Discurso de apertura en el evento Innotransfer “Infraestructuras resilientes frente a eventos climáticos extremos”

Os anuncio que el próximo miércoles, 28 de mayo de 2025, tendré la oportunidad de dar el discurso de apertura en el evento, presencial y en línea, InnotransferInfraestructuras resilientes frente a eventos climáticos extremos” centrada en los ámbitos de carreteras, ferrocarriles e infraestructuras hidráulicas, dentro del programa INNOTRANSFER, dedicado a facilitar conexión entre demandantes y oferentes de soluciones innovadoras en la Comunitat Valenciana. Este año, en particular, estamos enfocando estos eventos a necesidades puestas de manifiesto con la DANA.

En los últimos años, la frecuencia e intensidad de los fenómenos meteorológicos extremos han aumentado de manera sostenida. Episodios como lluvias torrenciales, vientos huracanados, tornados, olas de calor y frío o temporales marítimos han provocado un incremento de las catástrofes naturales asociadas, incluyendo inundaciones, destrucción y regresión litoral, incendios forestales y sequías prolongadas.

Esta tendencia, impulsada por el cambio climático, plantea un desafío creciente que exige soluciones innovadoras en el diseño de infraestructuras resilientes. Estas infraestructuras deben abarcar la planificación y construcción de carreterasinfraestructuras hidráulicas y redes de transporte ferroviario, garantizando no solo la resistencia ante situaciones críticas, sino también la capacidad de minimizar daños y asegurar una rápida recuperación.

En la Comunitat Valenciana, esta necesidad es especialmente relevante debido al incremento de fenómenos climáticos extremos como las DANAs (Depresiones Aisladas en Niveles Altos). La jornada tiene como objetivo abordar el desarrollo de infraestructuras urbanas y rurales capaces de adaptarse al clima cambiante, reduciendo el impacto negativo en la población y en los recursos económicos locales.

Esta jornada Innotransfer reunirá a expertos, empresas e instituciones para explorar soluciones innovadoras en infraestructuras resilientes, aprovechando el potencial de la Compra Pública de Innovación como herramienta clave para facilitar su adopción por parte de las Administraciones Públicas. Dichas propuestas han sido identificadas por la Ciudad Politécnica de la Innovación (CPI), parque científico de la Universitat Politècnica de València (UPV).

El objetivo de la jornada es crear oportunidades de colaboración y un networking de alto impacto entre los diferentes actores del ecosistema valenciano de innovación, fomentando el desarrollo conjunto de proyectos de I+D+i de alto impacto.

La participación en el evento es gratuita, y se puede hacer accediendo al siguiente enlace: https://innotransfer.org/evento/infraestructuras-resilientes-frente-a-eventos-climaticos-extremos/

Os dejo el programa, por si os interesa.

¿Se puede predecir el futuro? Claves de la estimación de costes en proyectos de ingeniería

En el ámbito de la ingeniería civil, planificar correctamente no es solo deseable, sino que es imprescindible para garantizar la eficiencia y la calidad en el desarrollo de proyectos. En todas las etapas de un proyecto, ya sea la construcción de una carretera, un puente o una infraestructura hidráulica, la estimación de costes es un componente esencial. La estimación precisa del costo de una obra es fundamental para tomar decisiones informadas, optimizar recursos y reducir riesgos. Para proceder con la estimación de costes, es preciso definir de manera precisa el concepto. Para ello, es necesario establecer los fundamentos técnicos y metodológicos que rigen dicha práctica.

El físico danés Niels Bohr, distinguido con el Premio Nobel en 1922, expresó en una ocasión: «Predecir es sumamente complejo, especialmente en lo que respecta al futuro». Esta expresión, originariamente empleada en el contexto de la física, resulta de aplicación en el ámbito de la estimación de costes, dada su compatibilidad tanto con su dimensión técnica como con la naturaleza incierta inherente a todo proceso de planificación.

La estimación de costes puede definirse como el proceso mediante el cual se recopilan y analizan datos históricos, y se aplican modelos cuantitativos, técnicas, herramientas y bases de datos con el objetivo de prever el coste futuro de un producto, proyecto, programa o tarea. En esencia, se trata de una práctica que integra elementos del arte y la ciencia, con el objetivo de estimar el valor, alcance o características probables de un elemento, en función de la información disponible en un momento determinado.

Uno de los pilares fundamentales de esta disciplina son los datos históricos. Como ocurre en cualquier otra actividad científica, la estimación de costes se apoya en evidencias contrastadas. Dado que no es posible disponer de datos futuros, es imperativo recurrir a la información relevante del pasado. La búsqueda y tratamiento de datos históricos es una labor esencial del profesional de la estimación. La recopilación, organización, normalización y gestión adecuadas de los datos históricos son valiosos para sentar una base sólida para el análisis posterior.

En lo que respecta a la estimación de costes, esta se fundamenta en el empleo de modelos cuantitativos, los cuales deben caracterizarse por su transparencia, racionalidad y capacidad de revisión por parte de terceros. Este componente científico ha sido determinante para que la asignatura de estimación de costes se integre de manera habitual en los departamentos universitarios de ingeniería de sistemas, investigación operativa o administración de empresas, lo que refleja su naturaleza técnica y rigurosa.

Un aspecto central de esta profesión es la capacidad de predecir. Frecuentemente, se escucha la afirmación de que «no se puede predecir el futuro», pero esta idea es engañosa. Si alguien afirma que «mañana va a llover», podrá estar en lo cierto o equivocado, pero en cualquier caso estará realizando una predicción. De hecho, muchas de nuestras decisiones cotidianas —como la elección de un paraguas o la planificación de una inversión— se fundamentan precisamente en el intento de anticipar el futuro. Predecir, también conocido como pronosticar, es una actividad legítima y valiosa, especialmente en campos como la ingeniería civil, donde los proyectos suelen implicar plazos largos, recursos significativos y un alto grado de incertidumbre.

Algunas voces críticas señalan que la utilización de datos históricos para estimar costes futuros podría implicar la repetición de errores del pasado en la toma de decisiones. Según esta lógica, estaríamos asumiendo que los gestores actuales cometerán los mismos fallos que sus predecesores, lo cual, según afirman, carece de sentido. Sin embargo, esta objeción se fundamenta en un error de base. Por un lado, los errores del pasado no suelen deberse a la incompetencia de quienes lideraban los proyectos, sino más bien a factores externos que escapaban a su control. Por otro lado, quienes gestionan proyectos en la actualidad se enfrentarán a un contexto diferente, con nuevos retos y condicionantes que también podrían obligarles a desviarse de sus planes iniciales. Como respuesta más irónica (pero igualmente válida), podría decirse que «no cometerás los mismos errores que tus antecesores: cometerás los tuyos propios».

Por último, es fundamental tener presente que toda estimación se realiza con base en la información disponible en el momento. Si bien nos gustaría contar con datos precisos sobre las condiciones futuras en las que se ejecutará un proyecto, la realidad es que solo podemos trabajar con lo que sabemos hoy, e intentar prever las circunstancias del mañana. Es comprensible que no sea posible anticipar todos los cambios que puedan producirse, especialmente en proyectos a largo plazo. A modo ilustrativo, si se está calculando el coste para producir de 200 m³ de hormigón en una planta propia para una obra, pero más adelante el cliente quiere un modificado de obra que nos obliga a producir 2000 m³, es evidente que nuestra estimación inicial no será válida para ese nuevo escenario. Sin embargo, en su momento, la estimación se ajustó a los supuestos establecidos. Por ello, el profesional encargado de estimar costes debe contemplar posibles contingencias y estar preparado para ajustar sus cálculos a medida que evolucionen los planes o cambien las condiciones del entorno.

En definitiva, la estimación de costes constituye una disciplina de gran importancia en el ámbito de la ingeniería civil y otras ramas técnicas, pues facilita la toma de decisiones fundamentadas en entornos caracterizados por la incertidumbre. Para su correcta aplicación, se requiere una combinación de análisis histórico, rigor matemático y juicio profesional. Se trata de una herramienta fundamental para el éxito de cualquier proyecto de gran envergadura.

Glosario de términos clave

  • Estimación de costes: Proceso de prever el coste futuro de un producto, proyecto, programa o tarea mediante la recopilación y análisis de datos históricos y la aplicación de modelos cuantitativos, técnicas, herramientas y bases de datos.
  • Datos históricos: Información relevante del pasado utilizada como evidencia para fundamentar la estimación de costes, dada la imposibilidad de disponer de datos futuros.
  • Modelos cuantitativos: Herramientas matemáticas y estadísticas empleadas en la estimación de costes, caracterizadas por ser transparentes, racionales y revisables.
  • Predecir/Pronosticar: La actividad de anticipar o prever eventos o valores futuros, crucial en campos como la ingeniería civil para la planificación.
  • Incertidumbre: La falta de certeza sobre las condiciones futuras en las que se ejecutará un proyecto, un factor inherente a la planificación a largo plazo.
  • Contingencias: Posibles eventos o cambios futuros que podrían afectar la estimación inicial de costes y que deben ser contemplados por el profesional.
  • Rigor matemático: La precisión y exactitud en la aplicación de principios y cálculos matemáticos en la estimación de costes.
  • Juicio profesional: La aplicación de la experiencia, el conocimiento y la intuición del experto en el proceso de estimación, complementando el análisis de datos y modelos.
  • Ingeniería civil: Disciplina de ingeniería que se ocupa del diseño, construcción y mantenimiento de infraestructuras físicas y naturales, como carreteras, puentes y sistemas hidráulicos.
  • Optimizar recursos: Utilizar los recursos disponibles de la manera más eficiente posible para lograr los objetivos del proyecto, facilitado por una estimación precisa de costes.

 

Referencias:

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Certificación de la sostenibilidad en la construcción

En el contexto económico español, el sector de la construcción está experimentando un período de notable actividad, influenciado por las fluctuaciones globales y, cada vez más, por factores estructurales relacionados con la sostenibilidad. Un factor clave en esta tendencia es el creciente interés por edificios que sigan los principios ESG (ambientales, sociales y de gobernanza), lo que está reconfigurando las prioridades tanto de la promoción inmobiliaria como de la inversión.

Esta tendencia hacia la sostenibilidad resulta de particular importancia, dada la significativa repercusión ambiental del sector. Se estima que los edificios representan cerca del 40 % del consumo energético y de las emisiones de gases de efecto invernadero, lo que los convierte en un sector clave dentro de la estrategia europea de neutralidad climática a 2050. En España, este desafío cobra especial relevancia, dado que aproximadamente el 70 % del parque edificado presenta obsolescencia funcional o energética, lo que representa un importante margen para mejorar su desempeño ambiental.

El avance hacia un modelo constructivo más sostenible es impulsado, en parte, por ciertos actores institucionales que actúan como catalizadores para la adopción de prácticas responsables. AENOR ha desempeñado un papel clave en la promoción de la sostenibilidad en el sector de la edificación, desarrollando y aplicando sistemas de certificación específicos. Esta situación ha guiado la actividad constructiva hacia estándares más rigurosos, alineados con las expectativas sociales y ambientales actuales, fortaleciendo la confianza en el cumplimiento de las buenas prácticas y facilitando la transición del sector hacia un modelo comprometido con la protección del entorno y el bienestar colectivo.

En el contexto de las iniciativas de AENOR destinadas a fomentar la sostenibilidad en el ámbito de la construcción, se ofrece una gama de certificaciones para abordar diversas intervenciones en el sector de la edificación. Iniciativas como la Marca AENOR N Sostenible, Edificio Sostenible, Reforma Sostenible, Rehabilitación Sostenible o el Índice de Contribución a la Sostenibilidad de Constructoras, entre otras, son respuestas a enfoques diferenciados según el tipo y alcance del proyecto. Sin embargo, todas comparten un objetivo común: integrar principios de sostenibilidad en el ciclo de vida de los edificios y reconocer prácticas que contribuyan a una construcción más responsable desde el punto de vista ambiental, social y económico.

  • Entre las iniciativas más notables, destaca la Marca AENOR N Sostenible, que se erige como un referente pionero en España al incorporar de manera explícita el análisis de indicadores ESG (ambientales, sociales y de gobernanza) en sus procesos de certificación. Esta distinción amplía el alcance de la reconocida marca AENOR N, tradicionalmente asociada con la calidad del producto, al integrar parámetros que evalúan de manera integral el desempeño sostenible de las organizaciones. El modelo de evaluación en cuestión abarca aproximadamente veinte indicadores de sostenibilidad, los cuales, al ser ponderados, generan una calificación cuantitativa que permite diagnosticar el nivel de compromiso y establecer una hoja de ruta para la mejora continua. Esta certificación no solo es fundamental para la estrategia de sostenibilidad de los fabricantes, sino que también facilita el acceso a los fondos de financiación del programa Next Generation EU.
  • La certificación AENOR de Edificio Sostenible se enfoca en la utilización de materiales en el proceso de construcción, reconociendo a los fabricantes que han demostrado un compromiso con la evaluación integral de factores sociales, económicos y ambientales. En el ámbito social, se valoran las prácticas laborales relacionadas con el empleo, la salud y seguridad en el trabajo, la formación continua, los beneficios sociales, la igualdad de oportunidades, la libertad de asociación, la integración comunitaria, el buen gobierno y la protección de la privacidad del cliente. En el ámbito económico, se evalúa el desempeño de los fabricantes, los impactos directos e indirectos derivados de sus actividades y sus esfuerzos en innovación y desarrollo. En lo que respecta a la dimensión ambiental, se evalúan aspectos como el consumo de energía y agua, las emisiones y vertidos, el uso de sustancias peligrosas, la contaminación del suelo y las inversiones en iniciativas medioambientales. Esta certificación se encuentra en consonancia con los indicadores de sostenibilidad Level(s) de la Unión Europea, que abarcan áreas como la eficiencia energética, el ahorro de agua, la gestión de residuos, la huella de carbono y el bienestar de los usuarios. Esta compatibilidad con la taxonomía verde comunitaria garantiza que la certificación cumple con los más altos estándares internacionales, lo que fortalece su credibilidad ante los inversores internacionales. Este enfoque exhaustivo asegura que cada elemento de un proyecto de construcción sea examinado con los estándares más rigurosos de sostenibilidad, fomentando así una construcción responsable y respetuosa con el medio ambiente y la sociedad.
  • La certificación AENOR de Reforma Sostenible está destinada a obras de remodelación en unidades residenciales y comerciales en edificios existentes, con el objetivo de mejorar su sostenibilidad. Esta certificación abarca aspectos fundamentales como la optimización de la eficiencia energética, la reducción de la huella de carbono, la gestión de residuos y el consumo responsable de agua. Además, se promueve la creación de espacios saludables y confortables para los usuarios, garantizando el uso de materiales sostenibles, especialmente aquellos certificados con la Marca AENOR N Sostenible. En el contexto de la regeneración del parque de viviendas en España, donde más del 50 % de los edificios residenciales fueron construidos antes de 1980, se destaca la relevancia de implementar prácticas de reforma sostenibles. En este contexto, la Certificación Reforma Sostenible facilita el acceso a las ayudas establecidas en el Real Decreto 853/2021, destinado a la rehabilitación residencial. En consonancia con los objetivos del Plan Nacional Integrado de Energía y Clima, se promueve la transición hacia una edificación más eficiente y respetuosa con el medio ambiente.
  • La certificación AENOR de Rehabilitación Sostenible se enfoca en la rehabilitación integral de edificios, abarcando tanto la envolvente (fachadas y cubiertas) como intervenciones completas que incluyen las viviendas en su totalidad. Al igual que la certificación de Reforma Sostenible, se evalúan aspectos clave como la eficiencia energética, la huella de carbono, la gestión de residuos y el consumo de agua. No obstante, su alcance es mayor, ya que se aplica a proyectos de rehabilitación globales que transforman edificios antiguos en estructuras modernas, sostenibles y eficientes en términos energéticos. La rehabilitación sostenible es esencial para mejorar la calificación energética de los edificios en España, donde el 81% de los edificios residenciales tienen una calificación E, F o G según las emisiones AENOR. Esta certificación contribuye significativamente al objetivo nacional de rehabilitar 1,2 millones de viviendas entre 2021 y 2030, promoviendo la modernización de la edificación y el avance hacia un parque inmobiliario más eficiente y respetuoso con el medio ambiente.
  • Finalmente, AENOR ha desarrollado la certificación de Índice de Contribución a la Sostenibilidad de las Constructoras, basada en el Anejo 2 del Código Estructural. Esta certificación evalúa diversos indicadores ESG (ambientales, sociales y de gobernanza) de las empresas constructoras, considerando aspectos clave como la gestión y monitoreo de los residuos de las obras, las emisiones de carbono, el consumo de recursos, la gestión de riesgos laborales, la formación de los trabajadores y los sistemas de gestión ambiental, entre otros. Además, permite certificar obras específicas o estructuras, lo que facilita una evaluación detallada de cada proyecto dentro del marco de sostenibilidad.

Las certificaciones de AENOR no solo garantizan la calidad y sostenibilidad de los proyectos de construcción, sino que también fomentan la confianza entre los actores del sector. En la certificación de productos y procesos, se establece una relación de interdependencia entre promotoras, constructoras, asociaciones y consumidores, quienes son responsables de cumplir con los estrictos requisitos de calidad, seguridad y durabilidad establecidos en las normativas.

El compromiso de AENOR con la sostenibilidad se refleja en su capacidad para adaptarse a los cambios y necesidades del mercado. A través de estas certificaciones, AENOR contribuye a la descarbonización del sector de la construcción y promueve la creación de espacios más saludables y eficientes, consolidándose como un referente en la promoción de buenas prácticas sostenibles en el ámbito de la edificación.

Os dejo un vídeo explicativo.

Más información: https://revista.aenor.com/412/como-impulsar-la-sostenibilidad-integral-en-la-construccion.html

Jornada sobre infraestructuras resilientes al clima

El Colegio de Ingenieros de Caminos, Canales y Puertos organizó una jornada sobre Infraestructuras Resilientes al Clima el 4 de abril en el Auditorio Agustín de Betancourt. Estas jornadas tan interesantes se grabaron en un vídeo, que ahora os dejo.

El vídeo, titulado «Jornada sobre Infraestructuras Resilientes al Clima», es un recurso muy valioso que aborda la creciente necesidad de desarrollar infraestructuras que puedan resistir y adaptarse a los efectos del cambio climático.

Durante la jornada, se presentaron diferentes puntos de vista sobre cómo la ingeniería civil puede hacer frente a estos desafíos, resaltando la importancia de la resiliencia climática en la planificación y gestión de infraestructuras. Y ahora, vamos a echar un vistazo más de cerca a todo lo que se habló en la jornada.

 

 

 

1. Importancia de la resiliencia climática

La resiliencia climática se ha convertido en un concepto central en la planificación de infraestructuras, debido a la creciente vulnerabilidad de las comunidades ante eventos climáticos extremos.

Los impactos del cambio climático, tales como huracanes, inundaciones y sequías, han aumentado en frecuencia e intensidad. Estos fenómenos no solo afectan a las infraestructuras físicas, sino que también tienen repercusiones sociales y económicas significativas, que incluyen la pérdida de vidas, desplazamientos forzados y daños económicos.

A modo ilustrativo, en la jornada se expusieron ejemplos de comunidades que han adoptado soluciones resilientes, tales como sistemas de drenaje mejorados, infraestructura verde y edificaciones diseñadas para resistir eventos extremos. Estos ejemplos ponen de manifiesto los beneficios tangibles a largo plazo que conlleva la inversión en resiliencia.

2. Oportunidades profesionales en ingeniería civil

La jornada puso de manifiesto que la búsqueda de infraestructuras resilientes está generando nuevas oportunidades profesionales para los ingenieros civiles.

Se evidenció una demanda de especialistas debido a la necesidad imperante de adaptación al cambio climático, lo que ha generado una demanda de expertos en diversas áreas, tales como la gestión de recursos hídricos, la planificación urbana sostenible y la ingeniería de infraestructuras.

Se subrayó la relevancia de la educación continua y la formación especializada para que los profesionales puedan afrontar los desafíos emergentes en este campo. Los programas de capacitación y certificación en resiliencia climática son de vital importancia para la preparación de los ingenieros del futuro.

3. Retos normativos y de implementación

Uno de los asuntos más críticos que se ha planteado es la necesidad imperativa de adaptar las normativas vigentes para facilitar la implementación de infraestructuras resilientes.

Un número significativo de normativas vigentes no han sido concebidas para hacer frente a los riesgos asociados al cambio climático. Esta situación puede generar obstáculos para la implementación de soluciones innovadoras y efectivas.

En este sentido, se destacó la importancia de la colaboración interdisciplinaria entre ingenieros, urbanistas, arquitectos y responsables políticos. Un enfoque interdisciplinario puede ayudar a crear un marco normativo que apoye la resiliencia y facilite la implementación de proyectos.

Finalmente, se presentan ejemplos de mejores prácticas de otras regiones que han logrado adaptar sus normativas con éxito, lo que puede servir de modelo para otras comunidades.

4. Ingeniería humanitaria y adaptación a emergencias

En las jornadas también se subrayó el rol de la ingeniería humanitaria en el desarrollo de infraestructuras resilientes.

En lo que respecta a los denominados «Proyectos de respuesta rápida», se debatieron enfoques para el diseño de infraestructuras que puedan ser implantadas con celeridad en situaciones de emergencia, garantizando que las comunidades afectadas tengan acceso a servicios básicos de manera inmediata.

Por último, se abordó la importancia de la capacitación y los recursos, así como la formación de equipos de respuesta a emergencias y la disponibilidad de recursos adecuados, elementos esenciales para asegurar que las infraestructuras puedan soportar eventos extremos y facilitar la recuperación.

5. Educación y conciencia social

La jornada puso de manifiesto la importancia de la educación y la comunicación en la promoción de infraestructuras resilientes.

Es imperativo que la sociedad comprenda la relevancia de invertir en infraestructuras resilientes. En este sentido, la educación desempeña un papel crucial, ya que permite a las comunidades identificar los beneficios a largo plazo de tales inversiones.

Se propusieron programas de sensibilización que involucren a la comunidad en la planificación y diseño de infraestructuras, fomentando un sentido de propiedad y responsabilidad.

6. Financiación de infraestructuras resilientes

La financiación constituye uno de los desafíos más significativos en el desarrollo de infraestructuras resilientes.

En lo que respecta a las fuentes de financiación, se presentan diversas estrategias para asegurar fondos, tales como la colaboración entre los sectores público y privado, así como la búsqueda de fondos internacionales destinados a proyectos de adaptación y mitigación del cambio climático.

También se presentaron ejemplos de modelos de inversión exitosos que han permitido financiar proyectos de infraestructura resiliente, destacando la importancia de demostrar el retorno de inversión a largo plazo.

7. Implementación de directivas y normativas en España

La jornada abordó la implantación de la directiva de gestión de avenidas en España, cuyo objetivo es el de mejorar la preparación y respuesta ante inundaciones.

Se abordó la cuestión de las dificultades que enfrentan las autoridades para aplicar estas directivas de manera efectiva, así como las adaptaciones necesarias para enfrentar fenómenos climáticos inesperados.

Finalmente, se presentaron las lecciones aprendidas de la implantación de estas directivas, así como recomendaciones para mejorar la efectividad de las políticas existentes.

8. Innovaciones tecnológicas y soluciones sostenibles

La jornada destacó la importancia de la tecnología en el desarrollo de infraestructuras resilientes. También se abordó el tema de tecnologías emergentes, tales como la inteligencia artificial y el modelado predictivo, que tienen el potencial de ayudar a anticipar y gestionar los riesgos climáticos.

En lo que respecta a la Infraestructura Verde, se expusieron soluciones basadas en la integración de la naturaleza, como los techos verdes y los sistemas de drenaje sostenible, que se presentan como una estrategia eficaz para aumentar la resiliencia de las infraestructuras.

9. Perspectivas futuras y llamado a la acción

La jornada concluyó con una exhortación a la acción dirigida a todos los profesionales implicados en la planificación y gestión de infraestructuras.

Se hizo especial hincapié en que la responsabilidad de hacer frente al cambio climático es compartida y requiere la colaboración de todos los sectores de la sociedad.

Asimismo, se instó a los profesionales a adoptar una visión a largo plazo en la planificación de infraestructuras, contemplando no solo las necesidades actuales, sino también los desafíos futuros que plantea el cambio climático.

Conclusión

La jornada sobre infraestructuras resilientes al clima constituye un llamamiento a la acción dirigido a los profesionales de la ingeniería civil y otros actores implicados en la planificación y gestión de infraestructuras. La adaptación al cambio climático no solo es una responsabilidad, sino una oportunidad para innovar y crear un futuro más seguro y sostenible. Para ello, resulta imprescindible la colaboración, la educación y la inversión, que son pilares fundamentales para lograr infraestructuras que no solo resistan los desafíos actuales, sino que también estén preparadas para los retos del futuro. Este enfoque integral resulta imperativo para asegurar que las comunidades no solo sobrevivan, sino que prosperen en un mundo cada vez más afectado por el cambio climático.

Aquí tenéis un mapa conceptual de la jornada.

Pero creo que lo mejor es que, si tenéis un rato, oigáis de primera mano todas y cada una de las intervenciones en este vídeo. Espero que os sea de interés.

Glosario de términos clave

  • Adaptación al Cambio Climático: Proceso de ajuste a los impactos actuales o esperados del cambio climático. En el contexto de las infraestructuras, implica modificar su diseño, construcción y operación para soportar condiciones climáticas extremas.
  • Resiliencia (Climática): Capacidad de un sistema, comunidad o infraestructura para anticipar, resistir, adaptarse y recuperarse de eventos adversos del clima.
  • Dana (Depresión Aislada en Niveles Altos): Fenómeno meteorológico que puede causar lluvias torrenciales e inundaciones severas, mencionado en el texto como causa de trágicas consecuencias.
  • Niveles Preindustriales: Periodo de referencia (antes de la Revolución Industrial) utilizado para medir el aumento de la temperatura global debido a las actividades humanas.
  • Fenómenos Meteorológicos Extremos: Eventos climáticos de intensidad inusual, como olas de calor, sequías, inundaciones torrenciales y tormentas severas.
  • Infraestructuras Críticas: Infraestructuras esenciales para el funcionamiento de la sociedad y la economía, como las de transporte, energía, agua y telecomunicaciones, cuya afectación tiene consecuencias significativas.
  • Plan Nacional de Adaptación al Cambio Climático (PNACC): Marco de acción en España para integrar el cambio climático en la planificación sectorial, incluyendo las infraestructuras.
  • Ley de Cambio Climático y Transición Energética (2021): Ley española que establece objetivos de reducción de emisiones y promueve la adaptación al cambio climático en diversos sectores.
  • Directiva de Resiliencia de Infraestructuras Críticas: Normativa de la Unión Europea que obliga a los Estados miembros a adoptar estrategias para mejorar la resiliencia de sus infraestructuras esenciales.
  • Seopán: Asociación de Empresas Constructoras y Concesionarias de Infraestructuras, mencionada por su análisis de inversión en infraestructuras prioritarias.
  • CEDEX (Centro de Estudios y Experimentación de Obras Públicas): Organismo técnico español que realiza estudios y análisis relacionados con la ingeniería civil y el medio ambiente.
  • Cuencas Hidráulicas: Áreas geográficas donde el agua drena hacia un río principal, mencionadas en relación con la planificación hidrológica y la gestión de inundaciones.
  • Soluciones Basadas en la Naturaleza: Enfoques para abordar los desafíos ambientales que utilizan o imitan procesos naturales para proporcionar beneficios tanto para el medio ambiente como para la sociedad.
  • Sistemas de Saneamiento: Infraestructuras urbanas destinadas a la recogida y tratamiento de aguas residuales y pluviales.
  • Vías Separativas: Sistemas de saneamiento en los que las aguas residuales y las aguas pluviales se recogen y transportan por redes de tuberías separadas.
  • Resiliencia Estructural: Capacidad de una estructura para mantener su función y recuperarse después de ser sometida a eventos extremos o perturbaciones.
  • Robustez: Capacidad de una infraestructura o sistema para resistir un evento adverso sin una pérdida significativa de funcionalidad.
  • Rapidez (en Resiliencia): Velocidad con la que un sistema o infraestructura puede recuperarse y restaurar su funcionalidad después de una perturbación.
  • Análisis de Riesgos Climáticos: Evaluación de la probabilidad e impacto potencial de los eventos climáticos adversos sobre las infraestructuras.
  • Marco de Sendai para la Reducción del Riesgo de Desastres (2015-2030): Acuerdo internacional que establece un marco global para la reducción del riesgo de desastres, incluyendo la importancia de invertir en resiliencia.
  • Predicción y Modelos Predictivos: Uso de datos y herramientas para anticipar futuros eventos climáticos y sus posibles impactos.
  • Incertidumbre Profunda: Situación en la que hay una falta de conocimiento sobre las probabilidades o los posibles resultados de un evento.
  • Cisne Negro (Teoría): Término utilizado para describir eventos altamente improbables, de gran impacto y que solo se pueden explicar o predecir en retrospectiva.
  • Disponibilidad: Capacidad de una infraestructura para estar operativa y proporcionar su servicio.
  • Capacidad (en Infraestructura): Volumen o nivel de servicio que una infraestructura puede soportar o manejar.
  • Vulnerabilidad: Susceptibilidad de una infraestructura a sufrir daños o perder funcionalidad debido a un evento climático adverso.
  • Exposición: Grado en que una infraestructura está situada en un área propensa a eventos climáticos adversos.
  • Sensibilidad: Grado en que una infraestructura se ve afectada por un evento climático adverso una vez expuesta a él.
  • Escenarios de Cambio Climático: Proyecciones de posibles futuras condiciones climáticas basadas en diferentes supuestos sobre las emisiones de gases de efecto invernadero.
  • Trayectorias Socioeconómicas Compartidas (SSP): Marcos utilizados en la investigación del cambio climático para describir posibles futuros socioeconómicos y sus implicaciones para las emisiones y la adaptación.
  • Análisis Coste-Beneficio: Método para evaluar la rentabilidad de diferentes opciones de inversión, comparando los costos y beneficios esperados.
  • Gobernanza: Procesos y estructuras para tomar decisiones e implementar acciones, en este contexto, relacionadas con la resiliencia de las infraestructuras.
  • Inventario de Activos: Base de datos que contiene información detallada sobre las infraestructuras y sus componentes.
  • Sistemas de Ayuda a la Decisión: Herramientas informáticas y modelos que asisten en la toma de decisiones complejas, como la gestión de inundaciones o sequías.
  • Llanuras de Inundación Controlada: Áreas designadas para ser inundadas de manera planificada durante eventos de crecida para reducir el riesgo en otras zonas.
  • Probable Maximum Flood (PMF) / Avenida Máxima Probable: Estimación del evento de inundación más severo que es razonablemente posible en un lugar dado.
  • Flash Floods / Crecidas Repentinas: Inundaciones rápidas y violentas que ocurren con poca o ninguna advertencia, a menudo causadas por lluvias torrenciales intensas.
  • Six Sigma: Metodología de gestión de procesos que busca reducir al mínimo la probabilidad de defectos o errores.
  • Poka-yoke: Sistemas a prueba de errores diseñados para prevenir o detectar errores humanos.
  • Consorcio Administrativo: Entidad legal formada por varias administraciones públicas para coordinar y ejecutar acciones conjuntas.
  • Gemelos Digitales: Réplicas virtuales de sistemas o infraestructuras físicas que permiten la simulación y el análisis.
  • Big Data: Conjuntos de datos muy grandes y complejos que pueden ser analizados para revelar patrones y tendencias.
  • Ingeniería Humanitaria: Aplicación de principios y habilidades de ingeniería para abordar crisis humanitarias y promover el bienestar humano.
  • Estacionariedad Climática: Suposición de que las propiedades estadísticas del clima (como las distribuciones de precipitación o temperatura) permanecen constantes a lo largo del tiempo.
  • Análisis Probabilístico: Enfoque para evaluar la probabilidad de ocurrencia de eventos y sus posibles consecuencias.
  • Métodos Semiprobalísticos: Métodos de diseño estructural que utilizan factores de seguridad parciales basados en consideraciones probabilísticas.
  • Trayectorias Adaptativas: Secuencias de medidas de adaptación que se pueden implementar a lo largo del tiempo para hacer frente a los impactos cambiantes del cambio climático.
  • KPIs Financieros (Indicadores Clave de Rendimiento Financiero): Métricas utilizadas para evaluar el desempeño financiero, que pueden incorporarse en el análisis de la resiliencia de las infraestructuras.

Conferencia: Gestión de riesgos en infraestructuras. Estrategias y medidas de resiliencia

Os anuncio mi participación como ponente en la jornada inaugural del curso «Infraestructuras resilientes al clima», que se celebrará el 4 de abril de 2025, de forma presencial y telemática. Se celebrará a las 10:30 h en el Auditorio Agustín de Betancourt de la institución. Este curso está organizado por el Colegio de Ingenieros de Caminos, Canales y Puertos y está patrocinado por FCC Construcción y el Ministerio para la Transición Ecológica y el Reto Demográfico.

La inscripción es gratuita y se puede seguir por streaming. El enlace de inscripción es: Inscripción a la jornada (acceso gratuito)

Durante este acto, de acceso libre, los directores del curso presentarán los contenidos que se abordarán a lo largo de las diversas sesiones formativas. Además, se debatirán los riesgos de las infraestructuras frente al cambio climático, así como las estrategias y medidas de resiliencia que pueden adoptarse.

Esta formación, organizada por el Comité Técnico de Agua, Energía y Cambio Climático del Colegio, tiene como objetivo analizar el impacto del cambio climático y explorar enfoques que faciliten la planificación, diseño, construcción y operación de infraestructuras resilientes al clima.

Os paso mi participación en este vídeo. Espero que os sea de interés.

Evaluación de la sostenibilidad social en infraestructuras: un análisis multicriterio y sus desafíos

A continuación, explicaremos el contenido de uno de los artículos más citados en nuestro grupo de investigación. El artículo plantea la siguiente pregunta de investigación: ¿Cómo se tratan los aspectos sociales en la evaluación multicriterio de infraestructuras? Esta cuestión se estructura en tres subpreguntas que buscan determinar qué aspectos sociales se valoran en la evaluación de infraestructuras, qué métodos multicriterio se utilizan para evaluar su contribución social y qué enfoques se aplican en la evaluación social multicriterio. La pregunta principal permite dar una respuesta clara en función de los hallazgos del estudio, que se centran en identificar métodos, criterios y limitaciones en la evaluación social de infraestructuras.

El artículo realiza una revisión sistemática de la literatura existente en el campo de la evaluación social de infraestructuras mediante métodos multicriterio. Para ello, se identificaron 94 estudios relevantes mediante una búsqueda en la base de datos Web of Science, que abarca publicaciones entre 1995 y 2017. La metodología de selección se desarrolló en dos fases. La primera consistió en seleccionar inicialmente los estudios, basándose en criterios de pertinencia y revisión por pares. En la segunda fase, se analizaron las referencias y citas de los estudios seleccionados para ampliar la muestra y obtener una visión más completa del tema. Posteriormente, los estudios fueron categorizados según los criterios sociales evaluados, los métodos multicriterio utilizados y las consideraciones de contexto, equidad y aprendizaje social en la evaluación.

El trabajo sistematiza los criterios sociales utilizados en la evaluación de infraestructuras y los clasifica en siete dimensiones. La primera es el capital humano, que abarca las necesidades básicas, la educación y la salud. La segunda dimensión es el capital comunitario, que incluye la opinión pública, la estética y la seguridad. En tercer lugar, se encuentra el capital cultural, relacionado con la preservación de valores culturales tangibles e intangibles. La cuarta dimensión es el capital productivo, que tiene en cuenta la movilidad, la accesibilidad y la urbanización. En quinto lugar, el capital social e institucional se refiere a la participación de los actores y su capacidad de gestión. La sexta dimensión, el sistema socioeconómico, comprende el desarrollo económico regional y el empleo. Finalmente, la séptima dimensión es la relación entre la empresa y la comunidad, que engloba el diseño centrado en el usuario y las prácticas laborales éticas.

Además, el estudio analiza los métodos multicriterio más empleados, entre los que destacan el Analytic Hierarchy Process (AHP), el Simple Additive Weighting (SAW) y el Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Se identifican brechas en la consideración de equidad, incertidumbre y aprendizaje social en las evaluaciones existentes, lo que sugiere la necesidad de mejorar los enfoques actuales para una evaluación más integral.

Los hallazgos revelan que la evaluación de la sostenibilidad social en infraestructuras ha recibido menos atención que las dimensiones económica y ambiental. Ciertos criterios, como la movilidad, la seguridad y el desarrollo local, se tienen en cuenta recurrentemente en los estudios analizados, mientras que otros, como la equidad en la distribución de beneficios y la participación comunitaria, se abordan menos. Además, los métodos actuales no abordan de manera adecuada la incertidumbre inherente a los aspectos sociales, lo que limita su aplicabilidad en contextos dinámicos y diversos. Ante esta situación, el artículo propone utilizar herramientas como la teoría de conjuntos difusos y los sistemas grises para mejorar la representación de estos factores en los modelos de evaluación.

El artículo plantea varias líneas de investigación futuras para mejorar la evaluación de la sostenibilidad social en infraestructuras. En primer lugar, se recomienda el desarrollo de métodos que tengan en cuenta la equidad en la distribución de beneficios. En segundo lugar, se plantea la integración de técnicas de gestión de incertidumbre en los modelos multicriterio para mejorar su aplicabilidad en distintos contextos. Asimismo, se enfatiza la necesidad de fortalecer la participación de los interesados en los procesos de evaluación para promover modelos de toma de decisiones más inclusivos. Por último, se sugiere la aplicación de enfoques de aprendizaje social para mejorar la adaptabilidad de las evaluaciones a distintos contextos y garantizar una toma de decisiones más informada y eficaz.

En resumen, el estudio ofrece un análisis detallado sobre la evaluación de la sostenibilidad social en infraestructuras mediante métodos multicriterio. Se destaca la necesidad de mejorar la representación de la equidad y la incertidumbre en los modelos existentes, así como la oportunidad de desarrollar metodologías que fomenten la inclusión de los actores implicados en el proceso de evaluación. Además, se subraya la importancia de promover procesos de aprendizaje social que permitan adaptar mejor las evaluaciones a los distintos contextos en los que se desarrollan las infraestructuras. En este sentido, el artículo supone un avance significativo en la comprensión de la evaluación social de infraestructuras y sentará las bases para futuras investigaciones en este campo.

Glosario de términos clave

  • Evaluación multicriterio: Un conjunto de métodos y técnicas que permiten analizar problemas complejos en los que se deben considerar múltiples criterios, a menudo conflictivos, para tomar una decisión o realizar una valoración.
  • Infraestructura: Las estructuras físicas y organizativas básicas necesarias para el funcionamiento de una sociedad o empresa, como carreteras, puentes, sistemas de energía, comunicaciones, etc.
  • Sostenibilidad Social: Una dimensión de la sostenibilidad que se centra en el impacto de las actividades humanas en las personas y en la sociedad en general, incluyendo aspectos como la equidad, la justicia social, la salud, la seguridad y la participación comunitaria.
  • Revisión sistemática de la literatura: Un método riguroso y transparente para identificar, seleccionar, evaluar y sintetizar todas las evidencias empíricas relevantes para responder a una pregunta de investigación específica.
  • Capital humano: Los conocimientos, habilidades, competencias y atributos incorporados en los individuos que facilitan la creación de valor económico y social.
  • Capital comunitario: Los recursos y relaciones sociales dentro de una comunidad que fomentan la cooperación y el beneficio mutuo, incluyendo aspectos como la confianza, las normas y las redes sociales.
  • Capital cultural: Los activos culturales, tanto tangibles (patrimonio físico, obras de arte) como intangibles (tradiciones, conocimientos, expresiones artísticas), que tienen valor social, económico e histórico.
  • Equidad: La cualidad de ser justo e imparcial, asegurando que los beneficios y las cargas se distribuyan de manera proporcional y considerando las diferentes necesidades y circunstancias.
  • Incertidumbre: La falta de certeza o conocimiento preciso sobre eventos futuros, sus probabilidades y sus posibles consecuencias.
  • Aprendizaje social: Un proceso colectivo a través del cual los individuos y los grupos adquieren nuevos conocimientos, habilidades y comprensiones a través de la interacción, la experiencia y la reflexión conjunta.
  • Analytic Hierarchy Process (AHP): Un método multicriterio que estructura un problema de decisión en una jerarquía de criterios, subcriterios y alternativas, y utiliza comparaciones pareadas para determinar las prioridades relativas.
  • Simple Additive Weighting (SAW): Un método multicriterio que asigna pesos a cada criterio y calcula una puntuación total para cada alternativa multiplicando su rendimiento en cada criterio por el peso del criterio y sumando los resultados.
  • Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS): Un método multicriterio que identifica la alternativa con la distancia más corta a la solución ideal positiva y la distancia más larga a la solución ideal negativa.
  • Teoría de conjuntos difusos: Un marco matemático que permite representar y manejar la imprecisión y la vaguedad en la información, utilizando grados de pertenencia en lugar de la lógica binaria tradicional.
  • Sistemas grises: Un enfoque metodológico diseñado para analizar y modelar sistemas con información incompleta o incierta, utilizando conceptos como intervalos numéricos y números grises para representar la incertidumbre.
  • Partes interesadas (Stakeholders): Individuos, grupos u organizaciones que pueden afectar o ser afectados por las decisiones o actividades de un proyecto o política.

Os dejo un pequeño programa de radio sobre este tema (en inglés).

Os dejo un mapa mental del trabajo.

Referencia:

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI:10.1016/j.jclepro.2018.03.022

Como el artículo se publicó en abierto, lo dejo por si lo queréis consultar.

Pincha aquí para descargar

El impacto del cambio climático en las infraestructuras

DANA OCTUBRE 2024 – Vías del Metro entre Picanya y Paiporta. https://commons.wikimedia.org/

El diseño y la planificación de infraestructuras se han basado históricamente en el análisis de datos climáticos pasados para definir criterios estructurales de seguridad. Sin embargo, la aceleración del cambio climático ha puesto en cuestión la validez de esta metodología y ha obligado a reconsiderar los fundamentos sobre los que se establecen los códigos de construcción y las normativas de diseño. El carácter no estacionario del clima, la creciente magnitud de los eventos meteorológicos extremos y la necesidad de infraestructuras más resilientes han convertido la adaptación al cambio climático en un imperativo técnico y social.

Las estructuras deben garantizar la seguridad de sus ocupantes en condiciones tanto ordinarias como extremas, así como su funcionalidad a lo largo de su ciclo de vida. Es preciso tener en cuenta que la frecuencia y severidad de ciertos fenómenos, como tormentas, inundaciones y variaciones térmicas, ya no pueden preverse con precisión únicamente mediante datos históricos. La integración de modelos de análisis probabilístico y enfoques basados en la fiabilidad estructural representa una vía fundamental para mitigar los riesgos asociados al cambio climático y asegurar la estabilidad y operatividad de infraestructuras críticas en el futuro.

El fin de la estacionariedad climática y sus implicaciones en el diseño estructural

El diseño estructural se ha desarrollado bajo la premisa de que las condiciones climáticas permanecen relativamente estables a lo largo del tiempo, lo que ha permitido definir cargas normativas basadas en registros históricos. No obstante, el cambio climático ha invalidado esta hipótesis al introducir una variabilidad que altera tanto la frecuencia como la intensidad de los fenómenos atmosféricos y compromete la fiabilidad de los métodos de predicción empleados en el ámbito de la ingeniería.

Las estructuras diseñadas bajo códigos convencionales pueden experimentar cargas superiores a las previstas en su diseño original, lo que resulta en un aumento del riesgo estructural y la necesidad de reevaluaciones constantes para garantizar su seguridad. La acumulación de efectos derivados de condiciones climáticas extremas no solo afecta a la estabilidad estructural inmediata, sino que acelera los procesos de deterioro de los materiales y compromete la capacidad de servicio de la infraestructura a largo plazo.

El análisis de la no estacionariedad climática requiere el desarrollo de nuevas herramientas de modelado que permitan proyectar escenarios de carga climática futura con mayor precisión. La variabilidad espacial y temporal de las alteraciones climáticas obliga a establecer criterios de diseño diferenciados según la localización geográfica, la exposición a determinados fenómenos y la importancia funcional de cada infraestructura. En este contexto, la colaboración entre científicos del clima e ingenieros estructurales se erige como un componente esencial para la elaboración de mapas de cargas dinámicos que reflejen las condiciones cambiantes del entorno.

Aumento de cargas climáticas y su impacto en la estabilidad estructural

El cambio climático incide directamente en la magnitud y distribución de las cargas climáticas, lo que supone un desafío significativo para el diseño estructural. El incremento de la temperatura media global y la intensificación de eventos meteorológicos extremos tienen un impacto directo en la resistencia y durabilidad de los materiales de construcción, lo que requiere una revisión exhaustiva de los criterios de diseño para adaptarlos a condiciones más exigentes.

El aumento de la carga de viento, debido a la mayor frecuencia de tormentas severas y huracanes, plantea desafíos particulares para estructuras expuestas a esfuerzos aerodinámicos, tales como rascacielos, puentes y torres de telecomunicaciones. La variabilidad en la dirección y velocidad de los vientos extremos introduce incertidumbre en el diseño convencional, lo que requiere la aplicación de metodologías de análisis probabilístico que permitan anticipar los efectos acumulativos de estas fuerzas sobre los elementos estructurales.

Ciertamente, la carga de nieve y hielo constituye un factor de riesgo cuya evolución en un clima cambiante requiere especial atención. En climas fríos, la combinación de precipitaciones extremas y ciclos de congelación y deshielo genera esfuerzos adicionales sobre cubiertas y soportes, lo que puede ocasionar la fatiga de los materiales y aumentar el riesgo de fallos estructurales. La acumulación de hielo en líneas de transmisión eléctrica y otros elementos de infraestructura crítica puede comprometer su funcionalidad, lo que resalta la necesidad imperante de implementar estrategias de adaptación en el diseño de dichos sistemas.

El aumento del nivel del mar y la intensificación de tormentas costeras representan amenazas crecientes para las infraestructuras situadas en zonas litorales. La erosión del suelo y la intrusión salina pueden afectar la estabilidad de las cimentaciones y las estructuras de contención, mientras que el aumento en la magnitud de las marejadas ciclónicas aumenta el riesgo de colapso en las edificaciones expuestas. Por lo tanto, es esencial adoptar enfoques probabilísticos para estimar las cargas de inundación y considerar criterios de adaptación costera en el diseño estructural, con el fin de mitigar estos efectos y garantizar la seguridad y estabilidad de las infraestructuras en zonas litorales.

Resiliencia estructural y continuidad operativa en escenarios de riesgo creciente

En lo que respecta a la resistencia inmediata de las infraestructuras a eventos climáticos extremos, su capacidad de recuperación y continuidad operativa tras un desastre constituye un aspecto de suma importancia en el contexto del cambio climático. La resiliencia estructural implica no solo garantizar que las edificaciones y redes de transporte soporten cargas excepcionales sin fallar, sino también que puedan volver a estar plenamente operativas en un tiempo razonable tras una interrupción.

La planificación de infraestructuras resilientes requiere un enfoque basado en la funcionalidad tras el desastre, estableciendo criterios de diseño que permitan minimizar los tiempos de inactividad y optimizar los procesos de reparación y reconstrucción. Este enfoque cobra especial relevancia en infraestructuras críticas, tales como hospitales, plantas de tratamiento de agua y redes de energía, cuya operatividad continua resulta esencial para la estabilidad de las comunidades.

El diseño basado en rendimiento (Performance-Based Design, PBD) surge como una herramienta clave para integrar la resiliencia en la ingeniería estructural. A diferencia de los enfoques convencionales basados en requisitos normativos predeterminados, el PBD permite establecer objetivos concretos de rendimiento para cada tipo de estructura, considerando tanto su resistencia ante cargas extremas como su capacidad de recuperación tras eventos disruptivos.

Conclusión: La adaptación de las infraestructuras al cambio climático como una necesidad inaplazable

La evidencia científica sobre el impacto del cambio climático en la infraestructura es concluyente y requiere una revisión exhaustiva de los criterios de diseño estructural. La dependencia exclusiva de datos históricos ya no constituye una estrategia viable en un contexto donde la frecuencia e intensidad de eventos extremos están en constante aumento. Por ello, es necesario implementar análisis probabilísticos, actualizar periódicamente los mapas de cargas climáticas y adoptar estrategias de resiliencia estructural. Estos cambios son fundamentales para garantizar la seguridad y funcionalidad de las infraestructuras en el futuro.

La ingeniería estructural debe evolucionar hacia un enfoque basado en la adaptación y la gestión del riesgo, integrando modelos de predicción climática en el diseño y planificación de nuevas construcciones. La colaboración entre ingenieros, científicos del clima y responsables de políticas públicas será esencial para desarrollar normativas que reflejen la realidad cambiante del entorno y permitan la creación de infraestructuras más seguras y sostenibles.

La adaptación al cambio climático no es únicamente una cuestión técnica, sino una necesidad económica y social que determinará la capacidad de las comunidades para hacer frente a los desafíos del siglo XXI. El diseño estructural del futuro debe asumir este reto con un enfoque proactivo, asegurando que las infraestructuras no solo resistan el clima cambiante, sino que también contribuyan a la estabilidad y el bienestar de la sociedad en su conjunto.

Referencias:

  • ASCE. (2015). Adapting infrastructure and civil engineering practice to a changing climate. Reston, VA: ASCE.
  • ASCE. (2018). Climate-resilient infrastructure: Adaptive design and risk management, MOP 140. Reston, VA: ASCE.
  • ASCE. (2021). Hazard-resilient infrastructures: Analysis and design, MOP 144. Reston, VA: ASCE.
  • Bruneau, M., Barbato, M., Padgett, J. E., Zaghi, A. E., et al. (2017). State-of-the-art on multihazard design. Journal of Structural Engineering, 143(10), 03117002.
  • Cooke, R. M. (2015). Messaging climate change uncertainty. Nature Climate Change, 5(1), 8–10.
  • Ellingwood, B. R., van de Lindt, J. W., & McAllister, T. (2020). Community resilience: A new challenge to the practice of structural engineering. Structural Magazine, 27(11), 28–30.
  • Ellingwood, B. R., Bocchini, P., Lounis, Z., Ghosn, M., Liu, M., Yang, D., Capacci, L., Diniz, S., Lin, N., Tsiatas, G., Biondini, F., de Lindt, J., Frangopol, D.M., Akiyama, M., Li, Y., Barbato, M., Hong, H., McAllister, T., Tsampras, G. & Vahedifard, F. (2024). Impact of Climate Change on Infrastructure Performance. In Effects of Climate Change on Life-Cycle Performance of Structures and Infrastructure Systems: Safety, Reliability, and Risk (pp. 115-206). Reston, VA: American Society of Civil Engineers.
  • Eisenhauer, E., Henson, S., Matsler, A., Maxwell, K., Reilly, I., Shacklette, M., Julius, S., Kiessling, B., Fry, M., Nee, R., Bryant, J., Finley, J., & Kieber, B. (2024). Centering equity in community resilience planning: Lessons from case studies. Natural Hazards Forum, Washington, D.C.
  • IPCC (1997). The regional impacts of climate change: an assessment of vulnerability. IPCC, Geneva.
  • McAllister, T., Walker, R., & Baker, A. (2022). Assessment of resilience in codes, standards, regulations, and best practices for buildings and infrastructure systems. NIST Technical Note 2209. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.TN.2209
  • O’Neill, B., van Aalst, M., Zaiton Ibrahim, Z., Berrang Ford, L., Bhadwal, S., Buhaug, H., Diaz, D., Frieler, K., Garschagen, M., Magnan, A., Midgley, G., Mirzabaev, A., Thomas, A., & Warren, R. (2022). Key risks across sectors and regions. In H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama (Eds.), Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 2411–2538). Cambridge University Press. https://doi.org/10.1017/9781009325844.025
  • Poland, C. D. (2009). The resilient city: Defining what San Francisco needs from its seismic mitigation policies. San Francisco Planning and Urban Research Association Report. Earthquake Engineering Research Institute.
  • Vogel, J., Carney, K. M., Smith, J. B., Herrick, C., et al. (2016). Climate adaptation: The state of practice in US communities. The Kresge Foundation and Abt Associates.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La ingeniería de la reconstrucción

Imagen del desastre provocado por la DANA. Imagen: V.J. Yepes (10 de noviembre de 2024)

Las catástrofes naturales y humanas han acompañado a la civilización a lo largo de su historia, poniendo a prueba su capacidad de adaptación. Sin embargo, la forma en que se afronta la reconstrucción tras un desastre no puede limitarse a la reposición de lo perdido. El caso de las recientes inundaciones en Valencia el 29 de octubre de 2024 ilustra una realidad que se repite con cada evento extremo: la urgencia de reconstruir suele imponerse a la necesidad de reflexionar. No obstante, si la ingeniería de la reconstrucción se reduce a restablecer el estado previo a la catástrofe, se estaría desperdiciando una oportunidad para corregir vulnerabilidades y minimizar futuros daños.

El primer desafío tras un desastre es la respuesta inmediata. En esta fase, la prioridad es el rescate de personas y la provisión de recursos esenciales. Una vez atendidas estas necesidades básicas, la atención se centra en la recuperación de infraestructuras críticas, como hospitales, redes de agua potable, suministro eléctrico y comunicaciones. Este proceso es complejo, ya que estas infraestructuras no solo deben ponerse en funcionamiento lo antes posible, sino que, en muchos casos, han sufrido daños estructurales que comprometen su funcionalidad.

A partir de este punto surge la cuestión clave: ¿debe la reconstrucción reproducir las mismas condiciones previas a la catástrofe? Desde el punto de vista técnico y económico, esta estrategia es cuestionable. Si las infraestructuras y edificaciones han fallado ante un fenómeno extremo, replicarlas sin modificaciones implica asumir que volverán a fallar en el futuro. En el caso concreto de Valencia, se ha observado que algunos puentes obstaculizaron el flujo del agua y los sedimentos, generando represas que agravaron la crecida. Este problema no es nuevo; estructuras similares han provocado efectos equivalentes en inundaciones anteriores y, sin embargo, su diseño se sigue repitiendo. Por tanto, es necesario un enfoque distinto que incorpore criterios de resiliencia y sostenibilidad en la reconstrucción. En el caso de los puentes, esto podría traducirse en reducir el número de apoyos en el cauce, cimentaciones más profundas para reducir su vulnerabilidad a la erosión y revisar los coeficientes de empuje hidráulico en los cálculos estructurales.

El reto no solo consiste en corregir errores del pasado, sino también en prepararse para escenarios futuros más complejos. El cambio climático está alterando la frecuencia e intensidad de los eventos extremos, lo que obliga a replantear tanto la planificación territorial como la normativa vigente. Lo que antes se consideraba un fenómeno extraordinario puede convertirse en una amenaza recurrente, por lo que es necesario aplicar criterios de diseño más exigentes y estrategias de mitigación más ambiciosas. No se trata únicamente de reforzar las infraestructuras, sino de adaptar las ciudades y las redes de transporte a una realidad en la que las precipitaciones intensas, las sequías prolongadas y el aumento del nivel del mar serán cada vez más frecuentes. La planificación basada en registros históricos ya no es suficiente; la ingeniería debe integrar modelos predictivos y diseñar soluciones flexibles y adaptativas.

Sin embargo, en la reconstrucción tras una catástrofe suele predominar un enfoque táctico, con decisiones orientadas a mostrar una respuesta inmediata a la ciudadanía. La rapidez en la ejecución de ciertas obras genera la percepción de una gestión eficaz, pero este proceder puede ocultar la ausencia de una estrategia que optimice las actuaciones a largo plazo. Si bien es imprescindible contar con equipos de intervención inmediata para hacer frente a la emergencia, también es esencial disponer de un equipo de reflexión que establezca directrices fundamentadas y evite reconstrucciones apresuradas que perpetúen los mismos errores. Algo así como un «ministerio del pensamiento» que sea capaz de analizar las lecciones aprendidas y convertirlas en políticas y proyectos de reconstrucción con criterios sólidos de sostenibilidad y resiliencia.

Esta misma lógica se aplica a la planificación territorial y urbana. Rehabilitar zonas inundables sin considerar estrategias de mitigación perpetúa la exposición al riesgo. En este sentido, la ingeniería tiene el deber de plantear soluciones basadas en evidencia científica y en experiencias previas. La adaptación a eventos extremos no solo implica reforzar estructuras, sino también reconsiderar su localización y función. En muchos casos, las medidas no requieren inversiones desmesuradas, sino una gestión más eficiente del territorio. La creación de zonas de amortiguamiento, la mejora en la capacidad de drenaje y la regulación del uso del suelo son estrategias que pueden marcar la diferencia en futuras catástrofes.

Además, la sostenibilidad a largo plazo implica tener en cuenta a las personas en la ecuación que gobierna los impactos de las actuaciones. No basta con evaluar los efectos sobre las infraestructuras o el medio ambiente, sino que es necesario considerar cómo influyen estas decisiones en la calidad de vida de las personas que habitan los territorios afectados. La reconstrucción debe ir más allá de la restitución de bienes materiales y tener en cuenta también aspectos sociales, económicos y psicológicos. Por ejemplo, esto implicaría reubicar comunidades en zonas seguras, garantizar el acceso equitativo a los servicios básicos y minimizar el impacto de las obras sobre la población más vulnerable. Si la ingeniería no tiene en cuenta estos factores, existe el riesgo de generar soluciones técnicamente eficientes, pero socialmente insostenibles.

Uno de los mayores obstáculos en estos procesos es la fragmentación de competencias. La reconstrucción implica a múltiples actores, desde administraciones locales hasta organismos estatales e internacionales. En muchas ocasiones, la superposición de responsabilidades y la falta de coordinación provocan retrasos y contradicciones en la toma de decisiones. Para evitar este problema, una alternativa viable sería la creación de un consorcio específico encargado de gestionar la reconstrucción, en el que las distintas administraciones deleguen temporalmente parte de sus competencias. Este modelo permitiría una planificación más coherente y una ejecución de proyectos con criterios unificados, lo que evitaría la dispersión de recursos y la toma de decisiones inconexas.

La reconstrucción no es solo un proceso técnico, sino también una oportunidad para transformar el entorno de manera más racional y sostenible. Es indispensable actuar con rapidez, pero no se debe hacer a costa de repetir errores del pasado. La ingeniería, como disciplina, no puede limitarse a solucionar problemas inmediatos, sino que debe anticiparse a los riesgos futuros y ofrecer respuestas fundamentadas en el conocimiento acumulado. Una reconstrucción bien planificada no solo restituye lo destruido, sino que contribuye a construir una sociedad más segura y preparada para afrontar los desafíos futuros.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Toma de decisiones multicriterio en la gestión de presas envejecidas

Presa del Buseo, 23 de septiembre de 2023. Imagen: V. Yepes

El artículo examina el uso del análisis de decisiones multicriterio (MCDA, por sus siglas en inglés) en la gestión de presas, centrándose en su aplicación para evaluar riesgos, optimizar recursos y apoyar la toma de decisiones en infraestructuras hidráulicas. A través de una revisión sistemática de 128 artículos, se identifican las metodologías más utilizadas, las tendencias emergentes y las oportunidades de mejora en la aplicación de estas técnicas. Se destaca la creciente aplicación de enfoques híbridos y difusos para abordar la incertidumbre, así como la necesidad de una mayor integración de las partes interesadas en los procesos de decisión.

Este artículo está disponible en la siguiente dirección: https://www.researchgate.net/publication/312672827_A_systematic_review_of_application_of_multi-criteria_decision_analysis_for_aging-dam_management

El artículo plantea dos cuestiones principales relacionadas con la gestión de presas envejecidas mediante el análisis de decisiones multicriterio (MCDA):

  1. ¿Qué tipos específicos de problemas de decisión y aplicaciones en la gestión de presas han sido abordados con técnicas de MCDA?
  2. ¿Cómo se han aplicado estas técnicas para resolver cada problema y cuáles son las razones de su idoneidad?

Para responder a estas preguntas, se lleva a cabo una revisión sistemática que identifica tendencias en la literatura y analiza las metodologías empleadas para apoyar la toma de decisiones en la gestión de presas envejecidas.

Aportaciones relevantes

El artículo presenta un análisis exhaustivo del uso de MCDA en la gestión de presas envejecidas. Se identifican 128 estudios publicados entre 1992 y 2015, y se observa un aumento significativo en la aplicación de estas metodologías a partir de 2009. Se destacan las siguientes aportaciones:

  • Identificación de las principales metodologías utilizadas en la evaluación de presas envejecidas, siendo AHP la más frecuente, seguida de combinaciones con TOPSIS.
  • Análisis de la creciente tendencia a la hibridación de técnicas y la aplicación de enfoques difusos para mejorar la gestión de incertidumbre y subjetividad.
  • Detección de una falta de integración de las partes interesadas en el proceso de toma de decisiones, lo que limita la consideración de factores socioeconómicos y ambientales.

Presentación de los resultados

El estudio categoriza la aplicación de MCDA en nueve áreas principales:

  1. Análisis de riesgo: Se ha identificado como la aplicación más frecuente, centrándose en la evaluación de seguridad y fallas de presas.
  2. Gestión de recursos hídricos: Se han aplicado modelos de optimización para mejorar la gestión sostenible de los embalses.
  3. Operación de embalses: Se han empleado técnicas como ELECTRE y PROMETHEE para optimizar el uso del agua almacenada.
  4. Evaluación de impacto ambiental: Se han utilizado AHP y variantes difusas para estimar la vulnerabilidad ecológica de las presas.
  5. Energía hidroeléctrica: Se ha aplicado MCDA para seleccionar ubicaciones de centrales hidroeléctricas y evaluar su rentabilidad.
  6. Sismicidad y geología: Se han empleado modelos para evaluar la estabilidad de presas y los efectos de eventos sísmicos.
  7. Ubicación de presas: Se ha utilizado AHP y SIG para determinar sitios óptimos para la construcción de nuevas presas.
  8. Calidad del agua: Se ha detectado una relación entre ENTROPY y la evaluación de contaminación en embalses.
  9. Control de inundaciones: Se han explorado metodologías como ANP y DEMATEL para la gestión de riesgos asociados a crecidas.

Los resultados muestran que la mayoría de los estudios utilizan un enfoque basado en métodos MADM, particularmente AHP, con una tendencia creciente hacia la combinación con otros métodos para mejorar la precisión de los resultados.

Discusión de resultados

Presa del Buseo, 23 de septiembre de 2023. Imagen: V. Yepes

Los resultados muestran que, si bien el MCDA ha permitido estructurar mejor la toma de decisiones en la gestión de presas envejecidas, persisten varias limitaciones. Una de ellas es la escasa consideración de la interdependencia entre los distintos factores evaluados. Aunque el método de proceso de redes analíticas (ANP) tiene el potencial de modelar estas relaciones, su uso sigue siendo limitado. Esto implica que muchos de los modelos utilizados pueden simplificar en exceso problemas complejos al asumir independencia entre criterios.

Otra observación importante es la falta de un enfoque sistemático para la integración de actores clave en la toma de decisiones. Aunque algunos estudios incluyen la participación de expertos, la incorporación de comunidades locales y organismos reguladores sigue siendo fragmentaria. La inclusión de estos actores en el proceso permitiría evaluar mejor los impactos socioeconómicos y ambientales de las decisiones tomadas.

Asimismo, se destaca que la mayoría de los estudios revisados se han centrado en la evaluación de riesgos y la seguridad de presas, mientras que otras áreas como la planificación sostenible y la adaptación al cambio climático han recibido menor atención. Dada la creciente incertidumbre asociada a los efectos del cambio climático en los sistemas hídricos, futuras investigaciones deberían priorizar estos aspectos.

Por último, se identificó una tendencia a combinar métodos para mejorar la precisión de los resultados. Sin embargo, en muchos casos, estas combinaciones no siguen un marco metodológico sólido, lo que puede afectar a la reproducibilidad y fiabilidad de los estudios. Desarrollar guías metodológicas claras para la combinación de enfoques MCDA podría mejorar la coherencia y la aplicabilidad de estos modelos en la gestión de presas.

Futuras líneas de investigación

Para avanzar en la gestión de presas envejecidas, el estudio sugiere:

  • Integrar análisis BOCR (Beneficios, Oportunidades, Costes y Riesgos) junto con ANP para capturar interacciones complejas.
  • Desarrollar modelos participativos que incorporen la opinión de comunidades locales y organismos reguladores en la toma de decisiones.
  • Aplicar herramientas de análisis espacial y SIG para mejorar la evaluación de riesgos y la planificación de infraestructura hídrica.
  • Incluir el impacto del cambio climático en los modelos MCDA, asegurando una evaluación a largo plazo de la seguridad y operación de presas.

Conclusión

El artículo ofrece un análisis detallado del uso de MCDA en la gestión de presas envejecidas, identificando tendencias y lagunas en la investigación. Se destaca la necesidad de metodologías más holísticas y participativas que permitan evaluar de manera integral los factores que influyen en la toma de decisiones. La combinación de ANP con BOCR, junto con el uso de herramientas espaciales, se presenta como una estrategia clave para el futuro desarrollo del campo.

Referencia:

ZAMARRÓN-MIEZA, I.; YEPES, V.; MORENO-JIMÉNEZ, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230. DOI: 10.1016/j.jclepro.2017.01.092

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fases de un estudio de investigación operativa

La investigación operativa busca determinar la solución óptima para un problema de decisión con recursos limitados. Se trata de un procedimiento científico que analiza las actividades de un sistema de organización.

Las principales componentes de un modelo de investigación operativa son: alternativas, restricciones y un criterio objetivo para elegir la mejor opción. Las alternativas se representan como variables desconocidas que luego se utilizan para construir las restricciones y la función objetivo mediante métodos matemáticos. El modelo matemático establece la relación entre estas variables, restricciones y función objetivo. La solución consiste en asignar valores a las variables para optimizar (maximizar o minimizar) la función objetivo y cumplir con las restricciones. A esta solución se le denomina solución posible óptima.

El enfoque del estudio de la ingeniería de operaciones está relacionado con la toma de decisiones para aprovechar al máximo los recursos limitados. Para ello, utiliza herramientas y modelos adaptados a las necesidades para facilitar la toma de decisiones en la resolución de problemas. Implica un trabajo en equipo entre analistas y clientes, con una estrecha colaboración. Los analistas aportan conocimientos de modelado y el cliente, experiencia y cooperación.

Como herramienta para la toma de decisiones, la investigación de operaciones combina ciencia y arte. Es ciencia por sus técnicas matemáticas y arte, porque el éxito en todas las fases, antes y después de resolver el modelo matemático, depende de la creatividad y experiencia del equipo. La práctica efectiva de la investigación de operaciones requiere más que competencia analítica, e incluye la capacidad de juzgar cuándo y cómo utilizar una técnica, así como habilidades de comunicación y adaptación organizativa.

Es complicado recomendar acciones específicas, como las de la teoría precisa de los modelos matemáticos, para abordar factores intangibles. Solo pueden ofrecerse directrices generales para aplicar la investigación de operaciones en la práctica.

El estudio de investigación operativa consta de varias etapas principales, entre las que destacan las siguientes:

  1. Formulación y definición del problema.
  2. Construcción del modelo.
  3. Solución del modelo.
  4. Verificación del modelo y de la solución.
  5. Puesta en práctica y mantenimiento de la solución.

Aunque las fases del proyecto suelen iniciarse en el orden establecido, no suelen completarse en el mismo orden. La interacción entre las fases requiere revisarlas y actualizarlas continuamente hasta la finalización del proyecto. La tercera fase es la única de carácter puramente matemático, ya que en ella se aplican las técnicas y teorías matemáticas necesarias para resolver el problema. El éxito de las demás etapas depende más de la práctica que de la teoría, siendo la experiencia el factor clave para su correcta ejecución.

Definir el problema implica determinar su alcance, tarea que lleva a cabo todo el equipo de investigación de operaciones. El resultado final debe identificar tres elementos principales: 1) descripción de las alternativas de decisión, 2) determinación del objetivo del estudio y 3) especificación de las restricciones del sistema modelado. Además, se deben recolectar los datos necesarios.

La formulación del modelo es quizá la fase más delicada del proceso, ya que consiste en traducir el problema a relaciones matemáticas. Si el modelo se ajusta a un modelo matemático estándar, como la programación lineal, puede resolverse con los algoritmos correspondientes. Para ello, deben definirse las variables de decisión, la función objetivo y las restricciones. Si las relaciones son demasiado complejas para una solución analítica, se puede simplificar el modelo mediante un método heurístico o recurrir a una simulación aproximada. En algunos casos, puede ser necesaria una combinación de modelos matemáticos, simulaciones y heurísticas para resolver el problema de toma de decisiones.

La solución del modelo es la fase más sencilla de la investigación de operaciones, ya que utiliza algoritmos de optimización bien definidos para encontrar la solución óptima. Un aspecto clave es el análisis de sensibilidad, que proporciona información sobre la forma en que la solución óptima responde a cambios en los parámetros del modelo. Esto es crucial cuando los parámetros no se pueden estimar con precisión, puesto que permite estudiar cómo varía la solución cerca de los valores estimados.

La validación del modelo verifica si cumple su propósito, es decir, si predice adecuadamente el comportamiento del sistema estudiado. Para ello, se evalúa si la solución tiene sentido y si los resultados son aceptables, comparando la solución con datos históricos para verificar si habría sido la correcta. Sin embargo, esto no garantiza que el futuro imite al pasado. Si el modelo representa un sistema nuevo sin datos históricos, se puede usar una simulación como herramienta independiente para comprobar los resultados del modelo matemático.

La implantación de la solución de un modelo validado consiste en traducir los resultados en instrucciones claras para quienes gestionarán el sistema recomendado. Esta tarea recae principalmente en el equipo de investigación de operaciones. En esta fase, el equipo debe capacitar al personal encargado de aplicar el modelo, asegurándose de que puedan traducir sus resultados en instrucciones de operación y usarlo correctamente para tomar decisiones sobre los problemas que motivaron su creación.

Os dejo algún vídeo al respecto.

Referencias:

Altier, W. J. (1999). The thinking manager’s toolbox: Effective processes for problem solving and decision making. Oxford University Press.

Checkland, P. (1999). Systems thinking, system practice. Wiley.

Evans, J. (1991). Creative thinking in the decision and management sciences. South-Western Publishing.

Gass, S. (1990). Model world: Danger, beware the user as a modeler. Interfaces, 20(3), 60-64.

Morris, W. (1967). On the art of modeling. Management Science, 13, B707-B717.

Paulos, J. A. (1988). Innumeracy: Mathematical illiteracy and its consequences. Hill and Wang.

Taha, H. A., & Taha, H. A. (2003). Operations research: an introduction (Vol. 7). Upper Saddle River, NJ: Prentice hall.

Willemain, T. R. (1994). Insights on modeling from a dozen experts. Operations Research, 42(2), 213-222.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.