Selección de maquinaria para la construcción por rentabilidad económica

Figura 1. https://pixabay.com/es/photos/emplazamiento-de-la-obra-1646662/

Uno de los problemas que tiene una empresa constructora es elegir adecuadamente la maquinaria habida cuenta de la elevada inversión que debe realizar. En un artículo anterior ya se indicaron los condicionantes a tener en cuenta en su selección.

Cuando se trata de elegir una máquina por su rentabilidad económica, hay que tener presente que se generan unos flujos de costes y de beneficios a lo largo del periodo utilización. Por tanto, ante la presencia de varias alternativas, os podemos hacer dos preguntas: ¿Qué criterio se puede utilizar para elegir la más ventajosa? ¿Está justificada la inversión de esta alternativa?

Para elegir la mejor opción de compra posible, se puede realizar un estudio que maximice la rentabilidad económica considerando o no la actualización monetaria de la inversión. Entre los métodos sin actualización económica destacamos los siguientes:

  • Rentabilidad media de la inversión: Se opta por aquella máquina que produce la tasa de rendimiento medio más alta, es decir, el mayor cociente entre la suma de los beneficios netos generados durante la vida de la inversión y el coste de adquisición. Los beneficios netos son la diferencia entre los ingresos brutos y los gastos, considerando la amortización de la inversión. Una variante a este método sería calcular la rentabilidad teniendo en cuenta la inversión media del equipo y no el valor de compra.
  • Recuperación de la inversión o periodo de retorno: Se elige aquella máquina que minimiza el tiempo necesario para que los beneficios netos generados igualen al precio de adquisición de la inversión. En este método no importa la rentabilidad de la inversión. Puede ser útil cuando los inversores estén interesados en recuperar lo antes posible los fondos aportados.

Por otra parte, el valor del dinero depende del tiempo, puesto que los intereses gravan la disponibilidad del dinero prestado. Así, dada una tasa de actualización i en tanto por uno, y n periodos de tiempo, una cantidad actual P y una futura S están relacionadas entre según la siguiente expresión:

De esta forma, las comparaciones intertemporales de las unidades monetarias deben realizarse con los ingresos o gastos actualizados. En estos cálculos, además, debería considerarse las expectativas de inflación. Sin embargo, normalmente la inflación futura conlleva una elevación de los valores monetarios, con lo que los rendimientos y costes serían los mismos. No obstante, no siempre ocurre este supuesto, por lo que se puede complicar el cálculo. Se pueden considerar los siguientes métodos con actualización monetaria:

  • Valor actual neto: Se elige aquella máquina que maximiza la diferencia entre el valor actual de los ingresos netos y el coste de la inversión (VAN). Siendo ej los ingresos netos en el año j, n el número de periodos e i la tasa de interés, el valor actual de los ingresos se calcula como:

Al calcular el VAN debería incluirse el valor residual actualizado, es decir, son los beneficios de liquidación al final del periodo de inversión. Pero también podríamos hablar de una plusvalía de liquidación negativa si durante el transcurso del plazo de inversión se producen costes, como, por ejemplo, de eliminación o retirada.

Una adquisición será rentable si el VAN es positivo. Ello significa que la inversión genera más beneficios que un depósito bancario con la tasa de actualización seleccionada. Si el VAN es cero, la inversión no ofrece ninguna ventaja sobre un depósito bancario, generando únicamente como beneficio el tipo de descuento.

  • Tasa interna de rentabilidad: Se elige la máquina con mayor tasa interna de rentabilidad (TIR), definida como el valor de i que anula el VAN. Una de las ventajas es que no se necesita conocer i para su cálculo. La inversión será interesante si el TIR supera la tasa de interés del mercado. Se puede decir que el TIR es el porcentaje de beneficio o pérdida que se puede obtener de una inversión.

Algunos autores recomiendan recurrir al valor más alto del TIR como criterio de selección de equipos. La pregunta es si coincidiría entonces esta selección para una tasa dada de actualización, con la que se obtendría con el criterio del VAN. Para responder a esta pregunta, supondremos la situación de dos equipos A y B, cuyos valores actualizados netos son VANA (i) y VANB (i), como se muestra en la Figura 2.

Figura 2. Comparación de los VAN de dos equipos para distintas tasas de descuento

Si el criterio de elección es el del TIR, el equipo A será seleccionado, pues iA > iB. Al seleccionar en función del VAN, se adoptaría el equipo B para tasas de actualización comprendidas entre 0 e iM, y para mayores valores, el equipo A. Este valor de iM se denomina tasa de comparación de los equipos A y B, y en ella coinciden sus VAN.

Por tanto, se puede concluir que el criterio de la TIR es útil para comparar el valor correspondiente con la tasa de actualización, ya que, si es inferior a este valor, se debe rechazar la alternativa. Cuando se trata de elegir el equipo óptimo entre otros incompatibles con él, se debe utilizar el criterio del VAN, que nos permite determinar la mejor inversión. Mientras el VAN calcula la rentabilidad de la inversión en términos monetarios actualizados, el TIR realiza el análisis de esa rentabilidad en forma de porcentaje.

Os dejo algunos vídeos donde se explica cómo calcular el VAN y el TIR.

Referencias:

LIDÓN, J. (1998). Economía en la construcción I. Editoral de la Universidad Politécnica de Valencia, 366 pp.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

PÉREZ GOROSTEGUI, E. (2021). Dirección de empresas. Editorial Universitaria Ramón Areces, 784 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Evaluación de la sostenibilidad de las técnicas de mejora del terreno

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production, revista de ELSEVIER indexada en el primer decil del JCR.

El terreno no siempre es adecuado o competente para soportar una cimentación superficial directa. En muchos casos, para evitar costosas cimentaciones profundas, está indicado sustituir, mejorar o reforzar dicho terreno. Este trabajo se centra en evaluar la contribución a la sostenibilidad entre diferentes técnicas de mejora del suelo y el resultado de su aplicación a la cimentación de una vivienda unifamiliar como alternativa a la construida. Se compara el rendimiento del ciclo de vida en materia de sostenibilidad entre el diseño de referencia (sin intervención), el relleno y la compactación del suelo, las columnas de suelo-cemento, la inclusión rígida de micropilotes y el clavado de viguetas prefabricadas. Para caracterizar la sostenibilidad, se propone un conjunto de 37 indicadores que integran los aspectos económicos o ambientales de cada alternativa de diseño y sus impactos sociales. Se obtiene un ranking de sostenibilidad para las diferentes alternativas basado en el método ELECTRE IS para la toma de decisiones multicriterio (MCDM). Se evalúa la sensibilidad de los resultados obtenidos frente a diferentes métodos MCDM (TOPSIS, COPRAS) y diferentes ponderaciones de criterios. La evaluación proporciona una visión transversal, comparando la capacidad y fiabilidad de cada técnica para priorizar la solución de consolidación del terreno que mejor contribuye a la sostenibilidad en el diseño de la subestructura de un edificio.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Podéis leer una versión preliminar el artículo en la siguiente dirección: https://doi.org/10.1016/j.jclepro.2022.131463

Highlights

  • Evaluation of soil consolidation techniques for a single-family house’s foundation.
  • A deep foundation is compared to four alternatives that consider soil improvement.
  • 37 indicators characterize the sustainability of substructure in residential buildings.
  • The aggregation of the different sustainability criteria is applied in 3 MCDM methods.
  • Nailing precast joists into the ground achieves the best sustainability result.

Abstract

The soil is not always suitable or competent to support a direct shallow foundation in construction. In many cases, to avoid costly deep foundations, it is indicated to replace, improve, or reinforce such soil. This paper focuses on evaluating the contribution to sustainability between different soil improvement techniques and the outcome of their application to the foundation of a single-family house as an alternative to the one built. The life-cycle performance in sustainability is compared between the baseline design (without intervention), backfilling and soil compaction, soil-cement columns, rigid inclusion of micropiles, and nailing of precast joists. To characterize sustainability, a set of 37 indicators is proposed that integrate the economic or environmental aspects of each design alternative and its social impacts. A sustainability ranking is obtained for the different alternatives based on the ELECTRE IS method for multi-criteria decision-making (MCDM). The sensitivity of the obtained results is evaluated against different MCDM methods (TOPSIS, COPRAS) and different criteria weights. The evaluation provides a cross-cutting view, comparing the ability and reliability of each technique to prioritize the ground consolidation solution that best contributes to the sustainability in the design of a building’s substructure.

Keywords

Sustainability; Construction; Multi-criteria decision analysis; Life cycle assessment; Modern methods of construction; Soil improvement; Foundations; ELECTRE IS; TOPSIS; COPRAS

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Evaluating the sustainability of soil improvement techniques in foundation substructures. Journal of Cleaner Production, 351: 131463. DOI:10.1016/j.jclepro.2022.131463

Descargar (PDF, 7.31MB)

Consideración de la incerteza y de multidisciplinas en la determinación de criterios sostenibles de caminos rurales usando la lógica neutrosófica

A continuación os presento un artículo que se publicó en inglés, pero que os lo paso en español para que pueda tener mayor repercusión. Dicho trabajo recibió el Premio Jaume Blasco a la Innovación en el XXV Congreso Internacional de Dirección e Ingeniería de Proyectos AEIPRO 2021. Se trata de una colaboración con profesores chilenos y que está incluida dentro del proyecto de investigación HYDELIFE.

RESUMEN

En Latinoamérica, es posible encontrar una gran brecha entre los kilómetros de caminos pavimentados y aquellos sin ningún tipo de protección. Esta condición se agrava en zonas rurales limitando las oportunidades de desarrollo y la calidad de vida de sus habitantes. En Chile existen programas estatales que buscan reducir la brecha territorial a través de soluciones de pavimentación básicas de bajo costo; sin embargo, los criterios de priorización de caminos rurales no son claros. Múltiples actores influyen en el territorio rural y la inexistencia de patrones de referencia aumenta la subjetividad en la toma de decisión de infraestructura. Este estudio busca determinar criterios que influyan en la selección de caminos rurales en el Sur de Chile para promover un desarrollo territorial sostenible; en consideración de los múltiples actores y la incertidumbre del proceso de selección. Para ello se realizó una revisión documental y 12 entrevistas semiestructuradas. Los criterios se validaron a través de un panel de expertos multidisciplinar y la aplicación de números neutrosóficos para tratar la incertidumbre derivada de la consulta a expertos. El resultado de este estudio aportó catorce criterios sostenibles para apoyar la planificación de caminos básicos rurales en el Sur de Chile.

Referencia:

SIERRA, L.; ARAYA, F.; YEPES, V. (2021). Consideration of uncertainty and multiple disciplines in the determination of sustainable criteria for rural roads using neutrosophic logic.  Sustainability, 13(17):9854. DOI:10.3390/su13179854

Os dejo a continuación el artículo completo.

Descargar (PDF, 915KB)

 

Objetivos y metodología del proyecto de investigación HYDELIFE

Figura 1. Instituto de Ciencia y Tecnología del Hormigón (ICITECH)
Figura 1. Laboratorio de materiales del Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En varios artículos anteriores detallamos los antecedentes, la motivación, las hipótesis de partida, así como la trascendencia del proyecto de investigación HYDELIFE. Ahora vamos a explicar los objetivos y la metodología de este proyecto, del cual soy investigador principal: Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos (PID2020-117056RB-I00). Los investigadores de este proyecto pertenemos al Instituto de Ciencia y Tecnología del Hormigón (ICITECH).

El objetivo general perseguido se basa en afrontar el reto social que supone la creación y la conservación de las construcciones modulares y puentes mixtos en escenarios de fuertes restricciones presupuestarias, mediante la resolución de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas. Para ello se precisa un salto científico capaz de integrar a los distintos actores y grupos de expertos en la toma de decisiones considerando criterios de sostenibilidad social y ambiental a lo largo de todo el ciclo de vida de las infraestructuras considerando la variabilidad inherente al mundo real. Para integrar las incertidumbres que afectan al sistema, se propone aplicar técnicas metaheurísticas híbridas basadas en fiabilidad, aplicadas no sólo al proyecto de nuevas estructuras, sino al mantenimiento de las actuales. Un estudio de sensibilidad de los escenarios presupuestarios y de las hipótesis tomadas en los inventarios del análisis del ciclo de vida proporcionará conocimiento no trivial sobre las mejores prácticas. Esta metodología será aplicable también a otro tipo de infraestructuras.

El objetivo general se desarrollará mediante los objetivos específicos mostrados en la Figura 2 y que se describen a continuación, de los cuales será responsable el investigador principal:

  • OE-1: Análisis de funciones de distribución específicas para el diseño óptimo basado en fiabilidad que integre aspectos ambientales, sociales y económicos que sirva para la toma de decisión multicriterio.
  • OE-2: Determinación de indicadores clave basados en redes bayesianas y lógica neutrosófica para garantizar una efectiva integración de la sostenibilidad ambiental y social en la licitación de proyectos mantenimiento de construcciones modulares, puentes mixtos e híbridos.
  • OE-3: Identificación de estrategias de mantenimiento robusto óptimo de construcciones modulares y puentes mixtos y estructuras híbridas.
  • OE-4: Formulación y resolución del problema de optimización multiobjetivo que contemple el ciclo completo de construcciones modulares, puentes mixtos y estructuras híbridas mediante metaheurísticas híbridas.
  • OE-5: Comparación del diseño robusto óptimo respecto a la optimización heurística considerando incertidumbres en los escenarios presupuestarios y en las hipótesis del análisis del ciclo de vida.
  • OE-6: Difusión de resultados y redacción de informes.
Figura 2.- Objetivos específicos del proyecto HYDELIFE

Metodología propuesta en relación con los objetivos y con el estado del arte

El análisis del estado del arte alumbró dos huecos en la investigación, el empleo de metaheurísticas híbridas con Deep Learning y su aplicación a construcciones modulares, puentes mixtos y estructuras híbridas. Además, el empleo de la lógica neutrosófica y las redes bayesianas abre puertas en el ámbito de la decisión multicriterio. Estas novedades se combinan en la metodología con técnicas y disciplinas ya empleadas en otros proyectos: análisis del ciclo de vida, análisis basado en fiabilidad, diseño óptimo robusto, metamodelos y técnicas de minería de datos. Por tanto, se trata de una combinación integrada cuyo objetivo es la priorización del tipo de diseño, en el caso de estructuras de nueva planta, o bien de su mantenimiento, basándose en criterios de sostenibilidad social y ambiental bajo presupuestos restrictivos, considerando la variabilidad inherente a los problemas reales.

La Figura 3 muestra el esquema metodológico propuesto para HYDELIFE, relacionando las fases con los objetivos propuestos. Se utiliza un enfoque mixto e interactivo, donde el decisor proporciona información sobre las preferencias al analista que, tras una optimización multiobjetivo basada en fiabilidad y metamodelos, aporta un conjunto de soluciones eficientes que el responsable debe evaluar antes de tomar su decisión. Por tanto, la novedad de la propuesta metodológica trifase se basa en la integración de técnicas de información a priori, donde el decisor (grupos de interés) informa de las preferencias al analista (en cuanto a tipologías, métodos constructivos, conservación, etc.), produciéndose con esta información una optimización multiobjetivo capaz de generar alternativas eficientes utilizando la variabilidad en los parámetros, variables y restricciones. La última fase pasa por un proceso de información a posteriori para que el decisor contemple aspectos no considerados en la optimización para dar la solución final completa.

Figura 3.- Esquema metodológico diseñado para HYDELIFE en relación con los objetivos

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

En este momento llevamos seis meses de trabajo, pues el proyecto comenzó en septiembre del 2021. Pero ya podemos dar algunos resultados que se pueden ver en la siguiente lista de referencias.

Referencias:

MARTÍNEZ FERNÁNDEZ, P.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2022). Slab track optimisation using metamodels to improve rail construction sustainabilityJournal of Construction Engineering and Management, (accepted, in press).

MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization, 65:46. DOI:10.1007/s00158-021-03154-0

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

YEPES, V.; LOPEZ, S. (2021). Knowledge management in the construction industry: Current state of knowledge and future research. Journal of Civil Engineering and Management, 27(8):671-680. DOI:10.3846/jcem.2021.16006

SIERRA, L.; ARAYA, F.; YEPES, V. (2021). Consideration of uncertainty and multiple disciplines in the determination of sustainable criteria for rural roads using neutrosophic logic.  Sustainability, 13(17):9854. DOI:10.3390/su13179854

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

HOOSE, A.; YEPES, V.; KRIPKA, M. (2021). Selection of Production Mix in the Agricultural Machinery Industry considering Sustainability in Decision Making. Sustainability, 13(16), 9110. DOI:10.3390/su13169110

MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879. DOI:10.1109/ACCESS.2021.3102215

MARTÍN, R.; YEPES, V. (2021). Bridging the gap between landscape and management within marinas: A review. Land, 10(8), 821. DOI:10.3390/land10080821

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

BIANCHI, P.F.; YEPES, V.; VITORIO, P.C., Jr.; KRIPKA, M. (2021). Study of alternatives for the design of sustainable low-income housing in BrazilSustainability, 13(9):4757. DOI:10.3390/su13094757

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homesEnvironmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2021). Neutrosophic completion technique for incomplete higher-order AHP comparison matrices. Mathematics, 9(5):496. DOI:10.3390/math9050496

TANG, M.; LIAO, H.; YEPES, V.; LAURINAVICIUS, A.; TUPENAITE, L. (2021). Quantifiying and mapping the evolution of a leader journal in the field of civil engineering. Journal of Civil Engineering and Management, 27(2):100-116. DOI:10.3846/jcem.2021.14365

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

GARCÍA, J.; ASTORGA, G.; YEPES, V. (2021). An analysis of a KNN perturbation operator: an application to the binarization of continuous metaheuristics. Mathematics, 9(3):225. DOI:10.3390/math9030225.

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cálculo de la consistencia y el vector propio en AHP

En varios artículos de este blog hemos descrito distintos aspectos del Proceso Analítico Jerárquico (Analytic Hierarchy Process, AHP). Se trata de una técnica de decisión Multicriterio propuesta por T.L. Saaty que combina aspectos tangibles e intangibles para obtener, en una escala de razón, las prioridades asociadas con las alternativas del problema. No obstante, AHP presenta limitaciones que debemos conocer antes de utilizar este método.

Pues bien, una de las ventajas de AHP es que permite medir la consistencia del decisor al emitir sus juicios. Este aspecto es muy relevante, puesto que si decimos que A>B y que B>C, no podemos decir que A<C. Este aspecto es de gran interés cuando consultamos a expertos en una materia para comprobar que la información que nos facilita es correcta. Si la consistencia es aceptable, se puede continuar con el proceso de decisión. Pero si no lo es, entonces el que toma las decisiones debe replantearse sus juicios sobre las comparaciones pareadas antes de continuar con el análisis.

Saaty sugiere para el método AHP convencional (en el que se utiliza el método del autovector principal para obtener las prioridades), que la inconsistencia sea capturada mediante un único valor denominado índice de consistencia (Consistency Index, CI) donde λmax es el máximo autovalor y n es la dimensión de la matriz de decisión. Un índice de consistencia igual a cero significa que la consistencia es completa. Como esta medida depende del orden de la matriz (n), Saaty propone la utilización de la Razón de Consistencia (CR) que se obtiene dividiendo CI por su valor esperado RI, calculado a partir de un gran número de matrices recíprocas positivas de orden n generadas aleatoriamente (Tabla 1). Por tanto, una vez la matriz es consistente siempre y cuando CR no supere los valores indicados en la Tabla 2. Si en una matriz se supera el CR máximo, hay que revisar las ponderaciones.

Donde RI es el índice aleatorio, que indica la consistencia de una matriz aleatoria (Tabla 1):

Tabla 1. Índice aleatorio RI

 

Tabla 2. Porcentajes máximos del ratio de consistencia CR

Una vez verificada la consistencia, se obtienen los pesos, que representan la importancia relativa de cada criterio o las prioridades de las diferentes alternativas respecto a un determinado criterio. Para ello, el AHP original utiliza el método del autovector principal por la derecha, basado en el teorema de Perron-Frobenius, donde hay que resolver la siguiente ecuación:

donde A representa la matriz de comparación, w el autovector o vector de preferencia, y λmax el autovalor.

En la práctica, el vector de los pesos w=(w1, w2,…, wn) se obtiene (método de las potencias) elevando la matriz de juicios a una potencia suficientemente grande, sumando por filas y normalizando estos valores mediante la división de la suma de cada fila por la suma total. El proceso concluye cuando la diferencia entre dos potencias consecutivas sea pequeña.

Sin embargo, este vector de los pesos de cada alternativa también se pueden calcular por el método de la media geométrica por filas (Crawford y Williams, 1985). En este caso, el peso de cada prioridad se calcula como la media geométrica por filas normalizado a la suma de las medias geométricas de todas las filas. Este método se está utilizando ampliamente en los últimos años por sus propiedades matemáticas y sociológicas. Los resultados de este método, comparados con el cálculo del autovector, son parecidos, aunque su cálculo es más sencillo.

De todas formas, os dejo un vídeo del profesor Aznar donde se explica con cierto detalle cómo calcular la consistencia y el autovector. Espero que os sea de utilidad.

Referencias:

AZNAR, J.; GUIJARRO, F. (2012). Nuevos métodos de valoración: modelos multicriterio. Editorial Universitat Politècnica de València.

CRAWFORD, G.; WILLIAMS, C. (1985). A note on the analysis of subjective judgement matrices. Journal of Mathematical Psychology, 29:387-405.

SAATY, T.L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Modelo integrado de valor para evaluaciones sostenibles (MIVES)

Figura 1. Funciones de valor típicas

Dentro de la toma de decisiones multicriterio existe una familia de procedimientos que pretende obtener la mejor alternativa en función del grado de satisfacción que proporcionan. Son los llamados métodos de teoría de utilidad o valor (utility/value methods). Dentro de este grupo se encuentran los métodos MAUT (multi-attribute utility theory) y los MAVT (multi-attribute value theory). En estos métodos, unas funciones de satisfacción transforman los valores reales que representan el comportamiento de cada alternativa en un grado de satisfacción.

Dentro de este grupo se encuentra el modelo integrado de valor para evaluaciones sostenibles (MIVES). Este método es de interés porque fue la base del Anejo 13 de la Instrucción de Hormigón Estructural EHE-08 y del Anejo 2 del vigente Código Estructural para el cálculo del índice de contribución de la estructura a la sostenibilidad.

MIVES proporciona un valor para cada una de las alternativas basándose en una estructura jerárquica de criterios y subcriterios típica de la metodología AHP (Analytic Hierarchy Process). No se aconsejan más de tres o cuatro niveles ni que el número de indicadores final supere 20, pues las valoraciones de los indicadores poco importantes pueden desdibujar los resultados. Un grupo de expertos se encarga de realizar las comparaciones pareadas entre cada uno de los niveles de criterios o subcriterios.

A cada indicador se le asocia una función de valor, que asignará una cifra entre 0 y 1. Esto permite la comparación con unidades de medida diferente. La función de valor se define mediante cinco parámetros para obtener formas de S, cóncavas o convexas (Figura 1). Los parámetros que determinan el tipo de función son Ki, Ci, Xmax, Xmin, y Pi. Un grupo de expertos es el que decide los parámetros de cada una de las funciones de valor. Cabe señalar que estas funciones objetivo son sensibles a una pequeña variación de datos de entrada o en la propia determinación de sus parámetros.

MIVES se articula basándose en la estructura jerárquica AHP, habiendo sido su resultado satisfactorio. No obstante, existen consideraciones asociadas al cumplimiento de determinadas hipótesis de independencia entre criterios y subcriterios que deberían tenerse en cuenta. Se recomienda revisar al respecto el artículo “Limitaciones de los métodos de toma de decisiones basados en procesos de jerarquía analítica AHP” en este mismo blog. Además, téngase en cuenta que el método se apoya en el acuerdo en las comparaciones pareadas de criterios y subcriterios y en la determinación de las funciones de valor correspondientes. Por tanto, el resultado va a depender de este grupo de expertos, por lo que su correcta selección pasa a ser un aspecto crítico del método.

A continuación os dejo unos vídeos explicativos del profesor Jaime C. Gálvez, de la Universidad Politécnica de Madrid, y un artículo explicativo del método. Espero que os sean de interés. Llamo la atención al segundo 44 del tercer vídeo donde se explica un ejemplo de aplicación. Un subcriterio es el coste económico de la estructura y otro subcriterio tiene que ver con el consumo de recursos (cantidad de hormigón o de acero consumido). Es evidente que tanto el coste (criterio económico) como el consumo de recursos (criterio medioambiental) no son linealmente independientes, lo cual significa que el método AHP no podría utilizarse con plenas garantías (se incumple una de las hipótesis de partida que sustenta este procedimiento) y, por tanto, el MIVES subyacente tampoco.

Descargar (PDF, 1.21MB)

Referencias:

Aguado, A.; Manga, R.; Ormazabal, G. (2006). Los aspectos conceptuales del proyecto MIVES. Capítulo 6 libro. La medida de la sostenibilidad en edificación industrial. Modelo integrado de Valor en Edificios Sostenibles (MIVES). LABEIN. UPV-EHU UPC. ISBN 84- 690-2629-1. pp. 249-271.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Modelo DEMATEL-ANP en la toma de decisiones multicriterio

Cuando nos enfrentamos a problemas de causalidad complejos y difíciles de articular o comprender, un enfoque habitual para su estudio es la aplicación de un modelo. El modelo DEMATEL (Decision Making Trial and Evaluation Laboratory) fue creado en el Instituto Battelle de Ginebra en 1971.

Se trata de un modelo especialmente útil para analizar las relaciones de causa y efecto entre los componentes de un sistema. Esta propuesta permite confirmar la interdependencia entre factores y ayudar a elaborar un mapa que refleje las relaciones relativas entre ellos, y puede utilizarse para investigar y resolver problemas complicados y entrelazados. Este método no solo convierte las relaciones de interdependencia en un grupo de causa y efecto mediante matrices, sino que también encuentra los factores críticos de un sistema de estructura compleja con la ayuda de un diagrama de relaciones de impacto.

DEMATEL, al igual que ANP (Analytic Network Process), se basa en las percepciones de los individuos (una persona o un grupo de personas). En todos los casos encontrados en la literatura, DEMATEL y ANP se utilizan para crear una supermatriz ponderada, que se potencia hasta el límite para obtener las prioridades de los factores/alternativas de decisión relevantes. Lo interesante es que DEMATEL presenta grandes ventajas al usarlo con ANP, pues identifica realimentaciones e interdependencias en la red y simplifica en gran manera el cálculo en red al sustituir las matrices de comparación pareada por una escala de cero a tres que permite plantear de inicio una matriz de relación directa. Ninguna influencia se puntúa como 0, 1 es la valoración para una influencia leve, 2 para una influencia fuerte y 3 para una influencia muy fuerte. No obstante, hay autores que proponen una escala de 0 a 4.

Los pasos necesarios para aplicar DEMATEL son los siguientes:

  1. Construcción de la matriz de influencia directa
  2. Normalización de la matriz de influencia directa
  3. Encontrar la matriz de relación total
  4. Producción de un diagrama causal
  5. Obtención de la matriz de dependencia interna y el mapa de relación de impacto

En los siguientes vídeos del profesor Aznar se explican en detalle la mecánica de cálculo. Espero que os sean de interés. Para aquellos interesados, los vídeos forman parte de un pequeño curso gratuito MOOC al que podéis acceder en este enlace:

https://www.edx.org/es/course/valoracion-de-activos-por-metodos-multicriterio

Referencias:

AZNAR, J. (2020). Curso de valoración de activos por métodos multicriterio AHP, ANP y CRITIC. Editorial Universitat Politècnica de València. Ref. 264.

BERNAL, S.; NIÑO, D.A. (2018). Modelo multicriterio aplicado a la toma de decisiones representables en diagramas de Ishikawa. Universidad Distrital Francisco José de Caldas, Bogotá D.C., 137 pp.

FONTELA, E.; GABUS, A. (1974). DEMATEL, innovative methods, technical report no. 2, structural analysis of the world problematique. Battelle Geneva Research Institute, NY.

SAATY, T.L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill.

SAATY, T.L., VARGAS, L. G. (2013). Decision making with the analytic network process: economic, political, social and technological applications with benefits, opportunities, costs and risks (Vol. 195). Springer Science & Business Media

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.;

Proceso Analítico en Red, ANP (Analytic Network Process)

En un artículo anterior vimos que una de las limitaciones más importantes del método método AHP (Analytic Hierarchy Process) es que, de forma habitual, existen relaciones de interdependencia y realimentación entre los distintos criterios, subcriterios o alternativas. Para solucionar este inconveniente, en el año 1996 Saaty presentó el modelo ANP (Analytic Network Process) como una generalización de AHP. Se trata de un método discreto de análisis de decisiones multicriterio que permite capturar las relaciones de interdependencia y de realimentación entre elementos del sistema (criterios y alternativas), según se puede ver en la Figura 1.

Figura 1. Agrupación de elementos por característica común (mínimo un componente de criterios y uno de alternativas). Elaboración propia, basada en Aznar (2020)

Lo primero que llama la atención, por tanto, es que se pasa de una representación jerárquica, típica de AHP, a una representación mediante una red. La red la forman nodos o clústeres, comprendiendo cada uno de ellos una serie de elementos que pueden ser criterios o alternativas. Se denomina realimentación a la relación que existe entre los elementos de un mismo clúster y se denomina interdependencia a la relación que existe entre elementos de distintos clústeres. (Aznar y Guijarro, 2012).

Una de las bondades de ANP es que no se hacen suposiciones sobre la independencia de los elementos de un nivel superior respecto a los de uno inferior y sobre la independencias entre los elementos de un mismo nivel. Ello permite una estructura no lineal, con fuentes, ciclos y sumideros, y que prioriza no solo elementos, sino grupos o grupos de elementos, lo cual está en consonancia con la complejidad del mundo real.

Vamos a poner un ejemplo sencillo para ver las diferencias entre el AHP y ANP. Supongamos que estamos evaluando las características de tres candidatos a un puesto directivo. AHP preguntaría cuánto más importante es en liderazgo el candidato A respecto al candidato B, siendo el liderazgo uno de los criterios, que podría incluir otros como hablar idiomas o capacidad de aprendizaje. Pues bien, ANP haría, adicionalmente, la pregunta inversa, ¿cuánto más importante sería el liderazgo respecto a la capacidad de aprendizaje en el candidato A?

En la Figura 2 se puede ver una matriz con todos los elementos de ANP. Como puede observarse, hay relaciones entre todos los elementos y componentes entre sí.

Figura 2. Tabla con los elementos de ANP

El ANP se puede decir que consta de dos etapas fundamentales: la primera es la estructuración del problema (construcción de la red) y la segunda es el cálculo de las prioridades de los elementos. No obstante, de forma más detallada, los pasos para aplicar ANP son los que a continuación se enumerar. Dejamos los vídeos del profesor Aznar para una explicación pormenorizada de cada uno de estos pasos.

  1. Identificación de los elementos de la red. Alternativas, criterios y construcción de la red.
  2. Análisis de la red de influencias entre los elementos del sistema (criterios y alternativas). Matriz de dominación interfactorial.
  3. Cálculo de las prioridades entre elementos. Supermatriz original (unweighted).
  4. Cálculo de las prioridades entre clústeres. Supermatriz ponderada (weighted).
  5. Cálculo de la supermatriz límite

No obstante, como cualquier otro método, ANP también presenta algunas limitaciones (Zhou et al., 2010):

  • Con un número elevado de relaciones y criterios, se complican los cálculos, aunque existen también otras metodologías de la toma de decisión que pueden ayudar en este punto
  • Hay que facilitar al decisor el uso de la metodología para que le resulte más fácil
  • Cuantas más relaciones entre elementos, más preguntas hay que hacer para definir las influencias entre todos los componentes y elementos de las matrices.

Veamos a continuación, en los vídeos del profesor Aznar, una explicación más en detalle del método y un ejemplo de aplicación. Espero que os sean de interés estos vídeos. Para aquellos interesados, los vídeos forman parte de un pequeño curso gratuito MOOC al que podéis acceder en este enlace:

https://www.edx.org/es/course/valoracion-de-activos-por-metodos-multicriterio

Referencias:

AZNAR, J. (2020). Curso de valoración de activos por métodos multicriterio AHP, ANP y CRITIC. Editorial Universitat Politècnica de València. Ref. 264.

AZNAR, J.; GUIJARRO, F. (2012). Nuevos métodos de valoración: modelos multicriterio. Editorial Universitat Politècnica de València.

BERNAL, S.; NIÑO, D.A. (2018). Modelo multicriterio aplicado a la toma de decisiones representables en diagramas de Ishikawa. Universidad Distrital Francisco José de Caldas, Bogotá D.C., 137 pp.

SAATY, T.L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill.

SAATY, T.L., VARGAS, L. G. (2013). Decision making with the analytic network process: economic, political, social and technological applications with benefits, opportunities, costs and risks (Vol. 195). Springer Science & Business Media

ZHU, Q., DOU, Y., SARKIS, J. (2010). A portfolio-based analysis for green supplier management using the analytical network process. Supply Chain Management: An International Journal, 15(4), 306-319. https://doi.org/10.1108/13598541011054670

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Limitaciones de los métodos de toma de decisiones basados en procesos de jerarquía analítica AHP

Figura 1. Ejemplo de estructura jerárquica AHP

Cuando el profesor Thomas Saaty dió a conocer el método AHP (Analytic Hierarchy Process) en la década de los 80, ya se dio cuenta de que este procedimiento presentaba algunas limitaciones que debía solucionar más adelante. En el año 1996 presentó el modelo ANP (Analytic Network Process) como una generalización de AHP. Este modelo permitió incluir relaciones de interdependencia y realimentación entre elementos del sistema (criterios y alternativas).

En este artículo nos vamos a centrar en algunas limitaciones de AHP que conviene tener en cuenta al tomar decisiones. Este aspecto no es menor, puesto que existen modelos basados en AHP que pueden verse arrastrados por alguna de estas limitaciones.

No obstante, no todo son inconvenientes, ni mucho menos. El profesor José María Moreno ya nos advierte, tal y como se desprende del artículo que os dejo al final de este post, que en este momento no se ha podido probar la supremacía de ningún método o escuela de pensamiento en lo que se refiere al paradigma de la toma de decisión multicriterio. De hecho, AHP ha basado su éxito en trasladar las percepciones humanas a valores numéricos evaluados en una escala de prioridades que permiten sintentizar lo tangible y lo intangible, lo objetivo y lo subjetivo, e incluso lo racional y lo emocional. Además, constituye un procedimiento fácil de utilizar, aplicable a numerosas situaciones reales donde se trata de elegir una alternativa, y donde se puede agregar la decisión individual y la de grupo. Y no menos importante, el AHP es una de las pocas técnicas multicriterio que ofrece una axiomática teórica. Pero veamos ahora en algunos de los inconvenientes de AHP que habrá que valorar siempre que usemos este método o algún otro basado en él.

El principal problema que presenta AHP es que, de forma habitual, existen relaciones de interdependencia y realimentación entre los distintos criterios, subcriterios o alternativas (Figura 2). AHP es unidireccional, siendo las relaciones entre los distintos elementos de abajo hacia arriba, lo cual puede suponer una simplificación demasiado fuerte de la realidad. La condición de independencia y jerarquía que subyace en AHP es necesaria para que quien toma las decisiones tenga una función de valor aditiva. De hecho, AHP se apoya en los axiomas de reciprocidad, homogeneidad y síntesis. Pues este último axioma, que implica que los juicios acerca de las prioridades de los elementos en una jerarquía no dependen de los del nivel más bajo, puede rebatirse cuando existe dependencia de la importancia de un objetivo con el nivel inferior.

Veamos un ejemplo concreto. Si se está analizando la sostenibilidad económica, ambiental y social de una estructura de hormigón, uno de los subcriterios económicos puede ser el coste de la estructura y otro subcriterio ambiental puede ser el consumo de recursos, por ejemplo, la cantidad utilizada de hormigón o de acero. Es evidente que el coste depende de la cantidad de recursos consumidos. Este es un ejemplo muy sencillo, pero en el mundo real, las interdependencias pueden ser sutiles o difíciles de ver a priori. No es fácil, en situaciones normales, encontrar criterios y subcriterios que sean independientes unos de otros.

Figura 2. Relación entre elementos en ANP en la estructura jerárquica AHP (adaptado de Aznar, 2012)

Una de las objeciones recibidas por el método es que si la jerarquía en AHP es incompleta, pueden distorsionarse los pesos. Otro problema adicional tiene que ver con el número de criterios en cada nivel y con su ponderación relativa. Supongamos, por ejemplo que hay dos criterios en el primer nivel y que sus pesos son del 75% en uno y del 25% en el otro. Esta ponderación ya condiciona de forma drástica las ponderaciones de todas las variables que cuelgan de ellas. De esta manera, prácticamente se está anulando el interés de los subcriterios que dependen jerárquicamente de aquel menos ponderado en el primer nivel. El profesor Aznar (2012) ilustra, con ejemplos concretos, cómo el uso de ANP, frente a AHP, provoca cambios significativos en la valoración final de cada una de las alternativas.

También hay que indicar que la escala de nueve puntos de Saaty (los valores siempre entre 1 y 9) es arbitraria para medir las preferencias de los decisores. Esta escala puede plantear, por ejemplo, el siguiente problema: Si una alternativa A es 5 veces más importante que la alternativa B y esta a su vez es 5 veces más importante que la alternativa C, se produce un problema serio, ya que AHP no puede manejar el hecho de que la alternativa A es 25 veces más importante que la alternativa C. Esta deficiencia se visualiza en la Figura 3. Se puede ver cómo la alternativa círculo rojo es mejor al resto con la escala de Saaty: 5 para el triángulo, 7 para el rombo y 9 para el cuadrado. Si comparamos el triángulo verde con el resto, debería ser: 3 para el rombo y 5 para el cuadrado. Del mismo modo, el rombo presenta una valoración de 3 respecto al cuadrado. Con esta matriz pareada, el ratio de consistencia es válido. Sin embargo, si se reajustan las valoraciones dividiendo por dos las comparaciones del triángulo, rombo y cuadrado, el ratio de consistencia baja significativamente. En ese caso, los autovectores han cambiado, aunque se mantienen las prioridades.

Figura 3. Ratio de consistencia en función de las comparaciones pareadas. Elaboración propia

Pero aquí no terminan los inconvenientes. Como contrapartida a la simplicidad, AHP no tiene en cuenta la incerteza asociada a representar la opinión en la forma de un número. Además, si se agrega durante el proceso otra alternativa, las clasificaciones de las alternativas originales pueden cambiar, lo cual rigidiza el método. Por otra parte, si se incrementa el número de alternativas o criterios, se puede llegar a la inconsistencia de la matriz de comparaciones pareadas. Asimismo, en el método es muy laborioso si se incrementa el número de alternativas o criterios.

Un inconveniente adicional de AHP es la normalización de las matrices de preferencias, transformando las valoraciones planteadas en utilidades definidas en la escala (0,1) mediante la obtención del vector propio de las mismas. Esto solo es estrictamente válido si los juicios volcados en la matriz son perfectamente consistentes. En caso contrario, puede ser complicada la interpretación.

Sin embargo, los problemas con AHP se agudizan cuando aparece una situación de conflicto en la que existe una mayor o menor oposición en los intereses de los decisores y, además, las decisiones de cada decisor dependen de las que tomen los demás en la búsqueda de sus propios intereses. En este caso, la teoría de juegos o juegos de estrategia sería la forma más razonable de abordar el problema.

En apretada síntesis, estas reflexiones vienen a cuento de que, muchas veces, estamos utilizando métodos, incluso recogidas alguna normativa legal, donde se pretende dar cuerpo de ley a un conjunto de criterios para evaluar algún aspecto de especial interés. Es el caso del método AHP empleado, por ejemplo, como parte de otros como MIVES, que han dado lugar, a un índice de contribución de la estructura a la sostenibilidad (Anejo 2 del Código Estructural). Con todo, y para tranquilidad de muchos, la teoría AHP, si bien presenta ciertos problemas como los expuestos, parece conservar su condición de ser el método de toma de decisión más conocido y empleado de los métodos multicriterio.

También, por su interés, os dejo el artículo de José Luis Zanazzi sobre las críticas recibidas por AHP y su análisis.

Descargar (PDF, 223KB)

Pero no todo van a ser noticias negativas en relación con el AHP. Os dejo, a continuación, el artículo del profesor José María Moreno donde explica el método AHP.

Descargar (PDF, 343KB)

Referencias:

AZNAR, J.; GUIJARRO, F. (2012). Nuevos métodos de valoración: modelos multicriterio. Editorial Universitat Politècnica de València.

SAATY, T.L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cómo agregar juicios individuales de grupos de expertos en la toma de decisiones AHP

Figura 1. Toma de decisiones en grupo. https://conectia-psicologia.es/

Cuando se utiliza un modelo de toma de decisiones multicriterio tal y como el AHP (Proceso Analítico Jerárquico), una de las dudas que surgen es saber cómo agregar los juicios de todos los expertos de una forma razonable. Una solución sería la de buscar un consenso de grupo mediante un proceso interactivo con varias rondas de negociación entre los expertos. En este caso, un moderador que no participa en la discusión, sugiere a los responsables de la toma de decisiones que actualicen sus juicios. Sin embargo, a veces es difícil llegar a un acuerdo consensuado (Dong y Saaty, 2014).

En el caso de tener un grupo de expertos homogéneos (coincidencias en formación, trabajo profesional, finalidad de su trabajo, etc.), vamos a basarnos en la media geométrica para agregar los juicios. A pesar de que esta media es menos intuitiva que la aritmética, es una medida menos sensible a los valores extremos que la media de una muestra estadística. Además, la media geométrica es adecuada para calcular variables en porcentaje o índices. Los juicios de las comparaciones pareadas en AHP son ratios, sus valores siempre son positivos, mayores que cero, y algo no menos importante, la media geométrica cumple con satisfacción la propiedad recíproca de las matrices de comparación.

Un ejemplo muy sencillo permite comprobar la reciprocidad con la media geométrica, frente a la media aritmética. Supongamos que con la media aritmética la media de dos juicios con valores de 7 y 9 resultaría en 8, cuyo valor reciproco es 1/8, pero en el otro lado de la matriz obtendríamos un valor de (1/7 + 1/9)/2 = 8/63 lo que difiere del valor esperado de 1/8 para mantener la matriz recíproca. Dejamos al lector la comprobación de que con la media geométrica se mantiene la reciprocidad.

Existen dos formas de agregar los juicios individuales de un grupo de expertos homogéneos:

a) Agregación de prioridades individuales, que transforma vectores de prioridad individuales en un vector de prioridad del grupo (Figura 2).

Figura 2. Agregación de prioridades individuales (Bernal y Niño, 2014)

b) Agregación de juicios individuales, que transforma las matrices comparación por pares individuales en una grupal (Figura 3). En este caso, si las matrices individuales tienen una consistencia aceptable, la grupal también suele serlo (Dong y Saaty, 2014).

Figura 3. Agregación de juicios individuales (Bernal y Niño, 2014)

En ambos casos, hay que tener en cuenta que el vector propio resultante del grupo se debe normalizar.

Otro problema sería el de grupos heterogéneos de expertos, que pueden llegar a producir resultados bastante divergentes. En este caso, se suele resolver el problema mediante la Programación por metas extendida (Linares y Romero, 2002). Aunque también es posible acudir a otro tipo de métodos, como la lógica neutrosófica (Navarro et al., 2020; 2021).

A continuación ponemos un ejemplo de tres expertos homogéneos. En primer lugar vamos a agregar los juicios individuales de tres expertos (Figura 4) y, como método alternativo, agregaremos los vectores propios de cada experto (Figura 5), llegando, en este caso, a un vector propio normalizado que coincide en ambos casos.

Figura 4. Agregación de juicios individuales de tres expertos homogéneos

 

Figura 5. Agregación de prioridades individuales de tres expertos homogéneos

Referencias:

AZNAR, J.; GUIJARRO, F. (2012). Nuevos métodos de valoración: modelos multicriterio. Editorial Universitat Politècnica de València.

BERNAL, S.; NIÑO, D.A. (2018). Modelo multicriterio aplicado a la toma de decisiones representables en diagramas de Ishikawa. Universidad Distrital Francisco José de Caldas, Bogotá D.C., 137 pp.

DONG, Q.; SAATY, T. L. (2014). An analytic hierarchy process model of group consensus. Journal of Systems Science and Systems Engineering, 23(3), 362–374. https://doi.org/10.1007/s11518-014-5247-8

LINARES, P., ROMERO, C. (2002). Aggregation of preferences in an environmental economics context: A goal-programming approach. Omega, 30(2), 89–95. https://doi.org/10.1016/S0305-0483(01)00059-7

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7): 949-967. DOI:10.1080/15732479.2019.1676791

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2021). Neutrosophic completion technique for incomplete higher-order AHP comparison matrices. Mathematics, 9(5):496. DOI:10.3390/math9050496