El coste humano de la innovación: Lo que revela el análisis del ciclo de vida social

La ingeniería actual ha evolucionado más allá de lo técnico para integrar la responsabilidad social como un pilar fundamental de la ética profesional. En este artículo, destacamos la importancia de la Evaluación del Ciclo de Vida Social (SLCA), una herramienta esencial para medir el impacto en los derechos humanos y las condiciones laborales de cada proyecto. A continuación, ofrecemos una síntesis de las ideas clave de la revisión sistemática presentada en el artículo “Social life cycle assessment: a systematic review from the engineering perspective”, de Yagmur Atescan Yuksel y colaboradores. Exploraremos cómo esta metodología está cobrando importancia en sectores como el de la energía y el de la mecánica, y analizaremos sus principales tendencias y desafíos metodológicos. Al final, en las referencias, podéis ver también algunos de los trabajos que hemos realizado en nuestro grupo de investigación al respecto.

Introducción: El lado oculto de la sostenibilidad.

Cuando pensamos en «sostenibilidad» en el ámbito de la ingeniería, solemos imaginar paneles solares, turbinas eólicas y procesos de producción extremadamente eficientes. Hablamos de reducir emisiones, optimizar el uso de recursos y minimizar el impacto ambiental. Sin embargo, esta visión, aunque correcta, es incompleta. La sostenibilidad tiene una tercera dimensión crucial que a menudo se pasa por alto en los cálculos técnicos: el impacto social y humano.

Para medir esta dimensión, se desarrolló una herramienta específica conocida como Análisis del Ciclo de Vida Social (ACVS) o Social Life Cycle Assessment (SLCA), impulsada por organizaciones de referencia como el Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) y la Sociedad de Toxicología y Química Ambiental (SETAC). El objetivo del ACVS es sencillo, pero profundo: evaluar cómo los productos y procesos afectan a las personas a lo largo de toda su vida útil. En este artículo se presenta una revisión sistemática de 196 estudios de ACVS en ingeniería, que revela los hallazgos más impactantes sobre el verdadero coste humano de la innovación.

1. El foco universal: la seguridad y el bienestar del trabajador.

A pesar de la enorme diversidad de campos de la ingeniería —desde la energía y la automoción hasta la construcción y la química—, el análisis de casi doscientos estudios revela una preocupación principal y constante: el impacto en los trabajadores. Antes de analizar las complejas dinámicas comunitarias o el bienestar del consumidor, la atención se centra abrumadoramente en las personas que hacen posible la producción. Las subcategorías que se han evaluado de forma más consistente en todas las disciplinas son salud y seguridad, salario justo, horas de trabajo, trabajo infantil y trabajo forzoso.

Si bien estas preocupaciones son universales, el análisis muestra matices: la ingeniería mecánica, por ejemplo, pone un énfasis particular en la «formación y educación» de los trabajadores, reconociendo el valor del capital humano en la fabricación avanzada.

Este resultado es fundamental. No se trata de un enfoque arbitrario, sino de una consecuencia directa de dónde se materializan los impactos de la ingeniería. La mayoría de los estudios se centran en la extracción de materias primas, la fabricación y la cadena de suministro, ámbitos en los que los efectos sobre los trabajadores y las comunidades cercanas son más pronunciados. Esto subraya que la base de una ingeniería socialmente responsable consiste en garantizar la dignidad y la seguridad de todas las personas a lo largo de la cadena de producción, antes de aspirar a impactos más abstractos.

2. La transición energética tiene su propia carga social.

Resulta sorprendente que el sector de la energía, con un 30 % del total, sea el campo de la ingeniería en el que más se aplica el análisis de ciclo de vida social. Esto resulta sorprendente, ya que instintivamente asociamos la producción de energía con debates ambientales sobre las emisiones de carbono y el agotamiento de los recursos.

Sin embargo, los estudios demuestran que, además de las preocupaciones laborales comunes, el sector energético presenta impactos únicos que van desde el consumidor hasta la sociedad en su conjunto. Entre ellos, destacan los siguientes: — La desigualdad en el coste de la electricidad (un impacto directo en el consumidor), así como la seguridad energética y el agotamiento de las reservas de combustibles fósiles (impactos que afectan a la sociedad en general).

Esto supone una advertencia crítica para los líderes políticos e industriales. Debido al papel fundamental que desempeña el sector en la infraestructura nacional y en la transición hacia la sostenibilidad, una mala gestión de sus aspectos sociales no solo afecta a un producto, sino que también puede poner en peligro la seguridad energética de un país y aumentar la desigualdad social. La carrera hacia la energía limpia no es solo un desafío técnico, sino también un complejo problema de justicia y equidad.

3. El gran desafío: medir lo social sin una «regla» estándar.

A diferencia de las evaluaciones ambientales (ACV), que cuentan con metodologías más estandarizadas, la evaluación del ciclo de vida social (ACVS) enfrenta un obstáculo considerable: la falta de un marco universalmente aceptado. La revisión de estudios concluye que esta falta de estandarización dificulta enormemente la comparación de resultados entre diferentes proyectos, tecnologías e incluso países.

Un ejemplo perfecto de este problema es la inconsistencia en el uso de la «unidad funcional» (UF). En un análisis ambiental, la UF es fundamental (por ejemplo, «el impacto por cada 1000 kilómetros recorridos por un coche»). Sin embargo, muchos estudios de ACVS no la definen ni la aplican de manera consistente. La razón es simple, pero crucial: mientras que las emisiones pueden medirse por producto (por ejemplo, por coche), los impactos sociales, como las «condiciones laborales», se extienden a toda una organización o a un sector, por lo que resulta casi imposible atribuirlos a una sola «unidad» de producción.

Este desafío nos enseña una lección valiosa: medir el impacto humano es inherentemente más complejo y depende del contexto en el que se miden las emisiones de CO₂. Esta flexibilidad metodológica no solo supone un reto académico, sino que también plantea un segundo obstáculo más práctico: la lucha persistente por obtener datos fiables.

4. La falta de datos fiables: el talón de Aquiles del análisis social.

Una de las mayores limitaciones para realizar un ACVS preciso es la disponibilidad y la calidad de los datos. A diferencia de los datos económicos o medioambientales, que suelen ser cuantitativos y estar bien documentados, los datos sociales tienden a ser cualitativos, difíciles de verificar, incompletos o desactualizados, sobre todo en cadenas de suministro globales y opacas.

Para mitigar este problema, han surgido bases de datos especializadas como la Social Hotspots Database (SHDB) y la Product Social Impact Life Cycle Assessment (PSILCA). Su función no es proporcionar datos exactos de un proveedor concreto, sino evaluar el nivel de riesgo social (desde bajo hasta muy alto) en combinaciones específicas de país y sector industrial, con el fin de identificar los denominados «puntos calientes» en la cadena de suministro. Por ejemplo, pueden alertar sobre un alto riesgo de trabajo infantil en el sector textil de un país determinado, y así guiar a las empresas sobre dónde deben enfocar sus auditorías.

No obstante, la calidad de los datos sigue siendo un desafío sistémico. Como concluye el estudio, los datos sociales a menudo están desactualizados, incompletos o sesgados, lo que puede dar lugar a evaluaciones imprecisas o engañosas.

5. El futuro es inteligente: cómo la tecnología podría resolver el problema.

A pesar de los desafíos, el futuro del ACVS parece prometedor y la solución podría provenir de la propia ingeniería. Para superar los obstáculos metodológicos y de datos, la investigación futura se centra en la integración de tecnologías avanzadas capaces de transformar el análisis social.

Entre las soluciones propuestas se incluye el uso de herramientas de la Industria 4.0 para lograr la trazabilidad de datos sociales en tiempo real. También se plantea el uso del análisis de datos impulsado por inteligencia artificial para validar y verificar la información recopilada. Asimismo, se sugieren modelos de dinámica de sistemas para comprender las relaciones de causa y efecto entre distintos factores sociales. Por último, se consideran los modelos basados en agentes (ABM) para simular la influencia de las decisiones individuales en los resultados sociales.

En resumen, el futuro de la evaluación social podría dejar de ser un análisis retrospectivo y estático para convertirse en una herramienta dinámica y predictiva. En lugar de ser un informe que se elabora al final, podría convertirse en un panel de control en tiempo real, integrado directamente en los procesos de toma de decisiones de los ingenieros, para guiar el diseño hacia resultados verdaderamente sostenibles.

Conclusión: ¿Estamos haciendo las preguntas correctas?

La ingeniería se encuentra en medio de una profunda transformación. Su enfoque se está ampliando, pasando del «qué» y el «cuánto» al «cómo» y al «para quién». El análisis del ciclo de vida social es una manifestación de esta evolución, ya que busca dar voz y establecer métricas de los impactos humanos de la tecnología.

Aunque los desafíos metodológicos y de disponibilidad de datos siguen siendo significativos, el campo avanza a gran velocidad. La creciente aplicación del ACVS en sectores clave y la exploración de soluciones tecnológicas demuestran un compromiso real con una visión más integral de la sostenibilidad.

Así surge una pregunta final que no solo interpela a quienes trabajan en ingeniería, sino también a toda la sociedad: ¿se está diseñando el futuro teniendo en cuenta no solo qué construir, sino también cómo y para quién? Al proyectar el futuro, ¿se están incorporando de manera consciente estas mismas preguntas?

Esta conversación nos permite conocer este tema de manera entretenida y clara.

En este vídeo se presenta una síntesis de las ideas más interesantes del tema.

Aquí os dejo una presentación que resume lo más interesante del artículo.

Pincha aquí para descargar

Referencias:

Luque Castillo, X., & Yepes, V. (2025). Multi-criteria decision methods in the evaluation of social housing projects. Journal of Civil Engineering and Management, 31(6), 608–630. https://doi.org/10.3846/jcem.2025.24425

Luque Castillo, X., & Yepes, V. (2025). Life cycle assessment of social housing construction: A multicriteria approach. Building and Environment, 282, Article 113294. https://doi.org/10.1016/j.buildenv.2025.113294

Navarro, I. J., Martí, J. V., & Yepes, V. (2023). DEMATEL-based completion technique applied for the sustainability assessment of bridges near shore. International Journal of Computational Methods and Experimental Measurements, 11(2). https://doi.org/10.18280/ijcmem.110206

Navarro, I. J., Villalba, I., Yepes-Bellver, L., & Alcalá, J. (2024). Social life cycle assessment of railway track substructure alternatives. Journal of Cleaner Production, 450, Article 142008. https://doi.org/10.1016/j.jclepro.2024.142008 

Martínez-Muñoz, D., Martí, J. V., & Yepes, V. (2025). Game theory-based multi-objective optimization for enhancing environmental and social life cycle assessment in steel-concrete composite bridges. Mathematics, 13(2), Article 273. https://doi.org/10.3390/math13020273

Martínez-Muñoz, D., Martí, J. V., & Yepes, V. (2022). Social impact assessment comparison of composite and concrete bridge alternatives. Sustainability, 14(9), Article 5186. https://doi.org/10.3390/su14095186

Salas, J., & Yepes, V. (2024). Improved delivery of social benefits through the maintenance planning of public assets. Structure and Infrastructure Engineering, 20(5), 699–714. https://doi.org/10.1080/15732479.2022.2121844

Sánchez-Garrido, A. J., Navarro, I. J., & Yepes, V. (2026). Multivariate environmental and social life cycle assessment of circular recycled-plastic voided slabs for data-driven sustainable construction. Environmental Impact Assessment Review, 118, Article 108297. https://doi.org/10.1016/j.eiar.2025.108297 

Sierra, L. A., Yepes, V., & Pellicer, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187, 496–513. https://doi.org/10.1016/j.jclepro.2018.03.022

Sierra-Varela, L., Calabi-Floody, A., Valdés-Vidal, G., Yepes, V., & Filun-Santana, A. (2025). Determination of the social contribution of sustainable additives for asphalt mixes through fuzzy cognitive mapping. Applied Sciences, 15(7), Article 3994. https://doi.org/10.3390/app15073994

Yüksek, Y. A., Haddad, Y., Cox, R., & Salonitis, K. (2026). Social life cycle assessment: A systematic review from the engineering perspective. International Journal of Sustainable Engineering, 19(1), Article 2605864. https://doi.org/10.1080/19397038.2025.2605864 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Entrevista en Construnews — Monográfico infraestructuras en España

A continuación, os paso una entrevista que me hicieron recientemente en Construnews sobre las infraestructuras en España. Forma parte de una serie de entrevistas a personas relacionadas directamente con el sector de la construcción. Espero que os resulte interesante.

“Hay que reingenierizar el modelo de financiación, ejecutar estratégicamente los corredores ferroviarios y desbloquear el suelo para vivienda asequible”

¿Cómo valora el estado actual de las infraestructuras en España (transporte, energía, digitalización, logística)? ¿Cuáles son, a su juicio, los principales retos de país en los próximos 5‑10 años?

La valoración del estado actual de las infraestructuras españolas indica que el notable patrimonio de ingeniería civil presenta síntomas claros de desequilibrio, ya que el modelo se ha centrado excesivamente en la construcción de nuevas infraestructuras de muy alta capacidad, dejando en un segundo plano la conservación preventiva y correctiva de la red existente. En el ámbito viario, los firmes están deteriorados y los sistemas de contención y señalización están obsoletos. En el sector ferroviario, el éxito de la alta velocidad contrasta con la situación de la red convencional y de cercanías, que necesita atención debido a la falta de renovación de los sistemas de seguridad y de las catenarias, lo que provoca incidencias. Además, el hecho de que el ancho de vía sea diferente al de Europa sigue suponiendo un desafío para el transporte de mercancías. El reto más significativo es, por un lado, abordar la vivienda como un problema social y estructural prioritario a nivel nacional, dado el creciente difícil acceso de la población joven y de rentas medias. Por otro lado, la vulnerabilidad ante la emergencia climática, especialmente en lo referente a la gestión del agua, es crítica, por lo que existe una urgencia en materia de defensa contra inundaciones. Gran parte de los sistemas de drenaje se diseñaron basándose en series estadísticas que han quedado obsoletas, y no se está invirtiendo lo suficiente en modernizar las infraestructuras hidráulicas para soportar nuevos caudales punta.

¿Qué segmentos infraestructurales ofrecen mayor potencial de crecimiento para el sector de la construcción y la ingeniería? ¿Y cuáles están quedando fuera del foco?

La inversión se centra en una transición estructural que se está desplazando de la expansión territorial a la intensificación, la digitalización y la resiliencia. El principal motor de crecimiento es la transición energética, ya que la integración masiva de las energías renovables exige un ambicioso programa de refuerzo, digitalización y almacenamiento de la red eléctrica a gran escala. La necesidad de dotar al sistema de baterías industriales y de sistemas de bombeo reversible supone la aparición de un nuevo y gran nicho de mercado. El desarrollo urgente de vivienda asequible y social también se perfila como un segmento clave para el crecimiento del sector. La crisis hídrica convierte la reingeniería hidráulica en un sector estratégico, ya que la oportunidad radica en crear una nueva oferta hídrica mediante desaladoras y sistemas de tratamiento avanzado para la reutilización de aguas residuales, junto con la renovación de las redes de distribución para reducir las pérdidas por fugas. La ingeniería logística crecerá en la dotación de terminales intermodales y en la adaptación de las líneas de transporte al ancho de vía estándar europeo. No obstante, la priorización de grandes proyectos deja en un segundo plano segmentos cruciales para la cohesión. El mantenimiento de las carreteras de titularidad autonómica y provincial es un problema pendiente, al igual que la renovación de los sistemas de señalización del ferrocarril de cercanías. La falta de atención a las pequeñas obras de defensa hidráulica a nivel local (drenajes, encauzamientos) también es crítica.

El déficit de conservación lastra la red existente: señales obsoletas, firmes deteriorados y falta de mantenimiento.

¿Cómo evalúa la coordinación entre administraciones, sector privado y financiación (incluyendo fondos europeos)? ¿Qué mecanismos están funcionando y cuáles habría que reforzar?

La coordinación administrativa presenta una diferencia entre la solidez de la planificación de alto nivel y la lentitud de la fase de materialización. Aunque existe un consenso técnico adecuado y el sector privado ha demostrado su capacidad de ejecución, la principal fricción se debe a la fragmentación administrativa a nivel local y a la superposición de competencias en la financiación del mantenimiento de las redes. Esta situación provoca cuellos de botella en los trámites de expropiación y licencias. La llegada de los fondos europeos de recuperación ha supuesto una inyección de capital necesaria y ha dotado a la inversión de una clara orientación hacia la descarbonización. No obstante, ha puesto de manifiesto la necesidad de reforzar la capacidad administrativa para absorber y licitar el volumen de capital. El mayor riesgo económico es que esta financiación sustituya a la inversión ordinaria en conservación en lugar de complementarla. Para garantizar la sostenibilidad, es necesario establecer mecanismos que separen la gestión técnica del ciclo político. La propuesta más proactiva consiste en crear una Agencia Técnica de Proyectos Estratégicos que tenga autonomía para ejecutar obras de impacto nacional de forma ágil. En cuanto a la financiación, es fundamental sustituir el modelo presupuestario anual por contratos-programa plurianuales y de carácter finalista para la conservación.

Más allá de los discursos, ¿cómo se está incorporando la sostenibilidad en el diseño, ejecución y explotación de infraestructuras? ¿Podría compartir un caso inspirador o representativo?

La sostenibilidad ha dejado de ser un mero postulado ético para convertirse en un requisito técnico y normativo que rediseña el ciclo de vida de las infraestructuras. La ingeniería actual integra este concepto desde la fase de planificación, exigiendo el análisis del ciclo de vida de los activos para cuantificar y minimizar la huella de carbono de los materiales. Esto se traduce en una preferencia técnica por el uso de hormigones y asfaltos con un alto porcentaje de material reciclado y por la implementación de soluciones basadas en la naturaleza. Durante la ejecución, la sostenibilidad se centra en la economía circular mediante la obligación contractual de reutilizar y reciclar in situ los materiales de demolición. Durante la fase de explotación, la sostenibilidad se vincula a la eficiencia: la digitalización mediante sensores permite un mantenimiento predictivo que alarga la vida útil de los activos. Un ejemplo representativo de esta integración es la reingeniería hídrica en zonas con estrés hídrico. Se han desarrollado sistemas de regeneración de aguas residuales con tratamientos terciarios avanzados que permiten cerrar el ciclo del agua y producir un recurso predecible. Este proceso, que requiere mucha energía, se gestiona de forma sostenible al generarse energía a partir de biogás o energía solar.

La transición energética y la ingeniería del agua abren nuevos nichos clave para el sector.

Las infraestructuras ya no son solo estructuras físicas: mantenimiento predictivo, digital twins, infraestructura como servicio… ¿Cuál es su visión sobre esta transformación? ¿Qué proyectos le parecen referentes?

La ingeniería de infraestructuras ha superado la fase de la mera estructura física para transformarse en un sistema dinámico de información y servicio. El enfoque ha cambiado del coste de construcción a la eficiencia operativa a largo plazo. Esta revolución se basa en tres pilares: la monitorización masiva de activos para el mantenimiento predictivo, la creación del gemelo digital, que simula el comportamiento de la infraestructura ante escenarios de estrés, y la adopción del concepto de infraestructura como servicio, que fomenta la colaboración público-privada para construir sistemas duraderos. El gemelo digital es la herramienta clave, ya que permite realizar ensayos virtuales de resiliencia y ampliación sin afectar al activo físico. España está a la vanguardia en la aplicación práctica de esta tecnología. Un ejemplo destacado es la gestión de los túneles de la red de carreteras de alta capacidad, donde la iluminación y la ventilación se ajustan dinámicamente en tiempo real. Otro caso inspirador es el del sector ferroviario, donde el modelado virtual se utiliza para gestionar activos críticos, como la catenaria y los puentes, y simular el impacto físico para anticiparse a la probabilidad de fallo.

En un entorno de alta inversión pública y necesidad de eficiencia, ¿cómo se está calculando y midiendo el ROI en infraestructuras? ¿Podría compartir ejemplos reales o estimaciones? ¿Qué factores lo están condicionando más?

La medición de la rentabilidad de la inversión pública se centra en el retorno social de la inversión, desvinculándose del retorno financiero privado. El cálculo se realiza mediante el análisis coste-beneficio socioeconómico, cuyo principal indicador es el valor actual neto social (VAN social). El mantenimiento preventivo es el segmento con mayor y más estable rentabilidad social; los informes técnicos demuestran que por cada euro invertido en conservación oportuna se evitan entre cuatro y cinco euros en costes de reparación o reconstrucción futura. En contraste, la alta velocidad ferroviaria genera una Tasa Interna de Retorno Social significativa (a menudo superior al 8 %), pero su rentabilidad financiera es insuficiente. La precisión del cálculo se ve comprometida por la sobreestimación recurrente de las previsiones de demanda en las fases iniciales de muchos proyectos. Otros factores críticos son la dificultad para valorar monetariamente las externalidades blandas y los retrasos en la ejecución de la obra, ya que estos elevan el coste final y reducen la rentabilidad esperada.

A raíz de las últimas iniciativas de Bruselas (como el plan para conectar capitales europeas por alta velocidad), ¿qué papel debería jugar España en el nuevo mapa europeo? ¿Estamos preparados o en riesgo de quedar fuera?

El impulso de Bruselas para consolidar la Red Transeuropea de Transporte otorga a España un doble papel estratégico: eje principal de conexión de alta velocidad para viajeros y plataforma logística clave para canalizar el tráfico de mercancías. Sin embargo, a pesar de tener una de las redes de alta velocidad más extensas, España corre el riesgo de quedar menos integrada en el mapa logístico por una barrera técnica: el uso mayoritario del ancho de vía ibérico. Esta diferencia limita la competitividad del transporte de mercancías por ferrocarril. Si no se completa la adecuación al ancho de vía internacional de los corredores Mediterráneo y Atlántico antes de las fechas límite, existe el riesgo de que las mercancías elijan rutas alternativas. Para evitar una menor integración, es necesario reingenierizar los procesos de licitación pública para agilizar la ejecución de la inversión y centrarla en finalizar estos corredores clave y crear los nodos logísticos interiores.

Pensando en todos los modos —carretera, ferrocarril, puertos, aeropuertos, redes logísticas y digitales—, ¿qué ejes o áreas infraestructurales deberían ser prioritarios para mejorar la competitividad y cohesión territorial en España?

La inversión estratégica para mejorar la competitividad y la cohesión territorial debe resolver los cuellos de botella y priorizar la seguridad. El primer eje ineludible se centra en la intermodalidad y la logística de mercancías. Es de máxima prioridad estratégica completar la adaptación de los corredores mediterráneo y atlántico al ancho de vía internacional. El segundo gran eje es la vivienda, cuya provisión masiva y asequible es crucial para la cohesión social y para facilitar la movilidad laboral en zonas de alta demanda. El tercer eje fundamental es la seguridad y el abastecimiento hídrico. La respuesta a la sequía estructural pasa por invertir en infraestructuras que no dependan de las precipitaciones, como la regeneración de aguas residuales mediante un tratamiento avanzado y la ampliación de las plantas desaladoras. También es crucial invertir en obras de defensa y drenaje en cuencas fluviales para proteger a las poblaciones de las avenidas extremas. El cuarto eje se centra en la cohesión a través de la calidad del servicio. Es fundamental saldar el grave déficit de conservación acumulado en la red de carreteras de titularidad autonómica y provincial, que son vitales para la vertebración de la España rural. En cuanto a la prioridad digital, el objetivo es cerrar la brecha y garantizar la cobertura universal de banda ancha ultrarrápida en todos los municipios.

La sostenibilidad ya no es discurso: se mide, se diseña y se exige en todas las fases del ciclo de vida.

El aumento de costes de materiales, la tramitación lenta o la falta de personal cualificado afectan a las infraestructuras. ¿Qué medidas urgentes propondría para desbloquear estos frenos?

La alta inversión pública se ve obstaculizada por tres frenos principales: la volatilidad de los costes, la complejidad administrativa y la necesidad de reforzar el talento. La medida más urgente para hacer frente a la volatilidad de los precios es implementar un sistema de revisión contractual objetivo, automático y no discrecional. Esta medida debe complementarse con la posibilidad de que la Administración adquiera con antelación materiales estratégicos para proyectos clave. Para combatir la lentitud en la tramitación, es imperativo crear Unidades de Gestión de Proyectos Estratégicos que actúen como ventanilla única y coordinen los plazos de licencias y expropiaciones entre las distintas administraciones. Por último, para abordar la falta de personal cualificado, la Administración debe ofrecer condiciones salariales y de progresión profesional más competitivas. Es crucial que la normativa de contratación pública flexibilice la valoración y permita que la calidad técnica y la experiencia del equipo pesen más que el precio en los concursos de servicios de ingeniería.

Si pudiera proponer tres decisiones inmediatas que mejoren las infraestructuras españolas a corto y medio plazo, ¿cuáles serían y por qué?

La mejora de las infraestructuras españolas a corto y medio plazo requiere tomar cuatro decisiones de alto impacto ineludibles. La primera es la reingeniería del modelo de financiación del mantenimiento. Hay que establecer un sistema de contratos programa plurianuales para la conservación de la red de carreteras de alta capacidad y de ferrocarril. La segunda decisión ineludible se centra en la ejecución estratégica y la interoperabilidad. Es urgente crear una unidad ejecutora especializada y con autonomía técnica que se encargue de gestionar de manera integral y acelerada los corredores ferroviarios Mediterráneo y Atlántico. Esta medida resolvería el cuello de botella técnico del ancho de vía y garantizaría el cumplimiento de los plazos exigidos por la Unión Europea para 2030. La tercera decisión debe abordar la gestión eficiente del suelo y la construcción de viviendas asequibles, simplificando los trámites urbanísticos y movilizando suelo público de manera inmediata para aumentar el parque de viviendas sociales. Por último, la cuarta decisión debe resolver los frenos de la gestión: la volatilidad de los costes y la falta de talento. Es imprescindible revisar automáticamente los precios de los contratos de obra pública. De forma complementaria, es necesario modificar la normativa de contratación pública para que, en los servicios de ingeniería, la calidad técnica y la experiencia del equipo humano pesen más que el precio ofertado.

Digital twins, mantenimiento predictivo e infraestructuras como servicio: el futuro ya está en marcha.

Os dejo una conversación donde se habla de estos temas.

En este vídeo se resumen algunas de las ideas principales sobre las infraestructuras en España.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

5 lecciones sorprendentes de la IA para construir puentes más sostenibles y económicos.

La tesis doctoral leída recientemente por Lorena Yepes Bellver se centra en la optimización del diseño de puentes de losa de hormigón pretensado para pasos elevados con el fin de mejorar la sostenibilidad económica y ambiental mediante la minimización de costes, energía incorporada y emisiones de CO₂. Con el fin de reducir la elevada carga computacional del análisis estructural, la metodología emplea un marco de optimización de dos fases asistido por modelos sustitutos, en el que se destaca el uso de Kriging y redes neuronales artificiales (RNA).

En concreto, la optimización basada en Kriging condujo a una reducción de costes del 6,54 % al disminuir significativamente el consumo de hormigón y acero activo sin comprometer la integridad estructural. Si bien las redes neuronales demostraron una mayor precisión predictiva global, el modelo Kriging resultó más eficaz para identificar los óptimos locales durante el proceso de búsqueda. El estudio concluye que las configuraciones de diseño óptimas priorizan el uso de altos coeficientes de esbeltez y suponen una reducción del hormigón y del acero activo en favor del acero pasivo, con el fin de mejorar la eficiencia energética. Finalmente, la investigación integra la toma de decisiones multicriterio (MCDM, por sus siglas en inglés) para evaluar de manera integral los diseños en función de sus objetivos económicos, estructurales y ambientales.

Cuando pensamos en la construcción de grandes infraestructuras, como los puentes, suele venirnos a la mente la imagen de proyectos masivos, increíblemente caros y con un gran impacto ambiental. Son gigantes de hormigón y acero que, aunque necesarios, parecen irrenunciablemente vinculados a un alto coste económico y ecológico.

Sin embargo, ¿y si la inteligencia artificial nos estuviera mostrando un camino para que estos gigantes de hormigón fueran más ligeros, económicos y respetuosos con el planeta? Una reciente tesis doctoral sobre la optimización de puentes está desvelando hallazgos impactantes y, en muchos casos, sorprendentes. Este artículo resume esa compleja investigación en cinco lecciones clave y a menudo sorprendentes que no solo se aplican a los puentes, sino que anuncian una nueva era en el diseño de infraestructuras.

1. La sostenibilidad cuesta mucho menos de lo que crees.

Uno de los descubrimientos más importantes de la investigación es que la idea de que la sostenibilidad siempre implica un alto sobrecoste es, en gran medida, un mito. La optimización computacional demuestra que la viabilidad económica y la reducción del impacto ambiental no son objetivos opuestos.

La tesis doctoral lo cuantifica con precisión: un modesto aumento de los costes de construcción (inferior al 1 %) puede reducir sustancialmente las emisiones de CO₂ (en más de un 2 %). Este dato es muy relevante, ya que demuestra que con un diseño inteligente asistido por modelos predictivos se puede conseguir un beneficio medioambiental significativo con una inversión mínima. La sostenibilidad y la rentabilidad pueden y deben coexistir en el diseño de las infraestructuras del futuro.

2. El secreto está en la esbeltez: cuanto más fino, más eficiente.

En el diseño de un puente, la «relación de esbeltez» es un concepto clave que define la proporción entre la altura del tablero (su grosor) y la longitud del vano principal. Tradicionalmente, podríamos pensar que «más robusto es más seguro», pero la investigación demuestra lo contrario.

El estudio identificó una relación de esbeltez óptima para minimizar el impacto ambiental. Concretamente, el estudio halló una relación de esbeltez de aproximadamente 1/30 para optimizar las emisiones de CO₂ y de aproximadamente 1/28 para optimizar la energía incorporada. Esto significa que, en lugar de construir puentes masivos por defecto, los modelos de IA demuestran que un diseño más esbelto y afinado no solo es estructuralmente sólido, sino también mucho más eficiente en el uso de materiales. Este diseño más esbelto se logra no solo usando menos material en general, sino también mediante un sorprendente reequilibrio entre los componentes clave de la estructura, como veremos a continuación.

3. El equilibrio de materiales: menos hormigón, más acero (pasivo).

Quizás uno de los descubrimientos más sorprendentes es que el diseño más sostenible no consiste simplemente en utilizar menos cantidad de todos los materiales. La solución óptima es más un reequilibrio inteligente que una simple reducción general.

La investigación revela que los diseños optimizados lograron reducir el uso de hormigón en un 14,8 % y de acero activo (el acero de pretensado que tensa la estructura) en un 11,25 %. Sin embargo, este descenso se compensa con un aumento de la armadura pasiva (el acero convencional que refuerza el hormigón). Esto resulta contraintuitivo, ya que la intuición ingenieril a menudo favorece una reducción uniforme de los materiales. Sin embargo, los modelos computacionales identifican un complejo intercambio —sacrificar un material más barato (hormigón) por otro más caro (acero pasivo)— para alcanzar un diseño globalmente óptimo en términos de coste y emisiones de CO₂, un equilibrio que sería extremadamente difícil de lograr con métodos de diseño tradicionales.

4. Precisión frente a dirección: El verdadero poder de los modelos predictivos.

Al comparar diferentes modelos de IA, como las redes neuronales artificiales y los modelos Kriging, la tesis doctoral reveló una lección fundamental sobre su verdadero propósito en ingeniería.

El estudio reveló que, si bien las redes neuronales ofrecían predicciones absolutas más precisas, el modelo Kriging era más eficaz para identificar las regiones de diseño óptimas. Esto pone de manifiesto un aspecto crucial sobre el uso de la IA en el diseño: su mayor potencial no radica en predecir un valor exacto, como si fuera una bola de cristal, sino en guiar al ingeniero hacia la «región» del diseño donde se encuentran las mejores soluciones posibles. La IA es una herramienta de exploración y dirección que permite navegar por un universo de posibilidades para encontrar de forma eficiente los diseños más prometedores.

5. La optimización va directo al bolsillo: reducción de costes superior al 6 %.

Más allá de los objetivos medioambientales, la investigación demuestra que estos modelos de IA son herramientas muy potentes para la optimización económica directa. Este descubrimiento no se refiere al equilibrio entre coste y sostenibilidad, sino a la reducción pura y dura de los costes del proyecto.

La tesis doctoral muestra que el método de optimización basado en Kriging consigue una reducción de costes del 6,54 %. Esta importante reducción se consigue principalmente minimizando el uso de materiales: un 14,8 % menos de hormigón y un 11,25 % menos de acero activo, el acero de pretensado más especializado y costoso. Esto demuestra de forma contundente que los modelos sustitutivos no solo sirven para alcanzar metas ecológicas, sino que también son una herramienta de gran impacto para la optimización económica en proyectos a gran escala.

Conclusión: Diseñando el futuro, un puente a la vez.

La inteligencia artificial y los modelos de optimización han dejado de ser conceptos abstractos para convertirse en herramientas prácticas que permiten descubrir formas novedosas y eficientes de construir la infraestructura del futuro. Los resultados de esta investigación demuestran que es posible diseñar y construir puentes que sean más económicos y sostenibles al mismo tiempo.

Estos descubrimientos no solo se aplican a los puentes, sino que abren la puerta a una nueva forma de entender la ingeniería. Si la IA puede rediseñar algo tan grande como un puente para hacerlo más sostenible, ¿qué otras grandes industrias están a punto de transformarse con un enfoque similar?

En este audio podéis escuchar una conversación sobre este tema.

Este vídeo resume las ideas principales.

Aquí tenéis un documento resumen de las ideas básicas.

Pincha aquí para descargar

Referencias:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Predictive modeling for carbon footprint optimization of prestressed road flyovers. Applied Sciences15(17), 9591. DOI:10.3390/app15179591

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure AlternativesJ. Clean. Prod. 2024450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización y control inteligente de puentes atirantados

Acaban de publicar un artículo nuestro en Results in Engineeringuna de las revistas de mayor impacto científico, ubicada en el primer decil del JCR. Este trabajo trata sobre un sistema avanzado para el seguimiento de la salud estructural (SHM, por sus siglas en inglés) y la optimización de puentes de gran envergadura y estáticamente indeterminados (hiperestáticos).

La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. Además, muestra la internacionalización de nuestro grupo de investigación, en este caso, con China. A continuación, se presenta un resumen del trabajo y de la información de contexto.

 El problema central que se aborda en este trabajo es la insuficiencia de los métodos de supervisión tradicionales, ya que no permiten una vigilancia continua, en tiempo real y a distancia, crucial para garantizar la seguridad, la longevidad y el mantenimiento rentable de estas complejas infraestructuras.

La solución propuesta es una plataforma inteligente en la nube para el control y la alerta temprana que integra la informática, la ingeniería de comunicaciones, el control y la automatización y la mecánica de ingeniería. Este sistema combina los datos de supervisión en tiempo real, obtenidos mediante la tecnología de Internet de las Cosas (IoT), con modelos de elementos finitos (FEM) para evaluar con precisión el estado de la estructura.

Su eficacia se demostró mediante un estudio de caso del Puente del Río Amarillo en China (LZYB). El análisis de los datos de seguimiento y las simulaciones por elementos finitos revelaron que el diseño original del puente era excesivamente conservador, ya que la deflexión vertical real bajo cargas operativas representaba entre el 26,5 % y el 33,9 % del valor predicho en el diseño.

Con base en este hallazgo, se optimizó el diseño de la viga principal del puente, lo que permitió reducir el volumen de hormigón de la losa de fondo en un 15 %. Un análisis posterior del ciclo de vida (LCA) cuantificó los beneficios de esta optimización, que incluyen una reducción de 2009,65 toneladas de emisiones de CO₂ y un ahorro económico de 2 694 189,55 CNY, sin comprometer la seguridad ni el rendimiento estructural. Este enfoque representa un nuevo paradigma para el mantenimiento seguro, económico y sostenible de infraestructuras críticas.

1. Introducción y desafíos de la auscultación estructural.

Los puentes de gran envergadura y estáticamente indeterminados están sometidos a múltiples factores que pueden afectar a su integridad, como la respuesta dinámica de la estructura y el daño por fatiga acumulada debido a la interacción de cargas múltiples y condiciones ambientales complejas. Las microfisuras internas pueden propagarse hasta convertirse en fisuras macroscópicas y provocar la inestabilidad y el fallo de la estructura.

1.1. Limitaciones de los métodos tradicionales.

  • Inspección visual: los métodos iniciales, basados en la inspección visual realizada por personal cualificado para detectar defectos superficiales, como las grietas por fatiga, son imprecisos y propensos a errores.
  • Supervisión de la salud estructural (SHM) convencional: ha mejorado la precisión, pero enfrenta desafíos como la falta de sensores adecuados para el monitoreo autónomo a largo plazo y de algoritmos eficaces para predecir y diagnosticar daños locales por fatiga.
  • Enfoques basados en algoritmos: existen dos métodos principales: los basados en modelos, que utilizan un modelo de elementos finitos preciso, pero que consumen mucho tiempo, y los basados en datos, que analizan series temporales continuas, pero que pueden verse limitados por las bajas tasas de transmisión de datos de las redes inalámbricas.

El estudio aborda estas limitaciones combinando las ventajas de ambos enfoques e integrando algoritmos innovadores de alta eficiencia para avanzar en la monitorización continua de la salud estructural.

2. Marco teórico e innovación del sistema.

El trabajo establece un modelo teórico complejo y una plataforma inteligente que integra múltiples disciplinas para superar las barreras técnicas del seguimiento tradicional.

2.1. Puntos clave de la innovación.

  1. Modelo interdisciplinario: se desarrolló un modelo teórico modal complejo, multifactorial y de múltiples fuentes que combina la ciencia de la computación, la ingeniería de comunicaciones, el control y la automatización y la mecánica de ingeniería. Este modelo analiza el impacto de múltiples factores en las estructuras de los puentes y permite realizar un seguimiento de alertas tempranas en una plataforma en la nube.
  2. Supervisión basada en IoT: se adopta un monitoreo en línea, automatizado y en tiempo real basado en el Internet de las cosas (IoT). De este modo, se soluciona la incapacidad de la tecnología tradicional para lograr un seguimiento espaciotemporal continuo y a gran distancia, y se transforma el seguimiento de un «basado en puntos, indirecto y de ajuste de curvas» a otro «espacial, directo y continuo».
  3. Sistema de alerta temprana: proporciona un modelo eficaz de control y de alerta temprana para diversos tipos de deterioro, como grietas, deformaciones, envejecimiento y vibración dinámica. Valida la viabilidad de la estructura en términos de integridad, seguridad, durabilidad y control de la resistencia.

2.2. Componentes del modelo teórico.

El modelo matemático integra varios análisis para evaluar el estado de la estructura:

  • Daño por fatiga estructural: utiliza un modelo de daño por fatiga acumulativa no lineal para analizar la propagación de las fisuras y la degradación continua del módulo de elasticidad del hormigón.
  • Daño por fatiga del acero: se considera que la vida útil del puente está determinada principalmente por la fatiga de las barras de acero. El modelo calcula la profundidad crítica de la fisura y la tensión residual del acero.
  • Efecto de cargas múltiples: se aplica un modelo de mezcla gaussiana para analizar los datos de monitorización, que presentan una distribución de picos múltiples, y se calcula la deflexión total considerando la carga viva, la tensión térmica, la pérdida de pretensado y la retracción y la fluencia del hormigón.
  • Acoplamiento vehículo-puente: Construye una ecuación de un sistema de movimiento acoplado para analizar las interacciones mecánicas entre los vehículos y el puente.
  • Optimización dinámica estructural: utiliza un modelo matemático basado en la función lagrangiana para realizar un diseño de optimización dinámica con un ritmo de convergencia rápido.

3. Estudio de caso: el puente del río Amarillo (LZYB)

La metodología se aplicó a esta estructura atirantada, con un vano principal de 360 metros, ubicada en China.

3.1. Descripción del puente y sistema de control

  • Especificaciones: El LZYB es un puente extragrande para autopista de cuatro carriles con torres romboidales de hormigón armado (C50), una altura de torre de hasta 151 metros y cables atirantados de haces de alambre de acero paralelos galvanizados.
  • Sistema de monitorización: se instalaron 374 dispositivos de 10 tipos diferentes, incluidos sensores de temperatura y de humedad, acelerómetros, extensómetros y sensores de fibra óptica, entre otros. Estos dispositivos se ubicaron en puntos críticos de momento flector y de fuerza cortante, determinados mediante principios de mecánica y el modelo FEM. Los datos se transmiten en tiempo real a una plataforma en la nube basada en internet de las cosas (IoT, por sus siglas en inglés) para su análisis y alerta temprana.
Número Elementos de control Indicadores de alerta Método de adquisición
1 Análisis del modelo de vehículo Identificación de carga nominal (nº de ejes, longitud) Videovigilancia
2 Análisis del flujo de tráfico Autopista de 4 carriles (ADT 2 500-55 000 vehículos) Videovigilancia; captura de video
3 Análisis de sobrepeso Límite de 49 toneladas (se detectaron 82.5; 110 ton) Control dinámico de pesaje
4 Análisis de exceso de velocidad Límite de 80 km/h Control de flujo con exceso de velocidad
5 Control de temperatura ambiental Intervalo de control: -15 ~ 39 °C Sensor de fibra óptica de temperatura
6 Control de humedad ambiental 6,5 % ~ 98 % (torre principal); prevenir corrosión Sensor de fibra óptica de humedad
7 Control de carga de viento Velocidad del viento < 25,8 m/s Anemómetro
8  Control de carga sísmica E1 < 0,20g Instrumento de medición de movimiento del suelo
9  Control de respuesta estructural Frecuencia natural inferior al valor teórico calculado Equipo de monitorización de fibra óptica

3.2. Análisis de los datos de monitorización en tiempo real (abril-julio).

  • Cargas de tráfico: se observó un crecimiento mensual significativo en el volumen total de tráfico, en el número de vehículos con sobrepeso y en el de vehículos que circulaban a exceso de velocidad. El tráfico medio diario osciló entre 7319 y 14 431 vehículos, con picos en junio y julio.
  • Respuesta estructural (deformación): la respuesta de deformación bajo cargas de vehículos mostró una distribución de picos múltiples. El análisis identificó que dicha respuesta se concentraba en la sección de 3.50 L a 5.50 L del lado oeste.
  • Acoplamiento temperatura-deflexión: se halló una fuerte correlación positiva entre la temperatura ambiental y la deflexión de la viga principal (R² = 0,6953). La deflexión máxima registrada fue de 628,9 mm. El análisis identificó las zonas de la viga principal en las que la influencia de la temperatura sobre la deflexión era más marcada.

3.3. Acoplamiento y análisis mediante el modelo de elementos finitos (MEF).

Se creó un modelo 3D del LZYB en Abaqus/CAE 2021 para simular su comportamiento bajo cargas de diseño. Los resultados de la simulación fueron los siguientes:

  • Energía: la energía máxima se concentró en la losa de fondo de la viga principal, entre los vanos 2 y 3.
  • Deformación: la máxima deformación (0,004813 µε) se observó en la parte media de los cables atirantados.
  • Tensión: La tensión máxima (991,175 MPa) se localizó también en los cables atirantados, concretamente en el cable 3-1.
  • Desplazamiento: El desplazamiento vertical máximo calculado fue de 0,002267 metros en el centro del vano principal (sección 6L/12 de la viga).

4. Discusión: optimización y evaluación de la sostenibilidad.

La comparación entre los datos de supervisión en tiempo real y los resultados del FEM sirvió de base para optimizar el diseño.

4.1. Redundancia estructural identificada.

El análisis comparativo reveló una discrepancia significativa: la deflexión vertical global del puente durante su funcionamiento (entre 0,0021 y 0,5944 m) representaba entre el 26,50 % y el 33,90 % del valor máximo predicho por el modelo FEM con cargas de diseño (hasta 2,2434 m). Este hecho indica que el diseño estructural es significativamente conservador o «redundante».

4.2. Optimización del diseño de la viga principal.

Aprovechando la redundancia identificada, se llevó a cabo un proceso de optimización del diseño acoplado de la viga principal. Se analizó el impacto de reducir el volumen de hormigón de la viga de forma iterativa.

Resultado de la optimización: se determinó que era posible reducir el volumen de hormigón de la losa de fondo de la viga principal en un 15 % (es decir, reducir su espesor a 70 mm) sin comprometer el cumplimiento de los requisitos de rendimiento bajo las cargas de diseño originales.

4.3. Evaluación del ciclo de vida (LCA) y de los beneficios.

Se realizó una evaluación del ciclo de vida (LCA) para cuantificar los beneficios ambientales y económicos del diseño optimizado.

Beneficios ambientales y económicos: la reducción del 15 % del hormigón utilizado en la viga principal se traduce en un ahorro significativo a lo largo de todo el ciclo de vida del proyecto.

Indicador de evaluación Reducción
Calentamiento global (GWP100a) 2009,65 toneladas de CO2 eq.
Acidificación (AP) 8,86 toneladas de SO2 eq.
Eutrofización (FEP) 7,12 toneladas de PO4 eq.
Polvo en suspensión (PMFP) 79,63 toneladas
Ahorro económico (coste de material) 2 694 189,55 CNY

5. Conclusiones y hallazgos clave

La investigación demuestra con éxito la viabilidad de un sistema inteligente de supervisión en la nube, acoplado a un modelado FEM, para analizar la seguridad y optimizar el diseño de puentes de gran envergadura.

Resultados clave:

  1. Fallo de cables: el fallo de los cables es un factor crítico para la estabilidad de los puentes atirantados y debe ser un objetivo principal del seguimiento.
  2. Ubicación de la tensión máxima: la tensión más alta se concentra en los cables más largos (en este caso, el cable n.º 10), específicamente en la zona situada a menos de 2 metros de la parte superior de la torre principal.
  3. Diseño del sistema de monitorización subóptimo: el diseño actual de los puntos de control resulta ineficiente. No hay sensores en la parte superior de la torre, donde la tensión es máxima, mientras que hay demasiados en la viga principal.
  4. Enfoque del mantenimiento: el mantenimiento rutinario de los cables atirantados debe centrarse en las zonas de conexión de la parte superior de la torre y de la viga principal.

Innovación y limitaciones: La principal innovación del estudio consiste en aplicar de manera sistemática datos medidos y el modelado FEM 3D para resolver problemas de seguridad y optimización en puentes complejos. Esto ofrece un ejemplo práctico de supervisión en tiempo real y de análisis de la solidez de los datos. Una limitación reconocida es la falta de un estudio en profundidad sobre los efectos destructivos de las sobrecargas de peso y de velocidad, lo que sugiere una línea de investigación para el futuro.

Referencia:

ZHOU, Z.; ZHAO, Z.; ALCALÁ, J.; YEPES, V. (2025). Intelligent operation monitoring and finite element coupled identification of hyperstatic structures. Results in Engineering, 27, 106990. DOI:10.1016/j.rineng.2025.106990

Os dejo una conversación en la que podéis escuchar las ideas más interesantes de este trabajo.

En este vídeo se resumen las ideas más importantes.

Os he dejado una presentación que resume también lo más importante.

Pincha aquí para descargar

Os dejo el artículo completo, ya que está publicado en formato abierto.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización multiobjetivo de pasarelas mixtas: un equilibrio entre sostenibilidad y protección frente al fuego

Acaban de publicar un artículo nuestro en Structural Engineering and Mechanicsuna de las revistas de referencia del JCR. Este trabajo sintetiza los resultados de un estudio en el que se presenta un marco de optimización multiobjetivo innovador para el diseño de pasarelas peatonales con estructuras mixtas de acero y hormigón.

La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo y de la información contextual.

El objetivo principal de esta investigación ha sido equilibrar la eficiencia económica y medioambiental con la seguridad estructural y el confort del usuario, integrando de manera única la resiliencia ante incendios. A diferencia de investigaciones previas, este trabajo incorpora seis escenarios distintos de exposición al fuego, desde 320 hasta 720 segundos, para evaluar el rendimiento de la estructura en condiciones extremas.

Los resultados revelan una relación directa y lineal entre el coste y las emisiones de CO₂, lo que demuestra que por cada dólar estadounidense (1 USD) ahorrado en el coste por metro de la estructura, se reduce la emisión de 0,7727 kg de CO₂. Este descubrimiento posiciona la optimización de costes como una estrategia que favorece la sostenibilidad económica y medioambiental.

Un descubrimiento clave es que se pueden lograr mejoras sustanciales en la seguridad contra incendios con inversiones moderadas. Un aumento del 23 % en el coste permite que la estructura resista casi 8 minutos (460 segundos) de exposición al fuego antes de colapsar, mientras que incrementos menores, del 3,91 % y 15,06 %, aseguran la estabilidad durante 320 y 400 segundos, respectivamente. El estudio también pone de manifiesto un cambio fundamental en la configuración del diseño óptimo: mientras que los diseños esbeltos son más eficientes en términos de coste y emisiones en condiciones normales, las configuraciones más compactas son necesarias para garantizar la seguridad en caso de exposición prolongada al fuego. Estos resultados ofrecen directrices prácticas para el desarrollo de infraestructuras urbanas más seguras, resilientes y sostenibles.

1. Marco de optimización multiobjetivo.

El estudio aborda una brecha crítica en ingeniería estructural: la falta de investigaciones que apliquen métodos de optimización a infraestructuras reales, integrando simultáneamente criterios de sostenibilidad (económicos, medioambientales y sociales) y de seguridad, especialmente en condiciones extremas, como la exposición al fuego.

1.1. Metodología aplicada

El análisis se centra en una pasarela peatonal de estructura mixta de acero y hormigón, con una luz de 17,5 metros, ubicada en el sur de Brasil. Con el fin de hallar las soluciones óptimas, se empleó un algoritmo de Búsqueda de Armonía Multiobjetivo (MOHS, por sus siglas en inglés), desarrollado a medida en Python. El proceso de optimización busca minimizar simultáneamente tres funciones objetivo:

  • Coste: coste de los materiales necesarios para construir la estructura, basado en los precios del mercado brasileño.
  • Emisiones de CO₂: el impacto ambiental, medido por las emisiones de CO₂ asociadas a la producción de los materiales, para lo que se han utilizado indicadores específicos de la región objeto de estudio.
  • Aceleración vertical máxima: medida del confort de los peatones, calculada a partir de las vibraciones inducidas por su movimiento.

El modelo tiene en cuenta ocho variables de diseño discretas, como el espesor de la losa de hormigón y las dimensiones de las vigas de acero, lo que da como resultado un espacio de búsqueda de 7×10¹¹ soluciones posibles.

Ilustración de la pasarela mixta

1.2. Escenarios de exposición al fuego.

Una de las innovaciones centrales del estudio es incorporar la resiliencia al fuego en el proceso de optimización. Se ha simulado un escenario de incendio de un vehículo debajo de una pasarela utilizando una curva tiempo-temperatura específica, desarrollada a partir de pruebas experimentales realizadas en puentes no confinados. Además de la condición a temperatura ambiente (0 segundos), se analizaron seis periodos de exposición al fuego que provocaron una degradación significativa de las propiedades mecánicas del acero.

Periodo de exposición al fuego (s) Temperatura del acero (°C) Factor de reducción (límite elástico) Factor de reducción (módulo de elasticidad)
0 20 1,00 1,00
320 200 1,00 0,90
400 300 1,00 0,80
460 400 1,00 0,70
510 500 0,78 0,60
560 600 0,47 0,31
720 700 0,23 0,13

2. Hallazgos clave y análisis de resultados.

El proceso de optimización generó un frente de Pareto tridimensional que muestra los equilibrios entre coste, emisiones y confort en los distintos escenarios de incendio.

2.1. Relación lineal entre el coste y las emisiones de CO₂.

Se identificó una relación directa y consistente entre el coste de fabricación y las emisiones de CO₂ en todos los escenarios analizados. Los datos demuestran que cada real brasileño (R$) ahorrado mediante la optimización equivale a una reducción de 0,1358 kg de CO₂. Convertido a dólares estadounidenses, esto equivale a una reducción de 0,7727 kg de CO₂ por cada dólar estadounidense ahorrado por metro de pasarela.

Esta correlación confirma que la optimización económica es una herramienta eficaz para promover la sostenibilidad medioambiental, especialmente en regiones que necesitan desarrollar infraestructuras sin sacrificar la eficiencia económica.

2.2. Intercambio entre la resistencia al fuego y el coste.

Como era de esperar, aumentar la resistencia de la estructura al fuego implica un mayor coste y, por tanto, más emisiones. Sin embargo, el estudio demuestra que es posible lograr mejoras significativas en la seguridad con incrementos de coste relativamente bajos o moderados.

  • Un incremento del 3,91 % en el coste permite que la estructura resista durante 320 segundos (5 minutos) de fuego.
  • Un incremento del 15,06 % extiende la resistencia a 400 segundos (6,5 minutos).
  • Un incremento moderado del 23 % evita el colapso durante casi ocho minutos (460 segundos), lo que proporciona un tiempo valioso para la evacuación.
  • Diseñar para resistir un incendio de 12 minutos (720 segundos) incrementa el coste en más del 400 %, por lo que resulta inviable en la mayoría de los casos.

2.3. Impacto en el confort de los peatones.

Los objetivos de coste y confort son conflictivos: un mayor confort (menor aceleración vertical) exige una mayor rigidez estructural, lo que se traduce en un mayor consumo de materiales.

  • Pasar de un nivel de confort «mínimo» a «medio» implica un aumento del coste promedio del 44 %.
  • Mejorar el nivel de confort de «medio» a «máximo» solo requiere un aumento promedio del 6 % en el coste, lo que sugiere que es una inversión factible en la mayoría de los escenarios.
  • La excepción es el escenario de 12 minutos de fuego, en el que alcanzar el nivel de confort «máximo» supone un 68 % más que el «medio», debido a la grave degradación del rendimiento del acero.

3. Implicaciones prácticas y configuraciones óptimas de diseño.

El análisis de las variables de diseño de las soluciones óptimas revela patrones claros y ofrece implicaciones prácticas para la ingeniería.

3.1. Evolución del diseño en función de la exposición al fuego.

La configuración geométrica óptima de la pasarela varía drásticamente según el tiempo de exposición al fuego considerado.

  • En ausencia de fuego o con una exposición breve, la solución más eficiente es un diseño de alta esbeltez, con vigas de acero altas y delgadas que se acercan a los límites normativos. Así se minimiza el consumo de material, lo que reduce costes y emisiones.
  • Con una exposición prolongada al fuego (es decir, superior a 510 segundos), la solución óptima se desplaza hacia configuraciones más compactas y menos esbeltas. Se observa un aumento considerable del espesor del alma y de las alas de las vigas de acero.

Este cambio se debe a que, a altas temperaturas, el límite de esbeltez (que depende del módulo de elasticidad y del límite elástico del acero) disminuye considerablemente. En los escenarios más extremos, el límite de esbeltez deja de ser una restricción activa y el algoritmo prioriza la robustez geométrica para cumplir con otros requisitos de diseño.

Periodo de exposición (s) Esbeltez óptima / Límite de esbeltez
0 99,17 %
460 99,54 %
560 68,45 %
720 46,98 %

3.2. Estrategias de materiales.

  • Preferencia por el acero: el estudio revela que, para aumentar la seguridad contra incendios, es más rentable y sostenible incrementar el consumo de acero (a pesar de la degradación de sus propiedades) que aumentar la rigidez mediante una losa de hormigón más gruesa.
  • Interacción total: en todas las soluciones óptimas de menor coste, el grado de interacción entre la viga de acero y la losa de hormigón es del 100 % (α = 1,0), lo que indica que el comportamiento compuesto completo es la opción más eficiente.

4. Conclusiones principales

El estudio presenta un marco sólido para el diseño de pasarelas mixtas de acero y hormigón y demuestra que es posible equilibrar sostenibilidad, economía y seguridad. Las conclusiones más relevantes son las siguientes:

  • Sostenibilidad y coste vinculados: existe una relación lineal y cuantificable entre la reducción de costes y la disminución de las emisiones de CO₂, por lo que la optimización económica puede utilizarse como herramienta para la sostenibilidad ambiental.
  • Seguridad contra incendios asequible: es posible mejorar significativamente la seguridad de una pasarela ante un incendio con incrementos de coste moderados y económicamente viables.
  • El diseño se adapta al riesgo: la configuración óptima de una estructura no es universal; los diseños esbeltos son ideales para condiciones normales, pero las configuraciones compactas son cruciales para la resiliencia en escenarios de incendio prolongados.
  • Implicaciones para el diseño: los resultados subrayan la importancia de incorporar escenarios de riesgo extremo en las primeras fases del diseño estructural para crear infraestructuras más seguras y resilientes sin comprometer desproporcionadamente los recursos.

Estas conclusiones se aplican únicamente a la tipología de estructura y al escenario de incendio estudiados, así como a los costes y a los factores de emisión regionales. Por tanto, se requieren más investigaciones para validar y extender estos resultados a otros contextos.

Referencia:

TRES JUNIOR, F.L.; DE MEDEIROS, G.F.; KRIPKA, M.; YEPES, V. (2025). Designing for Safety and Sustainability: Optimization of Fire-Exposed Steel-Concrete Composite Footbridges. Structural Engineering and Mechanics, 96 (4):337-350. DOI:10.12989/sem.2025.96.4.337

En esta conversación puedes escuchar información interesante sobre este tema.

En este vídeo se resumen las ideas más importantes de esta investigación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Un nuevo enfoque para mejorar el diseño sostenible de cimentaciones tipo losa

Acaban de publicar nuestro artículo en la revista Environmental Impact Assessment Review (primer cuartil del JCR), en el que se propone un método directo y más riguroso para calcular el módulo de balasto en losas de cimentación, que incorpora un nuevo enfoque de seguridad y criterios de sostenibilidad para mejorar el diseño suelo-estructura.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València.

En las últimas décadas, el diseño de cimentaciones ha evolucionado hacia soluciones más seguras, eficientes y sostenibles. Sin embargo, el módulo de balasto vertical (Ks), uno de los parámetros más utilizados en la modelización del contacto suelo-estructura, sigue empleándose en muchos proyectos como si se tratara de una propiedad intrínseca del terreno. El artículo analizado sugiere un cambio de paradigma en esta práctica, al introducir un método directo para estimar Ks a partir de la relación carga-asentamiento, así como un nuevo marco de seguridad orientado al diseño sostenible. Esta aportación es especialmente relevante en el caso de las cimentaciones tipo losa, habituales en edificios y estructuras industriales.

El estudio parte de una cuestión fundamental: ¿cómo se puede estimar de forma rigurosa el módulo de balasto vertical (Ks) en losas de cimentación, considerando parámetros geotécnicos habitualmente ignorados y, al mismo tiempo, integrando criterios de sostenibilidad y seguridad en el diseño?

Esta cuestión surge de las deficiencias detectadas en los métodos indirectos y semidirectos que se emplean comúnmente, ya que no consideran aspectos clave como la profundidad de la influencia o los efectos de compensación de cargas.

Los autores desarrollan una metodología directa que combina varias herramientas avanzadas de análisis geotécnico:

  • Teoría del semiespacio elástico para representar el comportamiento del terreno.

  • Análisis de asientos por capas, con el fin de capturar la variabilidad en profundidad.

  • Mecánica de consolidación basada en ensayos edométricos, que permite incorporar la respuesta deformacional del suelo bajo carga.

  • Consideración explícita de la profundidad de la influencia y de la compensación de cargas, factores que rara vez se incluyen en los métodos tradicionales.

Con este planteamiento, se obtiene directamente un valor de Ks coherente con los principios de la energía elástica y adecuado para modelos avanzados de interacción suelo-estructura. El valor resultante, 5,30 MN/m³, se sitúa entre los límites inferiores y superiores calculados, lo que confirma la consistencia del método.

El estudio no se limita al aspecto puramente geotécnico, sino que también integra una evaluación de la sostenibilidad del ciclo de vida de tres alternativas de losa de hormigón armado. Para ello, combina un proceso jerárquico analítico neutrosófico (NAHP-G) con el método de decisión multicriterio ELECTRE III, considerando dimensiones estructurales, ambientales y socioeconómicas.

Además, se introduce un coeficiente de seguridad específico para Ks, calibrado para considerar la variabilidad espacial del subsuelo y mejorar el diseño en términos de servicio.

Los resultados del trabajo son especialmente significativos:

  • El método directo permite obtener un Ks más representativo del comportamiento real del terreno y de la losa bajo carga.

  • El nuevo coeficiente de seguridad proporciona un diseño más fiable y coherente con la incertidumbre del subsuelo.

  • Se logra una mejora de 2,5 veces en el índice de seguridad social y una reducción del 50 % en los impactos ambientales respecto a metodologías convencionales.

  • El estudio redefine Ks como una variable de diseño, no como una constante del suelo, corrigiendo así décadas de uso inapropiado en la ingeniería geotécnica.

Las conclusiones del artículo tienen un impacto directo en la práctica profesional:

  1. Mejora del diseño de losas: el método permite ajustar mejor los modelos numéricos y evitar tanto el sobredimensionamiento como los fallos por asientos excesivos.

  2. Integración de la sostenibilidad en fases tempranas del proyecto: el marco NAHP-G + ELECTRE IS proporciona una herramienta objetiva para comparar alternativas de cimentación no solo por criterios técnicos, sino también por criterios ambientales y sociales.

  3. Mayor seguridad y fiabilidad: el nuevo coeficiente de seguridad para Ks ayuda a gestionar la incertidumbre y aumenta los márgenes de seguridad de forma cuantificada.

  4. Aplicación en proyectos con elevada heterogeneidad del terreno: el enfoque resulta especialmente útil en suelos con variabilidad marcada, donde los métodos simplificados generan resultados poco fiables.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; MORENO-SERRANO, J.F.; NAVARRO, I.J.; YEPES, V. (2026). Innovative safety framework and direct load–settlement method to optimize vertical subgrade modulus in sustainable mat foundations. Environmental Impact Assessment Review, 118, 108191. DOI:10.1016/j.eiar.2025.108191

Os dejo el artículo completo para su descarga, ya que está publicado en abierto.

Pincha aquí para descargar

 

Europa premia a la UPV por revolucionar el diseño estructural con Inteligencia Artificial

La Universitat Politècnica de València (UPV) ha obtenido un reconocimiento destacado europeo al ganar el premio al mejor proyecto en la categoría «AI for Sustainable Development» de la European Universities Competition on Artificial Intelligence, organizada por la HAW Hamburg.

El trabajo galardonado, desarrollado en el ICITECH por el doctorando Iván Negrín, demuestra cómo la inteligencia artificial puede transformar el diseño estructural para hacerlo más sostenible y resiliente, con reducciones de hasta un 32 % en la huella de carbono respecto a los sistemas convencionales. Este logro posiciona a la UPV como un referente europeo en innovación ética e impacto y reafirma su compromiso con la búsqueda de soluciones frente al cambio climático y al desarrollo insostenible.

El trabajo se enmarca en el proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. La tesis doctoral de Iván la dirigen los profesores Víctor Yepes y Moacir Kripka.

Introducción: El dilema de la construcción moderna.

La industria de la construcción se enfrenta a un reto monumental: edificar las ciudades del futuro sin agotar los recursos del presente. El enorme impacto medioambiental de los materiales y procesos tradicionales, especialmente las emisiones de CO₂, es uno de los problemas más acuciantes de nuestra era.

¿Y si la solución a este problema no radicara en un nuevo material milagroso, sino en una nueva forma de pensar? ¿Y si la inteligencia artificial (IA) pudiera enseñarnos a construir de manera mucho más eficiente y segura?

Esa es precisamente la hazaña que ha logrado un innovador proyecto de la Universitat Politècnica de València (UPV). Su enfoque es tan revolucionario que acaba de ganar un prestigioso premio europeo, lo que demuestra que la IA ya no es una promesa, sino una herramienta tangible para la ingeniería sostenible.

Clave 1: una innovación europea premiada al más alto nivel.

Este no es un proyecto académico cualquiera. La investigación, dirigida por el doctorando Iván Negrín del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) de la UPV, ha recibido el máximo reconocimiento continental.

Inicialmente seleccionado como uno de los diez finalistas, el proyecto tuvo que defenderse en una presentación final ante un jurado de expertos. Tras la deliberación del jurado, el proyecto fue galardonado como el mejor en la categoría «AI for Sustainable Development Projects» de la competición «European Universities Competition on Artificial Intelligence to Promote Sustainable Development and Address Climate Change», organizada por la Universidad de Ciencias Aplicadas de Hamburgo (HAW Hamburg). Este reconocimiento consolida la reputación del proyecto en el ámbito de la innovación europea.

Clave 2: adiós al CO₂: reduce la huella de carbono en más del 30 %.

El resultado más impactante de esta investigación es su capacidad para abordar el principal problema medioambiental del sector de la construcción: las emisiones de carbono. La plataforma de diseño asistido por IA puede reducir la huella de carbono de los edificios de manera significativa.

En concreto, consigue una reducción del 32 % de la huella de carbono en comparación con los sistemas convencionales de hormigón armado, que ya habían sido optimizados. Esta reducción abarca todo el ciclo de vida del edificio, desde la extracción de materiales y la construcción hasta su mantenimiento y su eventual demolición.

En un sector tan difícil de descarbonizar, un avance de esta magnitud, impulsado por un diseño inteligente y no por un nuevo material, supone un cambio de paradigma fundamental para la ingeniería sostenible.

Clave 3: Rompe el mito: más sostenible no significa menos resistente.

Uno de los aspectos más revolucionarios del proyecto es la forma en que resuelve un conflicto histórico en ingeniería: la sostenibilidad frente a la resiliencia. La IA ha superado la barrera que obligaba a elegir entre usar menos material para ser sostenible o más material para ser resistente.

En una primera fase, el modelo optimizó estructuras mixtas de acero y hormigón (denominadas técnicamente RC-THVS) para que fueran altamente sostenibles, aunque con una resiliencia baja. Lejos de detenerse, la IA iteró sobre su propio diseño y, en una evolución posterior (RC-THVS-R), logró una solución altamente sostenible y resiliente frente a eventos extremos.

La metodología desarrollada permite compatibilizar la sostenibilidad y la resiliencia, superando el tradicional conflicto entre ambos objetivos.

Clave 4: Ahorro desde los cimientos. Menos costes, energía y materiales.

Los beneficios de esta IA no solo benefician al planeta, sino también al bolsillo y a la eficiencia del proyecto. La optimización inteligente de las estructuras se traduce en ahorros tangibles y medibles desde las primeras fases de la construcción.

Los datos demuestran un ahorro significativo en múltiples frentes:

  • -16 % de energía incorporada.
  • -6 % de coste económico.
  • – Reducción del 17 % de las cargas transmitidas a columnas y cimentaciones.

Este último punto es clave. Una menor carga en los cimientos no solo supone un ahorro directo de materiales, sino que tiene un efecto cascada en materia de sostenibilidad: al usar menos hormigón, se reduce la cantidad de cemento empleado, uno de los principales generadores de CO₂ a nivel mundial.

Clave 5: un enfoque versátil para las ciudades del futuro (y del presente).

La aplicación de esta metodología no se limita a los grandes edificios de nueva construcción. Su versatilidad la convierte en una herramienta estratégica para el desarrollo urbano integral.

Puede aplicarse a infraestructuras de transporte, como puentes y pasarelas, para minimizar su impacto ambiental. También es fundamental para la rehabilitación de estructuras existentes, ya que permite optimizar su seguridad y reducir las emisiones asociadas a los refuerzos.

Este enfoque se alinea con los Objetivos de Desarrollo Sostenible (ODS) de la ONU, concretamente con los ODS 9 (Industria, innovación e infraestructura), 11 (Ciudades y comunidades sostenibles) y 13 (Acción por el clima).

Conclusión: construyendo un futuro inteligente.

Este proyecto de la UPV demuestra que la inteligencia artificial ha dejado de ser una tecnología futurista para convertirse en una herramienta imprescindible en la ingeniería civil. Ya no se trata de promesas, sino de soluciones prácticas que resuelven problemas reales, medibles y urgentes.

La capacidad de diseñar estructuras más baratas, ecológicas, seguras y resistentes abre un nuevo capítulo en la construcción.

¿Estamos a las puertas de una nueva era en la ingeniería en la que la sostenibilidad y la máxima seguridad ya no son objetivos contrapuestos, sino aliados inseparables gracias a la inteligencia artificial?

En futuros artículos, explicaremos con más detalle el contenido de este proyecto ganador. De momento, os dejo una conversación que lo explica muy bien y un vídeo que resume lo más importante. Espero que os resulte interesante.

Os dejo un documento resumen, por si queréis ampliar la información.

Pincha aquí para descargar

Referencias:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Environmental Life-Cycle Design Optimization of a RC-THVS composite frame for modern building construction. Engineering Structures, 345, 121461. DOI:10.1016/j.engstruct.2025.121461

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Manufacturing cost optimization of welded steel plate I-girders integrating hybrid construction and tapered geometry. International Journal of Advanced Manufacturing Technology, 140, 1601-1624DOI:10.1007/s00170-025-16365-2

NEGRÍN, I.; CHAGOYÉN, E.; KRIPKA, M.; YEPES, V. (2025). An integrated framework for Optimization-based Robust Design to Progressive Collapse of RC skeleton buildings incorporating Soil-Structure Interaction effects. Innovative Infrastructure Solutions, 10:446. DOI:10.1007/s41062-025-02243-z

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Design optimization of a composite typology based on RC columns and THVS girders to reduce economic cost, emissions, and embodied energy of frame building construction. Energy and Buildings, 336:115607. DOI:10.1016/j.enbuild.2025.115607

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Metamodel-assisted design optimization of robust-to-progressive-collapse RC frame buildings considering the impact of floor slabs, infill walls, and SSI implementationEngineering Structures, 325:119487. DOI:10.1016/j.engstruct.2024.119487

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2024). Optimized Transverse-Longitudinal Hybrid Construction for Sustainable Design of Welded Steel Plate Girders. Advances in Civil Engineering, 2024:5561712. DOI:10.1155/2024/5561712.

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Multi-criteria optimization for sustainability-based design of reinforced concrete frame buildingsJournal of Cleaner Production, 425:139115. DOI:10.1016/j.jclepro.2023.139115

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Design optimization of welded steel plate girders configured as a hybrid structure. Journal of Constructional Steel Research, 211:108131. DOI:10.1016/j.jcsr.2023.108131

TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631. DOI:10.1016/j.istruc.2023.04.006

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

5 lecciones sorprendentes de ingeniería avanzada para construir puentes más sostenibles y económicos

Cuando pensamos en la construcción de grandes infraestructuras, como los puentes, a menudo nos viene a la mente una imagen de fuerza bruta: toneladas de hormigón y acero ensambladas con una precisión monumental. Se trata de una proeza de la ingeniería física, un testimonio de la capacidad humana para dominar los materiales y la geografía.

Sin embargo, detrás de esta fachada de poderío industrial se está produciendo una revolución silenciosa. La inteligencia artificial y los modelos computacionales avanzados, que pueden ejecutar el equivalente a décadas de diseño y pruebas de ingeniería en cuestión de horas, están redefiniendo las reglas del juego. Lejos de ser un mero ejercicio teórico, estas herramientas permiten a los ingenieros diseñar puentes que son no solo más resistentes, sino también sorprendentemente más económicos y respetuosos con el medio ambiente.

Las lecciones que siguen se basan en los hallazgos de una tesis doctoral, defendida por la profesora Lorena Yepes Bellver, innovadora en la optimización de puentes. La tesis obtuvo la máxima calificación de sobresaliente «cum laude». Las lecciones demuestran que el futuro de la construcción no radica únicamente en nuevos materiales milagrosos, sino en la aplicación de una inteligencia que permita aprovechar los ya existentes de forma mucho más eficiente.

De izquierda a derecha: Julián Alcalá, Salvador Ivorra, Lorena Yepes, Tatiana García y Antonio Tomás.

1. El pequeño coste de un gran impacto ecológico: pagar un 1 % más para emitir un 2 % menos de CO₂.

Uno de los principales obstáculos para la adopción de prácticas sostenibles ha sido siempre la creencia de que «ser verde» es significativamente más caro. Sin embargo, la investigación en optimización de puentes revela una realidad mucho más alentadora. Gracias a los diseños perfeccionados mediante metamodelos, es posible lograr reducciones significativas de la huella de carbono con un impacto económico mínimo.

El dato clave del estudio es contundente: «Un modesto aumento de los costes de construcción (menos del 1 %) puede reducir sustancialmente las emisiones de CO₂ (más del 2 %)». Este hallazgo demuestra que la sostenibilidad no tiene por qué ser un lujo, sino el resultado de una ingeniería más inteligente.

 

«Esto demuestra que el diseño de puentes sostenibles puede ser económicamente viable».

Esta lección es fundamental, ya que pone fin a una falsa dicotomía entre la economía y la ecología. Demuestra que no es necesario elegir entre un puente asequible y otro respetuoso con el medio ambiente. Gracias a las decisiones de diseño inteligentes, guiadas por la optimización avanzada, es posible alcanzar ambos objetivos simultáneamente, de modo que la sostenibilidad se convierte en una ventaja competitiva y no en una carga.

2. La paradoja de los materiales: añadir más componentes para reducir el consumo global.

La lógica convencional nos diría que, para construir de forma más sostenible, el objetivo debería ser reducir la cantidad total de materiales utilizados. Menos hormigón, menos acero, menos de todo. Sin embargo, uno de los hallazgos más sorprendentes de la tesis es una paradoja que desafía esta idea tan simple.

El diseño óptimo y más sostenible aumenta, de hecho, la cantidad de uno de sus componentes: la armadura pasiva (el acero de refuerzo convencional). A primera vista, esto parece contradictorio: ¿cómo puede ser más ecológico añadir más material?

La explicación se debe a un enfoque sistémico. Este aumento estratégico y calculado del refuerzo pasivo permite reducir considerablemente el consumo de otros dos materiales clave: el hormigón y la armadura activa (el acero de pretensado). La producción de estos materiales, especialmente la del cemento y del acero de alta resistencia, es intensiva en energía y, por tanto, genera numerosas emisiones de CO₂. En esencia, se sacrifica una pequeña cantidad de un material de menor impacto para ahorrar una cantidad mucho mayor de materiales de alto impacto.

Este enfoque, que podría describirse como «sacrificar una pieza para ganar el juego», es un ejemplo perfecto de cómo la optimización avanzada supera las reglas simplistas de reducción. En lugar de aplicar un recorte general, se analiza el sistema en su conjunto y se determina el equilibrio más eficiente. Este equilibrio inteligente de materiales solo es posible si se afina otro factor clave: la geometría de la estructura.

Retos en la optimización de puentes con metamodelos

3. Más esbelto es mejor: el secreto de la «delgadez» estructural para la sostenibilidad.

En el ámbito de la ingeniería de puentes, el concepto de «esbeltez» es fundamental. En términos sencillos, se refiere a la relación entre el canto de la losa y la luz que debe cubrir. Una mayor esbeltez implica un diseño estructural, en palabras comunes, más «delgado» o «fino».

La investigación revela un hallazgo crucial: los diseños que son óptimos tanto en términos de emisiones de CO₂ como de energía incorporada se logran con relaciones de esbeltez altas, concretamente de entre 1/30 y 1/28. En otras palabras, los puentes más sostenibles son también los más delgados y se complementan con hormigones óptimos situados entre 35 y 40 MPa de resistencia característica.

¿Por qué es esto tan beneficioso? Un diseño más esbelto requiere, inherentemente, una menor cantidad de materiales, principalmente de hormigón. Lo realmente notable es cómo se consigue. Los métodos tradicionales suelen basarse en reglas generales y márgenes de seguridad amplios, mientras que la optimización computacional permite a los ingenieros explorar miles, e incluso millones, de variaciones para acercarse al límite físico de la eficiencia sin sacrificar la seguridad. El resultado es una elegancia estructural casi contraintuitiva: puentes que alcanzan su fuerza no a través de la masa bruta, sino mediante una delgadez inteligentemente calculada, donde la sostenibilidad es una consecuencia natural de la eficiencia.

4. La optimización inteligente genera ahorros reales: una reducción de costes de hasta un 6,5 %.

Más allá de los beneficios medioambientales, la aplicación de estas técnicas de optimización tiene un impacto económico directo y medible. El diseño de infraestructuras deja de ser un arte basado únicamente en la experiencia para convertirse en una ciencia precisa que busca la máxima eficiencia económica.

El resultado principal del estudio sobre la optimización de costes es claro: el uso de modelos sustitutos (metamodelos Kriging) guiados por algoritmos heurísticos, como el recocido simulado, logró una reducción de costes del 6,54 % en comparación con un diseño de referencia.

Estos ahorros no son teóricos, sino que provienen directamente de la reducción de materiales. En concreto, se consiguió una disminución del 14,8 % en el uso de hormigón y del 11,25 % en el acero activo (pretensado). Es crucial destacar que estas reducciones se consiguieron sin afectar a la integridad estructural ni a la capacidad de servicio del puente. No se trata de sacrificar la calidad por el precio, sino de diseñar de manera más inteligente. Esta metodología convierte la optimización del diseño en una tarea académica en una herramienta práctica y altamente eficaz para la gestión económica de grandes proyectos de ingeniería civil.

5. No todos los cerebros artificiales piensan igual; la clave está en elegir el modelo computacional adecuado.

Una de las lecciones más importantes de esta investigación es que no basta con aplicar «inteligencia artificial» de forma genérica. El éxito de la optimización depende de elegir la herramienta computacional adecuada para cada tarea específica.

La tesis comparó dos potentes metamodelos: las redes neuronales artificiales (RNA) y los modelos de Kriging. Se descubrió una diferencia crucial en su rendimiento: si bien las RNA ofrecían predicciones absolutas más precisas sobre el comportamiento de un diseño concreto, el modelo de Kriging demostró ser mucho más eficaz para identificar los «óptimos locales», es decir, las zonas del mapa de diseño donde se encontraban las mejores soluciones.

Esto revela una capa más profunda de la optimización inteligente. Un modelo puede ser excelente para predecir un resultado (RNA), mientras que otro es más eficaz para guiar la búsqueda del mejor resultado posible (Kriging). No se trata solo de utilizar IA, sino de comprender qué «tipo de pensamiento» artificial es el más adecuado para cada fase del problema: predecir frente a optimizar. La verdadera maestría de la ingeniería moderna consiste en saber elegir las herramientas adecuadas para cada fase del problema.

Conclusión: la nueva frontera del diseño de infraestructuras.

La construcción de nuestras infraestructuras entra en una nueva era. La combinación de la ingeniería estructural clásica con el poder de los modelos computacionales avanzados, como el metamodelado Kriging y las redes neuronales artificiales, está abriendo una nueva frontera en la que la eficiencia y la sostenibilidad no son objetivos opcionales, sino resultados intrínsecos de un buen diseño.

Como hemos visto, los grandes avances no siempre provienen de materiales revolucionarios. A menudo, los «secretos» mejor guardados residen en la optimización inteligente de los diseños y materiales que ya conocemos. Obtener un mayor beneficio ecológico pagando menos, utilizar estratégicamente más de un material para reducir el consumo global o diseñar estructuras más esbeltas y elegantes son lecciones que van más allá de la construcción de puentes.

Nos dejan con una pregunta final que invita a la reflexión: si podemos lograr esto con los puentes, ¿qué otras áreas de la construcción y la industria están esperando a ser reinventadas por el poder de la optimización inteligente?

Os dejo un audio en el que se discuten las ideas de la tesis doctoral. Espero que os guste.

Y en este vídeo, tenemos resumidas las ideas principales de esta tesis.

Referencias:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Predictive modeling for carbon footprint optimization of prestressed road flyovers. Applied Sciences15(17), 9591. DOI:10.3390/app15179591

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure AlternativesJ. Clean. Prod. 2024450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.;

Lo que los puentes nos enseñan sobre el futuro de la sostenibilidad.

Puente de Brooklyn. https://www.nuevayork.net/puente-brooklyn

Cuando pensamos en un puente, solemos verlo como una maravilla de la ingeniería, un símbolo de conexión y progreso. Es una estructura que nos lleva de un punto a otro, superando un obstáculo. Sin embargo, detrás de esa aparente simplicidad se esconde un desafío monumental: construir un puente que no solo sea funcional y seguro, sino también sostenible.

Esta tarea es mucho más compleja de lo que parece. La sostenibilidad en ingeniería no se reduce a marcar una casilla, sino que implica un complejo proceso de toma de decisiones para conciliar los objetivos a menudo contrapuestos de la economía, el medio ambiente y la sociedad. Esta complejidad es el tema central de un profundo estudio académico titulado A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design, que analiza 77 artículos de investigación publicados a lo largo de 25 años para comprender cómo toman los expertos estas decisiones cruciales.

Este artículo recoge las lecciones más impactantes y, en ocasiones, sorprendentes, de esa exhaustiva investigación. En él descubriremos qué aspectos dominan el debate sobre los puentes sostenibles, qué puntos ciegos persisten y cómo están evolucionando las herramientas para diseñar las infraestructuras del futuro.

Las 5 lecciones más sorprendentes sobre los puentes sostenibles.

El análisis de décadas de investigación revela patrones inesperados y desafíos ocultos en la búsqueda de la infraestructura perfecta. A continuación, exploramos los cinco hallazgos más sorprendentes.

Ecoducto en la Autopista A6 Austria-Eslovaquia. https://blogs.upm.es/puma/2019/01/14/ecoductos-puentes-verdes-para-la-fauna/

Lección 1: «Sostenible» no solo significa «ecológico», sino que es un delicado equilibrio a tres bandas.

La palabra «sostenible» a menudo se asocia exclusivamente con el medio ambiente. Sin embargo, el estudio subraya que la verdadera sostenibilidad se apoya en tres pilares fundamentales: los factores económicos (coste y mantenimiento), los ambientales (emisiones de CO₂ e impacto en el ecosistema) y los sociales (seguridad, impacto en la comunidad y estética).

Estos tres pilares suelen tener objetivos contrapuestos. Un material más barato puede tener un mayor impacto ambiental. Un diseño que minimice las molestias a la comunidad podría ser mucho más costoso. Lograr un consenso entre ellos es un acto de equilibrio complejo. Curiosamente, el estudio revela que los factores sociales son los menos estudiados y comprendidos de los tres. Esta brecha de conocimiento no es solo una curiosidad académica, sino una de las barreras más significativas que nos impiden conseguir infraestructuras que sirvan de verdad a la sociedad a largo plazo.

Lección 2: Nos obsesiona cómo viven los puentes, pero ignoramos cómo mueren.

El ciclo de vida de un puente abarca desde su diseño y construcción hasta su demolición o reciclaje final. El estudio presenta una estadística demoledora sobre en qué fase del ciclo de vida se centra la atención de los investigadores. De los 77 artículos analizados, un abrumador 68,83 % se centra en la fase de «operación y mantenimiento».

En un drástico contraste, solo un minúsculo 2,6 % de los estudios se dedica a la fase final de «demolición o reciclaje». Esta enorme diferencia pone de manifiesto una importante laguna. La investigación sugiere que esto podría deberse a que la fase final se percibe como de «menor impacto general». Sin embargo, a medida que la sostenibilidad se convierte en una preocupación primordial, esta suposición se está poniendo en tela de juicio, lo que nos obliga a considerar el impacto completo de nuestra infraestructura, desde su concepción hasta su eliminación.

Lección 3: La ingeniería de vanguardia a veces necesita lógica «difusa»

Dado que la investigación está tan fuertemente sesgada hacia la fase de mantenimiento, es lógico que las herramientas más populares sean las que mejor se adaptan a sus desafíos únicos. Esto nos lleva a una paradoja fascinante en la ingeniería: en un campo tan preciso, podría parecer contradictorio utilizar un método llamado «lógica difusa» (fuzzy logic). Sin embargo, el estudio la identifica como una de las herramientas más populares, ¿la razón? Muchas decisiones críticas se basan en información cualitativa, incierta o subjetiva.

https://www.linkedin.com/pulse/l%C3%B3gica-difusa-gabriel-mar%C3%ADn-d%C3%ADaz/

Una inspección visual para evaluar el estado de una estructura, por ejemplo, no proporciona un número exacto, sino una apreciación experta que puede contener vaguedad («ligero deterioro», «corrosión moderada»). La lógica difusa permite a los sistemas informáticos procesar esta «incertidumbre o vaguedad» del lenguaje humano y convertirla en datos matemáticos para tomar decisiones más sólidas. Es una fascinante paradoja: utilizar un concepto que suena impreciso para tomar decisiones de ingeniería de alta tecnología con mayor fiabilidad.

Lección 4: Las herramientas que usamos para decidir no son infalibles.

Para tomar decisiones tan complejas, los ingenieros utilizan «métodos de decisión multicriterio» (MCDM). Sin embargo, el estudio advierte de que los métodos tradicionales tienen importantes limitaciones. Imagínese que tiene que elegir un nuevo material para un puente. Esa única elección afecta simultáneamente al coste final, a la durabilidad de la estructura y a su huella de carbono. Estos factores están profundamente interconectados. No obstante, una limitación significativa de las herramientas tradicionales de toma de decisiones es que suelen partir de la poco realista suposición de que estos criterios son independientes entre sí. Ignorar estas interdependencias puede llevar a soluciones subóptimas.

Los métodos tradicionales de toma de decisiones suelen partir de supuestos poco realistas en relación con los problemas del mundo real, como la independencia de los criterios, la agregación lineal o la elección de la mejor alternativa entre un conjunto fijo en lugar de la alternativa que permita alcanzar los niveles de aspiración deseados.

Lección 5: el futuro no consiste en elegir la «mejor» opción, sino en alcanzar la «meta» deseada.

Este último punto supone un cambio de paradigma. Los métodos de decisión tradicionales funcionan como un concurso: se presenta una lista fija de alternativas (puente de acero, de hormigón o mixto) y el método las clasifica para seleccionar la «mejor».

Sin embargo, los nuevos métodos híbridos que están surgiendo proponen un enfoque diferente. En lugar de elegir simplemente una opción de una lista, buscan soluciones que alcancen «niveles de aspiración» o metas predefinidas. Por ejemplo, el objetivo podría ser diseñar un puente que no supere un coste X, no genere más de Y toneladas de CO₂ y tenga una vida útil de Z años. Este cambio de un modelo de «el mejor de la clase» a otro de «cumplir el objetivo» transforma fundamentalmente el desafío de la ingeniería. Transforma la tarea de seleccionar de un catálogo de opciones en inventar activamente nuevas soluciones que puedan satisfacer múltiples objetivos de sostenibilidad, a menudo contradictorios.

Conclusión: un puente hacia el futuro.

El viaje hacia la construcción de puentes verdaderamente sostenibles nos enseña que la ingeniería moderna es mucho más que cálculos y materiales. Se trata de un proceso de toma de decisiones dinámico, lleno de matices, compensaciones y una profunda reflexión sobre el impacto a largo plazo de nuestras creaciones. No se trata de seguir una simple lista de verificación «verde», sino de navegar por una compleja red de factores económicos, sociales y medioambientales en constante tensión.

El camino a seguir, iluminado por esta investigación, está claro. Debemos ampliar nuestra definición de sostenibilidad más allá de lo puramente ecológico para valorar adecuadamente el impacto social. Debemos diseñar para la demolición con la misma seriedad con la que diseñamos para la durabilidad. Además, debemos adoptar herramientas nuevas y más sofisticadas que reflejen la realidad interconectada de estas complejas decisiones. La próxima vez que cruces un puente, ¿solo verás una estructura de acero y hormigón o el resultado de un complejo debate entre economía, sociedad y medio ambiente?

Os dejo este audio donde podéis aprender más sobre el tema.

En este vídeo se resumen las ideas más interesantes de este artículo.

Referencia:

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Vigas de acero: 4 claves de las nuevas estructuras que están revolucionando la construcción.

Figura 1. a) caso básico en 3D; b) sección transversal con algunas variables geométricas; c) viga de canto variable con 4 puntos de transición

Acabamos de publicar un artículo en la revista indexada JCR The International Journal of Advanced Manufacturing Technology (2025), que presenta una metodología de optimización metaheurística para minimizar el coste de fabricación de las vigas I de placa de acero soldada. El estudio se centra en el desarrollo de tipologías más eficientes, como las vigas híbridas transversales de sección variable (THVS), que optimizan simultáneamente la geometría y la distribución del material en los planos transversal y longitudinal. La función objetivo tiene en cuenta no solo el coste de los materiales, sino también siete actividades clave de producción (soldadura, corte, pintura, etc.) y los diseños cumplen las especificaciones del Eurocódigo 3. Los principales resultados indican que la optimización del material es más importante para las vigas de tramos cortos, mientras que la optimización geométrica lo es más para las vigas de tramos largos. En última instancia, el artículo valida el enfoque propuesto mediante un caso de estudio, que demuestra que los elementos THVS pueden reducir los costes hasta en un 70 % en comparación con los diseños tradicionales.

La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo y de la información de contexto.

Como futuro profesional, ¿te has preguntado alguna vez si los perfiles de acero que eliges son realmente la mejor opción? En el diseño estructural, es habitual utilizar perfiles estándar (como los «IPE») por su simplicidad y disponibilidad. Aunque son prácticos, estos perfiles de sección constante a menudo resultan ineficientes, ya que utilizan más material del necesario y generan mayores costes.

El sector de la construcción se enfrenta a una encrucijada: la necesidad de crear estructuras eficientes y la obligación de reducir su enorme consumo de recursos. En este dilema, las vigas de acero son un elemento fundamental. Pero ¿son los diseños tradicionales la opción más eficiente o existen alternativas mejores? Un estudio reciente revela hallazgos sorprendentes que desafían las convenciones del diseño estructural. La respuesta se encuentra en cuatro claves contrarias a la lógica que demuestran cómo optimizar de forma inteligente el material y la geometría puede reducir los costes de fabricación hasta en un 70 %.

1. Material frente a la geometría: la regla inesperada que depende de la distancia.

El primer descubrimiento clave del estudio es que la estrategia óptima para reducir costes depende fundamentalmente de la longitud de la viga (vano). Este hallazgo desafía el enfoque de «talla única» y da lugar a dos conclusiones interesantes:

  • Para vigas cortas (por ejemplo, de 6 metros, una medida habitual en edificios), la optimización del material resulta más eficaz. El uso de aceros de diferentes resistencias para las alas y el alma permite obtener mayores ahorros que con la modificación de la geometría.
  • En el caso de las vigas largas (por ejemplo, de 14 o 20 metros, comunes en puentes), la optimización geométrica se convierte en el factor dominante. La estrategia más decisiva para el ahorro es crear vigas de sección variable.

 

El principio de ingeniería subyacente es el momento flector. En las vigas largas, la diferencia de esfuerzos entre el centro (donde el momento es máximo) y los apoyos (donde el momento es nulo) es considerable. Adaptar el canto de la viga a esta variación permite ahorrar material de manera significativa en las zonas donde no es necesario. En las vigas cortas, el momento flector es más uniforme, por lo que el ahorro de material al variar la geometría es mínimo y no compensa el coste adicional de fabricación (cortes y soldaduras complejas).

2. La campeona del ahorro: la viga híbrida de sección variable (THVS).

La solución más rentable identificada en el estudio es la viga «híbrida transversal con sección variable» (THVS). Este diseño combina de forma inteligente las dos estrategias de optimización:

  1. Estructura híbrida: utiliza acero de alta resistencia para las alas, que, al estar más alejadas del eje neutro, soportan la mayor parte de las tensiones de flexión. Para el alma, que se encarga principalmente de los esfuerzos cortantes, se emplea un acero más económico y de menor resistencia.
  2. Geometría variable: su altura no es constante, sino que se adapta a la distribución de esfuerzos. Es más alta cerca del centro, donde el momento flector es máximo, y disminuye hacia los apoyos.

El dato más impactante del estudio es que los elementos THVS pueden reducir los costes de fabricación hasta un 70 % en comparación con los diseños tradicionales de vigas de acero de canto constante.

3. El coste real no es solo el peso: una mirada a la fabricación.

Uno de los puntos fuertes de la investigación es que se centra en el coste total de fabricación, en lugar de limitarse al peso o al coste del material. El estudio incluyó siete actividades clave de producción en su modelo de costes:

  • Montaje en obra/Izado.
  • Pintura.
  • Soldadura.
  • Granallado.
  • Corte.
  • Aserrado.
  • Transporte.

Este enfoque holístico es crucial, ya que alinea el diseño estructural con la realidad de la producción industrial. Es precisamente este análisis de costes integral el que permite al estudio concluir que, en el caso de las vigas largas, el ahorro de material de una viga THVS compensa con creces la mayor complejidad de fabricación, algo que no revelaría un análisis de peso sencillo.

4. De la teoría a la práctica: una metodología para el diseño.

La investigación no se limita a la teoría, sino que ofrece una metodología de diseño con directrices aplicables para que los ingenieros puedan implementar estas soluciones. El estudio establece parámetros prácticos sobre:

  • Relaciones óptimas entre el canto y la luz de la viga.
  • Ángulos de achaflanado ideales.
  • Posiciones óptimas para las transiciones de sección.
  • Combinaciones de tipos de acero recomendadas.

Conscientes de que la innovación teórica debe enfrentarse a la realidad industrial, los propios autores moderan el optimismo mediante una evaluación pragmática de los próximos pasos.

«Los elementos THVS pueden reducir los costes hasta en un 70 % en comparación con los diseños tradicionales. No obstante, para aprovechar plenamente el potencial de estos diseños, deben abordarse los desafíos relacionados con la disponibilidad de materiales, la complejidad de la fabricación y los riesgos de pandeo local».

Conclusión: ¿Estamos listos para construir de forma diferente?

La idea central es clara: optimizar simultáneamente la geometría y el material de las vigas de acero, especialmente en los diseños THVS, permite ahorrar recursos y dinero de forma sin precedentes. Esta investigación establece una base teórica y una metodología de diseño que abren la puerta a una nueva era de eficiencia estructural. Con ahorros potenciales de hasta el 70 % demostrados, la pregunta para la industria no es si merece la pena, sino cómo superar los desafíos de fabricación, la disponibilidad de materiales y la actualización de normativas para convertir este potencial en una nueva realidad constructiva.

En este vídeo, se resumen las ideas fundamentales de este artículo, explicadas de forma sencilla.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Manufacturing cost optimization of welded steel plate I-girders integrating hybrid construction and tapered geometry. The International Journal of Advanced Manufacturing Technology, 140, 1601-1624DOI:10.1007/s00170-025-16365-2

Os dejo el artículo completo para su descarga, ya que está publicado en abierto.

Pincha aquí para descargar