Claude-Louis-Marie-Henri Navier: Pionero de la mecánica estructural y la teoría de la elasticidad

Claude-Louis-Marie-Henri Navier (1785-1836). https://commons.wikimedia.org/w/index.php?curid=1568282

Claude-Louis-Marie-Henri Navier nació el 15 de febrero de 1785 en Dijon, Francia, en el seno de una familia distinguida. Su padre, un prestigioso abogado que fue miembro de la Asamblea de Notables y de la Asamblea Legislativa, falleció prematuramente debido a los estragos causados por los excesos de la Revolución Francesa. A la temprana edad de 14 años, Navier quedó huérfano y su educación fue confiada a su tío, Émiland-Marie Gauthey (1732-1806), ingeniero del Corps des Ponts et Chaussées, célebre por su trabajo en la construcción del Canal du Centre. Bajo su tutelaje, Navier demostró un avance notable en las ciencias, lo que resultó en su admisión en la prestigiosa École Polytechnique en 1802, donde se distinguió por obtener una de las calificaciones más altas. Dos años más tarde, ingresó en la École des Ponts et Chaussées, donde consolidó su formación como ingeniero. En el entorno académico y práctico que le rodeaba, Navier inició su colaboración con su tío, lo que le permitió desarrollar una sólida capacidad para aplicar la teoría a la práctica.

En 1807, Gauthey falleció, un año antes de que Navier obtuviera el título de ingeniero ordinario. Consciente de su deber moral de completar la labor de su mentor, Navier asumió sacrificios personales para conservar todos sus manuscritos. Comenzó su publicación en 1813 con el Traité de la Construction des Ponts, al que enriquecería con numerosas anotaciones. La redacción de esta obra se vio interrumpida temporalmente debido a una misión encomendada por el conde Molé para la reconstrucción de los muelles del Tíber en Roma, un proyecto que quedó inconcluso tras los acontecimientos políticos de 1814.

En 1816, con el objetivo de preservar el legado de su tío, publicó un tratado sobre los canales de navegación de Gauthey, incorporando notas detalladas sobre el Canal du Centre. Paralelamente, se involucró en proyectos de ingeniería de gran envergadura, tales como la construcción de los puentes de Choisy, Asnières y Argenteuil, así como la puerta de entrada a la ciudad de París.

En 1818, Navier publicó en los Annales de Chimie et de Physique un estudio influyente en el que empleaba el principio de las fuerzas vivas para resolver problemas de mecánica con gran simplicidad y claridad. Al año siguiente, refinó su planteamiento mediante la introducción del concepto de cantidad de acción, definido previamente por Coulomb y posteriormente perfeccionado por Coriolis. Estos trabajos le valieron el reconocimiento académico, y en 1819 fue nombrado profesor suplente de Mecánica Aplicada en la École des Ponts et Chaussées, puesto que ocuparía como titular en 1831.

En 1821, Navier publicó su Mémoire sur les lois de l’équilibre et du mouvement des corps solides élastiques, una obra fundamental en la que estableció los principios de la teoría general de la elasticidad y la mecánica molecular. Su trabajo sirvió de base para los desarrollos posteriores de Cauchy, Poisson, Lamé y Clapeyron, y representó un hito en la formulación del cálculo de la energía potencial y el trabajo virtual aplicado a sistemas mecánicos.

A pesar de su sólida formación teórica, Navier no descuidó las aplicaciones prácticas. En 1822, tras un viaje de estudio a Inglaterra, presentó un informe sobre los métodos de construcción de carreteras de MacAdam, en el que analizó las razones de su superioridad frente a las técnicas francesas. En 1823, se publicó una reedición ampliada de las obras de Bélidor sobre presión de tierras, muros de contención y teoría de bóvedas. En ese mismo año, publicó su influyente estudio sobre puentes colgantes, resultado de sus observaciones en Inglaterra y Escocia, el cual fue descrito por Charles Dupin como un avance que permitiría a Francia liderar en ese campo de la ingeniería.

El 26 de enero de 1824, la Académie des Sciences reconoció su trabajo eligiéndolo miembro de la sección de Mecánica. Sin embargo, su carrera sufrió un revés con la fallida construcción del puente colgante del Pont des Invalides en París. A pesar de los extensos estudios teóricos y experimentales que precedieron a su ejecución, la aparición de ligeros movimientos en los cimientos y la ruptura de una conducción de agua generaron una reacción adversa en la opinión pública. A pesar de que la reparación era técnicamente sencilla, las críticas llevaron al abandono del proyecto, marcando una gran decepción en la trayectoria de Navier.

Entre los años 1828 y 1829, se produjo un intercambio de ideas de gran intensidad con Poisson sobre el cálculo de la resistencia de los materiales. Las críticas de Poisson fueron consideradas posteriormente como infundadas o exageradas. Sin embargo, en 1828, tuvo la satisfacción de ver cómo Lamé y Clapeyron, en un estudio sobre la teoría de bóvedas, llegaban a ecuaciones que él mismo había formulado previamente.

En 1830, Navier fue distinguido con el nombramiento de profesor de Análisis y Mecánica en la prestigiosa École Polytechnique, donde se distinguió por la claridad de su enseñanza y su destreza en la representación gráfica. En 1832, Coriolis lo reemplazó temporalmente en sus funciones docentes, lo que le permitió dedicarse plenamente a sus investigaciones. Falleció inesperadamente en agosto de 1836, dejando un vasto legado en la teoría de estructuras y la mecánica aplicada. Su pérdida fue profundamente lamentada en el ámbito académico, y sus estudiantes de la École Polytechnique le rindieron un emotivo homenaje en su funeral. Es uno de los 72 científicos cuyo nombre figura inscrito en la Torre Eiffel.

Principales contribuciones a la teoría de estructuras:

  • Leçons données à l’École Royale des Ponts et Chaussées sur l’Application de la Mécanique (1820)
  • Rapport et Mémoire sur les Ponts suspendus (1823/1)
  • Extrait des recherches sur la flexion des plans élastiques (1823/2)
  • Sur les lois de l’équilibre et du mouvement des corps solides élastiques (1823/3)
  • Résumé des Leçons données à l’École Royale des Ponts et Chaussées sur l’Application de la Mécanique à l’Établissement des Constructions et des Machines (1826)
  • Mémoire sur les lois de l’équilibre et du mouvement des corps solides élastiques (1827)
  • Bericht an Herrn Becquey, Staats-Rath und General-Direktor des Strassen-, Brücken- und Berg-Baues, und Abhandlung über die (Ketten-)Hängebrücken von Herrn Navier (1829)
  • Résumé des Leçons données à l’École des Ponts et Chaussées sur l’Application de la Mécanique à l’Établissement des Constructions et des Machines (1833)
  • Mechanik der Baukunst (Ingenieur-Mechanik) oder Anwendung der Mechanik auf das Gleichgewicht von Bau-Constructionen (1833/1851, 1833/1878)
  • Résumé des leçons données à l’École des Ponts et Chaussées sur l’application de la mécanique à l’établissement des constructions et des machines, avec des Notes et des Appendices par M. Barré de Saint-Venant (1864)

Claude-Louis Navier dejó una huella imborrable en el campo de la teoría de estructuras y la mecánica aplicada. Sus investigaciones y aportaciones teóricas han sentado las bases de la ingeniería moderna, lo que lo convierte en una de las figuras más influyentes en la historia de esta disciplina.

Dinámica no lineal y control inteligente en la industria: avances, desafíos y aplicaciones en minería y procesos industriales

Acaban de publicar nuestro artículo en la revista Mathematics, indexada en QD1 del JCR. El artículo analiza cómo la inteligencia artificial y el control pueden mejorar la eficiencia y la seguridad en procesos industriales complejos, especialmente en la minería. Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal.

La pregunta de investigación central es: ¿Cómo pueden los métodos de control robusto, el aprendizaje automático y la teoría del caos mejorar la eficiencia, estabilidad y seguridad en procesos industriales complejos?

Esto define el problema específico del estudio, que se centra en encontrar enfoques matemáticos y computacionales para gestionar interacciones no lineales y la incertidumbre en sectores como la minería, la manufactura y la transición energética. También explica los objetivos del trabajo, que son evaluar estrategias de optimización con big data, ciberseguridad y control predictivo en entornos de alta variabilidad.

El estudio revisó la literatura entre 2015 y 2025 usando Scopus y Web of Science, encontrando 2628 referencias en Scopus y 343 en WoS. Se usó un programa informático para eliminar las referencias que no eran relevantes. Se consiguieron 2900 referencias, de las cuales 89 fueron muy relevantes. El análisis se hizo en seis áreas clave:

  1. Transferencia de calor en fluidos magnetizados.
  2. Control no lineal en sistemas de alta complejidad.
  3. Optimización basada en big data.
  4. Transición energética con SOEC.
  5. Detección de fallos en válvulas de control.
  6. Modelado estocástico con transiciones semi-Markovianas.

La metodología usa la vectorización TF-IDF y el análisis de conglomerados (k-means), y genera resúmenes temáticos automáticos con el modelo BART-Large-CNN. Se usaron herramientas de minería de textos y análisis bibliométrico para asegurar la calidad y relevancia de los artículos seleccionados.

El artículo tiene varias contribuciones importantes para la ingeniería:

  • Se identifican las tendencias actuales en el control de procesos no lineales, destacando la convergencia entre aprendizaje profundo, modelos de caos determinista y ciberseguridad en entornos industriales.
  • Se establece la importancia del control robusto y predictivo en la minería y la manufactura avanzada, permitiendo mitigar perturbaciones externas y mejorar la adaptabilidad de los sistemas.
  • Se analiza la aplicación de criptografía caótica para la protección de redes industriales, un factor clave en la implementación de Minería 4.0 y 5.0.
  • Se exploran las barreras para la implementación de modelos de optimización y big data, como la heterogeneidad de plataformas, la interoperabilidad y la disponibilidad limitada de datos.

El estudio muestra que el aprendizaje automático se usa cada vez más para mejorar procesos industriales difíciles. Los modelos híbridos (física + IA) son buenos para gestionar la incertidumbre y los modelos caóticos mejoran la ciberseguridad.

Pero aún hay problemas, como la necesidad de datos de alta calidad para entrenar modelos de machine learning, la escalabilidad de los algoritmos en entornos industriales distribuidos y la falta de estandarización en los protocolos de seguridad. También se destaca la importancia de usar análisis multi-escala y teoría del caos en el diseño de sistemas industriales resistentes.

El artículo propone varias líneas de investigación futura:

  • Desarrollo de modelos híbridos de predicción y control que combinen algoritmos de deep learning con principios de caos determinista y optimización bayesiana.
  • Integración de soluciones avanzadas de ciberseguridad, como sincronización de atractores caóticos y encriptación basada en memristores.
  • Implementación de proyectos piloto en minería e industrias de manufactura para validar la eficacia de los modelos de control predictivo en escenarios reales.
  • Desarrollo de metodologías de explicabilidad para la interpretación de modelos no lineales en la industria, permitiendo una adopción más amplia en el sector productivo.

El artículo analiza cómo se usan en la industria los modelos de control no lineal, la optimización con big data y las estrategias de ciberseguridad. El estudio subraya que es importante usar enfoques interdisciplinarios que integren la teoría del caos, el aprendizaje automático y las metodologías de control robusto. Esto se debe a que así se mejora la estabilidad y la eficiencia en la minería y la manufactura avanzada. También se destaca la importancia de crear normas y regulaciones para integrar estas tecnologías de manera segura y eficiente en la industria, enfrentando problemas externos y ciberataques.

Referencia:

ROJAS, L.; YEPES, V.; GARCÍA, J. (2025). Complex Dynamics and Intelligent Control: Advances, Challenges, and Applications in Mining and Industrial Processes. Mathematics, 13(6):961. DOI:10.3390/math13060961

Como el artículo está publicado en abierto, os lo dejo para su descarga.

Pincha aquí para descargar

Josef Melan: trayectoria y contribuciones a la ingeniería de puentes

Josef Melan (1854–1941). https://jam.jihlava.cz/en/architect/3-josef-melan

Josef Melan fue un ingeniero austríaco ampliamente reconocido por su destacado papel en el desarrollo de la construcción de puentes de hormigón armado a finales del siglo XIX. Se le acredita la invención del Sistema Melan, un método innovador para la construcción de puentes reforzados. A diferencia de los enfoques previos, su sistema no incorporaba barras de hierro dentro de la estructura de hormigón armado, sino que empleaba arcos de celosía rígidos de hierro como elemento de refuerzo.

En 1898, Melan alcanzó un reconocimiento significativo tras la construcción de un puente de 42,4 m de luz en Steyr, caracterizado por un arco de altura reducida. En su momento, esta obra representó el mayor puente de hormigón armado a nivel mundial. Entre sus proyectos más notables se encuentra el Puente del Dragón en Liubliana, una de las primeras estructuras de gran escala en emplear su innovador sistema constructivo.

Nacido el 18 de noviembre de 1853 en Viena, entonces parte del Imperio austrohúngaro, Melan falleció el 6 de febrero de 1941 en Praga, en la anterior Checoslovaquia. Inició sus estudios de ingeniería civil en la Universidad Técnica de Viena en 1869 y los completó en 1874. Posteriormente, tras su graduación, se desempeñó como asistente de Emil Winkler en la cátedra de Ingeniería Ferroviaria y Construcción de Puentes, marcando así el inicio de su destacada trayectoria académica y profesional.

En 1880, presentó su tesis de habilitación sobre la teoría de puentes y ferrocarriles en la misma universidad, donde ejerció como docente hasta 1886. Durante este período, además de su labor académica, desarrolló actividades profesionales en los departamentos de diseño de la empresa de construcción de puentes Ignaz Gridl y junto al contratista Gaertner, ambos con sede en Viena. En 1880, fue nombrado profesor asociado de mecánica estructural y estática gráfica en la Universidad Técnica Alemana de Brno, y en 1890 ascendió a catedrático en la misma especialidad. Posteriormente, en 1895, asumió la Cátedra de Construcción de Puentes, y en 1902 pasó a ocupar el mismo cargo en la Universidad Técnica Alemana de Praga (fundada en 1717), donde trabajó hasta su jubilación en 1923.

Durante su estancia en Viena, Melan inició el desarrollo de cálculos relacionados con la deformación estática en grandes puentes colgantes, con el propósito de optimizar su diseño y reducir costes. En 1888, Melan publicó los resultados de sus investigaciones, lo que atrajo la atención de su antiguo compañero de estudios, Gustav Lindenthal, quien le encargó la revisión estructural del Williamsburg Bridge de Nueva York, el puente colgante más grande del mundo en aquella época.

Paralelamente, ese mismo año, el ingeniero Victor Brausewetter, en colaboración con el fabricante de cemento Adolf Pittel, fundó la empresa Pittel & Brausewetter y promovió la creación de una asociación dedicada a la realización de ensayos comparativos de carga sobre estructuras abovedadas. Estos ensayos abarcaban desde bóvedas de fábrica en hormigón simple hasta elementos de hormigón armado. Desde 1886, la empresa de Gustav Adolf Waysse ya había construido estructuras basadas en la patente de Joseph Monier, con refuerzo de malla de acero en ambas direcciones. No obstante, tras un exhaustivo análisis de los ensayos mencionados, Melan expresó su escepticismo respecto al sistema, manifestando reservas en cuanto a la resistencia de los alambres empleados.

En 1892, presentó su propio y revolucionario sistema estructural, basado en un refuerzo longitudinal rígido para bóvedas, que sentó las bases de la arquitectura moderna. Para estructuras de menor luz, se utilizaron vigas en L dobladas, mientras que para las de mayor envergadura se emplearon cerchas metálicas. Gracias a su mayor capacidad portante, este método fue rápidamente adoptado en la construcción de techos en almacenes, fábricas y grandes naves industriales. Una innovación notable fue la posibilidad de suspender el encofrado del propio refuerzo y hormigonar los arcos sin necesidad de cimbras de anillos. Pittel & Brausewetter realizó pruebas de este sistema entre 1893 y 1895 en edificaciones de menor escala, aunque lamentablemente ninguna de ellas ha perdurado hasta nuestros días.

Uno de sus discípulos, Fritz Emperger, desempeñó un papel fundamental en la difusión del método de Melan. En 1893, fundó en la ciudad de Nueva York la Melan Arch Construction Company, que en 1894 se encargó del diseño y la construcción de dos puentes en Rock Rapids (Iowa) y Cincinnati (Ohio). Antes de que finalizara el siglo, su empresa había construido veintisiete puentes más, entre ellos el puente sobre el río Kansas en Topeka (Kansas), edificado entre 1896 y 1897, con cinco arcos de 30 metros de luz cada uno.

A pesar del éxito de su sistema en Estados Unidos, la comunidad técnica europea mantuvo una actitud escéptica hasta que Melan diseñó en 1896 un puente en Steyr, construido bajo la supervisión de Victor Brausewetter en 1898. Esta estructura, ubicada en la ciudad de Steyr, Alta Austria, cruzaba un brazo del río homónimo mediante un arco de tres vanos, con una luz máxima de 42,4 m y una flecha extremadamente reducida de 1:16. Ese mismo año, Melan diseñó lo que probablemente sea el puente de hormigón armado más antiguo de las tierras checas, ubicado en Veveří, cuyo diseño se inspiró en el puente medieval original que cruzaba el foso del castillo. En 1901 se finalizó la construcción del Puente del Dragón de Liubliana, cuya estructura de hormigón visto combinada con revestimientos de bronce fue diseñada por el arquitecto dálmata Jurij Zaninović.

Puente del Dragón, en Liubliana. Imagen: V. Yepes (2018)

Simultáneamente, Melan resultó adjudicatario de un concurso público para el diseño de un puente vial en Lausana, destinado a conectar los distritos de Chauderon y Montbenon. Posteriormente, en 1912, Melan proyectó un puente de hormigón armado en Le Sépey, ubicado en el sur de Suiza.

Su labor académica en Praga tuvo un impacto significativo en el desarrollo de la oficina técnica de Pittel & Brausewetter, que se convirtió en un centro de formación para sus estudiantes. Entre 1908 y 1912, Konrad Kluge (1878-1945), uno de sus alumnos más distinguidos, diseñó varios puentes con arcos rígidos reforzados con vigas en L, ubicados en Debrny, Jihlava, Přísečnice (hoy desaparecida), česká Třebová y Oloví.

En 1920, recibió el título de doctor honoris causa de la Escuela Técnica Superior de Aquisgrán en reconocimiento a su labor como profesor y científico en el campo de la ingeniería de puentes, así como por sus avances como inventor de un nuevo tipo de puente de hormigón armado.

A pesar de su avanzada edad, Melan mantuvo una constante actividad profesional. En julio de 1928, Melan diseñó un puente de arco metálico en Ústí nad Labem, basado en una propuesta de Ernst Krob, director de la Autoridad de Construcción de la ciudad. La construcción de la obra se llevó a cabo entre 1934 y 1936, consolidando de este modo su legado en el ámbito de la ingeniería estructural.

Melan se erigió como una de las figuras más influyentes en la teoría y práctica de la construcción de puentes en Austria durante la transición desde la fase de formación disciplinar hasta el período de consolidación de la teoría de estructuras. Su innovación más destacada, el Sistema Melan, introdujo una metodología pionera que combinaba de manera innovadora acero y hormigón en la construcción de puentes. A partir de la década de 1890, este sistema fue ampliamente aceptado en Europa y Estados Unidos, posicionándose como una de las soluciones constructivas más avanzadas de su época. Su impacto fue reconocido con la medalla de oro en la Exposición Universal de París en 1900.

En 1893, Melan publicó sus estudios sobre arcos de hormigón reforzado con estructuras de hierro, lo que marcó un hito en la construcción mixta. Su prestigio internacional experimentó un notable incremento en 1898, con la construcción de un puente de 42,4 m de luz en Steyr, considerado el puente de hormigón armado más extenso de su época. En este caso, el arco metálico inicial se ejecutó mediante voladizos sucesivos con un atirantamiento provisional.

Más allá de sus aportes en la construcción mixta, Melan dejó una huella indeleble en la ingeniería de puentes metálicos. En 1888, Melan fue pionero en cuantificar los efectos de la teoría de segundo orden, un avance crucial en la modelización estructural. Sus tratados sobre puentes recibieron un reconocimiento internacional destacado, y en 1913, su obra sobre puentes en arco y colgantes fue traducida al inglés por el ingeniero estadounidense David B. Steinman.

Además de su labor teórica, Melan ejerció una influencia decisiva en el desarrollo de la ingeniería de grandes puentes en Estados Unidos. Colaboró con el Departamento de Puentes de Nueva York en la verificación de los cálculos del Williams Bridge y en la evaluación del Hell Gate Bridge, diseñado por la oficina del ingeniero Gustav Lindenthal. Su impacto en la construcción de puentes en Estados Unidos durante las dos primeras décadas del siglo XX fue sin precedentes.

Principales contribuciones a la teoría de estructuras

Josef Melan realizó importantes aportaciones a la teoría de estructuras a lo largo de su carrera, plasmadas en diversas publicaciones de referencia. Entre sus primeros trabajos destacan Beitrag zur Berechnung eiserner Hallen-Gespärre (1883), en el que abordó el cálculo de cerchas metálicas en naves industriales, y Ueber den Einfluss der Wärme auf elastische Systeme (1883), donde analizó los efectos térmicos en sistemas elásticos. Posteriormente, en Beitrag zur Berechnung statisch unbestimmter Stabsysteme (1884), se centró en la resolución de sistemas de barras estáticamente indeterminados.

Su obra Theorie der eisernen Bogenbrücken und der Hängebrücken (1888) estableció las bases para el diseño de puentes en arco de hierro y puentes colgantes, consolidando su prestigio en la ingeniería estructural. Años más tarde, en Theorie des Gewölbes und des Eisenbetongewölbes im besonderen (1908), amplió su estudio al análisis de bóvedas, con especial énfasis en las estructuras de hormigón armado.

Durante su etapa en la Universidad Técnica Alemana de Praga, Melan publicó Der Brückenbau, una serie de volúmenes basados en sus conferencias impartidas entre 1910 y 1917. Su influencia trascendió el ámbito europeo con la publicación en inglés de Theory of Arches and Suspension Bridges (1913) y Plain and Reinforced Concrete Arches (1915), obras que consolidaron su impacto en la ingeniería de puentes a nivel internacional.

Optimización de la inversión en ingeniería de la construcción mediante redes de atención gráfica y MCDM

Tenemos el placer de anunciar la publicación de un artículo en la revista Computers & Industrial Engineering, revista indexada en el primer cuartil del JCR. Se trata de una colaboración con colegas de Turquía, en especial con el profesor Vedat Toğan.

El artículo analiza si la integración de Graph Attention Networks (GAT) con metodologías multicriterio de toma de decisiones (MCDM) mejora la precisión y fiabilidad en la selección de proyectos de inversión en ingeniería de la construcción. La cuestión central es si los modelos de aprendizaje automático basados en redes superan a los métodos MCDM tradicionales a la hora de predecir la viabilidad de proyectos de inversión. Esta pregunta define el problema de la ineficacia en la selección de proyectos debido a la complejidad de los factores interdependientes y orienta el estudio hacia la evaluación de modelos predictivos basados en redes.

Metodología

El estudio emplea un enfoque híbrido que combina el juicio experto, los métodos MCDM y el aprendizaje automático avanzado. Se procesa un conjunto de datos de más de 33 000 proyectos de inversión en construcción, aplicando la selección de características mediante análisis de componentes principales (PCA) y la clasificación basada en criterios como el riesgo país, la calificación de desarrollo empresarial y el valor del proyecto. A partir de estos datos, se estructuran tres redes de inversión: regional, nacional y basada en el modo de financiación. Estas redes se introducen en modelos GAT, que aplican mecanismos de atención para predecir la viabilidad de la inversión. La validación del modelo se realiza mediante métricas de precisión, exhaustividad, puntuación F1 y curvas ROC, y se compara con árboles de decisión y modelos de bosque aleatorio.

Contribuciones relevantes

  1. Integración de aprendizaje automático y MCDM: El estudio demuestra cómo los GATs pueden mejorar la precisión en la selección de proyectos, combinando métodos MCDM y aprendizaje profundo.
  2. Desarrollo de modelos de inversión basados en redes: Se estructuran los datos de inversión en tres redes diferenciadas, proporcionando un marco novedoso para evaluar interdependencias entre proyectos.
  3. Validación de la eficacia de los GATs: Se logra una precisión superior al 99 % en la red regional y superior al 98 % en las redes nacionales y de financiación, destacando el potencial de los GATs en la planificación estratégica de inversiones.
  4. Aplicabilidad práctica en la toma de decisiones: Se demuestra la viabilidad de los GATs para mejorar herramientas de apoyo a la decisión en inversiones a gran escala, reduciendo riesgos financieros.

Discusión de resultados

Los modelos GAT basados en redes mejoran significativamente la precisión en la selección de proyectos de inversión en comparación con los métodos MCDM convencionales. La red regional es la que logra una mayor precisión, lo que sugiere que la agregación geográfica proporciona una base sólida para la toma de decisiones. Las redes nacionales y de financiación, aunque con una precisión ligeramente menor, siguen superando a los métodos tradicionales, lo que demuestra las ventajas del modelado de dependencias basadas en redes.

Las tasas de error, aunque mínimas, resaltan la necesidad de combinar modelos automatizados con la validación experta. En conclusión, los GAT son herramientas eficaces para la selección de proyectos, pero no deben reemplazar la toma de decisiones humanas. Además, se evidencia que los modelos basados en financiación capturan estructuras financieras clave que influyen en la viabilidad de los proyectos, lo que aporta un valor añadido a la evaluación del riesgo de inversión.

Líneas de investigación futuras

  1. Ampliación de modelos basados en redes: Explorar redes adicionales que incluyan marcos regulatorios y estabilidad económica para optimizar la toma de decisiones.
  2. Integración de datos en tiempo real: Incorporar tendencias de mercado y datos económicos actualizados para mejorar la capacidad predictiva.
  3. Comparación con otros modelos de aprendizaje profundo: Evaluar el desempeño de los GATs frente a otras variantes de redes neuronales gráficas como Graph Convolutional Networks (GCNs).
  4. Aplicación en otros sectores de infraestructura: Extender la metodología a sectores como el transporte y la planificación urbana para evaluar su aplicabilidad.
  5. Desarrollo de sistemas híbridos de apoyo a la decisión: Combinar técnicas MCDM con predicciones en tiempo real para maximizar la usabilidad en la práctica.

Conclusión

El estudio demuestra que la integración de GAT con MCDM mejora la toma de decisiones en inversiones en ingeniería de la construcción. Al estructurar los datos en modelos basados en redes, se proporciona un marco más preciso y contextualizado para la selección de proyectos. Los resultados confirman la superioridad de los modelos basados en redes frente a los enfoques tradicionales, especialmente en lo que respecta a la gestión de dependencias complejas entre proyectos. No obstante, se destaca la importancia de la validación experta para mitigar errores de clasificación. Las futuras investigaciones deben centrarse en mejorar las capacidades del modelo, integrar datos dinámicos y perfeccionar las herramientas de apoyo a la toma de decisiones para optimizar la selección de inversiones en ingeniería de la construcción.

Referencia:

MOSTOFI, F.; BAHADIR, U.; TOKDEMIR, O.B.; TOGAN, V.; YEPES, V. (2025). Enhancing Strategic Investment in Construction Engineering Projects: A Novel Graph Attention Network Decision-Support Model. Computers & Industrial Engineering, 203:111033. DOI:10.1016/j.cie.2025.111033

El artículo se puede descargar gratuitamente hasta el 5 de mayo de 2025 en el siguiente enlace: https://authors.elsevier.com/c/1kmrt1I2r-Q9z0

Entrevista en Levante-EMV sobre la reconstrucción tras la DANA

Recojo a continuación una entrevista que me han realizado en Levante-EMV sobre la reconstrucción tras la DANA. La noticia la podéis leer en el siguiente enlace: https://www.levante-emv.com/comunitat-valenciana/2025/03/17/error-reconstruir-dana-valencia-sin-adaptar-cambio-climatico-115061981.html

Esta noticia está muy relacionada con el artículo de opinión que escribí en mi blog hace unos días: La ingeniería de la reconstrucción.

La reconstrucción de infraestructuras tras la DANA del 29 de octubre no debe limitarse a la reposición de lo perdido, sino que debe corregir vulnerabilidades y minimizar futuros daños, evitando errores del pasado. Infraestructuras clave como la autovía A7 y la V31 han sido identificadas como barreras que agravaron la inundación, por lo que se plantea la necesidad de medidas de adaptación y mitigación, incluyendo posibles pasos elevados y tecnologías avanzadas para reducir riesgos. Se recomienda rediseñar puentes con cimentación profunda y menor número de soportes para evitar bloqueos en el flujo del agua, así como considerar el impacto de los vehículos arrastrados por la riada en el sistema de drenaje. Expertos en infraestructuras han destacado la necesidad de carreteras y líneas de tren más resilientes al cambio climático, con infraestructuras más permeables a crecidas y posibles modificaciones en su trazado. Para gestionar de manera eficiente la reconstrucción, se propone la creación de un consorcio administrativo que facilite la coordinación entre ayuntamientos, Generalitat y Gobierno central, integrando una visión metropolitana en la planificación territorial.

Pincha aquí para descargar

José Echegaray: ingeniero de caminos, matemático y premio Nobel

De Desconocido – Mundo Gráfico Magazine. Madrid, Spain, 1931-05-13, Dominio público, https://commons.wikimedia.org/w/index.php?curid=17211545

José María Waldo Echegaray y Eizaguirre (1832-1916) fue una de las figuras más polifacéticas de la España del siglo XIX. Ingeniero, matemático, dramaturgo y político, destacó en todas las disciplinas en las que participó, dejando un legado notable tanto en el campo de la ciencia como en el de la literatura.

Echegaray nació en Madrid el 19 de abril de 1832. Su padre, José Echegaray Lacosta, era médico y profesor de instituto, natural de Zaragoza, mientras que su madre, Manuela Eizaguirre Charler, era natural de Azcoitia (Guipúzcoa). A los cinco años, su familia se trasladó a Murcia por motivos laborales. Allí pasó su infancia y estudió primaria. Fue en el Instituto de Segunda Enseñanza de Murcia donde despertó su afición por las matemáticas.

Tras obtener el título de bachiller, Echegaray se trasladó a Madrid y, tras finalizar sus estudios en el Instituto San Isidro, ingresó en 1848 en la primitiva Escuela de Ingenieros de Caminos, Canales y Puertos. La Escuela de Ingenieros se destacaba por su disciplina y rigor académico, reflejo de la importancia atribuida a la formación de sus estudiantes. Fomentaba en ellos una ética basada en el esfuerzo y les recordaba su pertenencia a una élite, tanto por su preparación científica como por la relevancia de sus contribuciones al desarrollo y progreso del país. Además, promovía ideales liberales y una profunda admiración por las naciones europeas más avanzadas. Echegaray adoptó plenamente las normas y valores de la institución, y, a pesar de la exigencia de su formación, se mantuvo como el mejor de su promoción, culminando sus estudios en 1853 a los veinte años. Después de una breve estancia en Almería y Granada, Echegaray regresó a Madrid en 1854, coincidiendo con la sublevación de O’Donnell y el inicio del Bienio Progresista.

Su formación como ingeniero le permitió desempeñar un papel clave en el desarrollo de infraestructuras en España. Además, ocupó cargos ministeriales en los departamentos de Hacienda y Fomento, donde impulsó proyectos que modernizaron el país en un periodo de grandes cambios, todo ello con la participación de diversos gobiernos, y fue elegido senador vitalicio. Desempeñó un papel fundamental en la creación del Banco de España en su estructura moderna.

En 1854, comenzó a impartir clases en la Escuela de Ingenieros de Caminos, de la que también se hizo cargo de la secretaría. Durante su etapa docente, enseñó matemáticas, estereotomía, hidráulica, geometría descriptiva, cálculo diferencial y física hasta 1868. Además, entre 1858 y 1860, fue profesor en la Escuela de Ayudantes de Obras Públicas.

A los treinta y dos años, fue elegido miembro de la Real Academia de las Ciencias Exactas. Su discurso de ingreso, titulado Historia de las matemáticas puras en nuestra España, generó una gran polémica al ofrecer una visión extremadamente crítica sobre la evolución de las matemáticas españolas y defender la primacía de la «ciencia básica» sobre la «ciencia práctica».

Junto a Gabriel Rodríguez, fundó la revista El Economista, donde publicó numerosos artículos, iniciando así una actividad periodística que mantendría a lo largo de su vida. En 1850, participó en la creación de la Asociación para la Reforma de los Aranceles y, en 1869, fue ponente en las conferencias dominicales sobre la educación de la mujer en la Universidad de Madrid. En una de ellas, titulada Influencia del estudio de las ciencias físicas en la educación de la mujer, defendió la importancia del conocimiento científico en la formación de la mujer.

Además, presidió el Ateneo de Madrid, el Consejo de Instrucción Pública, la Junta del Catastro, la Real Academia de Ciencias, la Sociedad Española de Física y Química, la Sociedad Matemática Española y la Asociación Española para el Progreso de las Ciencias. Como reconocimiento a su producción literaria, recibió el Premio Nobel de Literatura. También fue catedrático de Física Matemática en la Universidad Central y senador vitalicio. Ningún otro español de su época, ni antes ni después, ha acumulado tantos títulos y distinciones.

Echegaray realizó importantes contribuciones a las matemáticas y la física, introduciendo en España conceptos avanzados como la geometría de Chasles, la teoría de Galois y las funciones elípticas. Su influencia fue tan significativa que el matemático Julio Rey Pastor afirmó: «Para la matemática española, el siglo XIX comienza en 1865 y comienza con Echegaray». En 1911, fundó la Real Sociedad Matemática Española, consolidando su compromiso con el desarrollo de esta disciplina en España.

A pesar de su formación científica, Echegaray también destacó en el mundo de las letras. En 1904, recibió el Premio Nobel de Literatura, galardón que compartió con Frédéric Mistral, convirtiéndose así en el primer español en obtener este galardón. Su obra teatral, influenciada por el drama romántico y el realismo, fue muy reconocida en su época. Durante su juventud, alternó la lectura de autores como Goethe, Homero y Balzac con la de matemáticos como Gauss, Legendre y Lagrange.

Durante el último tercio del siglo XIX, Echegaray fue una figura destacada en el panorama teatral y gozó de la preferencia del público. Sin embargo, al comenzar el siglo XX, autores contemporáneos como Azorín y Valle-Inclán, criticaron su obra. La Generación del 98 no ocultó su animosidad; para Baroja, Unamuno, los hermanos Machado, Rubén Darío y Maeztu, Echegaray personificaba una España «corroída por los prejuicios y la superchería», según manifestaron en un manifiesto conjunto.

A pesar de ello, Echegaray es recordado principalmente como literato y no como científico o matemático. Sin embargo, algunos lo consideran el mejor matemático español de dicho siglo. No realizó descubrimientos originales, pero sí introdujo en España teorías matemáticas de vanguardia, como las de Évariste Galois, que ya estaban transformando el pensamiento matemático internacional. No obstante, cabe preguntarse si podría haber sido un matemático aún más influyente y qué limitaciones enfrentó.

En 1907, la Real Academia de Ciencias Exactas, Físicas y Naturales instauró la Medalla Echegaray a propuesta de Santiago Ramón y Cajal, y en su primera edición la otorgó al propio José Echegaray. Este destacado ingeniero, matemático y dramaturgo mantuvo una intensa actividad intelectual hasta su fallecimiento el 14 de septiembre de 1916 en Madrid. A su muerte, se entregó su biblioteca y la medalla del Nobel a la Academia de Ciencias Exactas, Físicas y Naturales. En sus últimos años, escribió entre 25 y 30 volúmenes de física matemática, lo que demuestra su incansable pasión por el conocimiento.

A lo largo de su carrera, Echegaray publicó numerosas obras sobre física, matemáticas e ingeniería. Entre sus publicaciones más relevantes se encuentran:

  • Cálculo de variaciones (1858), introduciendo en España un área matemática poco conocida hasta entonces.
  • Problemas de geometría plana (1865).
  • Problemas de geometría analítica en dos dimensiones (1865), considerada una obra maestra por Zoel García de Galdeano.
  • Historia de las Matemáticas puras en nuestra España (1866).
  • Teorías modernas de la física. Unidad de las fuerzas materiales (tres volúmenes publicados en 1867, 1883 y 1889).
  • Introducción a la geometría superior (1867), basada en la geometría de Michel Chasles.
  • Memoria sobre la teoría de los determinantes (1868), primera obra en España sobre este tema.
  • Aplicación de los determinantes (1869), donde introdujo la actual regla de Cramer.
  • Tratado elemental de termodinámica (1868), sobre una disciplina emergente en su época.
  • Teoría matemática de la luz (1871).
  • Resolución de ecuaciones y teoría de Galois (1897-1898, 1902), en dos volúmenes.
  • Observaciones y teorías sobre la afinidad química (1901).
  • Ciencia popular; Vulgarización científica (1905).
  • Conferencias sobre Física Matemática, recopiladas en 10 volúmenes.

En el ámbito de la ingeniería, destacó su Memoria sobre los trabajos de perforación del túnel de los Alpes (1860), un estudio técnico sobre una de las grandes obras de ingeniería de su tiempo.

La figura de José Echegaray representa la unión entre ciencia y humanidades, y es un ejemplo de erudición y polimatía en una época de profundos cambios. Su legado perdura tanto en las matemáticas como en la literatura y nos recuerda la importancia del conocimiento multidisciplinar para el progreso de la sociedad.

Le tocó vivir en la situación de la ciencia hispana en el siglo XIX, que sin duda fue precaria. Para ilustrarlo, veamos lo que él mismo escribió en sus memorias entre 1913 y 1915:

«Las Matemáticas fueron, y son, una de las grandes preocupaciones de mi vida; y si yo hubiera sido rico o lo fuera hoy, si no tuviera que ganar el pan de cada día con el trabajo diario, probablemente me hubiera marchado a una casa de campo muy alegre y muy confortable, y me hubiera dedicado exclusivamente al cultivo de las Ciencias Matemáticas. Ni más dramas, ni más argumentos terribles, ni más adulterios, ni más suicidios, ni más duelos, ni más pasiones desencadenadas, ni, sobre todo, más críticos; otras incógnitas y otras ecuaciones me hubieran preocupado.

Pero el cultivo de las Altas Matemáticas no da lo bastante para vivir. El drama más desdichado, el crimen teatral más modesto, proporciona mucho más dinero que el más alto problema de cálculo integral; y la obligación es antes que la devoción, y la realidad se impone, y hay que dejar las Matemáticas para ir rellenando con ellas los huecos de descanso que el trabajo productivo deja de tiempo en tiempo».

Echegaray hablaba específicamente de las matemáticas, pero la realidad no difería mucho en el resto de las ciencias.

Resalto la cita de Santiago Ramón y Cajal que aparece al final del libro sobre Echegaray: «Era incuestionablemente el cerebro más fino y exquisitamente organizado de la España del siglo XIX. Él lo fue todo, porque podía serlo todo«.

Os dejo un pequeño vídeo sobre su figura.

Carlo Alberto Castigliano

Carlo Alberto Castigliano (1847-1884) https://commons.wikimedia.org/w/index.php?curid=4911407

Carlo Alberto Castigliano (Asti, 8 de noviembre de 1847 – Milán, 25 de octubre de 1884) fue un destacado ingeniero y matemático italiano, cuya labor se centró en la teoría matemática de la elasticidad y la mecánica de estructuras deformables. Su legado más reconocido son los teoremas que llevan su nombre, los cuales establecen una relación fundamental entre la fuerza aplicada y el desplazamiento experimentado por los cuerpos elásticos. Estos teoremas han sido pilares esenciales en el desarrollo de la teoría de estructuras y se utilizan ampliamente en el análisis y diseño de sistemas estructurales.

Nació en el seno de una familia de escasos recursos, siendo hijo de Giovanni Castigliano y Orsola Cerrato. Su padrastro respaldó su vocación académica al reconocer las excepcionales aptitudes del joven, y lo matriculó en el cuarto curso del Instituto Industrial de Turín. Sin embargo, debido a las difíciles circunstancias económicas familiares, Castigliano tuvo que compaginar sus estudios con trabajos esporádicos para ayudar con los ingresos del hogar. En julio de 1866, tras obtener el título de perito mecánico, realizó un curso en el Real Museo Industrial de Turín, lo que le permitió obtener la habilitación como profesor. El 10 de diciembre de ese mismo año fue nombrado profesor de construcción y mecánica aplicada en el Real Instituto Técnico de Terni, en la región de Umbría. Durante los cuatro años que permaneció en dicho cargo, se dedicó de manera incansable al estudio autodidacta de las matemáticas.

Tras obtener una excedencia en su puesto docente, Castigliano regresó a Turín en 1870, donde aprobó con distinción el examen de ingreso en la Facultad de Ciencias Matemáticas, Físicas y Naturales de la Universidad de Turín. Apenas se matriculó, escribió al rector de la universidad para solicitarle permiso para presentarse a todos los exámenes de la carrera de Matemáticas al finalizar el primer año. En marzo de 1871, recibió una respuesta favorable por parte del Ministerio de Educación y, en pocos meses, superó con éxito todos los exámenes.

Una vez licenciado, en noviembre de 1871 solicitó su inscripción en la Escuela de Aplicación para Ingenieros, actualmente conocida como Politécnico de Turín. En 1873, a pesar de las dificultades que atravesaba en su vida personal, se graduó con honores en ingeniería civil con una tesis titulada Intorno ai sistemi elastici (sobre sistemas elásticos), en la que demostraba el principio de elasticidad o teorema del trabajo mínimo, previamente enunciado por el general Luigi Federico Menabrea (1809–1896) en 1858. Durante una disputa legal con Menabrea, provocada por su tesis, Castigliano publicó en la Academia de Ciencias de Turín su memoria Nuova teoria intorno all’equilibrio dei sistemi elastici (1875), en la que formuló los teoremas sobre las derivadas del trabajo de deformación, hoy conocidos como teoremas de Castigliano, los cuales constituyen principios fundamentales de la estática estructural. Más tarde, este ensayo se convertiría en el núcleo de su principal obra Théorie de l’Équilibre des Systèmes Élastiques et ses Applications (1879).

Después de finalizar sus estudios, fue contratado como ingeniero por la compañía de ferrocarriles del norte de Italia, Strade Ferrate Alta Italia (S.F.A.I.), donde desarrolló toda su carrera profesional. Inicialmente destinado a Alba, en 1874 fue trasladado a la oficina de proyectos en Turín, y en febrero de 1875 fue designado a la sede central de la empresa en Milán. Allí se encargó del diseño y la supervisión técnica de las principales obras de la red ferroviaria del norte de Italia. Como miembro de la junta directiva, reorganizó el fondo de pensiones de la empresa. Lamentablemente, no pudo culminar su ambicioso proyecto de un Manuale pratico per gli ingegneri (manual práctico para ingenieros) antes de su prematura muerte.

Los últimos años de su vida fueron especialmente dolorosos. Tras la muerte de dos de sus hijos —Carlo en 1883, a los pocos meses de nacer, y Emilia en 1884, a los tres años—, Castigliano contrajo una neumonía de la que falleció en octubre de 1884.

Además de su obra Manuale pratico per gli ingegneri, que dejó incompleta y fue publicada parcialmente de manera póstuma (en cuatro volúmenes, entre 1882 y 1888), sus contribuciones más significativas fueron sus trabajos sobre el equilibrio de las estructuras elásticas. En 1879 y 1880, publicó los dos volúmenes de su estudio fundamental sobre este tema: Théorie de l’équilibre des systèmes élastiques et ses applications.

Poco después de su fallecimiento, Emil Winkler rindió homenaje a Castigliano en una presentación en la Sociedad de Arquitectos de Berlín (1884), donde destacó la relevancia del segundo teorema de Castigliano para los fundamentos de la teoría de estructuras. Este teorema sería, años más tarde, el centro de una controversia académica entre Mohr y Müller-Breslau.

Principales contribuciones a la teoría de estructuras:

  • Intorno ai sistemi elastici [1875/1]
  • Intorno all’equilibrio dei sistemi elastici [1875/2]
  • Nuova teoria intorno all’equilibrio dei sistemi elastici [1875/3]
  • Théorie de l’Équilibre des Systèmes Élastiques et ses Applications [1879]
  • Intorno ad una proprietà dei sistemi elastici [1882]
  • Theorie des Gleichgewichtes elastischer Systeme und deren Anwendung [1886]
  • The Theory of Equilibrium of Elastic Systems and its Applications [1966]

Os dejo un par de vídeos sobre el teorema de Castigliano. Espero que os sea de interés.

La ingeniería de la reconstrucción

Imagen del desastre provocado por la DANA. Imagen: V.J. Yepes (10 de noviembre de 2024)

Las catástrofes naturales y humanas han acompañado a la civilización a lo largo de su historia, poniendo a prueba su capacidad de adaptación. Sin embargo, la forma en que se afronta la reconstrucción tras un desastre no puede limitarse a la reposición de lo perdido. El caso de las recientes inundaciones en Valencia el 29 de octubre de 2024 ilustra una realidad que se repite con cada evento extremo: la urgencia de reconstruir suele imponerse a la necesidad de reflexionar. No obstante, si la ingeniería de la reconstrucción se reduce a restablecer el estado previo a la catástrofe, se estaría desperdiciando una oportunidad para corregir vulnerabilidades y minimizar futuros daños.

El primer desafío tras un desastre es la respuesta inmediata. En esta fase, la prioridad es el rescate de personas y la provisión de recursos esenciales. Una vez atendidas estas necesidades básicas, la atención se centra en la recuperación de infraestructuras críticas, como hospitales, redes de agua potable, suministro eléctrico y comunicaciones. Este proceso es complejo, ya que estas infraestructuras no solo deben ponerse en funcionamiento lo antes posible, sino que, en muchos casos, han sufrido daños estructurales que comprometen su funcionalidad.

A partir de este punto surge la cuestión clave: ¿debe la reconstrucción reproducir las mismas condiciones previas a la catástrofe? Desde el punto de vista técnico y económico, esta estrategia es cuestionable. Si las infraestructuras y edificaciones han fallado ante un fenómeno extremo, replicarlas sin modificaciones implica asumir que volverán a fallar en el futuro. En el caso concreto de Valencia, se ha observado que algunos puentes obstaculizaron el flujo del agua y los sedimentos, generando represas que agravaron la crecida. Este problema no es nuevo; estructuras similares han provocado efectos equivalentes en inundaciones anteriores y, sin embargo, su diseño se sigue repitiendo. Por tanto, es necesario un enfoque distinto que incorpore criterios de resiliencia y sostenibilidad en la reconstrucción. En el caso de los puentes, esto podría traducirse en reducir el número de apoyos en el cauce, cimentaciones más profundas para reducir su vulnerabilidad a la erosión y revisar los coeficientes de empuje hidráulico en los cálculos estructurales.

El reto no solo consiste en corregir errores del pasado, sino también en prepararse para escenarios futuros más complejos. El cambio climático está alterando la frecuencia e intensidad de los eventos extremos, lo que obliga a replantear tanto la planificación territorial como la normativa vigente. Lo que antes se consideraba un fenómeno extraordinario puede convertirse en una amenaza recurrente, por lo que es necesario aplicar criterios de diseño más exigentes y estrategias de mitigación más ambiciosas. No se trata únicamente de reforzar las infraestructuras, sino de adaptar las ciudades y las redes de transporte a una realidad en la que las precipitaciones intensas, las sequías prolongadas y el aumento del nivel del mar serán cada vez más frecuentes. La planificación basada en registros históricos ya no es suficiente; la ingeniería debe integrar modelos predictivos y diseñar soluciones flexibles y adaptativas.

Sin embargo, en la reconstrucción tras una catástrofe suele predominar un enfoque táctico, con decisiones orientadas a mostrar una respuesta inmediata a la ciudadanía. La rapidez en la ejecución de ciertas obras genera la percepción de una gestión eficaz, pero este proceder puede ocultar la ausencia de una estrategia que optimice las actuaciones a largo plazo. Si bien es imprescindible contar con equipos de intervención inmediata para hacer frente a la emergencia, también es esencial disponer de un equipo de reflexión que establezca directrices fundamentadas y evite reconstrucciones apresuradas que perpetúen los mismos errores. Algo así como un «ministerio del pensamiento» que sea capaz de analizar las lecciones aprendidas y convertirlas en políticas y proyectos de reconstrucción con criterios sólidos de sostenibilidad y resiliencia.

Esta misma lógica se aplica a la planificación territorial y urbana. Rehabilitar zonas inundables sin considerar estrategias de mitigación perpetúa la exposición al riesgo. En este sentido, la ingeniería tiene el deber de plantear soluciones basadas en evidencia científica y en experiencias previas. La adaptación a eventos extremos no solo implica reforzar estructuras, sino también reconsiderar su localización y función. En muchos casos, las medidas no requieren inversiones desmesuradas, sino una gestión más eficiente del territorio. La creación de zonas de amortiguamiento, la mejora en la capacidad de drenaje y la regulación del uso del suelo son estrategias que pueden marcar la diferencia en futuras catástrofes.

Además, la sostenibilidad a largo plazo implica tener en cuenta a las personas en la ecuación que gobierna los impactos de las actuaciones. No basta con evaluar los efectos sobre las infraestructuras o el medio ambiente, sino que es necesario considerar cómo influyen estas decisiones en la calidad de vida de las personas que habitan los territorios afectados. La reconstrucción debe ir más allá de la restitución de bienes materiales y tener en cuenta también aspectos sociales, económicos y psicológicos. Por ejemplo, esto implicaría reubicar comunidades en zonas seguras, garantizar el acceso equitativo a los servicios básicos y minimizar el impacto de las obras sobre la población más vulnerable. Si la ingeniería no tiene en cuenta estos factores, existe el riesgo de generar soluciones técnicamente eficientes, pero socialmente insostenibles.

Uno de los mayores obstáculos en estos procesos es la fragmentación de competencias. La reconstrucción implica a múltiples actores, desde administraciones locales hasta organismos estatales e internacionales. En muchas ocasiones, la superposición de responsabilidades y la falta de coordinación provocan retrasos y contradicciones en la toma de decisiones. Para evitar este problema, una alternativa viable sería la creación de un consorcio específico encargado de gestionar la reconstrucción, en el que las distintas administraciones deleguen temporalmente parte de sus competencias. Este modelo permitiría una planificación más coherente y una ejecución de proyectos con criterios unificados, lo que evitaría la dispersión de recursos y la toma de decisiones inconexas.

La reconstrucción no es solo un proceso técnico, sino también una oportunidad para transformar el entorno de manera más racional y sostenible. Es indispensable actuar con rapidez, pero no se debe hacer a costa de repetir errores del pasado. La ingeniería, como disciplina, no puede limitarse a solucionar problemas inmediatos, sino que debe anticiparse a los riesgos futuros y ofrecer respuestas fundamentadas en el conocimiento acumulado. Una reconstrucción bien planificada no solo restituye lo destruido, sino que contribuye a construir una sociedad más segura y preparada para afrontar los desafíos futuros.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Toma de decisiones multicriterio en la gestión de presas envejecidas

Presa del Buseo, 23 de septiembre de 2023. Imagen: V. Yepes

El artículo examina el uso del análisis de decisiones multicriterio (MCDA, por sus siglas en inglés) en la gestión de presas, centrándose en su aplicación para evaluar riesgos, optimizar recursos y apoyar la toma de decisiones en infraestructuras hidráulicas. A través de una revisión sistemática de 128 artículos, se identifican las metodologías más utilizadas, las tendencias emergentes y las oportunidades de mejora en la aplicación de estas técnicas. Se destaca la creciente aplicación de enfoques híbridos y difusos para abordar la incertidumbre, así como la necesidad de una mayor integración de las partes interesadas en los procesos de decisión.

Este artículo está disponible en la siguiente dirección: https://www.researchgate.net/publication/312672827_A_systematic_review_of_application_of_multi-criteria_decision_analysis_for_aging-dam_management

El artículo plantea dos cuestiones principales relacionadas con la gestión de presas envejecidas mediante el análisis de decisiones multicriterio (MCDA):

  1. ¿Qué tipos específicos de problemas de decisión y aplicaciones en la gestión de presas han sido abordados con técnicas de MCDA?
  2. ¿Cómo se han aplicado estas técnicas para resolver cada problema y cuáles son las razones de su idoneidad?

Para responder a estas preguntas, se lleva a cabo una revisión sistemática que identifica tendencias en la literatura y analiza las metodologías empleadas para apoyar la toma de decisiones en la gestión de presas envejecidas.

Aportaciones relevantes

El artículo presenta un análisis exhaustivo del uso de MCDA en la gestión de presas envejecidas. Se identifican 128 estudios publicados entre 1992 y 2015, y se observa un aumento significativo en la aplicación de estas metodologías a partir de 2009. Se destacan las siguientes aportaciones:

  • Identificación de las principales metodologías utilizadas en la evaluación de presas envejecidas, siendo AHP la más frecuente, seguida de combinaciones con TOPSIS.
  • Análisis de la creciente tendencia a la hibridación de técnicas y la aplicación de enfoques difusos para mejorar la gestión de incertidumbre y subjetividad.
  • Detección de una falta de integración de las partes interesadas en el proceso de toma de decisiones, lo que limita la consideración de factores socioeconómicos y ambientales.

Presentación de los resultados

El estudio categoriza la aplicación de MCDA en nueve áreas principales:

  1. Análisis de riesgo: Se ha identificado como la aplicación más frecuente, centrándose en la evaluación de seguridad y fallas de presas.
  2. Gestión de recursos hídricos: Se han aplicado modelos de optimización para mejorar la gestión sostenible de los embalses.
  3. Operación de embalses: Se han empleado técnicas como ELECTRE y PROMETHEE para optimizar el uso del agua almacenada.
  4. Evaluación de impacto ambiental: Se han utilizado AHP y variantes difusas para estimar la vulnerabilidad ecológica de las presas.
  5. Energía hidroeléctrica: Se ha aplicado MCDA para seleccionar ubicaciones de centrales hidroeléctricas y evaluar su rentabilidad.
  6. Sismicidad y geología: Se han empleado modelos para evaluar la estabilidad de presas y los efectos de eventos sísmicos.
  7. Ubicación de presas: Se ha utilizado AHP y SIG para determinar sitios óptimos para la construcción de nuevas presas.
  8. Calidad del agua: Se ha detectado una relación entre ENTROPY y la evaluación de contaminación en embalses.
  9. Control de inundaciones: Se han explorado metodologías como ANP y DEMATEL para la gestión de riesgos asociados a crecidas.

Los resultados muestran que la mayoría de los estudios utilizan un enfoque basado en métodos MADM, particularmente AHP, con una tendencia creciente hacia la combinación con otros métodos para mejorar la precisión de los resultados.

Discusión de resultados

Presa del Buseo, 23 de septiembre de 2023. Imagen: V. Yepes

Los resultados muestran que, si bien el MCDA ha permitido estructurar mejor la toma de decisiones en la gestión de presas envejecidas, persisten varias limitaciones. Una de ellas es la escasa consideración de la interdependencia entre los distintos factores evaluados. Aunque el método de proceso de redes analíticas (ANP) tiene el potencial de modelar estas relaciones, su uso sigue siendo limitado. Esto implica que muchos de los modelos utilizados pueden simplificar en exceso problemas complejos al asumir independencia entre criterios.

Otra observación importante es la falta de un enfoque sistemático para la integración de actores clave en la toma de decisiones. Aunque algunos estudios incluyen la participación de expertos, la incorporación de comunidades locales y organismos reguladores sigue siendo fragmentaria. La inclusión de estos actores en el proceso permitiría evaluar mejor los impactos socioeconómicos y ambientales de las decisiones tomadas.

Asimismo, se destaca que la mayoría de los estudios revisados se han centrado en la evaluación de riesgos y la seguridad de presas, mientras que otras áreas como la planificación sostenible y la adaptación al cambio climático han recibido menor atención. Dada la creciente incertidumbre asociada a los efectos del cambio climático en los sistemas hídricos, futuras investigaciones deberían priorizar estos aspectos.

Por último, se identificó una tendencia a combinar métodos para mejorar la precisión de los resultados. Sin embargo, en muchos casos, estas combinaciones no siguen un marco metodológico sólido, lo que puede afectar a la reproducibilidad y fiabilidad de los estudios. Desarrollar guías metodológicas claras para la combinación de enfoques MCDA podría mejorar la coherencia y la aplicabilidad de estos modelos en la gestión de presas.

Futuras líneas de investigación

Para avanzar en la gestión de presas envejecidas, el estudio sugiere:

  • Integrar análisis BOCR (Beneficios, Oportunidades, Costes y Riesgos) junto con ANP para capturar interacciones complejas.
  • Desarrollar modelos participativos que incorporen la opinión de comunidades locales y organismos reguladores en la toma de decisiones.
  • Aplicar herramientas de análisis espacial y SIG para mejorar la evaluación de riesgos y la planificación de infraestructura hídrica.
  • Incluir el impacto del cambio climático en los modelos MCDA, asegurando una evaluación a largo plazo de la seguridad y operación de presas.

Conclusión

El artículo ofrece un análisis detallado del uso de MCDA en la gestión de presas envejecidas, identificando tendencias y lagunas en la investigación. Se destaca la necesidad de metodologías más holísticas y participativas que permitan evaluar de manera integral los factores que influyen en la toma de decisiones. La combinación de ANP con BOCR, junto con el uso de herramientas espaciales, se presenta como una estrategia clave para el futuro desarrollo del campo.

Referencia:

ZAMARRÓN-MIEZA, I.; YEPES, V.; MORENO-JIMÉNEZ, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230. DOI: 10.1016/j.jclepro.2017.01.092

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización del hormigón con nanocristalización catalizada: impermeabilización, protección y durabilidad

Figura 1. Plataformas petrolíferas en el Mar del Norte. Ambiente muy agresivo para el hormigón.

El hormigón es un material esencial en la construcción, pero su durabilidad se ve comprometida por factores como la carbonatación, la corrosión de las armaduras y la infiltración de agua y agentes agresivos. Las soluciones tradicionales de protección, basadas en recubrimientos superficiales, tienen limitaciones, ya que dependen de la adherencia al sustrato y pueden deteriorarse con el tiempo.

La nanocristalización catalizada surge como una alternativa innovadora que actúa desde el interior del hormigón, modificando su estructura capilar para mejorar sus propiedades mecánicas, aumentar su resistencia química y proporcionar una impermeabilización permanente sin alterar su aspecto.

Nanocristalización catalizada: una transformación desde el interior

El proceso de nanocristalización catalizada se basa en la interacción química entre nanosilicatos y el calcio libre presente en la matriz del hormigón. Para lograr una penetración efectiva, se emplea un procedimiento de nanofiltración que reduce el tamaño de las partículas de silicato a un rango comprendido entre 0,1 y 0,7 nanómetros. Así, el producto penetra profundamente en la red capilar y en los poros más finos del hormigón, donde reacciona con la cal libre para formar una estructura de nanocristales de cuarzo.

Figura 2. Recreación de la red nanocristalina generada en poros y capilares

Este proceso se desarrolla en varias etapas:

  1. Penetración por succión capilar: El nanosilicato, al estar en base acuosa, es absorbido por capilaridad. La magnitud de esta absorción depende del diámetro de los poros y la porosidad del hormigón.
  2. Gelidificación controlada: Se emplea un catalizador mineral que evita la reacción prematura con el calcio libre superficial, lo que permite una distribución homogénea del nanosilicato en el interior del hormigón.
  3. Cristalización interna: Durante un periodo de entre 12 y 15 días, los nanosilicatos reaccionan con la cal presente en el hormigón, formando una malla cristalina que sella los capilares y microfisuras.
  4. Efecto estructural: Al finalizar el proceso, la red de nanocristales aporta características similares a una armadura interna, aumentando la cohesión del material sin afectar su transpirabilidad.

Propiedades y beneficios en la construcción

El tratamiento mediante nanocristalización catalizada modifica significativamente las propiedades del hormigón, mejorando su comportamiento frente a diversas condiciones ambientales y químicas.

  • Impermeabilización profunda: A diferencia de los recubrimientos superficiales, este sistema genera una barrera cristalina en el interior del hormigón que impide la entrada de agua, pero no la sella por completo, lo que permite la salida de vapor y evita problemas de presión interna.
  • Incremento de la resistencia mecánica: La conversión de la cal libre en cuarzo aumenta la densidad y compactación del hormigón, y aumenta su resistencia a la compresión en un 32 % según ensayos de laboratorio.
  • Protección anticorrosiva: La restauración del pH por encima de 11,4 previene la oxidación de las armaduras y detiene la progresión de la carbonatación.
  • Durabilidad ampliada: Ensayos han demostrado que la vida útil del hormigón tratado puede multiplicarse entre 2,6 y 3 veces, reduciendo la necesidad de intervenciones y mantenimiento.
  • Sostenibilidad y compatibilidad con normativas: Al ser un tratamiento 100 % mineral, sin compuestos orgánicos volátiles ni disolventes, cumple con las normativas ambientales y de durabilidad estructural.

Aplicaciones en estructuras y proyectos reales

La tecnología de nanocristalización catalizada se ha implementado con éxito en diversos sectores de la construcción, tanto en estructuras nuevas como en rehabilitación de infraestructuras existentes:

  • Edificación: Se ha utilizado en cimentaciones, sótanos y elementos estructurales para prevenir filtraciones y mejorar la cohesión del hormigón. Los ensayos de penetración realizados en hormigón de 50 años han demostrado una reducción significativa de la permeabilidad al agua.
  • Puentes y viaductos: Se ha aplicado en tableros y cimentaciones para mitigar los efectos de la carbonatación y proteger las armaduras contra la acción de cloruros y sales de deshielo.
  • Túneles y muros pantalla: Su capacidad de sellado interno ha permitido eliminar filtraciones sin necesidad de aplicar recubrimientos superficiales.
  • Infraestructura portuaria: La alta resistencia a los cloruros y ambientes marinos agresivos ha reducido la erosión y el deterioro de los hormigones de muelles y diques, lo que ha minimizado los costes de mantenimiento.

Un cambio de paradigma en la protección del hormigón

El uso de la nanocristalización catalizada supone una evolución en la protección del hormigón, ya que aborda los problemas de degradación desde su origen. A diferencia de los tratamientos superficiales, que pueden desprenderse con el tiempo, esta tecnología modifica la estructura interna del material, lo que ofrece una protección e impermeabilización permanentes.

En un contexto donde la durabilidad y la sostenibilidad son prioridades, la aplicación de esta tecnología en la construcción y rehabilitación de estructuras no solo reduce los costes de mantenimiento, sino que también aumenta la vida útil de las edificaciones, alineándose con los nuevos estándares de calidad y eficiencia en la ingeniería civil.

Os dejo una presentación de la empresa sueca Komsol que os puede resultar de interés.

Pincha aquí para descargar