Diseño de experimentos por bloques completos al azar

El diseño en bloques completos al azar trata de comparar tres fuentes de variabilidad: el factor de tratamientos, el factor de bloques y el error aleatorio. El adjetivo completo se refiere a que en cada bloque se prueban todos los tratamientos. La aleatorización se hace dentro de cada bloque.

Para ilustrar el diseño, supongamos que queremos determinar si cuatro laboratorios miden la misma resistencia característica del hormigón a compresión. Para ello se han considerado 5 amasadas diferentes que han sido analizadas por cada uno de los laboratorios. A los 28 días, se han roto las probetas a compresión simple y los resultados son los que hemos recogido en la tabla que sigue.

 

AMASADA
1 2 3 4 5
Laboratorio 1 63,5 63,2 62,3 65,6 65,0
Laboratorio 2 64,1 64,2 63,0 64,2 64,9
Laboratorio 3 65,9 65,0 63,9 66,0 65,8
Laboratorio 4 64,9 65,2 64,1 65,9 67,9

 

En este caso, la variable de respuesta es la resistencia característica del hormigón a compresión (MPa), el factor es el laboratorio (4 niveles), el bloque es la amasada (no son objeto directo de motivo del estudio). Por otra parte, se considera que no existe interacción entre el laboratorio y la amasada (factor y bloque).

En este tipo de experimento, la medición será el resultado del efecto del tratamiento (laboratorio) donde se encuentre, del efecto del bloque al que pertenece (amasada) y de cierto error que se espera que sea aleatorio. La hipótesis de que las medias son iguales se va a analizar con el análisis de la varianza (ANOVA), con dos criterios de clasificación.

A parte de los supuesto de normalidad, igualdad de varianzas y de independencia, aquí se añade otro que es que no existe interacción entre el factor y el bloque.

Para los curiosos, después de haber analizado los datos, diremos que en este caso, con una seguridad del 95%, se aprecian diferencias significativas entre las resistencias medidas por los laboratorios 1 y 3, entre los laboratorios 1 y 4,  y entre los laboratorios 2 y 4.

A continuación os dejo un vídeo donde os enseño cómo podemos analizar este problema con el programa estadístico SPSS. Espero que os sea útil.

 

Diseño completamente al azar y ANOVA

El diseño completamente al azar es el más sencillo de los diseños de experimentos que tratan de comparar dos o más tratamientos, puesto que sólo considera dos fuentes de variabilidad: los tratamientos y el error aleatorio.

Para ilustrar el diseño, supongamos que queremos determinar si cuatro dosificaciones de un hormigón A,B,C y D presentan una misma resistencia característica a compresión. Para ello se han elaborado 5 probetas para cada tipo de dosificación y, a los 28 días, se han roto las probetas a compresión simple y los resultados son los que hemos recogido en la tabla que sigue.

DOSIFICACIONES DE HORMIGÓN
A B C D
Resistencia característica a compresión fck (Mpa) 42 45 64 56
39 46 61 55
48 45 50 62
43 39 55 59
44 43 58 60

Para este caso, la variable de respuesta es la resistencia característica del hormigón a compresión (MPa), la unidad experimental es la probeta de hormigón y el factor es la dosificación de hormigón. En este caso se trata de un diseño balanceado porque hemos realizado el mismo número de repeticiones (5) para cada uno de los tratamientos (dosificaciones).

Este tipo de diseño se llama completamente al azar porque todas las repeticiones experimentales se realizan en orden aleatorio completo, pues no se han tenido en cuenta otros factores de interés. Si durante el estudio se hacen N pruebas, éstas se deben realizar al azar, de forma que los posibles efectos ambientales y temporales se vayan repartiendo equitativamente entre los tratamientos.

El número de repeticiones a realizar en cada tratamiento depende de la variabilidad que se espera observar en los datos, a la diferencia mínima que el experimentador considera que es importante detectar y al nivel de confianza que se desea tener en las conclusiones. Normalmente se recomiendan entre 10 y 30 mediciones en cada tratamiento. Con 10 mediciones se podrían detectar diferencias de medias mayores o iguales a  1,5 sigmas con una probabilidad alta, y con 30 mediciones se podrían detectar diferencias mayores o iguales a 0,7 sigmas.

Se utiliza el análisis de la varianza (ANOVA) para comprobar si existen diferencias en las medias. Fundamentalmente este análisis consiste en separar la contribución de cada fuente de variación en la variación total observada. Sin embargo, éste ANOVA está supeditado a los siguientes supuestos que deben verificarse:

  • Normalidad
  • Varianza constante (igual varianza en los tratamientos)
  • Indepedencia

Para los que queráis saber qué ha pasado con nuestro experimento con las amasadas, os diré que que el ANOVA dió como resultado el rechazo de la igualdad de medias, es decir, que la resistencia media se ve afectada por la dosificación. Sin embargo, las cuatro dosificaciones no son igual de efectivas, pues existen diferencias significativas entre las resistencias medias de cada una de ellas. De hecho, las dosificaciones A y B no presentan diferencias significativas entre sí, tampoco entre la C y la D, sin embargo, entre ambos grupos sí que hay diferencias significativas. Asimismo, se ha podido comprobar que se cumplieron los supuestos de normalidad, varianza constante e independencia.

Referencias:

  • Box, G.E.; Hunter, J.S.; Hunter, W.G. (2008). Estadística para investigadores. Diseño, innovación y descubrimiento. Segunda Edición, Ed. Reverté, Barcelona.
  • Gutiérrez, H.; de la Vara, R. (2003). Análisis y diseño de experimentos. McGraw-Hill, México.
  • Vicente, M.L.; Girón, P.; Nieto, C.; Pérez, T. (2005). Diseño de experimentos. Soluciones con SAS y SPSS. Pearson Educación, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.