Diseño sostenible de los cimientos de los aerogeneradores terrestres

Acaban de publicarnos un artículo en el Journal of Physics: Conference Series, referente a la comunicación que presentamos en la WindEurope Annual Event 2024 en Bilbao. El estudio se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El documento evalúa la sostenibilidad de los cimientos de los aerogeneradores utilizando un enfoque holístico, comparando diferentes alternativas concretas en función de los impactos del ciclo de vida y empleando un modelo de toma de decisiones multicriterio. Cuantifica la sostenibilidad y clasifica el hormigón con escorias de alto horno como el más sostenible, seguido del hormigón convencional y las cenizas volantes, y proporciona una metodología para la optimización del diseño con una perspectiva sostenible.

Las conclusiones más importantes de este trabajo son las siguientes:

  • El estudio concluye que la alternativa del hormigón con escorias molidas de alto horno (GBFS) demuestra índices de sostenibilidad más altos en comparación con el hormigón convencional (CONV) y el hormigón con cenizas volantes (FA) para cimentaciones de aerogeneradores.
  • El GBFS supera al CONV y al FA en términos de impacto ambiental, mientras que el CONV es más económico que el GBFS y el FA, y el GBFS muestra impactos sociales más destacados según los indicadores de los trabajadores.
  • El documento hace hincapié en la importancia de tener en cuenta simultáneamente las dimensiones económica, ambiental y social al optimizar el diseño, y destaca la necesidad de adoptar un enfoque holístico de la sostenibilidad en el diseño de las cimentaciones de las turbinas eólicas.

Abstract

Recently, wind power has emerged as a prominent contributor to electricity production. Minimizing the costs and maximizing the sustainability of wind energy is required to improve its competitiveness against other non-renewable energy sources. This communication offers a practical approach to assess the sustainability of wind turbine generator foundations from a 3-dimensional holistic point of view. Specifically, the main goal of this study is to analyse the life cycle impacts of one shallow foundation design by comparing three different concrete alternatives: conventional concrete, concrete with 66-80% of blast furnace slags and concrete with 20% fly ash, and then to apply a Multi-Criteria Decision-Making model based on TOPSIS method to evaluate and compare the resulting sustainability of each alternative considered. The study results in a methodology for quantifying sustainability rather than simply qualifying it. Therefore, with a sustainable perspective, this methodology can be employed for design optimization, such as geometry and materials. Specifically, in this study, concrete with blast furnace slags emerges as the top-ranked sustainable alternative, followed by conventional concrete in second place and the fly ash option in third position.

Reference:

MASANET, C.; NAVARRO, I.; COLLADO, M.; YEPES, V. (2024) Journal of Physics:Conference Series, 2745:012005. DOI:10.1088/1742-6596/2745/1/012005

Esta comunicación está en abierto, por lo que os la dejo para su descarga.

Descargar (PDF, 808KB)

 

Evaluación de alternativas para la rehabilitación de pilares de hormigón armado en zona sísmica

Acaban de publicarnos un artículo en el Journal of Cleaner Production, revista indexada en el primer decil del JCR. El trabajo evalúa las alternativas de reacondicionamiento de columnas de hormigón armado en una región de alto riesgo sísmico, comparando, el recrecimiento de la sección de hormigón, el encamisado de acero y el refuerzo con fibra de carbono. El estudio destaca la importancia de tener en cuenta todas las etapas en la evaluación del ciclo de vida a la hora de rehabilitar edificios, incluidas las consideraciones de diseño, pruebas, construcción, uso y final de la vida útil. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Las contribuciones de este trabajo de investigación son las siguientes:

  • Evalúa las alternativas de reacondicionamiento de columnas de hormigón armado en una región de alto riesgo sísmico, comparando el recrecido de hormigón, el encamisado de acero y el refuerzo con fibra de carbono.
  • Realiza un análisis exhaustivo para evaluar los impactos económicos y ambientales mediante evaluaciones del ciclo de vida.
  • Presenta una jerarquía estructurada de criterios e indicadores para la evaluación de las opciones de modernización, lo que ayuda a los técnicos y a los responsables de la toma de decisiones.
  • El encamisado de acero se consideran la mejor opción debido a su rendimiento equilibrado en todos los criterios, mientras que los recrecidos de hormigón se consideran menos favorables debido a su elevado impacto ambiental y funcional. La rehabilitación con fibra de carbono es una alternativa viable con un menor impacto medioambiental y una mayor funcionalidad, a pesar de los importantes costes de las materias primas.

Abstract

The critical earthquakes of the last few years highlight the urgent seismic retrofitting of existing buildings due to their aging or inadequate design. This paper aims to evaluate reinforced concrete column retrofit alternatives in a region of high seismic risk. When deciding between various building retrofit options, significant economic, environmental, and functional factors must be considered. The study uses a cradle-to-grave analysis to examine the economic and environmental impacts through life cycle assessments. Specifically, the life-cycle performance of three classic alternatives for rehabilitating columns lacking adequate confinement is compared: concrete jacketing, steel jacketing, and carbon fiber incorporation. The research adopts a holistic approach using multi-criteria decision-making methods, integrating economic, environmental, and functional criteria. A set of criteria and indicators is presented in a structured hierarchy that facilitates the orderly evaluation of alternatives. The results suggest that steel jacketing is preferred, as it presents a balanced performance in most criteria. The incorporation of carbon fiber is viable due to its low environmental and functional impact, although the high production costs of the raw materials limit it. In contrast, concrete jacketing has the highest environmental and functional impacts, making it the least favorable option. The results of this study will provide relevant information for engineers and decision-makers to select the most suitable options for building retrofit when considering several simultaneous perspectives.

Keywords: 

Construction, CFRP, Decision making, Life cycle assessments, MCDM, Retrofit, Sustainable design.

Reference:

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2024). Life cycle evaluation of seismic retrofit alternatives for reinforced concrete columns. Journal of Cleaner Production, 455:142290. DOI:10.1016/j.jclepro.2024.142290

Os podéis descargar gratuitamente el artículo, pues está publicado en acceso abierto.

Descargar (PDF, 4.6MB)

 

Los motivos por los que se equivocan estudiantes y profesionales de ingeniería al abordar la resolución de problemas

Resolver problemas en el ámbito universitario o profesional, en áreas tecnológicas, de ingeniería y ciencias, puede plantear una serie de desafíos que pueden conducir a errores. Estos fallos pueden surgir por diversas razones que van desde no comprender el concepto subyacente hasta confiar demasiado en la tecnología.

En un artículo anterior mencioné algunos ejemplos de problemas teóricamente sencillos, pero que marean a nuestros estudiantes. Ahora vamos a analizar detalladamente algunas de estas razones y cómo se relacionan entre sí. También he incluido enlaces a otros artículos del blog donde reflexiono sobre este tipo de cuestiones.

La falta de comprensión del concepto subyacente a un problema es una preocupación fundamental. Esto puede manifestarse de diversas formas, ya sea a través de errores conceptuales, una aplicación incorrecta del concepto o una interpretación errónea del mismo. Esta falta de entendimiento puede empeorar si se carece de experiencia o conocimientos específicos en el campo correspondiente. Cuando un estudiante o profesional se enfrenta a un problema para el que no tiene experiencia previa, puede tener dificultades para aplicar correctamente los principios necesarios para resolverlo.

Los datos son fundamentales para encontrar soluciones, sin embargo, su calidad y disponibilidad pueden ser problemáticos. La falta de datos adecuados, la presencia de información contradictoria o sesgada pueden conducir a conclusiones incorrectas. Asimismo, centrarse excesivamente en utilizar todos los datos disponibles puede distraer de la información realmente importante, al tiempo que validar datos sesgados o inventados puede conducir a conclusiones incorrectas.

El manejo inadecuado de las bases matemáticas también puede ser una fuente de errores (geometría, trigonometría, cálculo o álgebra). Esto puede incluir errores en el cálculo, así como el uso inapropiado de fórmulas o modelos matemáticos. Los problemas reales rara vez tienen una sola solución, lo que requiere habilidades para evaluar y decidir entre múltiples enfoques posibles. Además, el uso excesivo de la memoria en lugar de la comprensión de los principios subyacentes puede conducir a errores conceptuales y de selección de modelos de cálculo.

Los aspectos psicológicos también son importantes. El estrés, la falta de confianza en uno mismo, la presión por terminar a tiempo y la falta de concentración pueden afectar a la capacidad de resolver problemas de manera efectiva. La falta de atención a los detalles, la fatiga y el agotamiento también pueden provocar errores en la resolución de problemas.

Es crucial comprender que los problemas reales pueden ser complejos y no tener necesariamente una solución única. Esto implica la necesidad de tomar decisiones informadas y comprender las limitaciones de los modelos o fórmulas utilizados. Además, la propagación de errores en las operaciones y el uso incorrecto de datos, fórmulas o software pueden dar lugar a resultados erróneos.

La falta de retroalimentación o revisión de los errores cometidos puede perpetuar la repetición de los mismos una y otra vez. La falta de comunicación o colaboración entre profesionales en entornos de trabajo también puede provocar errores en la resolución de problemas. Confiar ciegamente en la tecnología o en herramientas automatizadas sin comprender en profundidad los principios subyacentes puede ser un problema.

En resumen, resolver problemas en el ámbito universitario o profesional de la ingeniería y las ciencias puede ser un proceso complejo y propenso a errores debido a una variedad de factores interrelacionados. Desde la comprensión del concepto hasta la calidad y disponibilidad de los datos, así como los aspectos psicológicos y técnicos relacionados con la resolución de problemas, es crucial abordar estos desafíos con atención y comprensión para lograr soluciones precisas y efectivas. Desde las universidades debe hacerse todo lo posible para superar este tipo de dificultades y conseguir que nuestros estudiantes adquieran las competencias necesarias para su posterior desarrollo profesional.

Sin querer ser exhaustivo, y sin que estén ordenadas por importancia, aquí os dejo una lista de 30 posibles causas por las cuales nuestros estudiantes en los exámenes o los técnicos en su ámbito profesional, suelen cometer errores al resolver los problemas. Estoy convencido de que hay más causas, pero esto puede ser un buen punto de partida para el debate y la reflexión. En el vídeo que he grabado, me extiendo y explico algo más lo que aquí recojo como una simple lista.

  1. La falta de comprensión del concepto subyacente en un problema puede conducir a errores conceptuales al aplicarlo incorrectamente o interpretarlo de manera errónea.
  2. La inexperiencia o la falta de conocimientos específicos pueden surgir cuando una persona afronta por primera vez un tipo de problema, ya sea durante un examen o en la práctica profesional.
  3. Los problemas relacionados con la disponibilidad de datos pueden presentarse de varias formas, como datos insuficientes, necesarios, innecesarios o contradictorios. A menudo, existe una obsesión por utilizar todos los datos disponibles en el enunciado del problema.
  4. La calidad de los datos también es un factor importante, con la posibilidad de incertidumbre o error en los datos disponibles. Además, dar por válidos datos sesgados, interesados o inventados puede llevar a conclusiones incorrectas. Es necesario un control de calidad de los datos.
  5. Intentar resolver un problema utilizando el enfoque típico visto en clase puede marear a nuestros estudiantes. Los alumnos prefieren resolver un problema típico explicado en clase, a ser posible, con datos parecidos.
  6. El manejo inadecuado de las bases matemáticas, que incluye errores en el cálculo, el uso incorrecto de fórmulas o modelos matemáticos, y la falta de comprensión de los principios subyacentes, puede ser una fuente común de errores. La falta de conocimientos básicos de geometría, trigonometría, álgebra o cálculo básicos son, en ocasiones, escollos. A veces hay dificultades en saber dibujar un esquema para resolver el problema.
  7. Los problemas reales generalmente no tienen una sola solución, lo que requiere habilidades para evaluar y decidir entre múltiples enfoques posibles. Esta distinción, que se da claramente entre los estudios de grado y los de máster, es importante tenerla en cuenta.
  8. Los aspectos psicológicos, como el estrés, la falta de confianza en uno mismo, la presión por terminar a tiempo y la falta de concentración, pueden afectar negativamente la capacidad para resolver problemas de manera efectiva.
  9. La falta de atención o interés, así como la fatiga o el agotamiento, pueden contribuir a errores en la resolución de problemas, al igual que la prisa por resolver el problema.
  10. La complejidad de los problemas puede aumentar cuando se trata de situaciones poco comunes o rebuscadas, lo que requiere un enfoque cuidadoso y creativo para su resolución.
  11. Es crucial comprender la diferencia entre una ley general y una fórmula particular al aplicar normas técnicas que pueden estar basadas en hipótesis o casos específicos.
  12. Utilizar modelos de cálculo inadecuados, ya sean demasiado refinados o demasiado simples para los datos disponibles, puede conducir a soluciones incorrectas.
  13. Carecer de números estimativos para prever el resultado final puede resultar en una falta de comprensión del orden de magnitud del resultado. En este sentido, el uso de nomogramas en la docencia facilita la adquisición de este tipo de habilidad en los estudiantes. Los estudiantes y los profesionales deberían tener un conocimiento del “número gordo” y saber predimensionar.
  14. Es importante ser consciente de la propagación de errores en las operaciones, ya que incluso pequeños errores pueden magnificarse y llevar a resultados incorrectos.
  15. Utilizar fórmulas, datos o tablas en un contexto diferente al que dieron origen puede llevar a interpretaciones incorrectas o a soluciones erróneas.
  16. La extrapolación de resultados a límites no contemplados puede conducir a conclusiones incorrectas o poco realistas.
  17. Utilizar fórmulas empíricas con datos expresados en unidades diferentes a las que funcionan puede generar resultados inconsistentes o incorrectos.
  18. La dependencia excesiva de la memoria en lugar de comprender los principios subyacentes puede conducir a errores en la selección de modelos o fórmulas de cálculo.
  19. Errores conceptuales pueden llevar a la selección incorrecta de modelos o fórmulas de cálculo, lo que resulta en soluciones erróneas.
  20. El uso de software defectuoso o poco contrastado, así como la falta de habilidades para calcular manualmente un problema, pueden resultar en resultados incorrectos. A esto se une un uso inapropiado de la inteligencia artificial.
  21. El mal uso de ecuaciones o fórmulas, como cambiar el nombre de una variable sin entender el concepto subyacente, puede conducir a errores en la resolución de problemas.
  22. La falta de competencia o experiencia en una materia determinada puede resultar en una resolución incorrecta del problema.
  23. Repetir la resolución de problemas de un contexto a otro sin pensar en su validez puede conducir a soluciones inapropiadas.
  24. La falta de comprensión del problema, la pregunta o el tipo de resultado esperado puede resultar en soluciones incorrectas debido a la falta de comprensión lectora, capacidad analítica o de síntesis.
  25. La utilización de unidades defectuosas, notaciones o convenciones específicas puede llevar a interpretaciones erróneas o a soluciones incorrectas.
  26. La falta de retroalimentación o revisión de los errores cometidos puede perpetuar la repetición de los mismos errores una y otra vez.
  27. La falta de comunicación o colaboración en entornos de trabajo entre profesionales puede contribuir a errores en la resolución de problemas.
  28. La confianza excesiva en la tecnología o herramientas automatizadas puede llevar a la falta de comprensión de los principios subyacentes y a la comisión de errores.
  29. La falta de revisión o verificación de los cálculos realizados por parte de un tercero independiente puede resultar en soluciones incorrectas.
  30. La falta de conocimiento del contexto del problema, incluyendo las restricciones, puede conducir a soluciones subóptimas o incorrectas.

Os paso un vídeo donde he desarrollado las ideas anteriores, con ejemplos, y he dejado algunas de mis reflexiones al respecto. Espero que os guste.

Artículos relacionados en el blog:

Los ingenieros, los ordenadores y mil un indios

De la regla de cálculo al ordenador: olvidarse de cómo se calculaba antes

Cifras significativas y errores de medición

¿Cómo predimensionar un muro sin calculadora?

La inteligencia artificial en la ingeniería civil

Introducción a la toma de decisiones

Problemas teóricamente sencillos pero que marean a nuestros estudiantes

Referencias de libros de problemas:

MARTÍNEZ-PAGÁN, P.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2023). Ejercicios resueltos de sistemas de transporte continuo: bombas y cintas transportadoras. Ediciones UPCT. Universidad Politécnica de Cartagena, 284 pp. ISBN: 978-84-17853-62-4

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Técnica Dematel aplicada a la evaluación de la sostenibilidad de puentes en ambiente marino

Figura 1. Puente de A Illa de Arousa. Imagen: V. Yepes (2023).

Acaban de publicar un artículo en el International Journal of Computational Methods and Experimental Measurements. El estudio evalúa diferentes alternativas de diseño para un puente de hormigón situado cerca de la costa utilizando técnicas de toma de decisiones como TOPSIS, COPRAS y VIKOR, con un enfoque en la sostenibilidad y la evaluación del ciclo de vida. La investigación destaca que el hormigón con humo de sílice funciona mejor a lo largo de su ciclo de vida en comparación con otras soluciones que mejoran la durabilidad, como la modificación de la relación agua/cemento o el aumento del recubrimiento del hormigón. Esta adición puede mejorar significativamente la sostenibilidad al aumentar la durabilidad frente a los cloruros y reducir los requisitos de mantenimiento. El estudio destaca que las decisiones de diseño de infraestructuras deben tener en cuenta los impactos sociales junto con los factores económicos y ambientales, y que las diferentes alternativas de diseño muestran diferentes impactos sociales. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La industria de la construcción es un sector crítico para alcanzar los Objetivos de Desarrollo Sostenible. Sin embargo, las actividades de construcción y las propias infraestructuras producen impactos positivos y negativos. Ello provoca que el diseño de infraestructuras sea el centro de la investigación actual para encontrar la mejor manera de satisfacer las demandas de sostenibilidad de la sociedad. Aunque los métodos para evaluar el ciclo de vida económico, medioambiental y social de las infraestructuras son bien conocidos, el reto reside en combinar estas dimensiones en un indicador global que ayude a la toma de decisiones. Este estudio utiliza tres técnicas de toma de decisiones, a saber, TOPSIS, COPRAS y VIKOR, para evaluar cinco alternativas de diseño diferentes para un puente de hormigón expuesto a un entorno costero. Para mejorar la coherencia del proceso de toma de decisiones multicriterio, se aplica un enfoque basado en DEMATEL. Los resultados del estudio demuestran que el hormigón que contiene incluso pequeñas cantidades de humo de sílice se comporta mejor a lo largo de su ciclo de vida que otras soluciones habitualmente consideradas para aumentar la durabilidad, como la reducción de la relación agua/cemento o el aumento del recubrimiento de hormigón.

ABSTRACT:

The construction industry has recently been recognized as a critical sector in achieving the Sustainable Development Goals. However, construction activities and infrastructure have both beneficial and non-beneficial impacts, making infrastructure design the focus of current research in finding the best way to meet society’s demands for sustainability. Although methods for economic, environmental, and social life cycle assessments of infrastructures are well-known, the challenge lies in combining these dimensions into a comprehensive indicator that aids decision-making. This study uses three decision-making techniques, namely TOPSIS, COPRAS, and VIKOR, to evaluate five different design alternatives for a concrete bridge exposed to a coastal environment. To enhance the consistency of the multi-criteria decision-making process, a DEMATEL-based approach is applied. The study’s results demonstrate unanimously that concrete containing even small amounts of silica fume performs better over its life cycle than other solutions typically considered to increase durability, such as reducing the water/cement ratio or increasing concrete cover.

KEYWORDS:

Sustainable design, bridges, life cycle assessment, DEMATEL, TOPSIS, VIKOR, COPRAS, multi-criteria decision-making.

REFERENCE:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2023). Dematel-Based Completion Technique Applied for the Sustainability Assessment of Bridges Near ShoreInternational Journal of Computational Methods and Experimental Measurements, 11(2):115-122. DOI:10.18280/ijcmem.110206

El artículo está publicado en abierto. Os lo dejo para su descarga.

Descargar (PDF, 1.13MB)

Evaluación del ciclo de vida social de las alternativas de subestructura ferroviaria

Acaban de publicar un artículo en el Journal of Cleaner Production, revista indexada en el primer decil del JCR. El estudio presenta indicadores sociales diseñados para evaluar el ciclo de vida de las infraestructuras ferroviarias y evalúa los impactos sociales de tres soluciones comunes de este tipo subestructura. La investigación tiene como objetivo determinar la alternativa de diseño más ventajosa desde el punto de vista social para la infraestructura ferroviaria, haciendo hincapié en la importancia de tener en cuenta los factores sociales junto con las dimensiones económicas y ambientales en el desarrollo sostenible. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El estudio utilizó el proceso de redes analíticas (ANP) para sintetizar el desempeño social de las diferentes soluciones de subestructuras en un solo indicador de comparación. La investigación recopiló datos de inventario de las bases de datos oficiales del territorio español para evaluar los indicadores basados en el contexto social. El documento estableció una colección de criterios mensurables y seleccionó seis indicadores sociales basándose en las «directrices» y las fichas metodológicas para las subcategorías de la evaluación del ciclo de vida social. La metodología introducida en la investigación se puede aplicar en la evaluación de los impactos sociales en varios proyectos de infraestructura más allá de los ferrocarriles, como puentes, carreteras o estructuras portuarias, lo que mejora la aplicabilidad de la evaluación del ciclo de vida social.

Las contribuciones más destacables de este trabajo son las siguientes:

  • Introduce indicadores sociales diseñados para evaluar el ciclo de vida de las infraestructuras ferroviarias.
  • Evalúa los impactos sociales de tres soluciones frecuentes de subestructura de vías férreas.
  • Destaca la importancia de considerar los factores sociales junto con las dimensiones económicas y ambientales en el desarrollo de infraestructuras sostenibles.

ABSTRACT

The sustainable design of infrastructure involves assessing economic, environmental, and social impacts. While significant progress has been made in evaluating economic and environmental life cycle impacts since the Paris Agreement, there’s a notable gap in techniques for assessing social aspects in infrastructure design. This study introduces social indicators tailored for evaluating the lifecycle of railway infrastructures. The indicators are applied to assess the social impacts of three common railway track substructure solutions: conventional ballasted track, embedded slab track (BBEST solution), and sleeper-based, ballastless (RHEDA2000) substructure solutions. Using the Analytic Network Process (ANP), the social performance of each alternative is synthesized into a single indicator for comparison. Results indicate that the conventional ballasted track outperforms, scoring 12% higher than BBEST and 61% better than RHEDA in social terms. This is attributed to its reliable capacity for generating high-quality employment and fostering economic activities in the defined product system regions.

KEYWORDS:

Social life cycle assessment; Railway; ANP; Sustainability; Multi-criteria decision-making; Sustainable design.

REFERENCE:

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. (2024). Social life cycle assessment of railway track substructure alternatives. Journal of Cleaner Production, 450:142008. https://doi.org/10.1016/j.jclepro.2024.142008.

Os dejo el artículo para su descarga, pues está publicado en abierto.

Descargar (PDF, 5.96MB)

Toma de decisiones sobre infraestructuras viarias sostenibles: NSGA-II con operadores de reparación para optimización multiobjetivo

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. El trabajo trata sobre la toma de decisiones en infraestructuras viales sostenibles. Para ello se utiliza una variante personalizada de la técnica NSGA-II con operadores de reparación para una optimización multiobjetivo. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El documento propone un enfoque novedoso que combina la optimización multiobjetivo (MOO) con técnicas de toma de decisiones basadas en criterios múltiples (MCDM) para el diseño y la selección de estructuras modulares prefabricadas de hormigón armado (RCPMF) en infraestructuras viales, con un enfoque en la sostenibilidad. El estudio evalúa la eficacia de tres operadores de reparación a la hora de optimizar los objetivos económicos, ambientales y sociales, y utiliza algoritmos personalizados y un análisis del ciclo de vida (LCA) para una evaluación precisa. Los resultados muestran que el operador de reparaciones basado en estadísticas ofrece soluciones con un menor impacto en todas las dimensiones y demuestra una variabilidad mínima, lo que lo convierte en el más adecuado para cumplir con los requisitos de diseño del RCPMF.

Las contribuciones más importantes de este trabajo son las siguientes:

  • El documento presenta un enfoque novedoso que combina la optimización multiobjetivo (MOO) con técnicas de toma de decisiones basadas en criterios múltiples (MCDM) para el diseño y la selección de estructuras modulares prefabricadas de hormigón armado (RCPMF) en infraestructuras viales, con un enfoque en la sostenibilidad.
  • El estudio evalúa la eficacia de tres operadores de reparación (basados en estadísticas, aleatorios y de proximidad) a la hora de optimizar los objetivos económicos, ambientales y sociales.
  • El artículo presenta una versión personalizada del algoritmo NSGA-II (NSGA-II) de clasificación no dominada, complementada con un análisis detallado del ciclo de vida (LCA), para facilitar la evaluación precisa de las funciones objetivas.
  • El artículo demuestra el uso de dos técnicas de MCDM, a saber, la ponderación aditiva simple (SAW) y (FUCA), para puntuar y clasificar las soluciones MOO.
  • La investigación proporciona una estrategia clara y metódica para integrar el MOO y el MCDM, formando un marco coherente para la implementación práctica en contextos de ingeniería complejos.
  • El estudio destaca la importancia de tener en cuenta los principios de sostenibilidad desde la fase de diseño y de emplear las técnicas de MOO para encontrar soluciones equilibradas y óptimas en la ingeniería civil.

Abstract:

Integrating sustainability principles into the structural design and decision-making processes for transportation infrastructure, particularly concerning reinforced concrete precast modular frames (RCPMF), is recognized as crucial for ensuring environmentally responsible, economically feasible, and socially beneficial outcomes. In this study, this challenge is addressed, with the significance of sustainable development in modern engineering practices being underscored. A novel approach, which combines multi-objective optimization (MOO) with multi-criteria decision-making (MCDM) techniques, is proposed, tailored specifically for the design and selection of RCPMF. The effectiveness of three repair operators—statistical-based, random, and proximity based—in optimizing economic, environmental, and social objectives is evaluated. Precise evaluation of objective functions is facilitated by a customized Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm, complemented by a detailed life cycle analysis (LCA). The utilization of simple additive weighting (SAW) and fair un choix adéquat (FUCA) methods for the scoring and ranking of the MOO solutions has revealed that notable excellence in meeting the RCPMF design requirements is exhibited by the statistical-based repair operator, which offers solutions with lower impacts across all dimensions and demonstrates minimal variability. MCDM techniques produced similar rankings, with slight score variations and a significant correlation of 0.9816, showcasing their consistent evaluation capacity despite distinct operational methodologies.

Keywords:

Multi-objective optimization; multi-criteria decision-making; modular structure; life cycle sustainability; NSGA-II; simple additive weighting; fair un choix adéquat.

Reference:

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Sustainable Road Infrastructure Decision-Making: Custom NSGA-II with Repair Operators for Multi-objective Optimization. Mathematics, 12(5):730. DOI:10.3390/math12050730

Os paso el artículo para su descarga, pues se ha publicado en abierto:

Descargar (PDF, 1.06MB)

Mejora de la evaluación de la sostenibilidad de puentes en entornos agresivos mediante la decisión grupal multicriterio

Acaban de publicarnos en DYNA, revista indexada en el JCR, un artículo sobre la mejora de la evaluación de la sostenibilidad de puentes en entornos agresivos mediante la decisión grupal multicriterio. Aborda el desafío de combinar las dimensiones económica, ambiental y social en un único indicador holístico para la toma de decisiones en el diseño de infraestructuras. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

  • El artículo contribuye al campo de la evaluación de la sostenibilidad de los puentes en entornos agresivos mediante la aplicación de técnicas de toma de decisiones grupales en el ámbito de los criterios múltiples. Aborda el desafío de combinar las dimensiones económica, ambiental y social en un único indicador holístico para la toma de decisiones en el diseño de infraestructuras.
  • El estudio evalúa cinco alternativas de diseño diferentes para un puente de hormigón expuesto a un entorno costero utilizando cuatro técnicas de toma de decisiones (ANP, TOPSIS, COPRAS y VIKOR). Los resultados indican que los hormigones que contienen pequeñas cantidades de humo de sílice funcionan mejor a lo largo de su ciclo de vida que otras soluciones que suelen aumentar la durabilidad.
  • La investigación contribuye al desarrollo de herramientas y métodos para evaluar la sostenibilidad de las infraestructuras y guiar las futuras acciones de diseño en diversas estructuras. Se alinea con el enfoque en promover las iniciativas de economía circular y el cumplimiento de los requisitos ambientales y sociales específicos en las licitaciones de proyectos públicos

Abstract:

The construction industry is increasingly recognized as critical in achieving Sustainable Development Goals. Construction activities and infrastructure have both beneficial and non-beneficial impacts, making infrastructure design a focal point of current research investigating how best to contribute to sustainability as society demands. Although methods exist to assess infrastructures’ economic, environmental, and social life cycle, the challenge remains in combining these dimensions into a single holistic indicator to facilitate decision-making. This study applies four decision-making techniques (ANP, TOPSIS, COPRAS, and VIKOR) to evaluate five different design alternatives for a concrete bridge exposed to a coastal environment. The results indicate that concretes containing even small amounts of silica fume perform better over their life cycle than other solutions usually considered to increase durability, such as water/cement ratio reduction or concrete cover increase.

Keywords:

Sustainable design, bridges, life cycle assessment, Analytic Network Process, TOPSIS, VIKOR, COPRAS, Multi-criteria decision-making

Reference:

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2023). Enhancing sustainability assessment of bridges in aggressive environments through multi-criteria group decision-making. DYNA, 98(5):477-483. DOI:10.6036/10816

Os paso el artículo en abierto, tanto en inglés como en español.

Descargar (PDF, 520KB)

Descargar (PDF, 390KB)

Diseño sostenible de losas aligeradas de hormigón armado en entornos costeros

La industria de la construcción tiene un impacto significativo en el medio ambiente, especialmente en el sector de la construcción residencial, debido a un alto consumo de recursos. Con el fin de reducir el impacto ambiental en las etapas de construcción, servicio y fin de vida de los edificios, los académicos priorizan la adopción de Métodos Modernos de Construcción (MMC) para optimizar el consumo de materiales y minimizar el impacto del ciclo de vida de los edificios.

Este estudio evalúa la sostenibilidad de losas planas de hormigón armado utilizando un sistema estructural hueco, especialmente en entornos que desencadenan la corrosión del hormigón. El análisis se centra en siete alternativas de diseño para una estructura de hotel frente a la playa, empleando la técnica VIKOR para agregar cinco criterios de sostenibilidad. La opción más rentable y beneficioso para el medio ambiente es el uso de hormigón con un 10 % de humo de sílice, lo cual reduce los costos del ciclo de vida en un 87 % e impacta el diseño base en un 67 %. Sin embargo, al considerar criterios de sostenibilidad económica y ambiental, se llegó a mejores diseños sostenibles, como un recubrimiento de hormigón más extenso para las barras de refuerzo inferiores, lo que resulta en un índice de sostenibilidad un 46 % mejor.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2023). Sustainable design of lightened reinforced concrete flat slabs in coastal environment. 8th International Symposium on Life-Cycle Civil Engineering IALCCE 2023, July 2-6, Milano (Italy). DOI: 10.1201/9781003323020-300

Os paso el artículo completo, pues está publicado en abierto. Las actas completas del congreso la podéis descargar aquí.

Descargar (PDF, 737KB)

 

Evaluación de la capacidad de pensamiento crítico de los estudiantes universitarios en materia de sostenibilidad

Recientemente, hemos tenido el honor de que se publique nuestro artículo en el International Journal of Engineering Education, una revista indexada en el JCR. Nuestro estudio se enfoca en la evaluación de la capacidad de pensamiento crítico de los estudiantes universitarios en relación con la sostenibilidad. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal.

El artículo propone una metodología para evaluar objetivamente las habilidades de pensamiento crítico de los estudiantes universitarios en materia de sostenibilidad a través de estudios de casos que utilizan la técnica del Proceso de Jerarquía Analítica (AHP). La herramienta propuesta permite a los profesores identificar las áreas en las que los estudiantes carecen de una visión clara del problema y adaptar sus planes de estudio en consecuencia. El documento tiene como objetivo cerrar las brechas de conocimiento existentes en la evaluación de las competencias transversales que conducen a perfiles impulsores de los Objetivos de Desarrollo Sostenible (ODS).

Las implicaciones prácticas de este trabajo son las siguientes:

  • Los profesores pueden emplear la metodología propuesta para evaluar las habilidades de pensamiento crítico de sus alumnos en cursos relacionados con la sostenibilidad.
  • La herramienta puede ayudar a los profesores a identificar las áreas en las que los estudiantes carecen de una visión clara del problema y a adaptar sus planes de estudio en consecuencia.
  • La metodología propuesta se puede personalizar para cada disciplina universitaria para motivar a los estudiantes a través de estudios de casos reales y fomentar el pensamiento crítico y las habilidades analíticas desde el punto de vista de la sostenibilidad.
  • La metodología propuesta puede ayudar a cerrar las brechas de conocimiento existentes en la evaluación de las competencias transversales que conducen a perfiles impulsores de los Objetivos de Desarrollo Sostenible (ODS).

El artículo presenta los resultados de una encuesta realizada utilizando la metodología propuesta para evaluar las habilidades de pensamiento crítico de los estudiantes universitarios en materia de sostenibilidad a través de estudios de casos que utilizan la técnica del Proceso de Jerarquía Analítica (AHP). Se muestra la caracterización estadística de las respuestas dadas por los estudiantes, proporcionando el valor medio, la desviación estándar y los percentiles 5 y 95 de los juicios, medidos en términos de la escala fundamental extendida de Saaty. También se muestra la relevancia promedio asignada a cada criterio debido a esta encuesta. Estos valores de relevancia se obtienen de la metodología de toma de decisiones descrita anteriormente.

El artículo propone una metodología novedosa para evaluar la adquisición de habilidades de pensamiento crítico en materia de sostenibilidad por parte de los estudiantes universitarios. La metodología propuesta se basa en estudios de casos prácticos personalizados para cada disciplina universitaria, con el objetivo de motivar a los estudiantes a través de estudios de casos reales, así como fomentar el pensamiento crítico y las habilidades analíticas, todo ello desde el punto de vista de la sostenibilidad. La herramienta propuesta permite saber, a través de la coherencia de las respuestas de los estudiantes, en qué medida el estudiante ha desarrollado su capacidad de pensamiento crítico para enfrentar problemas de diseño sostenible. El artículo concluye que la metodología propuesta es útil para que los profesores adapten eficazmente sus planes de estudio de acuerdo con los conocimientos de sus alumnos.

ABSTRACT:

Construction-related enterprises are acknowledged as one of the key actors responsible for shifting society toward the sustainable future claimed by the recently established Sustainable Development Goals. However, university curricula need to emphasize guaranteeing the acquisition of transversal competencies that are essential for the future management professionals required by this new challenge. Consistent and critical thinking is considered a fundamental skill for education in sustainability. To date, no studies have presented an objective measure of the level of acquisition of such transverse skills in university curricula. This study provides an analytical tool to that end, based on the multi-criteria decision-making technique Analytic Hierarchy Process (AHP). Through sustainability-oriented case studies, students are faced with real managerial decision-making problems. The proposed method allows for the analytic quantification of the consistency of their responses. Such consistency is representative of their critical thinking skills. The proposed tool allows teachers not only to find the consistency of their students’ responses but also to understand in which areas of sustainability students lack a clear vision of the problem. This tool is therefore useful for teachers to effectively adapt their syllabi according to their students’ knowledge.

KEYWORDS:

Sustainable education; transversal competence; critical thinking; management; consistency

REFERENCE:

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2023). Evaluation of Higher Education Students’ Critical Thinking Skills on Sustainability. International Journal of Engineering Education, 39(3):592-603.

Os paso el artículo, que está publicado en abierto. Espero que os sea de interés.

Descargar (PDF, 1.61MB)

Consideraciones sobre el estudio de soluciones de un proyecto

El organismo promotor de un proyecto es el responsable de la financiación de una obra, sus gastos operativos y la comercialización de productos. Es el promotor quien debe considerar estos factores en función de los resultados del estudio técnico-económico previo, crucial para decidir si la realización del proyecto cumplirá con sus objetivos. Por lo tanto, el proyectista debe centrarse, cuando redacta un proyecto, en la implementación y ejecución eficiente de la obra de acuerdo con su finalidad y forma de explotación. Para ello, es fundamental que se realice un análisis detallado de viabilidad antes de redactar el proyecto para asegurarse de que se alcanzan los objetivos establecidos.

Es responsabilidad del proyectista considerar el problema en su totalidad y proponer múltiples soluciones, eligiendo la más adecuada con justificación. Por lo tanto, es fundamental que el estudio de soluciones sea fiable para garantizar la calidad del proyecto y minimizar las desviaciones entre la idea inicial del promotor y la realidad. En este proceso, el proyectista debe aprovechar su conocimiento técnico y creatividad, considerando los objetivos del proyecto, necesidades, recursos y medios disponibles. Este enfoque asegura el éxito del proyecto y satisface los requisitos del promotor.

El estudio de soluciones implica que el proyectista considere todas las posibilidades y las desarrolle de manera breve pero fundamentada, estableciendo un criterio de comparación. El objetivo es encontrar la solución óptima en términos técnicos, de coste y plazo de ejecución, así como en la facilidad y menor coste de conservación de la obra, mediante una evaluación uniforme de las ventajas e inconvenientes de cada opción. Es importante que se evalúen todas las posibilidades de manera exhaustiva para determinar la mejor solución.

Los factores a considerar dependen de la naturaleza del proyecto, entre ellos: ubicación, topografía, geología, estudios previos y específicos, necesidades, recursos, limitaciones, impacto ambiental, estética, servidumbres, accesos y circulación interior, suministros, evacuación de aguas residuales, tipología estructural, materiales, vida útil, fraccionamiento y proceso constructivo. También se debe considerar el coste de la obra, el terreno, las obras auxiliares y la reposición de servidumbres, así como la facilidad y coste de la conservación.

Considerando la importancia de la ubicación, la funcionalidad y la tipología estructural en la toma de decisiones del proyectista, resulta apropiado distinguir entre diferentes términos según la opción que se considere. Así, se sugiere usar “alternativa” cuando se trata de la ubicación, “solución” cuando se refiere a la funcionalidad y “variante” cuando se aborda la tipología estructural o aspecto estético del conjunto o de alguna de sus partes. De esta forma, se establece una clasificación clara y precisa que permite abordar cada aspecto de manera adecuada.

Para clarificar las denominaciones mencionadas, se debe considerar que una alternativa puede desencadenar múltiples soluciones y, a su vez, cada una de ellas puede dar lugar a diversas variantes. Si la ubicación está predefinida o es única, se puede utilizar la denominación “solución” en lugar de “alternativa”, y la de “variante” en lugar de “solución”. En este caso, “alternativa” se reservaría para otras variables que generen posibilidades adicionales.

En la memoria del proyecto, el autor debe resumir cada opción considerada, incluyendo las bases del proceso y razonamiento empleado para su establecimiento, una descripción de las obras, su coste estimado y su plazo de ejecución. En los anejos correspondientes, se justificarán los aspectos mencionados en la memoria, incluyendo los cálculos, el proceso constructivo y el plan de obra, la relación de precios y el presupuesto orientativo para cada opción. Además, es importante incluir esquemas, croquis o dibujos que representen gráficamente la obra y reflejar los materiales previstos. En el anejo también se incluirá un resumen de las características principales de cada opción estudiada, así como sus ventajas e inconvenientes. Este resumen justificará la elección de la solución más idónea, que puede ser incluida en el mismo anejo o en un anejo independiente.

REFERENCIAS:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2012). Técnicas de planificación y control de obras. Editorial de la Universitat Politècnica de València. Ref. 189. Valencia, 94 pp. Depósito Legal: V-423-2012.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442.

YEPES-BELLVER, V.J.; ALCALÁ, J.; YEPES, V. (2022). Study of solutions for the design of a footbridge based on a hierarchical analytical process. 26th International Congress on Project Management and Engineering, AEIPRO, 5-8 de julio, Terrassa (Spain), pp. 512-524.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.