un proyecto de construcción sea examinado con los estándares más rigurosos de sostenibilidad, fomentando así una construcción responsable y respetuosa con el medio ambiente y la sociedad.
La certificación AENOR de Reforma Sostenible está destinada a obras de remodelación en unidades residenciales y comerciales en edificios existentes, con el objetivo de mejorar su sostenibilidad. Esta certificación abarca aspectos fundamentales como la optimización de la eficiencia energética, la reducción de la huella de carbono, la gestión de residuos y el consumo responsable de agua. Además, se promueve la creación de espacios saludables y confortables para los usuarios, garantizando el uso de materiales sostenibles, especialmente aquellos certificados con la Marca AENOR N Sostenible. En el contexto de la regeneración del parque de viviendas en España, donde más del 50 % de los edificios residenciales fueron construidos antes de 1980, se destaca la relevancia de implementar prácticas de reforma sostenibles. En este contexto, la Certificación Reforma Sostenible facilita el acceso a las ayudas establecidas en el Real Decreto 853/2021, destinado a la rehabilitación residencial. En consonancia con los objetivos del Plan Nacional Integrado de Energía y Clima, se promueve la transición hacia una edificación más eficiente y respetuosa con el medio ambiente.
La certificación AENOR de Rehabilitación Sostenible se enfoca en la rehabilitación integral de edificios, abarcando tanto la envolvente (fachadas y cubiertas) como intervenciones completas que incluyen las viviendas en su totalidad. Al igual que la certificación de Reforma Sostenible, se evalúan aspectos clave como la eficiencia energética, la huella de carbono, la gestión de residuos y el consumo de agua. No obstante, su alcance es mayor, ya que se aplica a proyectos de rehabilitación globales que transforman edificios antiguos en estructuras modernas, sostenibles y eficientes en términos energéticos. La rehabilitación sostenible es esencial para mejorar la calificación energética de los edificios en España, donde el 81% de los edificios residenciales tienen una calificación E, F o G según las emisiones AENOR. Esta certificación contribuye significativamente al objetivo nacional de rehabilitar 1,2 millones de viviendas entre 2021 y 2030, promoviendo la modernización de la edificación y el avance hacia un parque inmobiliario más eficiente y respetuoso con el medio ambiente.
Finalmente, AENOR ha desarrollado la certificación de Índice de Contribución a la Sostenibilidad de las Constructoras, basada en el Anejo 2 del Código Estructural. Esta certificación evalúa diversos indicadores ESG (ambientales, sociales y de gobernanza) de las empresas constructoras, considerando aspectos clave como la gestión y monitoreo de los residuos de las obras, las emisiones de carbono, el consumo de recursos, la gestión de riesgos laborales, la formación de los trabajadores y los sistemas de gestión ambiental, entre otros. Además, permite certificar obras específicas o estructuras, lo que facilita una evaluación detallada de cada proyecto dentro del marco de sostenibilidad.
Las certificaciones de AENOR no solo garantizan la calidad y sostenibilidad de los proyectos de construcción, sino que también fomentan la confianza entre los actores del sector. En la certificación de productos y procesos, se establece una relación de interdependencia entre promotoras, constructoras, asociaciones y consumidores, quienes son responsables de cumplir con los estrictos requisitos de calidad, seguridad y durabilidad establecidos en las normativas.
El compromiso de AENOR con la sostenibilidad se refleja en su capacidad para adaptarse a los cambios y necesidades del mercado. A través de estas certificaciones, AENOR contribuye a la descarbonización del sector de la construcción y promueve la creación de espacios más saludables y eficientes, consolidándose como un referente en la promoción de buenas prácticas sostenibles en el ámbito de la edificación.
Acaban de publicar nuestro artículo en la revista Buildings, de la editorial Elsevier, indexada en el JCR. El trabajo se realiza un exhaustivo análisis comparativo, basado en la metodología de Análisis de Ciclo de Vida (LCA) «de la cuna a la tumba», de tres soluciones de cerramiento para naves industriales de acero (chapas de acero, combinación de acero y ladrillo de arcilla y combinación de acero y bloque de hormigón) bajo dos escenarios de fin de vida (vertedero y reciclaje). Partiendo de una unidad funcional de 500 m² de envolvente lateral y utilizando el método ReCiPe 2016 Midpoint en 18 categorías de impacto, se desglosan detalladamente los inventarios de materiales, factores de reposición, procesos de extracción y fabricación, así como las repercusiones de distintas rutas de gestión de residuos. El estudio identifica los puntos críticos en las fases preoperativa, operativa y postoperativa, cuantifica las ventajas ambientales del reciclaje frente al vertido y evidencia que, pese a la preponderancia del acero, los indicadores de toxicidad humana y ecotoxicidad superan ampliamente la huella de carbono en importancia relativa. Por último, se discuten las limitaciones, se destacan las conclusiones clave y se proponen líneas de actuación futuras para enriquecer la sostenibilidad en el diseño y la gestión de las naves industriales.
Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València, y es fruto de la colaboración internacional con investigadores de la Universidad Tecnológica Federal de Paraná (Universidade Tecnológica Federal do Paraná, UTFPR), de Brasil.
En el sector de la construcción existe una fuerte demanda de sustituir las técnicas tradicionales por sistemas más sostenibles que cuantifiquen y reduzcan sus impactos ambientales más allá de las simples emisiones de CO₂ o la energía incorporada. Sin embargo, son escasos los estudios comparativos de LCA en naves industriales de acero que contrasten diversas opciones de cerramiento y analicen simultáneamente distintos escenarios de fin de vida. Este trabajo compara tres sistemas de cerramiento en naves de acero (SW: paneles de acero, SClaW: acero + ladrillo de arcilla y SConW: acero + bloque de hormigón) bajo dos rutas de fin de vida (vertedero frente a reciclaje), evaluando su desempeño en 18 categorías de impacto del método ReCiPe 2016 Midpoint. El objetivo es determinar qué combinaciones de materiales y gestión de residuos ofrecen el menor impacto ambiental global y, en consecuencia, orientar futuras decisiones de diseño y gestión.
Siguiendo la norma ISO 14040/44, se define el alcance como el ciclo completo de vida de las naves (extracción de materias primas, producción, construcción, uso y fin de vida). La unidad funcional elegida es 500 m² de cerramiento lateral equivalente a la envolvente de dos muros completos de la nave (superficie total: 600 m², 30 m × 20 m × 5 m). Se excluyó el tratamiento de los residuos generados en la obra y en el mantenimiento por falta de datos fiables y para garantizar la comparabilidad entre los tres diseños.
Las naves comparten estructura de perfiles de acero (ASTM A36 y A572 Gr. 50) y techo de chapa trapezoidal galvanizada de 0,5 mm de espesor y una pendiente del 5 %. Los cerramientos varían únicamente:
SW: chapa de acero (2500,78 kg).
SClaW: chapa (1190,85 kg) + ladrillo de arcilla (17 503,33 kg) + mortero (10 860,95 kg).
SConW: chapa (1190,85 kg) + bloque de hormigón (51 102,57 kg) + mortero (11 235,08 kg).
Para la etapa de uso, se asumió una vida útil de la nave de 50 años y de 40 años para el cerramiento (ABNT NBR 15575), por lo que se calculó un factor de reposición RF = 50/(40−1) = 0,25. Es decir, durante la explotación se sustituyó el 25 % de los materiales del cerramiento.
Se empleó SimaPro 9.6.0.1 con la base de datos Ecoinvent 3.10 y el método ReCiPe 2016 Midpoint (perspectiva jerárquica), con el que se caracterizaron 18 categorías: desde el «potencial de calentamiento global» o GWP hasta la toxicidad humana y la ecotoxicidad (terrestre, dulce y marina), pasando por la eutrofización, el agotamiento de recursos y el consumo de agua. El análisis abarca las fases preoperacional, operativa (incluido el RF) y postoperativa (vertederos inertes/sanitarios según la norma CONAMA 307/2002 frente a rutas de reciclaje).
Resultados: fases preoperativa y operativa
SW presenta los mayores impactos en seis categorías clave (eutrofización, ecotoxicidad y toxicidad humana), debido a la extracción y procesamiento intensivos del acero, con liberación de metales pesados y compuestos que elevan la eutrofización de las aguas continentales, la eutrofización marina, la ecotoxicidad terrestre, la ecotoxicidad de las aguas continentales, la eutrofización marina y la toxicidad carcinógena humana.
SClaW es el más perjudicial en otras seis categorías (escasez de recursos fósiles, escasez de recursos minerales, GWP, formación de partículas finas, radiación ionizante y toxicidad no carcinógena humana) debido al alto consumo de combustibles fósiles y materias primas en la cocción de ladrillos.
SConW lidera las 6 categorías restantes (ozonación, ozonización humana y terrestre, acidificación terrestre, consumo de agua, uso del suelo), atribuibles a la producción de cemento y hormigón (SO₂, NO_x, consumo de áridos y agua).
El impacto operativo equivale a un 25 % del preoperacional en todas las categorías, debido al RF uniforme, por lo que se suma directamente para el análisis conjunto.
Resultados: fase postoperativa
En el Escenario 1 (vertedero), SW arroja los mayores impactos en GWP, escasez de recursos fósiles, toxicidad y consumo de agua al verter acero (100 % reciclable) en un vertedero sanitario, lo que aumenta la demanda de material virgen y las emisiones asociadas.
En el Escenario 2 (reciclaje), todos los impactos se reducen drásticamente para los tres proyectos; la magnitud de esta reducción es mayor en SW debido a su alta proporción de acero, lo que penaliza severamente su perfil ambiental en el vertedero.
Este contraste evidencia que la estrategia de gestión de residuos (vertedero frente a reciclaje) tiene un efecto igual o más importante que la elección del material de cerramiento.
Resultados: ciclo de vida completo y comparativa cuantitativa.
En el ciclo de vida completo bajo el escenario 2, el SW + reciclaje obtiene el mejor desempeño ambiental en 9 de las 18 categorías. Por ejemplo, en GWP registra 7 823,752 kg CO₂ eq, con el SClaW al 98,34 % y el SConW al 72,66 % de ese valor; en Ozone Depletion es 0,00126 kg CFC11 eq (SClaW al 78,62 %, SConW al 176,45 %); en Ionizing Radiation registra 221,576 kBq Co-60 eq (33,85 % y −4,54 % respectivamente).
En contraste, el SW + vertedero es la peor alternativa en siete categorías (ecotoxicidad terrestre y acuática, carcinogenicidad y eutrofización), lo que subraya el impacto negativo de no reciclar el acero.
La normalización revela que las categorías de ecotoxicidad (terrestre, dulce y marina) y toxicidad no carcinógena para los humanos dominan el impacto total, superando ampliamente a la de GWP. Esto indica que existen riesgos locales y laborales por exposición a contaminantes pesados y compuestos tóxicos, que a menudo quedan fuera de los debates centrados únicamente en el cambio climático.
Discusión de los resultados
La opción más favorable en la mitad de las categorías ambientales evaluadas es la elección de chapas de acero reciclables, combinada con un programa de reciclaje efectivo.
El estudio demuestra la relevancia de ampliar el alcance de los indicadores más allá del CO₂, ya que categorías como la ecotoxicidad y la toxicidad humana pueden ser hasta 20 veces más significativas en términos normalizados.
La disposición de materiales reciclables (acero, ladrillo, hormigón) en vertederos supone un «punto caliente» que puede anular parcialmente las ventajas de un diseño ligero o materialmente eficiente.
Limitaciones y futuras líneas de investigación
Los autores reconocen que el estudio presenta varias limitaciones derivadas del ámbito de los datos y del alcance metodológico. En primer lugar, se ha excluido del inventario la generación de residuos durante las fases de construcción y mantenimiento, debido a la falta de datos fiables y específicos para proyectos de naves industriales. Además, la dependencia de procesos y materiales modelados en la base de datos genérica Ecoinvent, sin tener en cuenta los inventarios locales brasileños, puede afectar a la representatividad regional de los resultados y sesgar las conclusiones. Por último, el análisis se ha centrado exclusivamente en indicadores ambientales, dejando fuera las dimensiones económica y social, como los costes de ciclo de vida y el impacto social, así como aspectos operativos clave, como el confort térmico y la eficiencia energética durante el uso de las naves.
Para superar estas limitaciones y enriquecer la sostenibilidad de futuros estudios, se proponen una serie de recomendaciones. En primer lugar, se sugiere incorporar inventarios primarios locales que reflejen de manera más precisa los procesos y materiales de cada región, especialmente en contextos como el brasileño. En segundo lugar, se debe ampliar el abanico de sistemas constructivos analizados, incluyendo soluciones con aislantes y materiales híbridos que puedan ofrecer mejores prestaciones ambientales. En tercer lugar, se debe avanzar hacia un análisis integrado de costes y aspectos sociales mediante una metodología LCSA (Life Cycle Sustainability Assessment), que combine las dimensiones económica, ambiental y social. Por último, se debe evaluar el rendimiento en uso de las naves y relacionar los resultados de la LCA ambiental con parámetros de eficiencia energética y confort térmico para ofrecer una visión más completa del ciclo de vida del edificio.
El Colegio de Ingenieros de Caminos, Canales y Puertos organizó una jornada sobre Infraestructuras Resilientes al Clima el 4 de abril en el Auditorio Agustín de Betancourt. Estas jornadas tan interesantes se grabaron en un vídeo, que ahora os dejo.
El vídeo, titulado «Jornada sobre Infraestructuras Resilientes al Clima», es un recurso muy valioso que aborda la creciente necesidad de desarrollar infraestructuras que puedan resistir y adaptarse a los efectos del cambio climático.
Durante la jornada, se presentaron diferentes puntos de vista sobre cómo la ingeniería civil puede hacer frente a estos desafíos, resaltando la importancia de la resiliencia climática en la planificación y gestión de infraestructuras. Y ahora, vamos a echar un vistazo más de cerca a todo lo que se habló en la jornada.
1. Importancia de la resiliencia climática
La resiliencia climática se ha convertido en un concepto central en la planificación de infraestructuras, debido a la creciente vulnerabilidad de las comunidades ante eventos climáticos extremos.
Los impactos del cambio climático, tales como huracanes, inundaciones y sequías, han aumentado en frecuencia e intensidad. Estos fenómenos no solo afectan a las infraestructuras físicas, sino que también tienen repercusiones sociales y económicas significativas, que incluyen la pérdida de vidas, desplazamientos forzados y daños económicos.
A modo ilustrativo, en la jornada se expusieron ejemplos de comunidades que han adoptado soluciones resilientes, tales como sistemas de drenaje mejorados, infraestructura verde y edificaciones diseñadas para resistir eventos extremos. Estos ejemplos ponen de manifiesto los beneficios tangibles a largo plazo que conlleva la inversión en resiliencia.
2. Oportunidades profesionales en ingeniería civil
La jornada puso de manifiesto que la búsqueda de infraestructuras resilientes está generando nuevas oportunidades profesionales para los ingenieros civiles.
Se evidenció una demanda de especialistas debido a la necesidad imperante de adaptación al cambio climático, lo que ha generado una demanda de expertos en diversas áreas, tales como la gestión de recursos hídricos, la planificación urbana sostenible y la ingeniería de infraestructuras.
Se subrayó la relevancia de la educación continua y la formación especializada para que los profesionales puedan afrontar los desafíos emergentes en este campo. Los programas de capacitación y certificación en resiliencia climática son de vital importancia para la preparación de los ingenieros del futuro.
3. Retos normativos y de implementación
Uno de los asuntos más críticos que se ha planteado es la necesidad imperativa de adaptar las normativas vigentes para facilitar la implementación de infraestructuras resilientes.
Un número significativo de normativas vigentes no han sido concebidas para hacer frente a los riesgos asociados al cambio climático. Esta situación puede generar obstáculos para la implementación de soluciones innovadoras y efectivas.
En este sentido, se destacó la importancia de la colaboración interdisciplinaria entre ingenieros, urbanistas, arquitectos y responsables políticos. Un enfoque interdisciplinario puede ayudar a crear un marco normativo que apoye la resiliencia y facilite la implementación de proyectos.
Finalmente, se presentan ejemplos de mejores prácticas de otras regiones que han logrado adaptar sus normativas con éxito, lo que puede servir de modelo para otras comunidades.
4. Ingeniería humanitaria y adaptación a emergencias
En las jornadas también se subrayó el rol de la ingeniería humanitaria en el desarrollo de infraestructuras resilientes.
En lo que respecta a los denominados «Proyectos de respuesta rápida», se debatieron enfoques para el diseño de infraestructuras que puedan ser implantadas con celeridad en situaciones de emergencia, garantizando que las comunidades afectadas tengan acceso a servicios básicos de manera inmediata.
Por último, se abordó la importancia de la capacitación y los recursos, así como la formación de equipos de respuesta a emergencias y la disponibilidad de recursos adecuados, elementos esenciales para asegurar que las infraestructuras puedan soportar eventos extremos y facilitar la recuperación.
5. Educación y conciencia social
La jornada puso de manifiesto la importancia de la educación y la comunicación en la promoción de infraestructuras resilientes.
Es imperativo que la sociedad comprenda la relevancia de invertir en infraestructuras resilientes. En este sentido, la educación desempeña un papel crucial, ya que permite a las comunidades identificar los beneficios a largo plazo de tales inversiones.
Se propusieron programas de sensibilización que involucren a la comunidad en la planificación y diseño de infraestructuras, fomentando un sentido de propiedad y responsabilidad.
6. Financiación de infraestructuras resilientes
La financiación constituye uno de los desafíos más significativos en el desarrollo de infraestructuras resilientes.
En lo que respecta a las fuentes de financiación, se presentan diversas estrategias para asegurar fondos, tales como la colaboración entre los sectores público y privado, así como la búsqueda de fondos internacionales destinados a proyectos de adaptación y mitigación del cambio climático.
También se presentaron ejemplos de modelos de inversión exitosos que han permitido financiar proyectos de infraestructura resiliente, destacando la importancia de demostrar el retorno de inversión a largo plazo.
7. Implementación de directivas y normativas en España
La jornada abordó la implantación de la directiva de gestión de avenidas en España, cuyo objetivo es el de mejorar la preparación y respuesta ante inundaciones.
Se abordó la cuestión de las dificultades que enfrentan las autoridades para aplicar estas directivas de manera efectiva, así como las adaptaciones necesarias para enfrentar fenómenos climáticos inesperados.
Finalmente, se presentaron las lecciones aprendidas de la implantación de estas directivas, así como recomendaciones para mejorar la efectividad de las políticas existentes.
8. Innovaciones tecnológicas y soluciones sostenibles
La jornada destacó la importancia de la tecnología en el desarrollo de infraestructuras resilientes. También se abordó el tema de tecnologías emergentes, tales como la inteligencia artificial y el modelado predictivo, que tienen el potencial de ayudar a anticipar y gestionar los riesgos climáticos.
En lo que respecta a la Infraestructura Verde, se expusieron soluciones basadas en la integración de la naturaleza, como los techos verdes y los sistemas de drenaje sostenible, que se presentan como una estrategia eficaz para aumentar la resiliencia de las infraestructuras.
9. Perspectivas futuras y llamado a la acción
La jornada concluyó con una exhortación a la acción dirigida a todos los profesionales implicados en la planificación y gestión de infraestructuras.
Se hizo especial hincapié en que la responsabilidad de hacer frente al cambio climático es compartida y requiere la colaboración de todos los sectores de la sociedad.
Asimismo, se instó a los profesionales a adoptar una visión a largo plazo en la planificación de infraestructuras, contemplando no solo las necesidades actuales, sino también los desafíos futuros que plantea el cambio climático.
Conclusión
La jornada sobre infraestructuras resilientes al clima constituye un llamamiento a la acción dirigido a los profesionales de la ingeniería civil y otros actores implicados en la planificación y gestión de infraestructuras. La adaptación al cambio climático no solo es una responsabilidad, sino una oportunidad para innovar y crear un futuro más seguro y sostenible. Para ello, resulta imprescindible la colaboración, la educación y la inversión, que son pilares fundamentales para lograr infraestructuras que no solo resistan los desafíos actuales, sino que también estén preparadas para los retos del futuro. Este enfoque integral resulta imperativo para asegurar que las comunidades no solo sobrevivan, sino que prosperen en un mundo cada vez más afectado por el cambio climático.
Aquí tenéis un mapa conceptual de la jornada.
Pero creo que lo mejor es que, si tenéis un rato, oigáis de primera mano todas y cada una de las intervenciones en este vídeo. Espero que os sea de interés.
Glosario de términos clave
Adaptación al Cambio Climático: Proceso de ajuste a los impactos actuales o esperados del cambio climático. En el contexto de las infraestructuras, implica modificar su diseño, construcción y operación para soportar condiciones climáticas extremas.
Resiliencia (Climática): Capacidad de un sistema, comunidad o infraestructura para anticipar, resistir, adaptarse y recuperarse de eventos adversos del clima.
Dana (Depresión Aislada en Niveles Altos): Fenómeno meteorológico que puede causar lluvias torrenciales e inundaciones severas, mencionado en el texto como causa de trágicas consecuencias.
Niveles Preindustriales: Periodo de referencia (antes de la Revolución Industrial) utilizado para medir el aumento de la temperatura global debido a las actividades humanas.
Fenómenos Meteorológicos Extremos: Eventos climáticos de intensidad inusual, como olas de calor, sequías, inundaciones torrenciales y tormentas severas.
Infraestructuras Críticas: Infraestructuras esenciales para el funcionamiento de la sociedad y la economía, como las de transporte, energía, agua y telecomunicaciones, cuya afectación tiene consecuencias significativas.
Plan Nacional de Adaptación al Cambio Climático (PNACC): Marco de acción en España para integrar el cambio climático en la planificación sectorial, incluyendo las infraestructuras.
Ley de Cambio Climático y Transición Energética (2021): Ley española que establece objetivos de reducción de emisiones y promueve la adaptación al cambio climático en diversos sectores.
Directiva de Resiliencia de Infraestructuras Críticas: Normativa de la Unión Europea que obliga a los Estados miembros a adoptar estrategias para mejorar la resiliencia de sus infraestructuras esenciales.
Seopán: Asociación de Empresas Constructoras y Concesionarias de Infraestructuras, mencionada por su análisis de inversión en infraestructuras prioritarias.
CEDEX (Centro de Estudios y Experimentación de Obras Públicas): Organismo técnico español que realiza estudios y análisis relacionados con la ingeniería civil y el medio ambiente.
Cuencas Hidráulicas: Áreas geográficas donde el agua drena hacia un río principal, mencionadas en relación con la planificación hidrológica y la gestión de inundaciones.
Soluciones Basadas en la Naturaleza: Enfoques para abordar los desafíos ambientales que utilizan o imitan procesos naturales para proporcionar beneficios tanto para el medio ambiente como para la sociedad.
Sistemas de Saneamiento: Infraestructuras urbanas destinadas a la recogida y tratamiento de aguas residuales y pluviales.
Vías Separativas: Sistemas de saneamiento en los que las aguas residuales y las aguas pluviales se recogen y transportan por redes de tuberías separadas.
Resiliencia Estructural: Capacidad de una estructura para mantener su función y recuperarse después de ser sometida a eventos extremos o perturbaciones.
Robustez: Capacidad de una infraestructura o sistema para resistir un evento adverso sin una pérdida significativa de funcionalidad.
Rapidez (en Resiliencia): Velocidad con la que un sistema o infraestructura puede recuperarse y restaurar su funcionalidad después de una perturbación.
Análisis de Riesgos Climáticos: Evaluación de la probabilidad e impacto potencial de los eventos climáticos adversos sobre las infraestructuras.
Marco de Sendai para la Reducción del Riesgo de Desastres (2015-2030): Acuerdo internacional que establece un marco global para la reducción del riesgo de desastres, incluyendo la importancia de invertir en resiliencia.
Predicción y Modelos Predictivos: Uso de datos y herramientas para anticipar futuros eventos climáticos y sus posibles impactos.
Incertidumbre Profunda: Situación en la que hay una falta de conocimiento sobre las probabilidades o los posibles resultados de un evento.
Cisne Negro (Teoría): Término utilizado para describir eventos altamente improbables, de gran impacto y que solo se pueden explicar o predecir en retrospectiva.
Disponibilidad: Capacidad de una infraestructura para estar operativa y proporcionar su servicio.
Capacidad (en Infraestructura): Volumen o nivel de servicio que una infraestructura puede soportar o manejar.
Vulnerabilidad: Susceptibilidad de una infraestructura a sufrir daños o perder funcionalidad debido a un evento climático adverso.
Exposición: Grado en que una infraestructura está situada en un área propensa a eventos climáticos adversos.
Sensibilidad: Grado en que una infraestructura se ve afectada por un evento climático adverso una vez expuesta a él.
Escenarios de Cambio Climático: Proyecciones de posibles futuras condiciones climáticas basadas en diferentes supuestos sobre las emisiones de gases de efecto invernadero.
Trayectorias Socioeconómicas Compartidas (SSP): Marcos utilizados en la investigación del cambio climático para describir posibles futuros socioeconómicos y sus implicaciones para las emisiones y la adaptación.
Análisis Coste-Beneficio: Método para evaluar la rentabilidad de diferentes opciones de inversión, comparando los costos y beneficios esperados.
Gobernanza: Procesos y estructuras para tomar decisiones e implementar acciones, en este contexto, relacionadas con la resiliencia de las infraestructuras.
Inventario de Activos: Base de datos que contiene información detallada sobre las infraestructuras y sus componentes.
Sistemas de Ayuda a la Decisión: Herramientas informáticas y modelos que asisten en la toma de decisiones complejas, como la gestión de inundaciones o sequías.
Llanuras de Inundación Controlada: Áreas designadas para ser inundadas de manera planificada durante eventos de crecida para reducir el riesgo en otras zonas.
Probable Maximum Flood (PMF) / Avenida Máxima Probable: Estimación del evento de inundación más severo que es razonablemente posible en un lugar dado.
Flash Floods / Crecidas Repentinas: Inundaciones rápidas y violentas que ocurren con poca o ninguna advertencia, a menudo causadas por lluvias torrenciales intensas.
Six Sigma: Metodología de gestión de procesos que busca reducir al mínimo la probabilidad de defectos o errores.
Poka-yoke: Sistemas a prueba de errores diseñados para prevenir o detectar errores humanos.
Consorcio Administrativo: Entidad legal formada por varias administraciones públicas para coordinar y ejecutar acciones conjuntas.
Gemelos Digitales: Réplicas virtuales de sistemas o infraestructuras físicas que permiten la simulación y el análisis.
Big Data: Conjuntos de datos muy grandes y complejos que pueden ser analizados para revelar patrones y tendencias.
Ingeniería Humanitaria: Aplicación de principios y habilidades de ingeniería para abordar crisis humanitarias y promover el bienestar humano.
Estacionariedad Climática: Suposición de que las propiedades estadísticas del clima (como las distribuciones de precipitación o temperatura) permanecen constantes a lo largo del tiempo.
Análisis Probabilístico: Enfoque para evaluar la probabilidad de ocurrencia de eventos y sus posibles consecuencias.
Métodos Semiprobalísticos: Métodos de diseño estructural que utilizan factores de seguridad parciales basados en consideraciones probabilísticas.
Trayectorias Adaptativas: Secuencias de medidas de adaptación que se pueden implementar a lo largo del tiempo para hacer frente a los impactos cambiantes del cambio climático.
KPIs Financieros (Indicadores Clave de Rendimiento Financiero): Métricas utilizadas para evaluar el desempeño financiero, que pueden incorporarse en el análisis de la resiliencia de las infraestructuras.
Imagine una carretera que no solo conecta lugares, sino que también genera beneficios sociales en las comunidades por donde pasa. Estamos colaborando con ingenieros chilenos para transformar neumáticos desechados en un innovador aditivo para asfalto llamado Fityre, demostrando que la sostenibilidad vial va más allá de reducir emisiones.
Un reciente estudio publicado en Applied Sciences, revista Q1 del JCR, revela que este material, elaborado con fibras textiles recicladas, supera a alternativas tradicionales en impacto social mediante una revolucionaria metodología: mapas cognitivos difusos. Estas herramientas no solo miden la resistencia o el coste, sino también cómo cada componente afecta a los empleos locales, los riesgos sanitarios y el cumplimiento de las políticas ambientales. ¿El resultado? Un modelo que podría redefinir la forma en que elegimos los materiales para construir las carreteras del futuro.
Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, en la Universitat Politècnica de València, y es fruto de la colaboración internacional con investigadores de Chile.
El estudio establece un nuevo paradigma metodológico para cuantificar la sostenibilidad social de materiales de construcción mediante mapas cognitivos difusos (FCM), abordando una laguna crítica en la evaluación de infraestructuras. La innovación central consiste en modelar 116 interrelaciones entre 16 indicadores sociales, desde la creación de empleo local hasta la alineación con políticas de economía circular, superando las aproximaciones estáticas convencionales. Este enfoque dinámico permite simular efectos de segundo orden y dependencias no lineales entre variables, y proporciona una herramienta predictiva para diseñar políticas de materiales con un impacto social positivo.
La validación experimental del aditivo Fityre, compuesto por fibras textiles de neumáticos postconsumo (TfELT), demuestra que los materiales reciclados pueden superar a las alternativas importadas en múltiples dimensiones sociales. El análisis revela que Fityre aumenta entre un 30 y un 40 % los indicadores clave de reducción de riesgos sanitarios (I5) y contribución a la revalorización de residuos (I10), sentando un precedente para sustituir insumos vírgenes en países en vías de industrialización. Además, el marco metodológico desarrollado es adaptable para evaluar otros componentes de infraestructura, como hormigones y sistemas de drenaje urbano.
La investigación combina técnicas cualitativas y cuantitativas en tres fases secuenciales:
Construcción del modelo conceptual: mediante la triangulación de entrevistas semiestructuradas (42 expertos), la revisión de normativas chilenas (Ley REP 20.920) y el análisis de manuales técnicos, se identificaron 16 indicadores sociales agrupados en 7 criterios. Un panel Delphi de trece especialistas validó la estructura mediante consenso binomial (75 % de acuerdo).
Desarrollo del FCM: se mapearon las relaciones causales entre los indicadores mediante encuestas que asignaron pesos lingüísticos (desde muy baja hasta muy alta influencia) y polaridad (+/-) utilizando la plataforma QuestionPro. Un sistema de inferencia difusa (FIS) con funciones de membresía triangulares transformó estas respuestas cualitativas en pesos numéricos normalizados (entre -1 y +1). La estabilidad del modelo se verificó mediante iteraciones sucesivas hasta alcanzar la convergencia (<0,001 de variación entre ciclos 5-6).
Evaluación dinámica: cuatro aditivos (Fityre, fibra de vidrio, poliéster y aramida) se analizaron mediante simulación de estados iniciales (t₀) basados en datos técnicos y socioeconómicos chilenos. La contribución social se cuantificó mediante la distancia de Manhattan respecto a un punto anti-ideal, considerando tres etapas del ciclo de vida: extracción, producción y mezclado.
El FCM revela patrones que van en contra de la intuición: mientras que los indicadores técnicos (I3: contribución técnica, I14: certificaciones) muestran una alta centralidad (grado de influencia = 8,7), su impacto en la sostenibilidad social es moderado (λ = 0,42). Esto sugiere que las mejoras técnicas no garantizan beneficios sociales automáticos, por lo que son necesarias intervenciones complementarias en materia de formación laboral y divulgación comunitaria.
En el caso de Fityre, se observa un efecto multiplicador en los criterios de revalorización: cada punto porcentual en I2 (extensión de la vida útil) genera incrementos del 0,8 % en I10 (cumplimiento del REP) y del 0,5 % en I5 (reducción de incendios). Este acoplamiento refuerza la viabilidad de modelos de negocio basados en simbiosis industrial, en los que los residuos de un sector se convierten en insumos críticos para otro.
Las fibras importadas, aunque superiores en I13 (interés de los productores, 75 % frente al 51 % de Fityre), presentan vulnerabilidades sistémicas: una variación del 10 % en los costes logísticos reduce su contribución social total en un 12,4 %, frente al 4,1 % de Fityre. Esto pone de manifiesto la importancia de desarrollar cadenas de suministro locales para materiales sostenibles.
Este estudio ofrece interesantes líneas de investigación futura:
Integración con análisis de ciclo de vida híbrido: combinación de FCM con ACV mediante modelos de entrada-salida extendidos, que permiten evaluar el impacto de las decisiones sobre la huella de carbono y la creación de empleo cualificado.
Optimización multiobjetivo: aplicar algoritmos genéticos para identificar dosificaciones óptimas de aditivos que maximicen simultáneamente parámetros sociales (I4: empleo nacional), técnicos (resistencia a la fatiga) y económicos (coste por tonelada).
Estudios de percepción social: implementar sistemas de supervisión participativa en proyectos piloto para correlacionar indicadores modelados (I9: aceptación al cambio) con métricas empíricas de satisfacción comunitaria.
Escalado industrial: desarrollar protocolos para adaptar el modelo a escalas de producción masiva y analizar los efectos de las economías de escala en indicadores como I15 (disponibilidad de fibra) y I7 (cantidad requerida por mezcla).
Arquitecturas de gestión: investigar modelos de contratación pública que internalicen los hallazgos del FCM mediante cláusulas de compra verde con ponderaciones sociales explícitas en licitaciones viales.
En conclusión, este trabajo trasciende el enfoque convencional en las propiedades mecánicas de los materiales y propone un marco sistémico para la toma de decisiones en ingeniería civil. Al cuantificar cómo elecciones técnicas afectan a dinámicas sociales complejas, proporciona herramientas para alinear proyectos de infraestructura con los ODS 9 (industria innovadora) y 12 (producción responsable). Los resultados justifican políticas activas de fomento del uso de materiales reciclados locales, no solo por sus beneficios ambientales, sino también por su capacidad para generar capital social en economías emergentes.
Os anuncio mi participación como ponente en la jornada inaugural del curso «Infraestructuras resilientes al clima», que se celebrará el 4 de abril de 2025, de forma presencial y telemática. Se celebrará a las 10:30 h en el Auditorio Agustín de Betancourt de la institución. Este curso está organizado por el Colegio de Ingenieros de Caminos, Canales y Puertos y está patrocinado por FCC Construcción y el Ministerio para la Transición Ecológica y el Reto Demográfico.
Durante este acto, de acceso libre, los directores del curso presentarán los contenidos que se abordarán a lo largo de las diversas sesiones formativas. Además, se debatirán los riesgos de las infraestructuras frente al cambio climático, así como las estrategias y medidas de resiliencia que pueden adoptarse.
Esta formación, organizada por el Comité Técnico de Agua, Energía y Cambio Climático del Colegio, tiene como objetivo analizar el impacto del cambio climático y explorar enfoques que faciliten la planificación, diseño, construcción y operación de infraestructuras resilientes al clima.
Os paso mi participación en este vídeo. Espero que os sea de interés.
A continuación, explicaremos el contenido de uno de los artículos más citados en nuestro grupo de investigación. El artículo plantea la siguiente pregunta de investigación: ¿Cómo se tratan los aspectos sociales en la evaluación multicriterio de infraestructuras? Esta cuestión se estructura en tres subpreguntas que buscan determinar qué aspectos sociales se valoran en la evaluación de infraestructuras, qué métodos multicriterio se utilizan para evaluar su contribución social y qué enfoques se aplican en la evaluación social multicriterio. La pregunta principal permite dar una respuesta clara en función de los hallazgos del estudio, que se centran en identificar métodos, criterios y limitaciones en la evaluación social de infraestructuras.
El artículo realiza una revisión sistemática de la literatura existente en el campo de la evaluación social de infraestructuras mediante métodos multicriterio. Para ello, se identificaron 94 estudios relevantes mediante una búsqueda en la base de datos Web of Science, que abarca publicaciones entre 1995 y 2017. La metodología de selección se desarrolló en dos fases. La primera consistió en seleccionar inicialmente los estudios, basándose en criterios de pertinencia y revisión por pares. En la segunda fase, se analizaron las referencias y citas de los estudios seleccionados para ampliar la muestra y obtener una visión más completa del tema. Posteriormente, los estudios fueron categorizados según los criterios sociales evaluados, los métodos multicriterio utilizados y las consideraciones de contexto, equidad y aprendizaje social en la evaluación.
El trabajo sistematiza los criterios sociales utilizados en la evaluación de infraestructuras y los clasifica en siete dimensiones. La primera es el capital humano, que abarca las necesidades básicas, la educación y la salud. La segunda dimensión es el capital comunitario, que incluye la opinión pública, la estética y la seguridad. En tercer lugar, se encuentra el capital cultural, relacionado con la preservación de valores culturales tangibles e intangibles. La cuarta dimensión es el capital productivo, que tiene en cuenta la movilidad, la accesibilidad y la urbanización. En quinto lugar, el capital social e institucional se refiere a la participación de los actores y su capacidad de gestión. La sexta dimensión, el sistema socioeconómico, comprende el desarrollo económico regional y el empleo. Finalmente, la séptima dimensión es la relación entre la empresa y la comunidad, que engloba el diseño centrado en el usuario y las prácticas laborales éticas.
Además, el estudio analiza los métodos multicriterio más empleados, entre los que destacan el Analytic Hierarchy Process (AHP), el Simple Additive Weighting (SAW) y el Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Se identifican brechas en la consideración de equidad, incertidumbre y aprendizaje social en las evaluaciones existentes, lo que sugiere la necesidad de mejorar los enfoques actuales para una evaluación más integral.
Los hallazgos revelan que la evaluación de la sostenibilidad social en infraestructuras ha recibido menos atención que las dimensiones económica y ambiental. Ciertos criterios, como la movilidad, la seguridad y el desarrollo local, se tienen en cuenta recurrentemente en los estudios analizados, mientras que otros, como la equidad en la distribución de beneficios y la participación comunitaria, se abordan menos. Además, los métodos actuales no abordan de manera adecuada la incertidumbre inherente a los aspectos sociales, lo que limita su aplicabilidad en contextos dinámicos y diversos. Ante esta situación, el artículo propone utilizar herramientas como la teoría de conjuntos difusos y los sistemas grises para mejorar la representación de estos factores en los modelos de evaluación.
El artículo plantea varias líneas de investigación futuras para mejorar la evaluación de la sostenibilidad social en infraestructuras. En primer lugar, se recomienda el desarrollo de métodos que tengan en cuenta la equidad en la distribución de beneficios. En segundo lugar, se plantea la integración de técnicas de gestión de incertidumbre en los modelos multicriterio para mejorar su aplicabilidad en distintos contextos. Asimismo, se enfatiza la necesidad de fortalecer la participación de los interesados en los procesos de evaluación para promover modelos de toma de decisiones más inclusivos. Por último, se sugiere la aplicación de enfoques de aprendizaje social para mejorar la adaptabilidad de las evaluaciones a distintos contextos y garantizar una toma de decisiones más informada y eficaz.
En resumen, el estudio ofrece un análisis detallado sobre la evaluación de la sostenibilidad social en infraestructuras mediante métodos multicriterio. Se destaca la necesidad de mejorar la representación de la equidad y la incertidumbre en los modelos existentes, así como la oportunidad de desarrollar metodologías que fomenten la inclusión de los actores implicados en el proceso de evaluación. Además, se subraya la importancia de promover procesos de aprendizaje social que permitan adaptar mejor las evaluaciones a los distintos contextos en los que se desarrollan las infraestructuras. En este sentido, el artículo supone un avance significativo en la comprensión de la evaluación social de infraestructuras y sentará las bases para futuras investigaciones en este campo.
Glosario de términos clave
Evaluación multicriterio: Un conjunto de métodos y técnicas que permiten analizar problemas complejos en los que se deben considerar múltiples criterios, a menudo conflictivos, para tomar una decisión o realizar una valoración.
Infraestructura: Las estructuras físicas y organizativas básicas necesarias para el funcionamiento de una sociedad o empresa, como carreteras, puentes, sistemas de energía, comunicaciones, etc.
Sostenibilidad Social: Una dimensión de la sostenibilidad que se centra en el impacto de las actividades humanas en las personas y en la sociedad en general, incluyendo aspectos como la equidad, la justicia social, la salud, la seguridad y la participación comunitaria.
Revisión sistemática de la literatura: Un método riguroso y transparente para identificar, seleccionar, evaluar y sintetizar todas las evidencias empíricas relevantes para responder a una pregunta de investigación específica.
Capital humano: Los conocimientos, habilidades, competencias y atributos incorporados en los individuos que facilitan la creación de valor económico y social.
Capital comunitario: Los recursos y relaciones sociales dentro de una comunidad que fomentan la cooperación y el beneficio mutuo, incluyendo aspectos como la confianza, las normas y las redes sociales.
Capital cultural: Los activos culturales, tanto tangibles (patrimonio físico, obras de arte) como intangibles (tradiciones, conocimientos, expresiones artísticas), que tienen valor social, económico e histórico.
Equidad: La cualidad de ser justo e imparcial, asegurando que los beneficios y las cargas se distribuyan de manera proporcional y considerando las diferentes necesidades y circunstancias.
Incertidumbre: La falta de certeza o conocimiento preciso sobre eventos futuros, sus probabilidades y sus posibles consecuencias.
Aprendizaje social: Un proceso colectivo a través del cual los individuos y los grupos adquieren nuevos conocimientos, habilidades y comprensiones a través de la interacción, la experiencia y la reflexión conjunta.
Analytic Hierarchy Process (AHP): Un método multicriterio que estructura un problema de decisión en una jerarquía de criterios, subcriterios y alternativas, y utiliza comparaciones pareadas para determinar las prioridades relativas.
Simple Additive Weighting (SAW): Un método multicriterio que asigna pesos a cada criterio y calcula una puntuación total para cada alternativa multiplicando su rendimiento en cada criterio por el peso del criterio y sumando los resultados.
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS): Un método multicriterio que identifica la alternativa con la distancia más corta a la solución ideal positiva y la distancia más larga a la solución ideal negativa.
Teoría de conjuntos difusos: Un marco matemático que permite representar y manejar la imprecisión y la vaguedad en la información, utilizando grados de pertenencia en lugar de la lógica binaria tradicional.
Sistemas grises: Un enfoque metodológico diseñado para analizar y modelar sistemas con información incompleta o incierta, utilizando conceptos como intervalos numéricos y números grises para representar la incertidumbre.
Partes interesadas (Stakeholders): Individuos, grupos u organizaciones que pueden afectar o ser afectados por las decisiones o actividades de un proyecto o política.
Os dejo un pequeño programa de radio sobre este tema (en inglés).
DANA OCTUBRE 2024 – Vías del Metro entre Picanya y Paiporta. https://commons.wikimedia.org/
El diseño y la planificación de infraestructuras se han basado históricamente en el análisis de datos climáticos pasados para definir criterios estructurales de seguridad. Sin embargo, la aceleración del cambio climático ha puesto en cuestión la validez de esta metodología y ha obligado a reconsiderar los fundamentos sobre los que se establecen los códigos de construcción y las normativas de diseño. El carácter no estacionario del clima, la creciente magnitud de los eventos meteorológicos extremos y la necesidad de infraestructuras más resilientes han convertido la adaptación al cambio climático en un imperativo técnico y social.
Las estructuras deben garantizar la seguridad de sus ocupantes en condiciones tanto ordinarias como extremas, así como su funcionalidad a lo largo de su ciclo de vida. Es preciso tener en cuenta que la frecuencia y severidad de ciertos fenómenos, como tormentas, inundaciones y variaciones térmicas, ya no pueden preverse con precisión únicamente mediante datos históricos. La integración de modelos de análisis probabilístico y enfoques basados en la fiabilidad estructural representa una vía fundamental para mitigar los riesgos asociados al cambio climático y asegurar la estabilidad y operatividad de infraestructuras críticas en el futuro.
El fin de la estacionariedad climática y sus implicaciones en el diseño estructural
El diseño estructural se ha desarrollado bajo la premisa de que las condiciones climáticas permanecen relativamente estables a lo largo del tiempo, lo que ha permitido definir cargas normativas basadas en registros históricos. No obstante, el cambio climático ha invalidado esta hipótesis al introducir una variabilidad que altera tanto la frecuencia como la intensidad de los fenómenos atmosféricos y compromete la fiabilidad de los métodos de predicción empleados en el ámbito de la ingeniería.
Las estructuras diseñadas bajo códigos convencionales pueden experimentar cargas superiores a las previstas en su diseño original, lo que resulta en un aumento del riesgo estructural y la necesidad de reevaluaciones constantes para garantizar su seguridad. La acumulación de efectos derivados de condiciones climáticas extremas no solo afecta a la estabilidad estructural inmediata, sino que acelera los procesos de deterioro de los materiales y compromete la capacidad de servicio de la infraestructura a largo plazo.
El análisis de la no estacionariedad climática requiere el desarrollo de nuevas herramientas de modelado que permitan proyectar escenarios de carga climática futura con mayor precisión. La variabilidad espacial y temporal de las alteraciones climáticas obliga a establecer criterios de diseño diferenciados según la localización geográfica, la exposición a determinados fenómenos y la importancia funcional de cada infraestructura. En este contexto, la colaboración entre científicos del clima e ingenieros estructurales se erige como un componente esencial para la elaboración de mapas de cargas dinámicos que reflejen las condiciones cambiantes del entorno.
Aumento de cargas climáticas y su impacto en la estabilidad estructural
El cambio climático incide directamente en la magnitud y distribución de las cargas climáticas, lo que supone un desafío significativo para el diseño estructural. El incremento de la temperatura media global y la intensificación de eventos meteorológicos extremos tienen un impacto directo en la resistencia y durabilidad de los materiales de construcción, lo que requiere una revisión exhaustiva de los criterios de diseño para adaptarlos a condiciones más exigentes.
El aumento de la carga de viento, debido a la mayor frecuencia de tormentas severas y huracanes, plantea desafíos particulares para estructuras expuestas a esfuerzos aerodinámicos, tales como rascacielos, puentes y torres de telecomunicaciones. La variabilidad en la dirección y velocidad de los vientos extremos introduce incertidumbre en el diseño convencional, lo que requiere la aplicación de metodologías de análisis probabilístico que permitan anticipar los efectos acumulativos de estas fuerzas sobre los elementos estructurales.
Ciertamente, la carga de nieve y hielo constituye un factor de riesgo cuya evolución en un clima cambiante requiere especial atención. En climas fríos, la combinación de precipitaciones extremas y ciclos de congelación y deshielo genera esfuerzos adicionales sobre cubiertas y soportes, lo que puede ocasionar la fatiga de los materiales y aumentar el riesgo de fallos estructurales. La acumulación de hielo en líneas de transmisión eléctrica y otros elementos de infraestructura crítica puede comprometer su funcionalidad, lo que resalta la necesidad imperante de implementar estrategias de adaptación en el diseño de dichos sistemas.
El aumento del nivel del mar y la intensificación de tormentas costeras representan amenazas crecientes para las infraestructuras situadas en zonas litorales. La erosión del suelo y la intrusión salina pueden afectar la estabilidad de las cimentaciones y las estructuras de contención, mientras que el aumento en la magnitud de las marejadas ciclónicas aumenta el riesgo de colapso en las edificaciones expuestas. Por lo tanto, es esencial adoptar enfoques probabilísticos para estimar las cargas de inundación y considerar criterios de adaptación costera en el diseño estructural, con el fin de mitigar estos efectos y garantizar la seguridad y estabilidad de las infraestructuras en zonas litorales.
Resiliencia estructural y continuidad operativa en escenarios de riesgo creciente
En lo que respecta a la resistencia inmediata de las infraestructuras a eventos climáticos extremos, su capacidad de recuperación y continuidad operativa tras un desastre constituye un aspecto de suma importancia en el contexto del cambio climático. La resiliencia estructural implica no solo garantizar que las edificaciones y redes de transporte soporten cargas excepcionales sin fallar, sino también que puedan volver a estar plenamente operativas en un tiempo razonable tras una interrupción.
La planificación de infraestructuras resilientes requiere un enfoque basado en la funcionalidad tras el desastre, estableciendo criterios de diseño que permitan minimizar los tiempos de inactividad y optimizar los procesos de reparación y reconstrucción. Este enfoque cobra especial relevancia en infraestructuras críticas, tales como hospitales, plantas de tratamiento de agua y redes de energía, cuya operatividad continua resulta esencial para la estabilidad de las comunidades.
El diseño basado en rendimiento (Performance-Based Design, PBD) surge como una herramienta clave para integrar la resiliencia en la ingeniería estructural. A diferencia de los enfoques convencionales basados en requisitos normativos predeterminados, el PBD permite establecer objetivos concretos de rendimiento para cada tipo de estructura, considerando tanto su resistencia ante cargas extremas como su capacidad de recuperación tras eventos disruptivos.
Conclusión: La adaptación de las infraestructuras al cambio climático como una necesidad inaplazable
La evidencia científica sobre el impacto del cambio climático en la infraestructura es concluyente y requiere una revisión exhaustiva de los criterios de diseño estructural. La dependencia exclusiva de datos históricos ya no constituye una estrategia viable en un contexto donde la frecuencia e intensidad de eventos extremos están en constante aumento. Por ello, es necesario implementar análisis probabilísticos, actualizar periódicamente los mapas de cargas climáticas y adoptar estrategias de resiliencia estructural. Estos cambios son fundamentales para garantizar la seguridad y funcionalidad de las infraestructuras en el futuro.
La ingeniería estructural debe evolucionar hacia un enfoque basado en la adaptación y la gestión del riesgo, integrando modelos de predicción climática en el diseño y planificación de nuevas construcciones. La colaboración entre ingenieros, científicos del clima y responsables de políticas públicas será esencial para desarrollar normativas que reflejen la realidad cambiante del entorno y permitan la creación de infraestructuras más seguras y sostenibles.
La adaptación al cambio climático no es únicamente una cuestión técnica, sino una necesidad económica y social que determinará la capacidad de las comunidades para hacer frente a los desafíos del siglo XXI. El diseño estructural del futuro debe asumir este reto con un enfoque proactivo, asegurando que las infraestructuras no solo resistan el clima cambiante, sino que también contribuyan a la estabilidad y el bienestar de la sociedad en su conjunto.
Referencias:
ASCE. (2015). Adapting infrastructure and civil engineering practice to a changing climate. Reston, VA: ASCE.
Bruneau, M., Barbato, M., Padgett, J. E., Zaghi, A. E., et al. (2017). State-of-the-art on multihazard design. Journal of Structural Engineering, 143(10), 03117002.
Cooke, R. M. (2015). Messaging climate change uncertainty. Nature Climate Change, 5(1), 8–10.
Ellingwood, B. R., van de Lindt, J. W., & McAllister, T. (2020). Community resilience: A new challenge to the practice of structural engineering. Structural Magazine, 27(11), 28–30.
Ellingwood, B. R., Bocchini, P., Lounis, Z., Ghosn, M., Liu, M., Yang, D., Capacci, L., Diniz, S., Lin, N., Tsiatas, G., Biondini, F., de Lindt, J., Frangopol, D.M., Akiyama, M., Li, Y., Barbato, M., Hong, H., McAllister, T., Tsampras, G. & Vahedifard, F. (2024). Impact of Climate Change on Infrastructure Performance. In Effects of Climate Change on Life-Cycle Performance of Structures and Infrastructure Systems: Safety, Reliability, and Risk (pp. 115-206). Reston, VA: American Society of Civil Engineers.
Eisenhauer, E., Henson, S., Matsler, A., Maxwell, K., Reilly, I., Shacklette, M., Julius, S., Kiessling, B., Fry, M., Nee, R., Bryant, J., Finley, J., & Kieber, B. (2024). Centering equity in community resilience planning: Lessons from case studies. Natural Hazards Forum, Washington, D.C.
IPCC (1997). The regional impacts of climate change: an assessment of vulnerability. IPCC, Geneva.
McAllister, T., Walker, R., & Baker, A. (2022). Assessment of resilience in codes, standards, regulations, and best practices for buildings and infrastructure systems. NIST Technical Note 2209. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.TN.2209
O’Neill, B., van Aalst, M., Zaiton Ibrahim, Z., Berrang Ford, L., Bhadwal, S., Buhaug, H., Diaz, D., Frieler, K., Garschagen, M., Magnan, A., Midgley, G., Mirzabaev, A., Thomas, A., & Warren, R. (2022). Key risks across sectors and regions. In H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama (Eds.), Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 2411–2538). Cambridge University Press. https://doi.org/10.1017/9781009325844.025
Poland, C. D. (2009). The resilient city: Defining what San Francisco needs from its seismic mitigation policies. San Francisco Planning and Urban Research Association Report. Earthquake Engineering Research Institute.
Vogel, J., Carney, K. M., Smith, J. B., Herrick, C., et al. (2016). Climate adaptation: The state of practice in US communities. The Kresge Foundation and Abt Associates.
Uno de los artículos más citados en nuestro grupo de investigación es el que vamos a explicar a continuación. El artículo de García-Segura, Yepes y Alcalá examina en profundidad si la reducción de las emisiones de gases de efecto invernadero derivadas del uso de cementos con adiciones compensa la disminución de su durabilidad y la reducción de la captura de CO₂ en comparación con el cemento Portland convencional.
Esta pregunta define con precisión el problema de investigación y estructuró el estudio en torno al impacto ambiental de diferentes mezclas de cemento, desde la producción hasta la demolición. La formulación de esta pregunta permite establecer objetivos específicos y una metodología rigurosa que garantice una evaluación cuantitativa y cualitativa de los efectos de la carbonatación y de la vida útil de las estructuras construidas con estos materiales.
El estudio se basa en un análisis del ciclo de vida (LCA, por sus siglas en inglés) aplicado a una columna de hormigón armado de 3 metros de altura y sección transversal de 30 x 30 cm², reforzada con cuatro barras de acero de 20 mm de diámetro y con un recubrimiento de hormigón de 30 mm. Se evalúa el impacto ambiental de diferentes mezclas de cemento: Portland (CEM I), cementos adicionados con cenizas volantes (CEM II/A-V y CEM II/B-V) y cementos con escoria de alto horno (CEM II/B-S, CEM III/A y CEM III/B). La metodología incluye:
Producción: Se calculan las emisiones derivadas de la extracción y procesamiento de materias primas, incluyendo el transporte hasta la planta de hormigón y la fabricación de barras de acero, considerando tasas de reciclaje.
Construcción: Se incluyen las emisiones por bombeo y vibrado del hormigón.
Uso: Se determina la durabilidad mediante el modelo de Tuutti, diferenciando las etapas de iniciación y propagación de la corrosión del acero embebido en función de la carbonatación.
Demolición y reciclaje: Se evalúa la captura de CO₂ tras la demolición, considerando el impacto del tamaño del árido reciclado y el entorno de exposición.
La captura de CO₂ se cuantifica mediante ecuaciones basadas en la difusión de carbonatación, considerando coeficientes de carbonatación variables en función de la composición del cemento y del nivel de exposición ambiental.
El trabajo aporta datos cuantitativos sobre la relación entre las emisiones iniciales y la captura de CO₂ en cada etapa del ciclo de vida del hormigón. Se identifican las siguientes contribuciones clave:
Reducción de emisiones en la producción: CEM III/B (80% BFS) emite 70% menos CO₂ en su fabricación comparado con el cemento Portland.
Durabilidad reducida: Cementos con alto reemplazo de clinker presentan una vida útil 10% menor debido a una mayor tasa de carbonatación.
Captura de CO₂: Durante su uso, CEM III/B captura solo el 22% del CO₂ capturado por el cemento Portland. Considerando la demolición, el porcentaje asciende a 20%.
Impacto de reciclaje: Si el hormigón demolido se expone al aire, la captura de CO₂ puede reducir las emisiones totales en un 47%.
Los resultados muestran que, si bien los cementos con adiciones reducen las emisiones en la etapa de producción, su menor durabilidad aumenta las emisiones anuales. El cemento CEM III/B reduce inicialmente las emisiones en un 70 %, pero solo logra una disminución del 20 % cuando se consideran las emisiones anuales. Esto sugiere que, a la hora de seleccionar cemento, hay que equilibrar la reducción de emisiones iniciales con la vida útil de la estructura. La investigación también destaca la importancia de garantizar la exposición del hormigón reciclado al aire para maximizar su capacidad de secuestro de carbono.
Se identifican tres áreas clave para futuras investigaciones:
Optimización de cementos adicionados: Investigación sobre el uso de aditivos y ajustes en la dosificación para mejorar la durabilidad sin comprometer la reducción de emisiones.
Impacto ambiental de diferentes climas: Evaluación de la carbonatación y la vida útil del hormigón en condiciones climáticas diversas.
Estrategias para maximizar la captura de CO₂ post-demolición: Desarrollo de procesos para incrementar la exposición del agregado reciclado al aire y mejorar la captura de carbono.
En resumen, el estudio ofrece un análisis exhaustivo de las emisiones de gases de efecto invernadero asociadas al uso de cementos modificados. Aunque la reducción de emisiones en la producción de estos cementos es significativa, la menor durabilidad y la reducida captura de CO₂ requieren un análisis cuidadoso para garantizar la sostenibilidad del hormigón a largo plazo. La investigación subraya la necesidad de estrategias complementarias que optimicen la combinación entre las emisiones iniciales y la vida útil estructural para reducir el impacto ambiental global del sector de la construcción.
Esta es la versión post-print de autor. La publicación se encuentra en: https://riunet.upv.es/handle/10251/49057, siendo el Copyright de Springer Verlag (Germany).
Acaban de publicar nuestro artículo en la revista Energy and Buildings, de la editorial Elsevier, indexada en D1 del JCR. El estudio presenta una tipología estructural compuesta que combina columnas de hormigón armado con vigas de acero de sección variable híbrida transversal (THVS) para optimizar el coste económico, las emisiones de CO₂ y la energía incorporada en la construcción de edificios.
Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València.
El estudio plantea la siguiente pregunta de investigación: ¿en qué medida la optimización del diseño estructural de edificios en marco mediante el uso de una tipología compuesta con columnas de hormigón armado y vigas de sección variable transversamente híbridas (THVS) contribuye a la reducción del coste económico, de las emisiones de CO₂ y de la energía incorporada en la construcción?
Esta formulación permite abordar de manera precisa la problemática del impacto ambiental y económico del sector de la construcción, orientando la investigación hacia la identificación de configuraciones estructurales que minimicen estos factores mediante metodologías de optimización. La pregunta define claramente el problema central: la búsqueda de una alternativa estructural más eficiente que las tipologías tradicionales de hormigón armado.
Metodología
El estudio adopta un enfoque de optimización estructural basado en la combinación de Biogeography-Based Optimization (BBO) y Constrained Deterministic Local Iterative Search (CDLIS). Este enfoque permite buscar de manera eficiente soluciones en un espacio de diseño altamente complejo. Se analizan tres tipologías estructurales:
Estructura tradicional de hormigón armado: Se optimizan las dimensiones de vigas, columnas y cimentaciones, así como la calidad del hormigón utilizado.
Estructura compuesta con vigas THVS y uniones rígidas: Se sustituyen las vigas de hormigón armado por vigas THVS con conexiones fijas a las columnas.
Estructura compuesta con vigas THVS y uniones articuladas: Similar a la anterior, pero con conexiones articuladas.
Las funciones objetivo optimizadas incluyen:
Coste económico: Calculado con base en los precios unitarios de materiales y procesos constructivos.
Emisiones de CO₂(e): Evaluadas según un enfoque «cradle-to-site», considerando la extracción de materias primas, fabricación y construcción.
Energía incorporada: Calculada en términos de consumo energético total en las fases de producción y construcción.
Se tienen en cuenta restricciones estructurales y de servicio según las normativas de diseño. Además, se implementa la interacción suelo-estructura mediante un modelo de tipo Winkler para evaluar los asentamientos diferenciales y su efecto en el diseño estructural.
Aportaciones relevantes
La tipología compuesta con vigas THVS y conexiones rígidas logra una reducción del 6 % en costes económicos, del 16 % en emisiones de CO₂ y del 11 % en energía incorporada para edificios con luces de 4 m.
Para edificios con luces de 8 m, la configuración con uniones articuladas permite reducir los costos económicos y las emisiones en un 5 % y un 6 %, respectivamente, aunque con un mayor consumo de energía.
Se demuestra que la menor carga axial transmitida por las vigas THVS reduce las solicitaciones en columnas y cimentaciones, lo que optimiza su diseño y reduce su impacto ambiental.
Se comprueba que el uso de acero de mayor calidad en las alas de las vigas THVS en comparación con el alma mejora la eficiencia estructural, con razones de hibridación (Rh) entre 1,2 y 2,0.
Discusión de resultados
El análisis de los resultados revela diferencias significativas entre las configuraciones estructurales. En los edificios con luces reducidas (4 m), las vigas THVS con uniones rígidas ofrecen el mejor rendimiento en términos de coste y sostenibilidad. En cambio, en edificios con luces mayores (8 m), las conexiones articuladas permiten un mejor aprovechamiento del material, aunque con una menor rigidez global.
Cabe destacar que la consideración de elementos de rigidización adicionales, como muros y losas, mejora notablemente el comportamiento de la tipología articulada, reduciendo su impacto ambiental en un 45 % y disminuyendo en un 60 % la carga axial sobre las columnas.
Líneas futuras de investigación
Perfeccionamiento del proceso de fabricación de vigas THVS, abordando aspectos como soldadura, control de calidad y optimización de ensamblaje.
Desarrollo de conexiones híbridas entre vigas THVS y columnas de hormigón armado, mejorando la eficiencia de transferencia de cargas.
Exploración de configuraciones mixtas de soporte, optimizando la selección de conexiones fijas o articuladas según las características del edificio.
Evaluación del comportamiento ante cargas dinámicas y sísmicas, considerando efectos de fatiga y estabilidad estructural.
Implementación de metamodelos para optimización computacional, reduciendo el tiempo de cálculo en simulaciones de alta fidelidad.
Conclusión
La optimización del diseño estructural de edificios en marco mediante el uso de vigas THVS permite reducir costes y mejorar la sostenibilidad ambiental. Las configuraciones con conexiones rígidas son particularmente eficientes en luces cortas, mientras que las conexiones articuladas son una alternativa viable en luces mayores cuando se combinan con elementos de rigidización adicionales. Estos hallazgos abren nuevas líneas de investigación en la aplicación y mejora de sistemas estructurales compuestos en ingeniería civil.