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A B S T R A C T

The safety, longevity, and healthy operation and maintenance of world-class large bridges are a research hotspot 
that continues to attract attention from academia and industry. In particular, during the sustainable operation 
period of large and statically indeterminate bridges under various loads and complex environmental conditions, 
it is necessary to establish an information-based intelligent structural health monitoring and early warning cloud 
platform system to ensure the safety and economic efficiency of in-service bridges. Through interdisciplinary 
research in computer science, communication engineering, automation control, and engineering mechanics, this 
article established a multi-factor complex modal multi-source theoretical model and applied the real-time early 
warning of bridge monitoring data and the coupling of finite element models to verify the robustness of the 
intelligent cloud model under the influence of multiple factors on statically indeterminate bridges. This work 
solves the technical barriers that traditional technical monitoring cannot achieve continuous real-time, spatio
temporal and remote monitoring of statically indeterminate structures, and realizes an intelligent cloud platform 
model for spatial, direct and automated monitoring, providing scientific and technological guarantees for the 
healthy maintenance of super-large bridges, and providing theoretical scientific support and paradigms for 
saving labour and reducing maintenance costs.

1. Introduction

The structural dynamic response and fatigue damage of existing 
long-span bridges, under normal operations and multi-load interactions, 
are the factors which cause bridge failure. Microscopic cracks inside the 
structure gradually propagate into macroscopic cracks under repetitive 
loading, until the structure undergoes instability, fracturing, cumulative 
fatigue damage and then failure [1]. The fatigue failure of reinforced 
concrete structures comprises three aspects: steel bar fatigue [2]; con
crete fatigue [3]; and fatigue failure at the bonding interface between 
the steel bars and the concrete [4]. In response to these failure mecha
nisms, researchers have introduced models which consider critical 
damage degree, linear cumulative damage theory, machine learning, 
Monte Carlo cross-validation, fatigue life assessment, and 
damage-fracture mechanics, in order to study the lifespan of bridges [5,
6].

A comprehensive analysis of the various failure mechanisms in 

structures aims to explore targeted preventive measures, in order to 
reduce the risk of failure and the damage caused in the structural field. 
Regular inspection and monitoring are essential for assessing the health 
of structures. Continuous monitoring can detect any early warning signs 
before a problem becomes a major incident; it can identify, inspect, and 
maintain hidden dangers in a timely manner [7]. In the early days, 
trained inspectors inspected superficial defects and damage, such as 
fatigue cracks, visually but this method is inaccurate and prone to errors. 
In order to improve accuracy and prevent catastrophic failures, struc
tural health monitoring has attracted the attention of researchers 
because of its low cost and continuous, reliable, and accurate moni
toring. However, the integration of energy-saving wireless sensor plat
forms, to achieve long-term autonomous monitoring, is challenging due 
to the lack of suitable sensors. There is a lack of effective algorithms for 
predicting and diagnosing local fatigue damage [8]. In recent years, 
unlimited intelligent sensors for structural monitoring have received 
much attention, Such as the wireless sensor network design of Mica-Z 

* Corresponding author.
E-mail address: zhizh1@huse.edu.cn (Z. Zhou). 

Contents lists available at ScienceDirect

Results in Engineering

journal homepage: www.sciencedirect.com/journal/results-in-engineering

https://doi.org/10.1016/j.rineng.2025.106990
Received 17 July 2025; Received in revised form 23 August 2025; Accepted 28 August 2025  

Results in Engineering 27 (2025) 106990 

Available online 29 August 2025 
2590-1230/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

https://orcid.org/0000-0001-5040-2145
https://orcid.org/0000-0001-5040-2145
https://orcid.org/0000-0001-5488-6001
https://orcid.org/0000-0001-5488-6001
mailto:zhizh1@huse.edu.cn
www.sciencedirect.com/science/journal/25901230
https://www.sciencedirect.com/journal/results-in-engineering
https://doi.org/10.1016/j.rineng.2025.106990
https://doi.org/10.1016/j.rineng.2025.106990
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rineng.2025.106990&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


motes [9]. The use of the wireless intelligent sensor framework proposed 
by iMote2 and the Xnode sensor trigger sensing platform [10] have 
achieved robust, efficient, and effective monitoring. One disadvantage is 
that point-type and distributed one-dimensional sensors are difficult to 
monitor under extreme strain requirements because of their small size 
limitations and limited ductility [11]. In structural health monitoring, 
there are two main algorithms: model-based methods and data-driven 
methods. The former uses an accurate finite element model, which is a 
time-consuming method [12]. The latter monitors and analyses 
continuous time series data, transmits wireless networks with low data 
transmission rates, and extracts and compresses data through 
high-performance sensor nodes [13]. This work takes the advantages of 
these two methods and combines them with innovative high-efficiency 
algorithms to advancing research into continuous health monitoring.

For extra-large bridge projects, it is necessary to take effective 
measures, such as health monitoring, early warnings, and status as
sessments during their normal service life, to control structural damage 
and predict potential hazards [14]. Advanced health monitoring systems 
can be used to realise data analysis and processing, structural health 
diagnosis, and intelligent monitoring, to ensure the safety, durability, 
and normal functioning of bridges over their operational lifespan [15]. 
Researchers have implemented a dynamic, continuous, real-time online 
structural safety monitoring model by using electronic, spatial orienta
tion, automation, and remote communication technologies, combined 
with big IoT data. Structural health monitoring systems mainly consist 
of three stages: data acquisition (sensing, regulation, and processing), 
data communication and storage, and health assessment (the imple
mentation of data diagnosis algorithms and information management) 
[16]. A health monitoring system for a bridge comprises: 

• Monitoring of the surrounding environment of the bridge to deter
mine environmental loads.

• Monitoring of the operational loading of the bridge to determine any 
overloading by vehicle traffic, as well as the operational loading 
model.

• Monitoring of the static and dynamic characteristics of the structure.
• Monitoring of the static and dynamic responses of the structure to 

determine the geometric deformation, stress distribution, fatigue 
state, and cable forces of the structure.

Yong Binbin et al. [17] developed a 3D visualisation system, which 
realised functions regarding model importing, 3D displays, free rotation 
and scaling, multi-angle sectioning, real-time monitoring point obser
vations, the display of calculation results, and deformation effect sim
ulations, etc. Yuan Luo et al. [18] investigated the probability of fatigue 
damage in pre-stressed concrete bridges under random traffic loads and 
corrosive conditions, simulating the fatigue stress state by establishing a 
three-stage traffic growth model.

Traditional stress spectrum monitoring and analysis methods are 
selected according to the design specifications or finite element simu
lation, which cannot truly reflect the load excitation response of the 
structure during its service life. Rather, it only collects and accumulates 
a large amount of environmental excitation information and structural 
monitoring responses through the original health monitoring sensing 
equipment over a long time period, realising the data source analysis of 
the fatigue stress spectrum [19]. Al-Ali et al. [13–20] proposed an 
IoT-based intelligent road and bridge health monitoring and early 
warning system, which strengthened the safety and management control 
of existing bridges through a low-cost autonomous monitoring system. 
The intelligent health monitoring system, combined with digital twin 
technology, is used to collect more accurate data through a cloud plat
form by using video-based digital models based on image scanning. In 
particular, the configuration of innovative and advanced fibre Bragg 
grating sensors can achieve a highly sensitive integrated early warning 
information system for bridges [21].

Based on established road and bridge health monitoring and the 

early warning systems and published research in this field (Fig. 2), 
studies have mainly focused on the exploration of stiffness loss during 
short-term (temporary field observation) assessments of bridge health 
status and the influence of temperature-related structural deformations 
over different time intervals, as well as fatigue, corrosion, erosion, vi
bration, and other factors. At present, advanced methods and moni
toring technologies are seldom used for carrying out long-term, 
effective, and continuous intelligent early warning monitoring work 
[22]. This is particularly true for statically indeterminate large-span 
structures because of their complexity, interference from uncertain 
influencing factors, and long-term fatigue damage in natural environ
ments. It is even more necessary to explore the problem of structural 
fatigue damage under the interaction of multiple factors by combining 
the measured data of the long-term intelligent health monitoring system 
with the coupling optimisation of the multi-scale finite element model 
[23] (Fig. 2).

The innovation points of this article are (Fig. 1): 

• The analysis is completed by using multiple interdisciplinary cross- 
studies regarding computer science, communication engineering, 
automation control, engineering mechanics, and economics. Estab
lishing complex multi-factor and multi-source modal theory: used to 
analyze the impact of multiple factors on statically determinate 
bridge structures, and to complete early warning monitoring on the 
intelligent cloud platform, providing a paradigm for structural safety 
monitoring during the operation of the existing floating system.

• IoT-based real-time automated online monitoring is adopted for the 
bridge, which solves the problem that traditional technology moni
toring cannot, achieving continuous spatiotemporal monitoring and 
large-scale and long-distance monitoring of the structures. Our study 
realises the transformation of infrastructure health monitoring from 
a "point-based, indirect, curve-fitting" to a "spatial, direct, continuous 
monitoring" mode, through the comprehensive functions of auto
matic collection, transmission, processing and analysis of monitoring 
data and automatic early warnings, providing a technical guarantee 
for intelligent health operations.

• This article provides an effective control and early warning system 
model for multiple damage behaviour such ascracking, deformation, 
aging, damage, and the dynamic vibration of statically indeterminate 
structures. We clearly present the feasibility of the structure, in terms 
of integrity, safety, durability, and strength controllability, providing 
a theoretical basis and case study data for the long-term maintenance 
and warranty of complex structures.

The article is divided into five sections: Section 1 introduces the 
current status and shortcomings of research in this field through a 
literature review; Section 2 describes the theoretical model and research 
methods; Section 3 presents the advanced intelligent monitoring and 
finite element coupling analysis of statically indeterminate structures; 
Section 4 discusses the monitoring data anomalies and the comparative 
coupling optimisation of the established finite element model; and 
Section 5 summarises the innovation points and scientific contributions 
of this article to the field, including a discussion of the shortcomings of 
this article.

2. Methodology

The theoretical model and intelligent monitoring system described in 
this article is divided into seven sections. In the intelligent monitoring 
system, the algorithm developed through the cloud platform continues 
to automate data recognition and optimise capture (Fig. 3).

2.1. Structural fatigue damage

Under repetitive loading, microscopic cracks gradually propagate 
into macroscopic cracks until the crack propagation becomes unstable. 
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Fig. 1. Intelligent bridge health monitoring system.

Fig. 2. Investigation and analysis of the current research status and existing problems in this field [19–31].
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The nonlinear cumulative fatigue damage model of a structure is [24]: 

D = 1 −

{

1 −
(α + 1)Nb1

B(β + 3)
×
∑mrb

i=1
[(αai + 2σmi) × σai]

β + 3
2

} 1
(α+1)

(1) 

Where D is the damage index; B, α and β are material constants; Nb1 is 
the current number of block cycles; i is the number of cycles; σai is the 
stress amplitude; and αmi is the average stress of the ith cycle (Pa).

During the calculation of the cumulative fatigue damage of struc
tures under the influence of overloaded traffic, it is necessary to consider 
the proportion of overloaded vehicles (by axle-weight and gross-weight) 
in the vehicle traffic, as shown in Eq. (2) [32]: 

Dcum(t) = Navg × t ×

(

rAL ×
∑t

i

ni × Sm
i

A
+ rGW ×

∑t

j

nj × Sm
j

A

)

(2) 

Where Navg is the average annual truck traffic on the bridge (vehi
cles/year); t is the service time (year); rAL and rGW are the proportion of 
axle-weight overloaded trucks in overloaded vehicle traffic and the 
proportion of gross-weight overloaded vehicles (%); ni and nj are the 
number of stress cycles generated; and Si and Sj are the bridge stress 
amplitudes caused by axle-weight and gross-weight overloaded vehicles 
(Pa).

The bridge fatigue damage function is: 

g(X) = Dcrit − Navg × t ×

(

rAL ×
∑t

i

ni × Sm
i

A
+ rgw ×

∑t

j

nj × Sm
j

A

)

(3) 

Where g(X) < 0 is the probability of fatigue failure; m is the slope of 
the S - N curve; A is the fatigue constant; and Dcrit is the critical fatigue 
damage.

Research has shown that, when the number of fatigue loading cycles 
increases, the modulus of elasticity of concrete continuously degrades, 
and the calculation of the residual fatigue strain is [33,34]: 

Δεr(N) = Δεr(1) +
k1 × εk2

max × (1 − εmin/εmax)
k3

εk5
k

Nk4 (4) 

Where Δεr(N) is the residual fatigue strain after N cycles of fatigue 
loads k1, k2, k3, k4, and k5; εmax and εmin are the initial instantaneous 
strains under the upper and lower fatigue load limits; and εk is the co
efficient of the residual strain in the concrete, developed to the third 
stage (i.e. a rapid decrease of the modulus of elasticity until fatigue 
failure).

Assuming that there are n groups of statically indeterminate struc
tural components, the residual strain is: εZ =

∑n
i=1 Δεr(N). The 

component satisfies the damage model and elastic-plastic model under 
the influence of uncertain factors by adopting the incremental consti
tutive theory. The three-dimensional component has a tension zone, 
compression zone and tension-compression zone, which generate 
compression and tension stresses of σ1 and σ2, respectively, and satisfy 
σn = Er × (ε − εr). 
{

σ1
σ2

}

=

[
(1 − dt) 0

0 (1 − dc)

]

×

{
σʹ

1

σʹ
2

}

(5) 

Where dt is the tensile damage parameter of the structural compo
nent; dc is the compressive damage parameter of the structural compo
nent; σʹ

1 is the derivative of the tensile zone parameter; σʹ
2 is the 

derivative of the compressive zone parameter; 1 represents the tensile 
stress; 2 represents the compressive stress; and εt,r is the tensile strength 
and represents the tensile stress and strain corresponding to ft,r. 

σ1 = Er1 × (ε1 − εZ)→
∑n

i=1
σi =

∑n

i=1
[Eri ×(εi − εZ)]

and so 

∑n

i=1
σi =

∑n

i=1

[

Eri ×

(

εi −
∑n

i=1
Δεr(N)

)]

.

Combining the analytical model with Eq. (5) yields: 

Fig. 3. The theoretical model and intelligent monitoring systems of this article demonstrating innovation and relevance.
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑n

i=1
σi1

∑n

i=1
σi2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

[
(1 − dt1) 0

0 1 − dc2

]

×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑n

i=1
σi1

ʹ =
∑n

i=1

[

Eri1 ×

(

εi1 −
∑n

i=1
Δεr(N)

)]ʹ

∑n

i=1
σi2

ʹ =
∑n

i=1

[

Eri2 ×

(

εi2 −
∑n

i=1
Δεr(N)

)]ʹ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(6) 

dt = 1 − ρt

[

1.2 − 0.2
(

ε
εt,r

)5]

, εt,r ∈
(

εmin
t,r →εmax

t,r

)
(7) 

Eq. (8) is a data model for the limit derivative of the internal struc
tural energy of a three-dimensional component under the effects of 
multiple factors. The hyperstatic structure is based on a nonlinear failure 
model. The state function of the structure is constructed to obtain the 
failure probability, and the obtained structural failure probability is 
used as a nonlinear structural reliability evaluation indicator. The 
parameter identification results of the nonlinear probability model are 
used as random variable inputs. A proxy model of the influences and 
responses of multiple uncertain factors can be constructed to analyse the 
theoretical hyperstatic structural model: Di

t =

f

({∑n

i=1
σi1

∑n

i=1
σi2

})

d
({

σi1

σi2

})

.

The established model is based on the limit interval 
(

εmin
t,r →εmax

t,r

)
, so 

lim
t∪i→n

{

f

({∑n
i=1

σi1
∑n

i=1
σi2

})

d
({

σi1

σi2

})}

∈
(

εmin
t,r →εmax

t,r

)
. At this point, the 

analysis of the mathematical model is complete, and the abbreviated 
equation can be shown as Eq. (9).

The geometric nonlinear analysis of statically indeterminate struc
tures should consider the triggering factors.

The multi-factor complex modal multi-source theoretical model (D → 
Dcum(t) → g(X) → Δεr(N)): 

fʹ
(
Di

t
)
= lim

t ∪ i→∞
Dcum

f
(
minNavg

)
− f(maxDcrit)

Si − Sj
⋅ ∈ [εmin→εmax] (9) 

2.2. Steel fatigue damage

Experimental studies have shown that the fatigue life of reinforced 
concrete bridges is mainly determined by the fatigue of the steel bars, 
and the life of the bridge is determined by the fatigue fracture of the 
main load-bearing steel bars under multiple random amplitude stresses. 

The critical crack depth of the fatigue failure of a steel bar is given by 
[35]: 

afr = min
{

1
π

(
Kic

γσmax

)2

, ay

}

(10) 

Where afr is the critical crack depth of steel bars (mm); kic is the 
fracture toughness of the material; γ is the geometric correction coeffi
cient for calculating the stress intensity factor, which is determined by 
the radius r of the steel bar and the crack depth a; and ay is the crack 
depth of the steel bar at yield (mm).

Based on the ideal elastoplastic model of steel bars, it can be assumed 
that the fatigue stiffness of steel bars does not degrade. Combined with 
the S - N double logarithmic curve of steel bars, the constitutive model of 
steel bars after multiple fatigue loads is obtained as [36]: 

σ(N) =

{
Esε(N) Δεr(N − 1) < ε(N) ≤ εy(N)

fy(N) ε(N) > εy(N)
(11) 

Where σ(N) is the residual stress of the steel bar after N times of 
fatigue loads (Pa); Es is the initial modulus of elasticity of the steel bar; fy 

is the initial yield strength of the steel bar; and εy(N) and Δεr(N) are the 
yield strain and residual strain of the steel bar after N times of fatigue 
loading, respectively.

Fibre optic sensors are sensors that measure displacement based on 
grating Moiré patterns and they can achieve highly sensitive measure
ments of single channels and multiple channels. Their configuration 
depends on the bandwidth of the light source and the dynamic range of 
the measurement parameters; it is necessary to consider the demodu
lation limit of the fibre grating demodulator and the actual strain of the 
measured object. Assuming that the sensor needs to measure n sets of 
grating points, the wavelength variation of all grating points on the fibre 
grating string channel is calculated by [37,38]: 
{Δλ = Δλ1 + Δλ2 + Δλ3 + ⋯⋯ + Δλn =

∑
(Kε × ε)

λn = Δλ =
∑

(Kε × ε + λ) ≤ λmax
(12) 

Where Δλ is the range of wavelength variation for calculating a 
single grating; ε is the strain value of the nth grating point; Kε is the strain 
sensitivity of the nth grating point. λn is the measurement range of 
n sensors; and λmax is the maximum measurement range for a single 
channel of the fibre grating demodulator.

2.3. Multi-load effect characteristics

The monitoring data of multiple indicators of bridges are affected by 
different sequences and the accurate identification and extraction of 
valid feature parameters are prerequisites for statistical analysis. Mul
tiple single-peak distribution features are used to determine the target 

Soweget :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑n

i=1
σi1

∑n

i=1
σi2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎣

(

1 −

{

1 − ρt1

[

1.2 − 0.2
(

ε
εt1,r

)5]})

0

0 1 −

{

1 − ρt2

[

1.2 − 0.2
(

ε
εt2,r

)5]}

⎤

⎥
⎥
⎥
⎦
×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑n

i=1
σi1

ʹ
=
∑n

i=1

[

Eri1 ×

(

εi1 −
∑n

i=1
Δεr(N)

)]ʹ

∑n

i=1
σi2

ʹ
=
∑n

i=1

[

Eri2 ×

(

εi2 −
∑n

i=1
Δεr(N)

)]ʹ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(8) 
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curve function through various fitting methods and then the curve in
tegral is normalised; the cumulative distribution function is calculated 
to obtain a Gaussian mixture model of multi-peak probability density 
features [39], which is then used to verify the matching and accuracy of 
the parameters. 

f(x) =
∑k

i=1
φi

1
̅̅̅̅̅̅̅̅̅
2πσi

√ exp
(

−
(x − μi)

2

2σ2
i

)

(13) 

Where f(x) is the Gaussian mixture model; k is the order of the 
Gaussian mixture model; and φi, μi and σi are the combined weights, 
mean, and standard deviation of the ith order function.

The deflection of a bridge consists of the deflection caused by the live 
load, temperature stress, pre-stress loss, concrete shrinkage and creep, 
with a total deflection of [40]: 

f = εL × fL +

(
f∗t − μf

)

σf
+ εV × fV (14) 

Where fL is the deflection live load effect; fT is the deflection tem
perature effect; fV is the long-term deflection; εL and εV are residual 
identification coefficients for live load deflection and long-term deflec
tion; f∗t is the original temperature induced deflection; μf is the mean of 
the temperature induced deflection; and σf is the standard deviation of 
the temperature induced deflection.

2.4. Vehicle bridge coupling

Bridges generate mutual mechanical effects under their loads and 
external loads, whilst vehicles exert gravity, damping, and inertia forces 
on the bridges. The equation for a coupled motion system is constructed 
by establishing the displacement coordination and force balance con
ditions between vehicles and bridges [41]: 
⎧
⎪⎨

⎪⎩
Mbü¨b + Cbu̇b + Kbub = FbMvü¨v + Cvu̇v + Kvuv = FvMbv(t)δ̈¨+ Cbv(t)δ̇ 

+Kbv(t)δ = Fbv(t) (15) 

Where Mb and MV are the mass matrices of bridges and vehicles; Cb 

and CV are the damping matrices of bridges and vehicles; Kb and Kv are 
the stiffness matrices of bridges and vehicles; ü¨, u̇ and u are column 
vectors of acceleration, velocity, and displacement; Fb and Fv are the 
vehicle-to-bridge mutual forces; Mbv(t) is the generalised mass matrix of 
the vehicle-bridge coupling system; Cbv(t) is the damping matrix of the 
system; Kbv(t) is the stiffness matrix of the system; δ is a column vector, 
composed of the various degrees of freedom and generalised modal 
coordinates of the vehicle; and Fbv(t) is the generalised load column 
vector of the system.

2.5. Structural dynamic optimisation

During the structural dynamic optimisation design, it is necessary to 
carry out multiple analyses of structural dynamic characteristics and 

Fig. 4. Diagram of LZYB.
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dynamic responses. The dynamic optimisation criteria method has the 
advantages of fewer re-analyses and a faster convergence rate. The 
mathematical model for structural dynamic optimisation design is 
constructed as a Lagrangian function and then the design variable An is 
derived on both sides of the function; the design variable adjustment 
factor S1(0 < S1 < 1) is introduced to construct the design variable after 
the nth iterative optimisation [35]. 
⎧
⎪⎪⎨

⎪⎪⎩

Aʹ
n = fnAn

(
Al

n < fnAn < Au
n
)

fn = S1 +
1 − S1

∂W(An)/∂An
×

{

−
∑k

i=1
αi

∂gi

∂An
+
∑l

j=1
βj

∂hj

∂An

} (16) 

Where Aʹ
n is the design variable after iterative optimisation; fn is the 

iterative correction coefficient for the design variables; An is the design 
variable; Au

n and Al
n are the upper and lower limits of the design vari

ables, respectively; W is the objective function with design variables; 
and αi, βi and ξn are Lagrange multipliers.

3. Results

The main bridge span of the Yellow River Bridge in China (referred to 
as LZYB) is a span of 714 (177+360+177) m (Fig. 4), with a 2 × 40 m 
simply supported box beam (south bank) and a 5 × 40 m continuous 
box-girder (north bank) as the approach bridges. The bridge tower 
comprises a reinforced concrete rhombic tower, with a transverse width 
of 450 cm and a longitudinal width of 700 cm for the upper tower 

column section, as well as a transverse width of about 4.5-9.0 m and a 
longitudinal width of 7.0-10.0 m for the lower tower column section. A 
box-shaped monolithic section, transitioning to a box-shaped partition.

Each bridge tower is equipped with 24 end-bearing cast-in-place 
piles, with a diameter of 2.5 m and a length of 40 m. The main beam is an 
I-shaped concrete composite beam, with heights of 2.83 m (at the centre 
of the main beam) and 3.06 m (at the centre of the bridge). The tower 
columns are made of C50 concrete, with a height of 151 m (84+67 m) at 
the south tower and 147 m (84+63 m) at the north tower.

The bridge tower is formed by variable-section double columns, with 
the tower column adopting a single-box and single-compartment box 
section. The stay cable is made of galvanised parallel steel wire bundles, 
with a diameter of 7 mm and a maximum cable length of 187.068 m 
(cable weight is 17 t).

The standard spacing of the stay cables is 12.0 m and five sizes (PES7- 
139, 151, 199, 241, and 301) have been used. The bridge design stan
dards are: four-lane expressway extra-large bridge; highway-Class I 
vehicle load; seismic peak ground acceleration of 0.2 g; design vehicle 
speed of 80 km/h; design basic wind speed of 10-minute average 
maximum speed of 25.8 m/s; bridge deck width of 27.5 m 
(24.5+1.5+1.5 m).

3.1. Monitoring data

The health monitoring of the LZHB was carried out during the 
through-operation phase, with a focus on structural weaknesses and 
traffic safety, based on data analysis requirements and the structural 

Table 1 
Optimised layout of monitoring points and early warning assessment indicators.

Number Monitoring items Sensor type Quantity Installation location

Environment Surrounding the environment of the 
bridge

Temperature and humidity sensor 1 Main beam L/2 section

​ Internal temperature of bridge tower ​ 4 Bridge tower cable anchorage zone
Applied load Vehicle load and traffic volume Dynamic weighing 4 Stable roadbed location
​ Wind speed on bridge deck and tower top Wind speed and direction meter 4 Three bridge decks; One each at the 

top of the tower
​ Structural temperature Strain gauge 72 Installation of strain gauges
​ Bridge shore surface site Accelerometer 1 Downstream stable roadbed
​ The top of the pier or the bottom of the 

pier
​ 4 5 # and 6 # bridge piers

Structural 
response

Vertical displacement of the main beam Pressure transmitter 48 Main bridge structural components

​ Lateral displacement of the main beam GNSS 3 Bridge L/2, upstream and 
downstream bridge decks

​ Displacement of supports and beam ends Displacement meter 10 Position of support and beam joints
​ Tower top offset GNSS 2 Two bridge tower tops
​ Horizontal and vertical corners of beam 

ends
Inclinometer 4 Beam end, crossbeam

​ Key sections of main beams and cable 
towers

Fiber Bragg Grating Strain Gauge 82 Location of bridge towers and cable 
towers

​ Vertical and horizontal vibration 
acceleration of the main beam

Accelerometer 31 Main beam side span, mid span, 
and tower

​ Cable vibration acceleration Fiber Bragg Grating Accelerometer 56 Cable arrangement
Number Monitoring indicators Warning indicators Acquisition method ​
1 Vehicle model analysis Identification of rated load (Number of 

axles; Vehicle length)
Video surveillance ​

2 Traffic flow analysis Four lane expressway (ADT ranges from 
2500 to 55000 vehicles)

Video surveillance; Video 
capture

​

3 Overweight analysis 49 tons as the limit (82.5; 110 tons) Dynamic weighing 
monitoring

​

4 Overspeed analysis 80km/h as the limit Overspeed flow 
monitoring

​

5 Environmental temperature monitoring -2 ~ 34.3◦C; 9.6 ~ 26.5◦C; Control interval:- 
15 ~ 39◦C.

Temperature fiber optic 
sensor

​

6 Environmental humidity monitoring 6.5% ~ 98%; 14.6% ~ 72.7% (Main tower); 
Prevent corrosion

Humidity fiber optic 
sensor

​

7 Wind load monitoring 0 ~ 18.56m/s; Wind speed < 25.8m/s Anemometer ​
8 Seismic load monitoring E1 < 0.20g Ground motion measuring 

instrument
​

9 Structural response monitoring The natural frequency is lower than the 
theoretical calculation value

Fiber optic monitoring 
equipment

​
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characteristics of the bridge (Fig. 4a). The aim was to promptly identify 
abnormal information from within the bridge structures, issue timely 
alarms for direct risk factors, promptly maintain and manage indirect 
and potential risk factors, and eliminate hazards and hidden dangers. 
The monitoring consisted of four parts: environmental monitoring, ac
tion monitoring, structural response monitoring, and structural change 
monitoring (Table 1).

The LZYB is shown in Fig. 4b, and it was equipped with ten types of 
monitoring instruments, totalling 374 devices, installed at the maximum 
bending moment and shear force positions of the bridge members, based 
on the principles of design mechanics and structural finite element 
models. Through the analysis of the characteristics of mechanical 
inversion in the actual environment of the bridge structure, the me
chanical indicator parameters in the intelligent online monitoring 
environment were compared, forming a health status diagnosis and 
early warning function. In order to monitor using the IoT-based cloud 
platform, multi-performance indicator automation was adopted; real- 
time monitoring data was quickly, efficiently, and accurately trans
mitted to the monitoring platform via IoT and cloud networks. The data 
analyses and early warnings were synchronised, avoiding extreme 
environmental interference.

3.1.1. Characteristics of load strain effects on transportation vehicles
According to the pre-processing results, the analysis of traffic 

monitoring data using the intelligent monitoring cloud platform, and 
exporting the recorded data from April to July (an actual operation of 
five months) from a benchmark database management system, it can be 
seen that the focus of vehicle load monitoring is to track vehicle weight 
and trajectory information, including total vehicle weight, axle load, 
and spatiotemporal motion data.

Nm4 the total traffic is (total traffic in April) = 100,267 vehicles <
Nm5 = 226,890 vehicles < Nm6 = 306,066 vehicles < Nm7 = 418,508 

vehicles; the average monthly growth rate is 1: 2.26: 1.35: 1.37; Nmd4 the 
average daily traffic is Nmd4 (average daily traffic in April) = 10,027 
vehicles > Nmd5 = 7,319 vehicles < Nmd6 = 10,202 vehicles < Nmd7 =

14,431 vehicles; the peak period is June and July (Fig. 5a). Ntov4 (total 
overweight vehicles in April) = 316 vehicles < Nmd5 = 1,749 vehicles <
Nmd6 = 1,872 vehicles < Ntov7 = 17,711 vehicles; Gmax4(maximum 
vehicle weight in April) = 93.0 t (= 32 vehicles (Gw > 49 t as over
weight)) < Gmax5 = 93.0 t (Gdov5 = 56 vehicles) < Gmax6 = 99.3 t (Gdov5 
= 203 vehicles) > Gmax7 = 98.6 t (Gdov7 = 611 vehicles) (Fig. 5b); Nsv4 
(vehicles exceeding the speed limit in April) = 16,995 vehicles < Nsv5 =

37,921 vehicles < Nsv6 = 56,157 vehicles < Nsv7 = 84,497 vehicles, 
Nmvs4 (maximum vehicle speed in April) = 168 km/h (Ddsv = 1,700 
vehicles) < Nmvs5 = 198 km/h (Ddsv = 1,223 vehicles) < Nmvs6 = 196 
km/h (Ddsv = 1,872 vehicles) < Nmvs7 = 199 km/h (Ddsv = 2,914 ve
hicles) (Fig. 5c).

Three parameters (maximum daily traffic, daily overweight vehicles, 
and traffic travelling at speeds less than 80 km/h) were selected, to 
analyse the pattern of changes in monitoring data and polynomial trend 
fitting curves. Eqs. (12) and (13) were established to obtain R2

N =

0.560,9, R2
D = 0.550,3, and R2

G = 0.654,7, respectively, and to deter
mine the best fitting requirements.

The Complex Plot function algorithm was used to plot the image of 
the complex variable function, in order to analyse its degeneracy and 
singularity. The colours correspond to the radius of the complex plane 
function value, the colours and lines of the three variables gradually 
widening with the changes in the absolute value of the function. 
Transparency and colour represent the changes in the modulus and 
radius of the dependent variable (Figs. 5d, 5e and 5f).

As vehicle load causes high-frequency components to strain, wireless 
vibrating wire strain gauges were used to monitor and collect the fre
quency. After the frequency was obtained, the data were directly con
verted into the equation or the program and then read and transmitted 

Fig. 5. Statistical comparison of traffic monitoring data.
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to the 4 G vibrating wire acquisition instrument through transmission 
integration (Fig. 1). Due to the dispersion and uncertainty of overloaded 
vehicles at different time intervals, non-stationary vehicles had non- 
stationary strain segments. Strain response eigenvalues (amplitude 
and maximum) showed obvious multi-peak distribution characteristics 
but the cumulative data exhibited the multi-peak probability density 
characteristics of multiple single Gaussian distribution combinations 
[42].

There were 80 sets of strain monitoring points (Fig. 4). The 
maximum value interval range was SG03− 68− 06 = 613.1µε (4.75 spans on 
the west side, on the inner side of the lower edge of the longitudinal 
beam) > SG01− 48− 07 = 603.9µε (2.50 spans on the east side, on the inner 
side of the lower edge of the longitudinal beam) > SG02− 48− 06 = 574.2µε 
(3.50 spans on the west side, on the inner side of the lower edge of the 
longitudinal beam) > SG04− 48− 06 = 564.0µε (5.50 span on the west side, 
on the inner side of the lower edge of the longitudinal beam) >
SG03− 28− 07 = 544.1µε (4.25 spans on the east side, on the inner side of the 
lower edge of the longitudinal beam) and the minimum value interval 
range was SG02− 48− 07 = − 225.5µε (3.50 spans on the east side, on the 
inner side of the lower edge of the longitudinal beam) > SG04− 48− 08 = −

226.2µε (5.50 span on the east side, on the outer side of the lower edge of 
the longitudinal beam) > SG03− 28− 05 = − 243.9µε (4.25 span on the west 
side, on the outer side of the lower edge of the longitudinal beam) >
SG03− 28− 06 = − 265.0µε (4.25 spans on the west side, on the inner side of 
the lower edge of the longitudinal beam) > SG03− 48− 05 = − 301.1µε (4.5 
span on the west side, on the outer side of the lower edge of the longi
tudinal beam) (Fig. 7b).

The Gaussian mixture model in Eq. (13) was used to analyse seven 
parameters: Nmi, Nmdi, Ntovi, Gmaxi, Nsvi, Nmvsi, and SGi− i− i. The objective 
function curve equation was obtained by separately fitting three poly
nomial combinations. Normalising these equations determined the 
characteristics of the probability function density, obtaining R2

mi− tovi− svi 
= 0.9711, R2

mi− tovi− Gi = 0.0825, R2
tovi− svi− Gi = 0.0597, R2

mi− tovi− G = 0.2094, 
R2

mi− svi− G = 0.1757, and R2
tovi− svi− G = 0.1683. Fig. 8 shows the fitting 

curve of the probability density function. Based on the feature points of 
the maximum and minimum values of the function and the clustering 
characteristics of the data, it was determined that Fig. 8a meets the re
quirements for the intelligent recognition of non-stationary strain seg
ments but the disadvantage is that the analysis model does not provide 
feedback on the correlation between on-board and monitoring strain 
under operating conditions. The goodness of fit of Figs. 8c and 8d are 

both R2 < 0.500, and the monitoring data and strain show a discrete 
distribution in the monitoring time domain.

The established R2
mi− tovi− svi met the fitting requirements and was 

normalised, based on the polynomial fit, to obtain f(x, y) = 1,953.2 +
965.595,2 × x + 123.248,3 × y − 0.828,4 × y2− 35.908,3 ×x3+

34.973,3 × x2 × y − 85.402,1 × x × y2 + 8.473,8 × y3(429 < x <
189,56; 2 < y < 976), which is the theoretical calculation of traffic 
vehicles on LZYB (Figs. 7a and 7c).

According to the fitting analysis of the monitoring data (Figs. 8a and 
8b), the structural response of the bridge under discrete vehicle loads is 
concentrated in the range 3.50~5.50 L on the west side. It is prelimi
narily concluded that the deflection generated by the bridge structure in 
this area is a concentrated peak. As the bridge has a reinforced concrete 
structure, the deflection monitoring can invert the stress state and 
stiffness change in the bridge structure, which is affected by tempera
ture. Given this, it is necessary to establish a correlation model of 
monitoring data for the correlation between temperature and deflection 
and form a correlation model between the vehicles, temperature, and 
deflection, which is a difficult research problem in the health monitoring 
of bridges that have super-static determinacy structures [43].

3.1.2. Monitoring deflection temperature effect coupling
Seven temperature and humidity sensors were installed in the LZYB, 

as shown in Fig. 6 (marked with red circles), which adopted a wireless 
signal transmission system at a temperature measurement range of -40 
to 80 ◦C and a humidity range of 0-100 ◦CRH. Forty-two sets of 
deflection monitoring points were arranged on seventeen sections of the 
main beam (marked with orange flat circles in Fig. 6), with a monitoring 
range of 5~500 m. Monitoring and statistical analysis were conducted 
on the ambient temperature and internal temperature of the bridge 
tower in the bridge site area from April to July, showing that the 
ambient temperature in the bridge site area was 36.3 ◦C > T > 2 ◦C, with 
a maximum temperature difference of 34.3 ◦C. The ambient temperature 
inside the bridge tower was 26.5 ◦C > T > 9.6 ◦C, with a maximum 
temperature difference of 16.5 ◦C. The ambient humidity in the bridge 
site area and the humidity monitoring data inside the bridge tower were 
as follows: the ambient temperature in the bridge site area was 98% >
RH > 6.5%, with a maximum temperature difference of 91.5 ◦C; the 
ambient temperature inside the bridge tower was 72.7% > RH > 14.6%, 
with a maximum temperature difference of 56.4 ◦C (Table 2).

The mean of the deflection monitoring was 233.45 mm and there 

Fig. 6. Schematic diagram of LZYB strain monitoring point layout.

Z. Zhou et al.                                                                                                                                                                                                                                    Results in Engineering 27 (2025) 106990 

9 



were seven sets with Ld > 200 mm, in section 4.875L-7.00 L on the west 
side of the main beam. LXG482 = 628.9 mm (5.00 pier on the east side) >
LXG382 = 607.9 mm (4.87 pier on the east side) > LXG442 = 601.0 mm 
(5.25 pier on the east side) > LXG422 = 600.4 mm (5.25 pier on the east 
side) > LXG582 = 597.2 mm (6.00 pier on the east side). According to the 
monitoring data time changes, there were relatively large fluctuations, 
with the temperature, humidity, and deflection values at each moni
toring point requiring regression analysis to quantitatively determine 
their correlation. The corresponding regression parameter values were 

calculated using Matlab, as shown in Table 3, with a goodness of fit of 
R2

d− h = 0.6333, R2
d− t = 0.6953, R2

h− t = 0.7152, all being greater than 
0.500, indicating that the model has a good correlation. The data show 
that the positive correlation between temperature values and deflection 
values in Fig. 9c is better than those in Figs. 9a and 9b and the root mean 
square of the regression system is RMSEd− h = 7.1273 < RMSEd− t =

8.0756 < RMSEh− t = 13.3592, at its smallest. In conclusion, the analysis 
is consistent.

Fig. 7. Monitoring data analysis and parameter fitting analysis.

Fig. 8. Probability density function fitting analysis of monitoring parameters.

Table 2 
LZYB’s environmental temperature, humidity, and deflection monitoring data.

Sensor number Maximum value (◦C) Minimum value (◦C) Position

Temperature Humidity Temperature Humidity

XG-G03-048-01 36.30 98.00 2.00 6.50 4.5 Crossing − East Side
XG-T01-022-01 25.80 66.50 11.10 15.20 4.0 Crossing tower − West Side
XG-T01-022-02 26.40 72.70 11.30 16.30 4.0 Crossing tower − Eastside
XG-T02-022-01 26.50 66.30 10.90 14.60 5.0 Crossing tower − West Side
XG-T02-022-02 26.10 67.30 9.60 16.00 5.0 Crossing tower − Eastside
Sensor number Number Sensor number Number Sensor number Number (mm)
XG-G01-008-01 0.00 XG-G03-018-01 12.80 XG-G04-008-01 241.50
XG-G01-008-02 0.00 XG-G03-018-02 13.30 XG-G04-008-02 628.90
XG-G01-048-01 2.10 XG-G03-028-01 20.80 XG-G04-028-01 241.40
XG-G01-048-02 3.20 XG-G03-028-02 469.50 XG-G04-028-02 600.40
XG-G02-008-01 6.80 XG-G03-038-01 26.60 XG-G04-048-01 241.70
XG-G02-008-02 8.20 XG-G03-038-02 510.30 XG-G04-048-02 601.00
XG-G02-028-01 13.50 XG-G03-048-01 31.00 XG-G04-068-01 242.40
XG-G02-028-02 11.40 XG-G03-048-02 558.60 XG-G04-068-02 600.10
XG-G02-048-01 15.00 XG-G03-058-01 101.40 XG-G05-008-01 244.80
XG-G02-048-02 13.60 XG-G03-058-02 556.60 XG-G05-008-02 597.20
XG-G02-068-01 12.90 XG-G03-068-01 107.80 XG-G05-048-01 239.80
XG-G02-068-02 12.50 XG-G03-068-02 571.50 XG-G05-048-02 589.80
XG-G03-008-01 7.80 XG-G03-078-01 195.20 XG-G05-088-01 242.40
XG-G03-008-03 8.80 XG-G03-078-02 607.90 XG-G05-088-02 594.40
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According to the monitoring data and regression model analysis, 
there were ten sets of monitoring points with a deflection greater than 
500 mm, concentrated on the L/8 section to 7L/8 section on the east side 
of the main beam, with a maximum deflection of 628.90 mm (5.00 L pier 
on the east side) and a maximum ambient temperature of 36.30 ◦C (4.50 
L pier on the east side).

According to the temperature monitoring data of the structure, the 
temperature of the longitudinal beam was 48.9 > T > − 3.5 ◦C, with a 
maximum temperature difference of 48.5 ◦C; the temperature inside the 
tower T was 28.6 ◦C > T > 0 ◦C, with a maximum temperature difference 
of 28 ◦C. The monitoring data show that the temperature difference 
causes changes in long-term deflection and interferes with the propa
gation of signal frequency, so the Waveform Viewer Tool function in the 
MATLAB signal processing toolbox was used to analyse and visualise the 
spectral characteristics; the change in internal temperature was dis
played through digital filters and variations of signal amplitude with 
frequency. Fig. 9d shows that the frequency variation range is 10~55 
dB, tending to gradually decrease whilst the amplitude remains 
unchanged.

The internal temperature of the filtered structure was as follows: 
TXG386 = 48.9 ◦C (on the inner side of the lower edge of the longitudinal 
beam with a 4.5 L span on the west side) > TXG326 = 48.6 ◦C (on the inner 
side of the lower edge of the longitudinal beam with a 4.25 L span on the 
west side) > TXG366 = 48.5 ◦C > TXG586 = 48.5 ◦C > TXG246 = 47.9 ◦C (on 
the inner side of the lower edge of the longitudinal beam with a 3.5 L 
span on the west side).

According to our comprehensive analysis, the area of influence of the 
temperature on the deflection of LZYB is concentrated at the following 
positions of the main beams on the west and east sides of ②-③ 
span (the green area in Fig. 6): 
{

East side 4.25L − 4.5L − 5.00L − 5.50L − 6.50 − 7.00L
West side 4.00L − 4.50L − 4.87L − 5.25L − 5.75L − 6.00L .

3.2. Finite element fitting

The modal parameters of bridges include the main geometric and 
physical quantities, such as vibration frequency, vibration mode, mass, 
and stiffness, etc. A 3D finite element model was established to correct 
the bridge structure, with the weights and correction coefficients of the 
geometric and physical parameters determined through sensitivity pa
rameters. The loading action of LZYB can be divided into four categories, 
according to the JTGD60-2015 design code: permanent, variable, acci
dental, and seismic [44–46].

Permanent effects include structural gravity and the buoyancy of 
water, while variable effects include the lane load, concentrated load, 
and pressure of the water flow: 

• Structural gravity: Gk− bridge deck = γ × v1 = 778.8 × 25.5 = 19,859.40 
kN; Gk− main tower = γ × v2 = 207.47 × 26.0 = 53,94.22 kN; Gk− main beam 
= γ × v3 = 7,527.90 × 26.0 = 195,725.40 kN; Gk− lower structure = γ × v4 
= 7,527.90 × 26.0 = 195,725.40 kN;

• Buoyancy of water: F1 = F4 = γ × V1 = 9.8 × 14.14 = 138.54 kN; F2 =

F3 = γ × V2 = 9.8 × 21.21 = 207.82 kN;
• Lane load: Fv = qk × L = 10.5 × 300.0 = 3,150.00 kN;
• Concentrated load: Pk = 360.00 kN;
• Pressure of water flow Pk: Fw = KA × γv2/2g = 0.8 × 7.61 × 1.50 ×

1.62/2 × 9.81=1. 19 kN.

The pedestrian load on the sidewalk slabs, on both sides of the 
bridge, was taken to be 4.0 kN/m2, which was calculated as 2,249.55 
kN. In terms of accidental action analysis, the value is: 4.0 kN/m2.

The Yellow River is not navigable at the location of the LZYB and so 
the impact effect of ships was not considered. The river area is regularly 
cleared to prevent any floating objects from hitting the bridge and the 
vehicle impact force for the bridge structure was considered according 
to a design value of 1,000 kN, with the impact force acting in the area 
above 1.2 m from the carriageway. In this study, the bridge was moni
tored during normal operations. It is not located within the seismic zone 
and so seismic effects were not considered.

The wind loading on the bridge was within the design range. The 
actual location of the bridge is in a low wind climate zone and so the 
highest wind force level of 5.7 was considered, this being the strongest 
recorded wind over the past 70 years.

3.2.1. Finite element coupling analysis
The finite element modelling of LZYB was carried out using Abaqus/ 

CAE 2021 software; 3D, solid shape, and extrusion type models were 
selected for the modelling space, with an approximate size w of 100.

The bridge mainly comprises C30 and C50 reinforced concrete and 
steel strands. The relevant parameters are ρC30 = 2,316 kg/m3, ρC50 =

2,332 kg/m3, ρSteel strand = 7,850 kg/m3; the values of modulus of elas
ticity are EC30 = 28,850 MPa, EC50 = 33,180 MPa, and ESteel strand =

206,000 MPa. Poisson’s ratio is μC30= 0.233, μC50 = 0.254, and 
μSteel strand = 0.300.

The divided mess sizing controls are one approximate global size, the 
number of elements is 200,355 sets, and the analysis errors are 0%. The 
high-quality mess division enhances the scientificity of the finite 
element coupling analysis.

The finite element coupling of LZYB was completed in 1 s. Figs. 10a
and 10b show the three-dimensional Energy, Strain, Stress, and 
Displacement cloud maps of LZYB, respectively. A total of 115 sets of 
elements were selected, using tools for MES analysis. The top ten sets of 
elements in the Energy arrangement were: E42463 = 64,514.75 J (middle 

Table 3 
LZYB’s environmental temperature, humidity, and deflection monitoring data.

Model Regression coefficient Estimated value Confidence interval

Polynomial regression fitting P1 − 4.183,3 − 18.535,8 10.169,3
P2 − 10.503,4 − 24.105,3 3.098,5
P3 20.142,1 − 29.234,7 69.519,0
P4 25.536,1 − 13.877,4 64.949,6
P5 56.781,7 39.909,3 73.654,2
R2 = 0.633,3; SSE = 892.338,4; DFE = 5.000; RMSE = 13.359,2

Polynomial regression fitting P1 − 4.462,7 − 13.138,8 4.213,4
P2 − 4.049,7 − 12.272,0 4.172,6
P3 20.854,8 − 8.993,3 50.702,9
P4 9.863,8 − 13.961,5 33.689,0
P5 9.924,0 − 0.275,3 20.123,4
R2 = 0.695,3; SSE = 326.073,5; DFE = 5.000; RMSE = 8.075,6

Polynomial regression fitting P1 16.620,1 3.381,4 29.858,8
P2 − 20.064,8 − 34.357,4 − 5.772,7
P3 − 16.977,6 − 37.968,5 4.013,4
P4 25.448,9 16.851,9 34.045,9
R2 = 0.715,2; SSE = 304.794,4; DFE = 6.000; RMSE = 7.127,3
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of 7L/12 main beam base plate) > E42403 = 50,893.78 J (right side of 8L/ 
12 main base plate) > E4408 = 37,957.27 J (middle of 7L/12 main beam 
base plate) > E58696 = 37,401.74 J (10L/12, No. 3 main tower pier 
column) > E9868 = 36,445.67 J (5L/24, left side of main beam base 
plate) > E9937 = 31,363.68 J (9L/12, left main beam base plate of No. 3 
pier column) > E42358 = 30,685.96 J (4L/12 main beam base plate) >
E32714 = 23,846.85 J (middle of 7L/12 main beam top plate) > E32416 =

21,486.46 J (4L/12, right main beam top plate of No. 2 main tower) >
E45547 = 20,343.44 J (1L/12, No. 1 main beam base plate) (Fig. 11a). 
The comprehensive data show that the maximum energy is concentrated 
in the main beam base plate in ② - ③ spans (marked in orange in 
Fig. 10a).

The top ten sets of elements in the Strain arrangement are: S134643 =

0.004,813 µε (middle of stay cable 3-1) > S107368 = 0.004,532 µε (middle 
of stay cable 2-4) > S152592 = 0.004,517 µε (middle of stay cable 3-3) >
S80679 = 0.004,514 µε (middle of stay cable 2-2) > S172680 = 0.004,813 
µε (middle of stay cable 3-4 stay) > S93010 = 0.004,346 µε (near the cable 
tower of stay cable 2-1) > S174369 = 0.004,345 µε (near the cable tower 
of stay cable 3-4) > S145967 = 0.004,341 µε (near the main tower of stay 
cable 3-2) > S119318 = 0.004,419 µε (middle of stay cable 2-3) > S118413 
= 0.003,771 µε (5L/12 section of stay cable 2-3) (Figs. 10d and 11b).

The ranking of Stress is: ST134643 = 991.175 MPa (middle of stay 

cable 3-1) > ST107368 = 933.247 MPa (middle of stay cable 2-4) >
ST152592 = 930.772 MPa (middle of stay cable 3-3) > ST80679 = 929.703 
MPa (middle of stay cable 2-2) > ST172680 = 906.555M Pa (middle of 
stay cable 3-4) > ST174369 = 894.954 MPa (near the cable tower of stay 
cable 3-4) > ST145967 = 894.545 MPa (near the main tower of stay cable 
3-2) > ST93010 = 893,999M Pa (near the cable tower of stay cable 2-1) >
ST119318 = 864.264 MPa (middle of stay cable 2-3) > ST118413 = 778.347 
MPa (5L/12 section of stay cable 2-3) (Fig. 11c).

The ranking of Displacement is: D5414 = 2.243,4 m (7L/12 main 
beam base plate) > D32714 = 2.242,5 m (6L/12 main beam top plate) >
D42463 = 2.211,1 m (centre of 6L/12 main beam base plate) > D29451 =

2.177,9 m (5L/12 main beam top plate) > D29424= 2.120,8 m (7L/12 
main beam top plate) > D31631= 2.116,4 m (7L/12 main beam top plate) 
> D42403 = 2.106,3 m (5L/12 main beam top plate) > D31282= 2.040,2 m 
(7L/12 main beam left flange plate) > D31337= 1.957,7 m (5L/12 main 
beam base plate) > D63509 = 1.901,8 m (right side of 5L/12 main beam 
top plate) (Figs. 10d and 11d).

3.2.2. 3D spatial deformation analysis
According to the stress data analysis, the maximum stress is 

concentrated on the top and base plates of the main beam and so tools 
were used to analyse the changes in the top and base plates of the main 

Fig. 9. Linear regression model analysis of the monitoring parameters.
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beam. A total of 298 × 4 sets of displacement and stress data were 
extracted from four positions on both sides of the top and base plates of 
the main beam, for comparative analysis. This showed that the 
maximum displacement is dmax = 2.267 m (middle of 6L/12 main beam, 
Figs. 12a and 12b), and the minimum displacement is at the hinge po
sition between the main towers ② - ③ and the main beam, i.e. dmin =

0.158 m.
The entire displacement curve consists of a concave quadratic 

parabolic curve, a convex quadratic parabolic curve, and a concave 
quadratic parabolic curve. The transformation of the main beam base 
plate curve is consistent with that of the top plate (Fig. 12a). Smax =

198.94 MPa and it is concentrated at the hinge position between the 

Fig. 10. LZYB finite element coupling cloud map.
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main tower ③ and the main beam. S150m = 100.128~101.920 MPa on 
the ③ - ② spans and is 50.32% of the main beam ③ (Figs. 10b, 11c, and 
11d). The No.

10 cable-stayed cable of the No. 2 and No. 3 main towers is subjected 
to the greatest stress, with the maximum stress concentrated on the eight 
cable-stayed cables connecting the tops of the main towers. The stress in 
the middle area of the cable-stayed cables tends to be stable and the 
stress increases in the area close to the main beam but is lower than the 
top area of the main towers (Figs. 12e and 12f).

The stress distribution data of the main towers 2 L, 2R, 3 L, and 3R 
were collected, obtaining 19 sets of data for each tower. The maximum 
stress at the consolidation position of the tower pier is S3L− 2 = 145.125,7 
MPa > S3R− 2 = 136.824,8 MPa > S2R− 1 = 135.212,5 MPa > S2L− 4 =

109.931,9 MPa and the minimum stress at the top of the tower is S2R− 1 =

5.564,0 MPa (Fig. 10c, 12c, and 12d). The spatial deformation charac
teristics of two tower columns were analysed using the 3D nonlinear 
finite element method. The displacements of tower columns 2R and 3 L, 
at the base of the tower in the x-axis direction, are − 0.040,0~0.561,9 
m, and the displacement at the top of the tower is 0.244,3~1.812,3 m; 
the displacement at the base of the tower in the y-axis direction is 
0.003~0.088 m, and the displacement at the top of the tower is 
1.631,6~1.647,1 m; the displacement at the base of the tower in the z- 
axis direction is 0.301,0~0.517,5 m, and the displacement at the top of 
the tower is 0.394,0~0.598,6 m (Fig. 13).

4. Discussion

Using the monitoring data and the finite element coupling analysis in 
Sections 3.1 and 3.2, a comparison was carried out on the overly con
servative design of LYZB under the design load. A sustainable optimised 
design was created, based on the actual operational characteristics of the 
project, while taking into account the safety and durability of the 
structure.

4.1. Stress and displacement coupling analysis

The optimisation of the dynamic characteristics was carried out 
during on-site monitoring and finite element coupling analysis; a total of 
13 sets of maximum stress data were selected for comparative analysis, 
all within the on-site monitoring range. A polynomial was applied, to 
carry out the curve fitting analysis, and three indicators were normalised 
according to mean standardisation, obtaining: f (x1) = − 153.609,1 ×
x6− 575.338,4 × x5− 278.701,2 × x4 + 1,692.7 × x3 − 403.383,0 × x2 

− 946.157,5 × x + 990.926,4; R2 = 0.621,5 (interval mean and main 
bridge stress). f (x2) = 15.595,8 × x7 + 6.171,2 × x6 - 74.705,4 × x5 −

0.745,3 × x4 + 96.768,7 × x3 − 11.775,7 × x2 − 35.604,5 × x +
189.637,2; R2 = 0.669,2 (interval mean and main beam stress). Based on 
the obtained goodness of fit and variance, it can be determined that both 
indicators meet the interval requirements and the maximum stress only 
accounts for 0.014% of the interval, indicating a redundant structure. 

Fig. 11. LZYB finite element coupling data.
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The preliminary conclusion is that local coupling optimisation analysis 
can be conducted on the main beam. R2 is the confidence interval for the 
deflection of the entire bridge, obtained through finite element coupling 
analysis under the normal operating limit, and is 0.005,9 m < Ds1 <

2.243,4 m. Ds1 of the main tower is 0.301,4 m < Ds2 < 1.678,8 m; Ds2 is 
the monitoring deflection range and is 0.002,1 m < Ds3 < 0.594,4 m. 
According to the comparative analysis, the overall vertical deflection of 
LYZB (under multiple loads during its operation) only reaches the design 
prediction value of 26.50~33.90%. The results of the analysis are 
consistent with the stress fitting result (Table 4).

4.2. Optimisation analysis of main beam coupling

In accordance with the conclusions of the analysis in Sections 3.1, 
3.2, and 4.1 (Eq. (14)), coupling optimisation design was then carried 
out for the main beam. The change in confidence interval after reducing 

the volume of the main beam by 0.1V was analysed according to Eq. (15)
and the sensitivity impact factor f0.9 after each iteration. The optimisa
tion can be represented by a matrix determinant fnm

0.9 =
⎡

⎢
⎢
⎣

d11
0.9 ⋯ d1m

0.9

⋮ ⋱ ⋮
dn1

0.9 ⋯ dnm
0.9

⎤

⎥
⎥
⎦, A0́.9 = f0.9 × A0.9 =

⎡

⎣
0.5519

⋮
0.2875

⎤

⎦ ×

⎡

⎣
3724221440

⋮
3980236032

⎤

⎦

=

⎡

⎣
2055459635

⋮
2196758338

⎤

⎦. The parameter index before optimization is A0́.9 =

[70, 244,857.42 78,471,844.42⋯1, 340,564,588]T, f0.9 = [0.0161 
0.0513 ⋯2.5775] (Fig. 14b).

Through comparison, it is determined that: A1́.0 

=[120,767,516.6 240,250,634.2⋯2, 353,562,136]T, f1.0 = [0.0446 
0.0528 ⋯2.2434] (Fig. 14a). A0́.9 < A1́.0,f0.9 > f1.0, so there is still a 

Fig. 12. LZYB finite element coupling data.

Fig. 13. Three-dimensional deformation analysis of the main tower.
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redundant structure after reduction of 0.1V, and further optimization 
can be carried out.

The secondary coupling optimization is completed in eight cycles 
and reduced to 0.85V. A total of 40 sets of elements are selected for the 
optimization model to calculate A0́.85=[73,463.36 73,599.80⋯240,
529,174.60]T, f0.85 = [0.0131 0.0162 ⋯1.3910] (Fig. 14c). Through 
comparison, it is determined that: A0́.85 < A1́.0,f0.85 < f1.0.

The conclusion which can be drawn from the coupling optimisation 
is that the main beam of LZYB can reduce the amount of concrete by 15% 

and that the coupling optimisation area is in the main beam base plate. 
The main beam is divided into a top plate, flange plate, rib plate, and 
base plate, all of which are made of C50 reinforced concrete [47–48]. 
The mechanical equivalent model analysis shows that the top plate 
transfers the load longitudinally to the base plate, then to the supports 
and lower structure. The upper and lower plates bear the bending 
moment and deflection, and the equivalent plate stiffness coefficient is 
Ds = Ep × h3

p / 12(1-μ2
p). The bending moment it bears is Dr = Ef ×

(h + t0)2t0/ 2 (1-μ2
f ), because the two are equivalent, and μf = μp, Ep =

Ef ,hp =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

6(h + t0)2t0
3
√

. According to the analysis of the model data 
above, the thickness of the base plate has been reduced to 70 mm.

The finite element coupling model of the base plate after reduction is 
re-established to analyze the dynamic response and plastic effect pa
rameters under the design loads, A8́5% =

[199,546.24 327,969.38⋯13,596,370.68]T, f85% = [0.001,1 0.003,
2 ⋯1.601,7] (Fig. 14d), A8́5% < A1́.0,f85% < f1.0. The comparative anal
ysis of data shows that the optimized main beam base plate meets the 
various load performance requirements of the original design, and its 
results have important engineering practicality and robustness.

4.3. Sustainable assessment of main beam

A large amount of energy-intensive fossil materials is used in the 
construction process of statically indeterminate structures but it is 
difficult to achieve the coupling optimisation of large volumes due to the 
special design aesthetics and high-performance requirements of such 
structures. There is a significant spatial spillover effect of structural 
carbon emissions. Based on the assessment system standards of SDGs 7 & 
13 and ISO14040 [49], this study explores the LZYB carbon reduction 
volume and economic reduction indicators [50–51].

The life cycle assessment (LCA) of LZYB was mainly carried out in the 
design optimisation stage. The five core indicators selected were: Global 
warming (GWP100a), AP- Acidification, FEP- Eutrophication, PMFP, 
and W. The assessment software used was OpenLCA and the database 
was Ecoinvent, Bedec, and Soca [52–54]. Table 5 shows a reduction of 2, 
009.65 tons of CO2 emissions, 8.86 tons of SO2 emissions, 7.12 tons of 
PO4 emissions, and 79.63 tons of other smoke, dust, and waste. The life 
cycle cost of optimised materials mainly includes the initial material 
cost, without considering the material maintenance cost and operational 
costs, and is directly calculated by applying the local project budget 
estimate quota of the region where LZYB is located, which saves 2,694, 
189.55 CNY (Table 5).

Through the comprehensive analysis process described above, we 
determined that intelligent cloud-based monitoring is the optimal so
lution for effectively improving maintenance planning requirements and 
bridge operation and maintenance status data, maximising bridge per
formance and more economically allocating limited financial budgets to 

Table 4 
Comparison of stress monitoring and finite element data coupling in LZYB.

Monitoring data (1000 
GPa)

Finite Element Data (MPa)

Location 
number

Stress 
range

Location 
number

Full 
bridge

Location 
number

Main 
beam

2.50 spans 
on the 
east side

19.524 >
S >
− 6.725 S

32416 116.979,1 78.01 190.994,9

3.50 spans 
on the 
east side

14.613 >
S >
− 6.708 S

58696 64.606,5 79.01 198.935,1

3.50 spans 
on the 
west side

18.564 >
S >
− 7.171 S

63509 56.926,7 80.02 182.686,8

3.50 spans 
on the 
east side

15.072 >
S >
− 6.295 S

80679 929.702,7 88.01 187.713,8

4.25 spans 
on the 
west side

14.998 >
> − 8.567 
S

93010 893.999,5 89.01 186.739,8

4.25 spans 
on the 
east side

17.591 >
> − 6.883 
S

107368 933.246,5 90.01 187.076,8

4.50 spans 
on the 
east side

17.562 >
> − 6.382 
S

118413 778.346,8 91.01 168.019,6

4.75 spans 
on the 
west side

19.822 >
> − 7.258 
S

119318 864.263,7 209.87 183.733,8

4.75 spans 
on the 
east side

17.487 >
> − 7.203 
S

134643 991.175,3 210.88 184.196,8

5.50 spans 
on the 
west side

18.234 >
> − 6.828 
S

145967 896.254,9 211.90 185.655,6

5.50 spans 
on the 
east side

15.632 >
> − 7.064 
S

152592 930.771,6 219.91 179.560,1

6.50 spans 
on the 
west side

16.104 >
> − 6.337 
S

172680 906.555,4 220.92 194.894,5

6.50 spans 
on the 
east side

17.051 >
> − 6.628 
S

174369 894.953,9 221.92 186.405,6

Fig. 14. Finite element analysis and coupling optimisation of the main beam.
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long-term, efficient bridge maintenance and reducing environmental 
impact. Over time, through the high-precision prediction of structural 
damage from non-stationary and nonlinear time degradation sequences, 
health index measurement and management system integration are 
achieved.

5. Conclusions

At present, statically indeterminate structures form a significant 
portion of infrastructure construction and their appearance, construc
tion, and practicality have been favoured by designers. However, they 
pose difficulties for normal maintenance activities due to the series of 
consolidation system characteristics which are inherent in their struc
ture. The way to establish a complete and scientific automated early 
warning and monitoring system, to reduce the large amount of human 
and financial resources required for maintenance, is a difficult issue that 
needs to be solved in this field.

The key points and challenges of this research are as follows: 

• An innovative, comprehensive assessment model was developed for 
complex structural systems, addressing the interference of uncertain 
influencing factors such as natural environmental conditions, un
certain dynamic loads, and structural material degradation.

• A thorough comparative study and analysis were conducted on the 
theoretical framework, including real-time data monitoring and 
finite element modelling of hyperstatic structures within an estab
lished IoT-based intelligent automated monitoring and early warning 
cloud platform, demonstrating the platform’s effectiveness and 
advancement.

• The reliability of the monitoring data was validated through research 
involving a three-dimensional dynamic hyperstatic model, leading to 
a rational optimisation design and evaluation aimed at the sustain
able development of hyperstatic structures.

• Research findings and scientific perspectives on the real-time 
monitoring scheme were proposed, to serve as references for 
design units and management departments.

The key findings of this research are: 

• Cable failure is a critical factor affecting the stability and normal 
operation of cable-stayed bridges; it is a primary target for moni
toring. Typically, stress or displacement fibre optic monitoring 
equipment is installed at intervals between the tower sections; 
however, this arrangement is suboptimal.

• Analysis of the cable surface stress on a twin-tower cable-stayed 
bridge shows that the highest cable stress is concentrated on the 
longest cable, cable No. 10, with the maximum stress occurring 
within 2 m of the main tower top.

• Stress in the central region of the cable plane (2–52 m) remains 
essentially stable, allowing for a limited number of monitoring points 
to be installed in the intermediate sections.

• Stress in the area surrounding the connection between the cable and 
the main beam (up to 3 m) increases rapidly, forming a peak at the 
turning point. The stress ratios in the three regions are 1.072, 1.000, 
and 1.066. The current layout of intelligent cable force monitoring 
points is inadequate: no monitoring points are installed at the tower 

top, while too many are placed at the main beam, resulting in inef
ficient use of the equipment.

• Analysis of the monitoring data reveals that internal forces in other 
components within the same area are essentially consistent. There
fore, the routine maintenance of cable-stayed cables should focus on 
the connection between the tower top and the main beam.

The innovation of this article lies in the systematic application of 
measured data and 3D finite element modelling to analyse the safety and 
coupling optimisation problems of super-large bridges during their 
operation under multiple influencing factors, providing an example for 
real-time monitoring of intelligent cloud platforms and comparative 
analysis of the data robustness of similar statically indeterminate 
structures. This results in overcoming the drawbacks of traditional daily 
maintenance that requires a large amount of human and financial re
sources. There are still shortcomings in the study, such as the insufficient 
in-depth study on the mechanism of destructive effects of overloading, 
overweight and overspeed, etc. Subsequent in-depth research in this 
direction should be carried out whilst operating under continuous 
monitoring and early warning systems.
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[53] Z.W. Zhou, J. Alcalà, V. Yepes, Carbon impact assessment of bridge construction 
based on resilience theory, J. Civ. Eng. Manag. 29 (2023) 561–576, https://doi. 
org/10.3846/jcem.2023.19565.
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