Nomograma para el cálculo de la perforación a percusión con cable

Perforación a percusión con cable. https://www.massenzaperforadoras.es/la-perforacion-de-percusion/

La perforación a percusión con cable es un método de perforación vertical que se basa en el golpeteo de un trépano pesado que se eleva con un cable y cae por gravedad, fragmentando el suelo. Este método se utiliza en terrenos de dureza media a baja o en terrenos duros que sean frágiles, pero se desaconseja en terrenos detríticos no cohesionados, muy duros, abrasivos y plásticos. La frecuencia de golpeo se encuentra en el rango de 40 a 50 impactos por minuto, y se logran rendimientos medios de 2 a 4 m/día en materiales duros y de 10 a 20 m/día en materiales blandos. La altura de caída del trépano depende de la dureza del terreno y de la profundidad del fondo de perforación.

Aquí os traigo un nomograma original, elaborado en colaboración con los profesores Pedro Martínez-Pagán y Daniel Boulet, en el que se puede calcular las características propias de este método de perforación, tales como el peso de la sarta de perforación, la velocidad media de la herramienta o la potencia necesaria de la máquina. También os paso un problema resuelto, que espero sea de vuestro interés.

Descargar (PDF, 351KB)

Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 2009.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Selección de dragas en función del terreno

Figura 1. https://www.publicdomainpictures.net/es/view-image.php?image=89500&picture=draga

Para planificar un proyecto de dragado es fundamental disponer de información geotécnica detallada del material a extraer. Esto permitirá seleccionar el equipo adecuado, estimar los rendimientos y prever la necesidad de sobre-excavación. Es importante tener en cuenta el tipo de terreno a dragar para identificar los más apropiados.

Las Tablas que se presentan resumen las características de las dragas en función del terreno, lo que facilita la elección del equipo adecuado y contribuye a una ejecución más eficiente del dragado.

 

 

Tabla 1. Comportamiento de las dragas en función del terreno (Vigueras, 1997)

Tabla 2. Equipos más adecuados para cada terreno (Vigueras, 1997)

Tabla 3. Uso de los equipos de dragado en función del emplazamiento y las características de los materiales a dragar (Vigueras, 1997)

Referencias:

BRAY, R.N.; BATES, A.D.; LAND, J.M. (1997). Dredging: A handbook for engineers. 2nd edition, Willey, 434 pp.

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

SANZ, C. (2001). Manual de equipos de dragado. Ed. Carlos López Jimeno. Madrid, 323 pp.

VIGUERAS, M. (1997). Organización y ejecución de las obras. Conferencia 7. Curso General de Dragados Ente Público Puertos del Estado.

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Diseño regenerativo y métodos modernos de construcción: La crisis del paradigma de la sostenibilidad

Figura 1. Edificio Media-TIC. Enric Ruiz Geli. El Poblenou, Barcelona. https://commons.wikimedia.org/wiki/File:Edificio_Media-TIC._Enric_Ruiz_Geli.jpg

La construcción y gestión de las infraestructuras constituye un sector económico clave, tanto por sí mismo como por su papel fundamental en el soporte de la actividad social. Sin embargo, la creciente conciencia sobre la necesidad de construir de manera sostenible ha impulsado la puesta en marcha de nuevas tecnologías y materiales. Entre las tecnologías clave para hacer más sostenibles las infraestructuras se encuentran el uso de materiales de construcción ecológicos y sostenibles, la adopción de energías renovables como paneles solares y aerogeneradores, la iluminación LED, sistemas urbanos de drenaje sostenible, materiales de aislamiento térmico y sistemas de sensorización y automatización. El empleo de estos materiales y tecnologías puede ayudar a reducir la huella de carbono de las infraestructuras, disminuir el consumo de energía y recursos no renovables, generar ahorros económicos y mejorar la calidad del agua. Además, estas opciones pueden favorecer la eficiencia de la infraestructura y la calidad de vida de los usuarios. Pero es claramente insuficiente.

El paradigma de la sostenibilidad está en crisis. Ya no se considera suficiente la reducción de los impactos ambientales asociados a la actividad humana, sino que se deben contemplar también los aspectos económicos y sociales. Alcanzar este equilibrio resulta complejo, pues a veces la sostenibilidad ambiental no es compatible con la social o la económica. No obstante, el reto es claro: preservar los recursos naturales, el patrimonio, la cultura, el equilibrio social, los ecosistemas y muchos otros aspectos más, para las generaciones futuras.

Por tanto, el paradigma actual se ve cuestionado cuando el antiguo canon de “reciclar, reducir y reutilizar” ya no es suficiente y debe ser reemplazado por otro que consiste en “restaurar, renovar y reponer”. Este enfoque representa un nuevo paradigma para mejorar el entorno construido: el Diseño Regenerativo (conocido como “regenerative design” en inglés). En la actualidad, reducir los impactos ambientales resulta insuficiente ante la aceleración del cambio, por lo que se hace necesario adoptar un enfoque de diseño regenerativo que genere impactos positivos a lo largo de todo el ciclo de vida de una infraestructura.

El diseño regenerativo implica la restauración de los ecosistemas y fomenta el desarrollo de los ecosistemas naturales y humanos. Para lograrlo, se requiere un cambio de pensamiento y de diseño, con un enfoque holístico e integrado. Además, este nuevo paradigma exige la incorporación de un alto nivel de conocimientos científicos que no se encuentran en el diseño convencional. No podemos ignorar la herencia de etapas anteriores, pero los proyectistas y los encargados de tomar decisiones necesitan expandir sus horizontes. El nuevo desafío requiere un profundo conocimiento de diversas áreas y, en algunos casos, la colaboración de varios especialistas y herramientas apropiadas, junto con nuevos métodos de investigación, pautas y estrategias de diseño.

Figura 2. Ciudad del Puerto de Malmö. Autor: Jorge Franganillo
https://www.flickr.com/photos/franganillo/43494905904

Los Métodos Modernos de Construcción (Modern Methods of Construction, en inglés) se refieren a un enfoque que utiliza tecnologías y procesos innovadores para mejorar la eficiencia y la calidad de la construcción. Incluyen la prefabricación de componentes en una fábrica, la utilización de materiales más ligeros y resistentes, y la adopción de técnicas constructivas más rápidas y precisas. Estos nuevos procedimientos se relacionan con el diseño regenerativo, pues ambos buscan promover prácticas más sostenibles y responsables con el medio ambiente. Este enfoque se basa en la comprensión de que los edificios y la infraestructura pueden tener un impacto positivo al proporcionar servicios ecosistémicos como la purificación del aire y del agua, la protección contra inundaciones y la mitigación del cambio climático.

Por tanto, estamos frente a un cambio de paradigma, ya que los métodos modernos de construcción pueden ser herramientas valiosas para el diseño regenerativo. Al emplear materiales más sostenibles, reducir los residuos de construcción y disminuir la huella de carbono, estos nuevos métodos pueden ayudar a crear edificios y comunidades más sostenibles y eficientes. Además, pueden contribuir a la creación de infraestructuras que promuevan la regeneración del medio ambiente y la salud de la comunidad.

La investigación y la innovación en este ámbito está siendo puntera en España, tanto en las universidades como en los institutos tecnológicos o las empresas. En el Instituto de Ciencia y Tecnología del Hormigón (ICITECH) de la Universitat Politècnica de València, el grupo de investigación que dirijo se enfoca en promover la sostenibilidad de las infraestructuras en todas las etapas de su ciclo de vida, desde el diseño hasta la demolición, a través de técnicas de optimización heurística multiobjetivo, toma de decisiones y análisis del ciclo de vida social y ambiental.

Figura 3. Puente de la Gran Belt, Dinamarca. https://commons.wikimedia.org/wiki/File:GreatBeltBridgeTRJ1-edit.JPG

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Prototipo de examen para la asignatura de Procedimientos de Construcción

Mis estudiantes agradecen que les proporcione exámenes muy parecidos a los que van a tener que hacer. Estoy en este momento dando las primeras clases de la asignatura de Procedimientos de Construcción a los estudiantes del doble grado de Matemáticas-Ingeniería Civil de la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Valencia.

El nivel de dificultad del examen real será muy similar. Además, este tipo de ejercicios permite a los estudiantes enfrentarse a los problemas, consultar al profesor su resolución y aprender del proceso de evaluación.

De momento solo he tenido la oportunidad de dar tres unidades correspondientes a sondeos y perforaciones, técnicas de mejora del terreno y control del nivel freático. El tipo de examen es del estilo al que dejo a continuación.

Descargar (PDF, 146KB)


Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Trabajo Fin de Máster sobre análisis del ciclo de vida y optimización del puente de la Bahía de Zhanjiang (China)

Acaba de defender su Trabajo Fin de Máster el estudiante Zijian Cao para obtener el Máster Universitario en Planificación y Gestión en Ingeniería Civil. Se trata del análisis del ciclo de vida y optimización aplicado al puente de la Bahía de Zhanjiang en China. He tenido la oportunidad de ser su director de máster, aunque ha sido un verdadero reto debido a la dificultad del idioma. Al cabo de unos años, Zijian ya habla español de forma fluida. Ha obtenido la calificación de sobresaliente. Mi más sentida enhorabuena.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. Os paso el resumen de su trabajo. Espero que os sea de interés.

En la actualidad, el mundo está avanzando hacia un modelo de desarrollo más sostenible para hacer frente al grave impacto ambiental. En este sentido, los investigadores tienen que enfocarse en la innovación de materiales, el manejo de personal y el uso de maquinarias con el fin de controlar y reducir la contaminación ambiental mediante métodos científicos y medidas eficaces de optimización, logrando así un desarrollo sostenible y respetuoso con el medio ambiente en las construcciones.

Puente de la Bahía de Zhanjiang. https://megaconstrucciones.net/?construccion=puente-bahia-zhanjiang

Para llevar a cabo este trabajo, se ha realizado una investigación exhaustiva de los factores que influyen en el impacto ambiental de las construcciones, analizando la información actual de los impactos ambientales en China y países europeos. Posteriormente, se ha establecido un modelo teórico efectivo que permita aplicar un Análisis de Ciclo de Vida (ACV) y utilizado modelos de cálculo y software de análisis para lograr los objetivos de la investigación.

El enfoque principal del trabajo es el análisis teórico y el estudio de casos. A través del modelo teórico establecido, se efectúa un análisis detallado de los impactos de los materiales, la planificación y el diseño, la instalación, el mantenimiento, la operación y la demolición de puentes complejos. Sobre la base del modelo teórico original, se han contemplado métodos en diseño, métodos de construcción y gestión, que se benefician del ahorro de costos y la reducción de emisiones. Este trabajo no solo contribuye con resultados concretos, sino que también establece un marco para futuras investigaciones en este campo. Además, proporciona datos, modelos y métodos de investigación para la sostenibilidad en la construcción.

Gestión del mantenimiento de carreteras con presupuesto limitado

Tengo el placer de anunciar una conferencia invitada que impartiré el próximo día 3 de marzo de 2023, a las 17:00 h, denominada: “Gestión del mantenimiento de carreteras con presupuesto limitado”.

Esta charla está auspiciada por el Instituto Tecnológico de la Construcción. Se trata de una institución de educación superior de habla hispana, radicada en México, especializada en el ramo de la construcción, logrando una formación teórica-práctica de sus alumnos y es reconocida por el liderazgo y calidad de sus egresados.

Este instituto, tal y como se puede ver en su página web, nace en 1983 como respuesta de la Cámara Mexicana de la Industria de la Construcción a las necesidades de sus afiliados por tener profesionales especializados en materia de construcción. Se logra, así, que el proceso de vinculación escuela-industria de la construcción sea total, pues gracias a los estudios universitarios que se imparten, se ha logrado formar a ejecutivos y gestores de empresas constructoras.

Existe un formulario para aquellos de vosotros que queráis participar en este evento. El enlace es el siguiente: https://t.co/oHzVxz6iQ6

 

Mejora de la gestión del paisaje en un puerto deportivo mediante la participación pública

Acaban de publicarnos un artículo en la revista Land, revista indexada en el JCR. En este caso se ha analizado la mejora de la gestión del paisaje en un puerto deportivo de Granada a través de la participación pública en la identificación y evaluación de valores paisajísticos. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Los valores paisajísticos se refieren a los atributos percibidos en un paisaje y son importantes para los usuarios de los puertos deportivos, pues reflejan sus percepciones y pueden ayudar a los gestores a medir su grado de satisfacción. Este estudio se centró en identificar y evaluar los valores paisajísticos de Marina del Este (Granada, España), utilizando entrevistas y un cuestionario para aumentar la participación de las partes interesadas y los usuarios.

Primero, se realizó un análisis DAFO de las entrevistas con la dirección para recopilar sus percepciones. Luego, se aplicó una encuesta que recibió 104 respuestas de visitantes y usuarios para recoger los valores paisajísticos del puerto deportivo. Se emplearon los métodos ANOVA y PCA para comprobar su adecuación.

Los resultados indicaron que el puerto deportivo debe transmitir una atmósfera de tranquilidad y bienestar, pero también se debe mejorar la hospitalidad y el mantenimiento relacionados con el turismo náutico. Se identificaron problemas relacionados con la falta de espacio y el exceso de urbanización del entorno. Los gestores deben analizar estos resultados para establecer las causas de las discrepancias y proponer soluciones al modelo de gestión establecido. La percepción de las partes interesadas y los usuarios puede ayudar a implementar políticas más consensuadas, con mayor aceptación e implicación.

Vista general de Marina del Este con el Peñón de las Caballas como elemento estructurante

Abstract:

Landscape values are related to people’s attributes of a perceived landscape. They reflect marina user perceptions, thus representing a feedback tool for marina managers to use to verify the degree of user satisfaction. This study focused on identifying and assessing a marina’s landscape values. We took Marina del Este (Granada, Spain) as a case study. We considered interviews and a questionnaire to devise methods to enhance the participation of stakeholders and users. First, the SWOT analysis from stakeholder interviews enabled us to collect management’s perceptions. Second, the survey gathered the marina’s landscape values, comprising 104 respondents from visitors and users. ANOVA and PCA methods were applied to check the suitability of the values. The results showed that the marina should be in keeping with an atmosphere of tranquility and well-being. Nevertheless, there was a need to improve values related to nautical tourism, such as hospitality and maintenance, dealing with the lack of space and an excess of urbanization in the surroundings. Marina managers should consider these outcomes and analyze the points of improvement to establish the causes of these disagreements and propose solutions for the established management model. The perception of stakeholders and users can enable more consensual policies with greater acceptance and involvement.

Keywords:

Landscape value; marina; management; SWOT; ANOVA; PCA.

Reference:

MARÍN, R.; YEPES, V. (2023). Landscape values in a marina in Granada (Spain): Enhancing landscape management through public participation. Land, 12(2):492. DOI:10.3390/land12020492

Descargar (PDF, 3.03MB)

Evaluación del coste del ciclo de vida mediante la función de densidad espectral de potencia en un puente de hormigón en ambiente costero

Acaban de publicarnos un artículo en el Journal of Marine Science and Engineering, revista indexada en el JCR. Se trata de la evaluación del coste del ciclo de vida mediante la función de densidad espectral de potencia en un puente de hormigón en ambiente costero. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En los últimos tiempos, se han llevado a cabo reparaciones y mantenimiento en estructuras para prevenir el colapso súbito y los consiguientes daños económicos y humanos. La presencia de iones cloruro es un factor natural que contribuye a la degradación de las estructuras en entornos marinos, reduciendo su vida útil. Por lo tanto, es esencial supervisar regularmente el estado de los edificios costeros de hormigón para repararlos a tiempo. El objetivo de este estudio es evaluar el método de densidad espectral de potencia (PSD) como un método no destructivo de detección de daños para monitorizar la ubicación y cantidad de daños causados por los iones cloruro durante la vida útil de una estructura. Se utilizan diferentes enfoques, como la evaluación del ciclo de vida (LCA) y su coste (LCCA).

En este sentido, en primer lugar, se calculó el daño por corrosión causado por los cloruros en función de la distancia de la zona al agua de mar para determinar la vida útil de cada parte de un puente de hormigón en ambiente marino mediante el método convencional. A continuación, se estimó el deterioro del hormigón, basándose en la corrosión de las barras de refuerzo cada año. El método PSD permitió controlar la pérdida anual de sección transversal de la armadura, las variaciones en las características dinámicas (como la rigidez y la masa) y la vida útil de la estructura del puente mediante ecuaciones de sensibilidad y el algoritmo de mínimos cuadrados lineales. Por último, se compararon los costes del ciclo de vida (CCV) y los costes de mantenimiento y reparación del método PSD con el método convencional en función de la ubicación y calidad de los daños en cada año de vida del puente hasta el final de su vida útil. Los resultados mostraron que esta estrategia fue muy eficaz para reducir y optimizar los costes de mantenimiento y reparación causados por la corrosión por cloruros.

Figura 1. Dimensiones de un vano del puente de Arosa

Abstract:

Repairs and maintenance have recently been necessary to prevent sudden collapses of structures, which can lead to human and financial damage. Chloride ions are a natural factor in marine environments that deteriorate structures and reduce lifespan. Therefore, it is essential to regularly monitor the condition of concrete coastal buildings to ensure timely repairs. This study aims to evaluate the performance of the power spectral density (PSD) method as a non-destructive damage detection method for monitoring the location and amount of damage caused by chloride ions during a structure’s lifespan. The study employs different approaches, including life-cycle assessment (LCA) and life-cycle cost assessment (LCCA). The conventional method calculates the chloride corrosion damage dependent on the zone’s distance from seawater to determine the service life of each part of a coastal concrete bridge. The next stage forecasts the bridge’s concrete deterioration based on the rebar corrosion each year. The PSD method monitors the annual loss of reinforcement cross-sectional area, dynamic characteristics such as stiffness and mass changes, and the bridge structure’s lifespan using sensitivity equations and the linear-least-squares algorithm. Finally, the LCCA and maintenance and repair costs of the PSD method are compared to the conventional method based on the location and quality of damage in each year of the bridge’s life until the end of its service life. The results show that this strategy effectively reduces and optimizes the maintenance and repair costs caused by chloride corrosion.

Keywords:

Life-cycle cost assessment (LCCA); non-destructive damage-detection technique; chloride ion attack; steel corrosion; power spectral density method (PSD); concrete coastal bridge.

Reference:

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023).  Life-cycle cost assessment using the power spectral density function in a coastal concrete bridgeJournal of Marine Science and Engineering, 11(2):433. DOI:10.3390/jmse11020433

Descargar (PDF, 3.17MB)

Tipos de perforación rotopercutiva con martillos hidráulicos

Figura 1. https://www.monografias.com/trabajos68/tubos-exploracion-taladros-explotacion-subterranea/tubos-exploracion-taladros-explotacion-subterranea2

La perforación rotopercutiva con martillos hidráulicos es el método predominante en las voladuras a cielo abierto. Dentro de esta técnica se identifican tres grupos principales. De los dos primeros ya hemos hablado en sendos artículos dentro de este blog.

El primer grupo son los martillos en cabeza, donde la rotación y percusión ocurren fuera del barreno y se transmiten mediante la espiga y la sarta hasta la boca de perforación. Los martillos pueden ser neumáticos o hidráulicos, siendo estos últimos los más comunes. El rango de perforación es hasta 89 mm de diámetro y profundidades máximas de 15-20 m debido a las pérdidas de energía que se producen en la transmisión de la percusión a través del varillaje, siendo la desviación que es mayor en comparación con otros grupos. Las ventajas incluyen menor coste de equipo y energía, accesorios de perforación más económicos que en el caso de los martillos de fondo, mayor velocidad de perforación y facilidad de automatización de los equipos. Sin embargo, sus desventajas son mayor desviación y mantenimiento más complejo.

El segundo grupo es el martillo en fondo, donde la percusión se realiza directamente sobre la boca de perforación y la rotación se efectúa en el exterior del barreno. El pistón se acciona mediante aire comprimido o agua, mientras que la rotación puede ser neumática o hidráulica. El rango de perforación va desde 89 mm a 250 mm de diámetro y profundidad máxima de 60 m. Las ventajas incluyen velocidad de perforación constante con la profundidad, menor desgaste en la boca y mayor vida útil del varillaje. Las desventajas son menor velocidad de perforación y mayores costos de fungibles, como los tubos y las bocas. Además, se puede perder el martillo si se sufre atrancamiento el fondo del barreno.

El tercer grupo es el Sistema COPROD, que combina la tecnología de martillo en cabeza y en fondo para la perforación. Se utilizan perforadoras similares a las de martillo en cabeza, pero se lleva a cabo la percusión y la rotación del martillo por separado, lo que aúna la velocidad de perforación del martillo en cabeza con la menor desviación del martillo en fondo. El varillaje transmite la percusión y el aire de barrido necesarios hasta la boca del pozo. La rotación también se realiza desde la superficie mediante una tubería exterior unida al varillaje mediante guías, lo que proporciona mayor rigidez y peso y reduce el espacio entre las paredes del barreno y el varillaje. Entre las ventajas se incluyen el aumento del diámetro de perforación, menor riesgo de atranques, menor consumo de energía, mayor vida útil de los accesorios de perforación y menor desviación en comparación con otros métodos. Sin embargo, es importante tener en cuenta que el COPROD puede ser más costoso que otros métodos.

Os dejo algunos vídeos explicativos sobre la perforación COPROD que espero os sean de interés.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2022). Maquinaria para sondeos, movimientos de tierras y construcción de firmes. Apuntes de la Universitat Politècnica de València, Ref. 22.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ponencia invitada en CEVISAMA: Nuevas técnicas para reducir costes y mejorar la sostenibilidad de los elementos constructivos

Me complace anunciar que he sido invitado a impartir una ponencia en CEVISAMA, titulada “Nuevas técnicas para reducir costos y mejorar la sostenibilidad de los elementos constructivos”, que tendrá lugar el jueves 2 de marzo de 2023 a las 10:00 h. Esta ponencia se llevará a cabo en el Foro Cevisama Build, en el Nivel 3 del Pabellón 1 de Feria Valencia, que acogerá a numerosos profesionales y empresas del sector de la construcción sostenible y bioconstrucción. El programa completo del evento se puede encontrar en el siguiente enlace: https://cevisama.feriavalencia.com/actividades/programa-completo/.

Durante mi intervención, repasaré los principales logros que ha alcanzado nuestro grupo de investigación en los últimos 15 años y destacaré las posibilidades que tienen las empresas para incorporar las nuevas tecnologías y reducir los costos de producción, a la vez que mejoran la sostenibilidad de sus productos, especialmente en el sector de la construcción.

Cevisama 2023 reunirá a marcas insignes del sector cerámico, el baño y la piedra natural, y contará con novedades como “Cevisama Tech”, un área exclusiva que mostrará las últimas soluciones en innovación y tecnología aplicadas a la industria cerámica.

En su última edición, celebrada en 2020, Cevisama reunió a más de 800 firmas y marcas y recibió la visita de 90.000 profesionales, de los que más de 21.000 fueron visitantes extranjeros.