UPV



Instalación de un cubípodo de 45 t en la Escuela de Ingenieros de Caminos de Valencia

Esta mañana, a las 7 de la mañana, empezaron las maniobras para la instalación de un cubípodo de 45 toneladas en un jardín anexo a la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Se trata de una de las acciones encaminadas a conmemorar el 50 aniversario de nuestra Escuela. Por cierto, esto nos hermana con la Escuela de Ingenieros de Caminos de A Coruña, que también tiene uno en sus jardines (ver la última fotografía).

Para ello se ha utilizado una grúa de 200 t. Este cubípodo se ha utilizado, entre otros sitios, en el contradique de Langosteira.

Felicito desde esta página al director de nuestra Escuela, Eugenio Pellicer y a su equipo por la iniciativa. Os dejo algunas fotografías y vídeo sobre esta instalación.

 

 

Cubípodo instalado en la Escuela de Ingenieros de Caminos de A Coruña. Imagen: V. Yepes

Os dejo algún vídeo explicativo de este cubípodo, desarrollado por profesores de nuestra Escuela e instalado por SATO.

 

Valoración social del ciclo de vida de un puente en un ambiente agresivo

Acaban de publicarnos un artículo en la revista Environmental Impact Assessment Review (primer decil del JCR), de la editorial ELSEVIER, en el que se realiza una valoración del impacto social a lo largo del ciclo de vida de un puente de hormigón sometido a un ambiente costero, donde los clorhídricos suponen una agresión que supone un mantenimiento de la infraestructura.

En el trabajo se analizan 15 alternativas diferentes durante el mantenimiento en relación con los impactos sociales. Los resultados indican que el uso de acero inoxidable en las armaduras y la adición de humo de sílice son preferibles a otras alternativas convencionales. Os dejo a continuación el resumen y las conclusiones.

Además, la editorial ELSEVIER nos permite la distribución gratuita del artículo hasta el 11 de julio de 2018. Por tanto, os paso el enlace para que os podáis descargar este artículo: https://authors.elsevier.com/a/1X5QpiZ5swxFZ

Referencia:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. https://doi.org/10.1016/j.eiar.2018.05.003

Abstract:

Sustainable design of structures includes environmental and economic aspects; social aspects throughout the life cycle of the structure, however, are not always adequately assessed. This study evaluates the social contribution of a concrete bridge deck. The social performance of the different design alternatives is estimated taking into account the impacts derived from both the construction and the maintenance phases of the infrastructure under conditions of uncertainty. Uncertain inputs related to social context are treated through Beta-PERT distributions. Maintenance needs for the different materials are estimated by means of a reliability based durability evaluation. Results show that social impacts resulting from the service life of bridges are not to be neglected in sustainability assessments of such structures. Designs that minimize maintenance operations throughout the service life, such as using stainless steel rebars or silica fume containing concretes, are socially preferable to conventional designs. The results can complement economic and environmental sustainability assessments of bridge structures.

Keywords:

Social life cycle assessmentChloride corrosionPreventive measuresGuidelinesConcrete bridgeSustainable design

Highlights:

  • Social Life Cycle Assessment of different design strategies for bridge decks in marine environments.
  • 15 design alternatives were studied and compared according to the Guidelines methodology.
  • Less maintenance results in better social performance.
  • Impacts during maintenance phase are main contributors to social performance
  • Stainless steel and the addition of silica fume are socially preferable to conventional designs.

 

 

 

¿Qué son los créditos europeos (ECTS)?

El sistema de créditos europeos, conocido como ECTS (European Credits Transfer System), responde a la necesidad de encontrar un sistema de equivalencias de los estudios cursados en otros países. En la formulación de proyectos docentes, la obligatoria adopción del sistema europeo de transferencia y acumulación de créditos tiene un impacto muy importante, por cuanto “(…) constituye una reformulación conceptual de la organización del currículo de la educación superior mediante su adaptación a los nuevos modelos de formación centrados en el trabajo del estudiante. Esta medida del haber académico comporta un nuevo modelo educativo que ha de orientar las programaciones y metodologías docentes centrándolas en el aprendizaje de los estudiantes (…)” (RD 1125/2003).

Se entiende como crédito europeo a la “unidad de medida del haber académico que representa la cantidad de trabajo del estudiante para cumplir los objetivos del programa de estudios (…). En esta unidad de medida se integran las enseñanzas teóricas y prácticas, así como otras actividades académicas dirigidas, con inclusión de las horas de estudio y de trabajo que el estudiante debe realizar para alcanzar los objetivos formativos propios de cada una de las materias del correspondiente plan de estudios”.

Constituye, por tanto, una unidad de medida del trabajo del estudiante, expresado en horas, que incluye tanto las clases, teóricas o prácticas, como el esfuerzo dedicado al estudio y a la preparación y realización de exámenes. Ello comporta un modelo educativo basado en el trabajo del estudiante y no en las horas de clase, o, dicho de otro modo, centrado en el aprendizaje de los estudiantes, no en la docencia de los profesores.

El modelo centrado en la docencia enfatiza la formación en la transmisión y adquisición del conocimiento. Por el contrario, el nuevo paradigma supone una educación más centrada en el estudiante, un cambio del rol del profesor que pasa a ser guía de aprendizaje, un trabajo más intenso en la definición de objetivos o resultados de aprendizaje, además de un cambio en el tipo de actividades educativas llevadas a cabo y en la organización académica. Se trata, por tanto, de un sistema de aprendizaje autónomo y significativo que responde mejor a las necesidades educativas.

Se establece que el número máximo de créditos para cada curso será 60, referidos a un estudiante dedicado a cursar a tiempo completo estudios universitarios entre 36 y 40 semanas por curso académico. También se define el número de horas de trabajo total del estudiante por crédito, que estará comprendido entre 25 y 30, lo que supone unas 1.500-1.800 horas de trabajo de estudiante/año.

El crédito constituye asimismo una forma de cuantificar los resultados del aprendizaje. Éstos son conjuntos de competencias que expresan lo que el estudiante sabrá, comprenderá o será capaz de hacer tras completar un proceso de aprendizaje, corto o largo. En el ECTS, los créditos solo pueden obtenerse una vez que se ha completado el trabajo requerido y se ha realizado la evaluación adecuada de los resultados del aprendizaje.

Esta nueva unidad de medida obliga a modificar los planes de estudios, pues ya no es posible hacer una equivalencia aritmética entre los créditos vigentes y el sistema europeo de créditos. La carga de trabajo del estudiante en el ECTS incluye el tiempo invertido en asistencia a clases, seminarios, estudio independiente, preparación y realización de exámenes, etc. Se asignan créditos a todos los componentes educativos de un programa de estudios (como módulos, cursos, periodos de prácticas, trabajos de tesis, etc.). Los créditos reflejan el volumen de trabajo que cada componente requiere en relación con el volumen total de trabajo necesario para completar un año entero de estudio en el programa elegido.

La asignación de créditos a las asignaturas precisa de un cálculo no trivial del trabajo del estudiante, puesto que puede ser un parámetro subjetivo y variable dependiendo del tipo de materia. Además, esto también obliga a redefinir la dedicación del profesorado, pues no solo se deben contabilizar las horas de docencia presenciales y las tutorías, sino el tiempo invertido en la preparación de las asignaturas, la adopción de nuevas metodologías docentes y la atención personalizada a los estudiantes.

Mediante la publicación del Real Decreto 1125/2003, de 5 de septiembre se estableció el sistema de ECTS en España. En este R.D. se indica en su disposición transitoria única de adaptación al sistema que “Las enseñanzas universitarias actuales conducentes a la obtención de un título universitario oficial que estén implantadas en la actualidad deberán, en todo caso, adaptarse al sistema de créditos establecido en este real decreto con anterioridad al 1 de octubre de 2010”, lo que significa un importante impacto, por cuanto “La adopción de este sistema constituye una reformulación conceptual de la organización del currículo de la educación superior mediante su adaptación a los nuevos modelos de formación centrados en el trabajo del estudiante. Esta medida del haber académico comporta un nuevo modelo educativo que ha de orientar las programaciones y las metodologías docentes centrándolas en el aprendizaje de los estudiantes, no exclusivamente en las horas lectivas”.

Referencia:

Yepes, V. (2017). Proyecto docente. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 642 pp.

El derecho de autor en las obras de ingeniería: El puente Fernando Reig en Alcoy

Puente Fernando Reig, antes de la remodelación. By RafaMiralles (http://taxialcoy.net) [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons

Todos los creadores tienen derecho a que se reconozca su obra y a que esta perdure con la idea con la que fue concebida. Este es un aspecto con múltiples facetas, pues se podría discutir sobre los derechos de imagen y marca, los derechos morales del autor, el plagio, la autoría propia o compartida por un equipo, etc. Pero a mí me interesa en este momento hablar del derecho a la integridad de una obra. No pretendo un análisis jurídico, sino simplemente reflexionar sobre este tema en el caso del puente Fernando Reig en Alcoy (Alicante). Mi interés es múltiple, no solo por ser alcoyano, ingeniero de caminos y catedrático de ingeniería de la construcción, sino porque debería abrirse un fuerte debate sobre este tema.

Contextualicemos el problema: en abril de 1987, un flamante puente atirantado, el viaducto atirantado con mayor luz del mundo construido mediante tablero prefabricado, se inauguraba por el entonces ministro de Obras Públicas Javier Sáinz de Cosculluela. En aquel año, el que suscribe estaba a punto de terminar su carrera de ingeniero de caminos, y un puente como éste, en su pueblo natal, era un auténtico acontecimiento. Desgraciadamente, la rotura de uno de los tirantes en febrero de 2016 provoca el cierre del puente. En verano de 2017 comenzaron los trabajos de destensado, desmontaje y sustitución de los tirantes existentes, después de la rotura de uno de los tirantes. Tras 20 meses de obras, el ministro Íñigo de la Serna presidió la nueva inauguración del puente, cuyo coste de arreglo ronda los 12 millones de euros. Independientemente del debate, necesario y profundo, respecto a la durabilidad de las actuales infraestructuras y de su mantenimiento, lo que ahora me interesa es hablar del concepto que inspiró el puente y si se ha respetado su espíritu.

Quisiera, por tanto, traer a colación y de forma textual, lo que José Antonio Fernández Ordóñez (1933-2000), autor del proyecto , comentaba acerca de su obra (recogido por José Ramón Navarro Vera, 2009):

El efecto estético conseguido en este puente es- en términos kantianos- sublime. La pila surge desde lo profundo del barranco como el único gran elemento vertical de la obra y, por tanto, entroncando simbólicamente -como principio organizador- con toda la tradición constructiva desde los menhires prehistóricos y obeliscos egipcios hasta nuestro siglo. La pila se prolonga hacia lo alto en un gran arco triunfal con un sentido simbólico idéntico al de su viejo y grandioso antepasado romano del puente de Alcántara, donde asimismo un gran arco triunfal corona y remata la alta pila central, lo que puede considerarse heterodoxo desde el punto de vista estético al disponer vanos pares“. (J.A. Fernández Ordóñez, 1988)

Este primer párrafo que saco a colación demuestra claramente que este puente fue concebido con una idea clara sobre lo que se quería. No valía cualquier puente. Tenía que ser uno muy particular, capaz de competir con el catálogo de puentes incomparables que la ciudad de Alcoy tenía hasta ese momento: el puente de Cristina, el viaducto de Canalejas o el puente de San Jorge. Este puente no tenía una luz que hiciera necesaria la tipología de puente atirantado, pues funcionalmente se podría haber resuelto con un simple puente viga, mucho más económico. Por tanto, el objetivo no era simplemente construir un puente, sino construir “el puente” capaz de enriquecer el patrimonio monumental urbano de la ciudad. Pero sigamos con el siguiente párrafo:

“Sobre la gran pila (línea del movimiento ascendente) se asienta el tablero prácticamente horizontal (línea de reposo). Ambas líneas se combinan con la máxima pureza respetando el principio sagrado de eje y simetría que organiza el conjunto. El color diferenciado del hormigón de la pila (rosa idéntico al de las rocas de las montañas adyacentes) y el hormigón del tablero (gris muy claro del hormigón) también contribuye a una mejor lectura del doble deseo simbólico de ambas líneas: la vertical, vínculo con el cosmos, y la horizontal, línea de reposo y de unión con la tierra, quedando ambos vínculos unidos, como la propia esencia del hombre, por el conjunto de familias de cables tensos que simbolizan la imposible utopía de querer ascender hacia lo alto al mismo tiempo que se avanza hacia adelante unido a la tierra. Con esta solución la ciudad de Alcoy completa la magnífica colección de puentes de que dispone”. (J.A. Fernández Ordóñez, 1988)

Poesía pura. Seguro que más de un alcoyano, tras leer este párrafo, contempla este puente de otra forma. Nada falta, nada sobra.

¿Por qué entonces destrozamos la idea, la transformamos y la empeoramos? ¿Qué derecho tenemos a destrozar el lenguaje visual que, con tal alto contenido conceptual nos quería transmitir el autor con su obra?

Tras la renovación, el puente luce “prácticamente nuevo”, con una capa de pintura blanca en pilas y tablero que desgarra la idea y concepción estética buscada por su autor. Se podrán argumentar razones técnicas, de durabilidad o de cualquier otro tipo. Pero estoy convencido de que se podría haber respetado la obra según la concibió su creador. No me atrevo, ni quiero, poner la imagen del renovado puente, de un blanco nuclear que hiere la vista. Quien quiera verlo, que lo busque en internet.

Acabo con una cita que el propio José Antonio Fernandez Ordóñez señalaba al inicio de su artículo:

El hecho artístico no debe juzgarse ni defenderse: solamente comprenderse

(Julius Schlosser)

Referencia:

Navarro Vera, J.R. (editor) (2009). Pensar la ingeniería. Antología de textos de José Antonio Fernández Ordóñez. Colección ciencias, humanidades e ingeniería. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Curso gratuito online masivo: Introducción a los encofrados y las cimbras en obra civil y edificación

Cimbra porticada. Imagen V. Yepes (1991)

Acerca de este curso MOOC de la UPV

Este es un curso básico de construcción de obras civiles y de edificación con encofrados y cimbras organizado y avalado por la Universitat Politècnica de València. Es un curso que no requiere conocimientos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas tipologías y aplicabilidad de los encofrados y las cimbras utilizados en obras de ingeniería civil, de edificación y en la industria del prefabricado. Se índice especialmente en la comprensión del empuje del hormigón fresco sobre los encofrados, en los aspectos relacionados con la seguridad en los trabajos de cimbrado, descimbrado, encofrado y desencofrado. Se estudia con detalle el cimbrado y descimbrado de plantas sucesivas en edificación y se abordan los encofrados y cimbras empleados en puentes, túneles, estructuras en altura, edificios, entre otros: encofrados telescópicos, trepantes, deslizantes, encofrados túnel, cimbras autolanzables, cimbras autoportantes, etc.

El contenido del curso está organizado en 4 módulos, cada uno con 4 secuencias de aprendizaje que permiten, con una dedicación menor a una hora diaria, aprender los aspectos básicos de los encofrados y las cimbras. Cada semana se trabaja un módulo, teniendo el curso una duración estimada de un mes.

El inicio del curso es el 12 de junio de 2018, y la finalización, el 9 de julio de 2018. La inscripción la puedes realizar en el siguiente enlace: https://www.upvx.es/courses/course-v1:IngenieriaDeLaConstruccion+encofrados+2018-01/about

Lo que aprenderás

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de las estructuras auxiliares (encofrados y cimbras) en la construcción de obras civiles y de edificación
  2. Evaluar y seleccionar el mejor tipo de encofrado y cimbra necesario para una construcción en unas condiciones determinadas, considerando la economía y la seguridad

 

By Sensenschmied – Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=18911631

Programa del curso

  1. ¿Qué hacer antes de empezar a construir una estructura de hormigón?
  2. Oficios perdidos en la historia actual de España: el encofrador
  3. ¿Qué son y para qué sirven los encofrados?
  4. Elementos auxiliares y funcionalidad de los encofrados
  5. Clasificación de los sistemas de encofrado
  6. Medidas de seguridad durante el desencofrado
  7. Empuje del hormigón fresco sobre un encofrado
  8. Métodos de cálculo del empuje del hormigón fresco
  9. Encofrado prefabricado para pilares
  10. Construcción de un forjado reticular
  11. Mesas encofrantes o sistemas pre-montados
  12. Construcción mediante encofrados túnel
  13. Moldes para hormigón prefabricado
  14. Mesas basculantes para la fabricación de paneles prefabricados
  15. Encofrados trepantes
  16. Encofrados deslizantes
  17. Carros de encofrado para túnel
  18. Carros de encofrado para construcción de puentes por avance sucesivo
  19. Clases de diseño de cimbras según la norma UNE-EN 12812
  20. Cimbrado, recimbrado, clareado y descimbrado de plantas consecutivas
  21. Precauciones específicas relativas al montaje y desmontaje de cimbras y encofrados
  22. Cimbras y encofrados hinchables
  23. Componentes de una cimbra montada con elementos prefabricados
  24. Precauciones para el montaje de la cimbra de un puente
  25. Cimentación de la cimbra de un puente losa
  26. Cimbras cuajadas en la construcción de puentes
  27. Cimbras porticadas en la construcción de puentes
  28. Definición de cimbra autolanzable
  29. Clasificación de las cimbras autolanzables
  30. Cimbra autolanzable frente a otros procedimientos constructivos
  31. Parámetros para seleccionar una cimbra autolanzable
  32. Elementos de una cimbra autolanzable
  33. Construcción de puentes mediante autocimbra bajo tablero
  34. Construcción de puentes mediante cimbra autolanzable sobre tablero
  35. Construcción de puentes mediante lanzador de vigas
  36. Construcción de puentes por dovelas mediante cimbras autoportantes
  37. Construcción de puentes arco con armaduras rígidas (autocimbras)

Conozca al profesor

Víctor Yepes Piqueras

Catedrático de Universidad. Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado 69 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 11 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos.

16 mayo, 2018
 
|   Etiquetas: ,  ,  ,  |  

Comparativa medioambiental de muros atendiendo a su ciclo completo de vida

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production (primer decil del JCR), de la editorial ELSEVIER, en la que analizamos una de las construcciones más habituales en la ingeniería civil, como son las estructuras de contención de tierras.

Se ha realizado para ello un análisis de ciclo de vida completo de cuatro tipos de muros: muros de hormigón armado, de hormigón en masa, de gaviones y de escollera. Además se ha realizado un estudio paramétrico para averiguar hasta qué altura de tierras es mejor una u otra tipología. Las conclusiones obtenidas no son evidentes a priori. Podéis verlas en el resumen que os paso a continuación.

Además, la editorial ELSEVIER nos permite la distribución gratuita del artículo hasta el 29 de junio de 2018. Por tanto, os paso el enlace para que os podáis descargar este artículo: https://authors.elsevier.com/a/1X15O3QCo9R1sI

Referencia:

PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420.  https://doi.org/10.1016/j.jclepro.2018.04.268

Abstract:

Earth-retaining walls are one of the most common structures in civil engineering, a discipline of the construction sector, which is known to produce one of the highest environmental impacts. Therefore, developing cleaner design and construction practices could contribute to a more sustainable future for our planet. To make a step towards this goal, this study comprises the life cycle assessment (LCA) of the four most common earth-retaining walls built between 1 to 6 m of height: cantilever walls, gravity walls, masonry walls and gabion walls to obtain the best solutions for the environment. To assess the environmental impacts caused throughout their whole life-cycle including the production, construction, use and end of life phases, we used the OpenLCA software, the ecoinvent 3.3 database and the ReCiPe (H) method. The associated uncertainties have been considered and the results are provided in both midpoint and endpoint approaches. Our findings show that gabion and masonry walls produce the lowest global impact. On the one hand, gabion walls cause less damage to human health but on the other hand, masonry walls cause less damage to the ecosystems. Furthermore, gravity walls produce similar impacts to gabion and masonry walls between 1 and 3 m of height as well as fewer impacts than cantilever walls for a height of 4 m. In conclusion, gabion and masonry walls are preferable to concrete walls for heights between 1 and 6 m and cantilever walls should be used over gravity walls for greater heights than 4.5 m.

Keywords:

Life cycle assessment; Sustainability; Earth-retaining wall; ReCiPe

Highlights:

  • Four earth-retaining walls are compared to obtain the best environmental solution.
  • The OpenLCA software, the Ecoinvent 3.3 database and the ReCiPe (H) method are used.
  • Gabion walls cause less damage to human health than masonry walls.
  • Masonry walls cause less damage to the ecosystems than gabion walls.
  • Mass concrete walls are cleaner than reinforced ones until 4.5 m of height.

 

 

Carros de encofrado para la construcción de puentes por avance en voladizo

Figura 1. Construcción por voladizos sucesivos. By Störfix [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], from Wikimedia Commons

La construcción en avance en voladizo con dovelas hormigonadas “in situ” ha ido desplazando a los puentes-viga metálicos en luces entre 60 y 200 m. El récord mundial de esta tipología lo ostenta el puente Gateway en Brisbane, Australia, con 260 m de luz.

La dovela en curso de hormigonado suele apoyarse sobre un carro de avance soportado por el tablero terminado. Sin embargo, existen otros sistemas como el uso de andamiaje apoyado sobre el terreno, vigas metálicas auxiliares apoyadas sobre las pilas del puente en construcción e incluso mediante atirantamiento provisional.

En el caso que nos ocupa, el carro móvil de hormigonado soportado por el propio tablero, debe garantizar la posición geométrica de las dovelas y soportar su peso antes del fraguado del hormigón y de su unión mediante pretensado a la dovela precedente. Se distinguen los carros móviles tradicionales y los autoportantes. En los primeros, el peso de la dovela se transmite al tablero por medio de vigas longitudinales fijadas sólidamente en voladizo en el extremo de la ménsula.

  • Carros móviles con vigas principales superiores: Constan de vigas longitudinales situadas en la vertical de las almas, arriostradas por vigas transversales de donde cuelga el encofrado, la plataforma de trabajo y las pasarelas de inspección. Los encofrados interiores y de almas se apoyan sobre vigas o carretón móvil, desplazándose colgados tanto por el tablero como por el carro. El carro se ancla a la penúltima dovela, equilibrándose con contrapesos traseros (Figura 2) o bien con un anclaje móvil a la vía de rodadura (Figuras 1 y 3). El problema fundamental con este carro es la aparición de fisuras en la cara superior de la losa inferior al deformarse las vigas principales durante el hormigonado. Para reducir este efecto se hormigona el voladizo hacia atrás. También se podrían utilizar carros más rígidos y pesados, que pesan el doble que los ligeros, pero ello origina un aumento en el pretensado y en los dispositivos anclaje o contrapesos.

Figura 2. Carros antiguos con contrapesos para equilibrar. Fuente: Dragados Obras y Proyectos

 

Figura 3. Carro de avance moderno, anclado al tablero. http://www.sten.es/encofrados/viaductos/

 

  • Carros móviles con vigas principales inferiores: Para despejar la superficie de trabajo y permitir el acceso de la parte superior de la dovela en construcción se recurre a carros con vigas situadas bajo las almas exteriores de las dovelas. Ello facilita la prefabricación de las armaduras y vainas con cables de pretensado, lo que agiliza la ejecución.
  • Carros móviles autoportantes: Se trata carros donde el encofrado forma parte de la función resistente, reduciendo las deformaciones que aparecen durante el hormigonado de la dovela. Esta disposición mejora el control y la corrección geométrica del tablero, reduce las fisuras que aparecen entre las juntas de las dovelas y evita la obstrucción de las superficies de trabajo. Los carros se anclan por pretensado al tablero construido, posicionándose mediante usillos. El carro se traslada sobre perfiles situados en voladizo sobre la vertical de las almas. Pueden construirse secciones variables e incluso secciones en cajón con varias almas. El encofrado interior del cajón se apoya en la viga maestra anterior y se cuelga por la parte trasera de la dovela precedente.

 

Una explicación del proceso constructivo la tenéis en el siguiente vídeo:

A continuación os dejo un vídeo donde podéis ver un carro de avance modelo CVS de la empresa ULMA Construction. Espero que os sea de interés.

Otro vídeo, también del ULMA, es el siguiente:

También es de interés el procedimiento constructivo del viaducto de Contreras. Aquí os paso un vídeo de voxelstudios.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

14 mayo, 2018
 
|   Etiquetas: ,  ,  ,  |  

Cimbra porticada en la construcción de puentes

Cimbra porticada. Imagen V. Yepes (1991)

La cimbra diáfana o porticada, se usa cuando se hace necesario ejecutar una cimbra de un paso superior sobre un obstáculo, no siendo posible el uso de una cimbra cuajada. Como su nombre indica, está formada por pórticos, que concentran y transmiten  las cargas al terreno. Las estructuras a cimbrar suelen ser arcos, acueductos y viaductos.

La cimbra porticada se utiliza en los siguientes casos:

  • Cuando la estructuras a cimbras se encuentra a una altura superior a 16 metros con respecto a la superficie de apoyo de la cimbra, con lo que se tendría demasiados elementos que montar, con el consiguiente coste de dinero y tiempo de montaje.
  • Cuando la superficie de apoyo no tiene la suficiente capacidad, y es necesario concentrar las cargas en zonas de apoyo predeterminadas que estén en buenas condiciones portantes.
  • Cuando existan servidumbres a respetar en la zona de instalación de la cimbra, y haya que sortearlas.
  • Cuando es necesario permitir el paso de tráfico preexistente, o también el tráfico propio de la obra.
  • Cuando existan accidentes orográficos (ríos, rías, vaguadas, arroyos, zonas escarpadas…)
  • Cuando la estructura tiene un número múltiple de vanos, que hacen posible la reutilización de los módulos de cimbra mediante cambio, ripado, etc…

Cimbra porticada. Imagen: V. Yepes (1992)

Estas cimbras permiten salvar luces de 6 a 16 m con unos soportes que trasladan la carga al terreno. Estos soportes permiten cargas de 120 a 450 kN, aunque en algunos casos especiales pueden llegar a soportar 2000 kN. Estas cimbras se componen de pilas y vigas articuladas, con sección triangular o cuadrangular. Se utilizan elementos de acero de alta resistencia desmontables. Los pilares se ensamblan con módulos planos formados por tubos de perfil circular. De esta forma, el pilar se forma con acoplamiento de elementos planos unitarios, formando módulos entre 0,75 y 2,50 m. Además, su altura se regula en sus extremos mediante husillos roscados. Las vigas se montan con módulos de perfiles tubulares ensamblados mediante bulones. Además de vigas articuladas, se pueden utilizar jácenas, donde se añade un atirantado a las vigas para aumentar el canto resistente.

La cimbra es una estructura provisional que requiere su propio proyecto y cálculo, con una especial atención a las hipótesis de carga, a su cimentación y los detalles de diseño y montaje. No son extraños los accidentes, especialmente con las cimbras diáfanas, al carecer de un proyecto adecuado. Dicho proyecto y las operaciones de montaje y desmontaje de estos elementos suele depender de una empresa especializada. Se debe exigir que la cimbra sea estable, especialmente a pandeo, y que las deformaciones previstas se compensen con las contraflechas necesarias.

Os paso a continuación un vídeo donde podéis ver este tipo de cimbra utilizada en la construcción de puentes.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

11 mayo, 2018
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Elementos de una cimbra autolanzable

Figura 1. Autocimbra bajo tablero. https://civilengineer-online.com

En este post vamos a describir los elementos que constituyen una autocimbra, la función de cada elemento dentro del sistema y analizaremos las conexiones entre cada uno de dichos elementos. Remitimos al lector a otros posts anteriores donde se clasificaba este medio auxiliar de construcción de puentes y se comparaba respecto a otros procedimientos constructivos.

Vigas longitudinales

Son las estructuras longitudinales que conforman la autocimbra (Figura 1). Sirven para apoyar (autocimbras bajo tablero) o suspender (autocimbras sobre tablero) el encofrado de un vano. Normalmente están conformadas por vigas en celosía metálicas, aunque también pueden ser vigas de alma llena con luces de mayor dimensión. Al tratarse de una estructura móvil, se hace necesario examinar con mucho detenimiento las posiciones más críticas de cada elemento.

Vigas transversales y encofrado del tablero

El encofrado se soporta por una estructura de vigas transversales, que a su vez, se apoya sobre la estructura longitudinal. Uno de los puntos a tener en cuenta es el paso de estas vigas transversales a través de las pilas del puente. El encofrado exterior sirve de soporte y molde a la superficie exterior del tablero de hormigón. Este encofrado debe disponer de juego en las juntas para absorber ligeras modificaciones geométricas. Este encofrado, por razones económicas, debe soportar más de 12 puestas, aunque en algunos casos se llega a más de 50. En el caso de secciones en cajón, existe un encofrado interior. En este caso, el hormigonado puede realizarse en una o dos fases. Si se realiza en una fase, el encofrado debe replegarse o transportarse para salvar el paso del diafragma de la pila. Si se hormigona en dos fases, se debe retirar este encofrado interior por medios de elevación.

Figura 2. Paso de autocimbra sobre tablero por pila. www.alpisea.com

Apoyos en las pilas y en el tablero

La estructura longitudinal de la autocimbra descansa sobre apoyos a ménsulas colocados en las pilas del puente. En las cimbras autolanzables bajo tablero el apoyo sobre la pila delantera se realiza sobre ménsulas (Figura 1), aunque también podría utilizarse torres auxiliares (Figura 3). En el caso de autocimbra sobre tablero, el apoyo sobre la pila delantera se realiza sobre una estructura metálica. El apoyo trasero de la autocimbra sobre tablero se realiza sobre el voladizo del tablero ya construido o bien sobre la pila. El apoyo trasero de la autocimbra bajo tablero se realiza mediante una viga de cuelgue.

Figura 3. Apoyo delantero de la viga longitudinal de autocimbra sobre tablero. www.crsic.cn

Sistemas hidráulicos, mecánicos y eléctricos

Estos sistemas permiten realizar los distintos movimientos de la autocimbra: longitudinal para avanzar de un vano a otro, vertical para la puesta a cota y descimbrado, y transversal y/o abatimiento de encofrado para permitir el paso de éste por la pila delantera.

A continuación se muestra un esquema general de elementos, tanto para una cimbra bajo tablero (Figura 4) como sobre tablero (Figura 5).

Figura 4: Esquema general de elementos para una autocimbra bajo tablero. www.avensi.es/

 

Figura 5: Esquema general de elementos para una autocimbra sobre tablero. www.avensi.es/

Todo lo que os he descrito en el post os lo cuento en el siguiente Polimedia, que espero os guste.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

SEOPAN (2015). Manual de cimbras autolanzables. Tornapunta Ediciones, Madrid, 359 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

10 mayo, 2018
 
|   Etiquetas: ,  ,  ,  ,  |  

Parámetros para seleccionar una cimbra autolanzable

Figura 1. www.alpisea.com

Si en otros posts definimos lo que era una cimbra autolanzable, cómo se podía clasificar y se comparaba con otros procedimientos constructivos de puentes, en este post vamos a explicar la influencia de los distintos parámetros que intervienen en la utilización de las cimbras autolanzables, sus limitaciones y la influencia de las características geométricas del puente en su construcción.

Anchura de tablero

Las autocimbras suelen emplearse para anchuras de tablero comprendidas entre los 8,50 y los 16 m. Con tablero de anchuras mayores a 20 m, la construcción se realizaría en dos fases: en la primera se ejecutaría el núcleo central y en la segunda las alas con un carro de avance.

Se debe tener en cuenta que el número o la forma de las pilas va a condicionar las vigas principales de una autocimbra bajo tablero (Figura 1). Es posible que se necesite abrir el encofrado transversal, lo cual obliga a un correcto dimensionamiento de las vigas transversales.

Figura 2. www.ulmaconstruction.es

Pendientes y peraltes

Las autocimbras se pueden utilizar siempre que las pendientes no superen el 7% y los peraltes el 8%.

Radios en alzado y planta

Cuando se usan autocimbras sobre tablero, el radio mínimo en planta no debe ser inferior a los 200-300 m (Figura 2). Esta cifra puede subir a 400-500 m con autocimbras bajo tablero cuyos vanos superen los 40 m. Con estas limitaciones, sería posible realizar curvas en planta en forma de S.

Luces de vanos

Las autocimbras se utilizan habitualmente para vanos de luces mayores a 30 m, llegando alguna realización actual a los 90 m. Estas cifras son válidas siempre que no existan apoyos intermedios y sin que quede condicionado el dimensionamiento del tablero en la etapa constructiva. Si se utilizaran apoyos intermedios, podríamos alcanzar un mayor rango de luz. Por otra parte, la construcción de puentes con luces iguales supone una mejora en los rendimientos.

Canto del tablero

Es preferible que el canto del tablero de un puente sea constante si se va a construir mediante cimbras autolanzables. En el caso de que la geometría sea variable, se debería mantener dicho cambio de geometría en todos los vanos (Figura 3).

Figura 3. Viaducto de Ibaizabal (2012). Récord nacional de luz (75 m) en C.A. www.grupopuentes.com

Peso del tablero

Para un puente tipo con una luz de 60 m, es habitual un peso del tablero de 20 a 22 t/m, aunque podrían haber casos más pesados, con pesos superiores a 35 t/m, incluso con luces menores.

Diafragma de pilas

La forma del diafragma a su paso por las pilas depende de la forma en que se hormigone la sección transversal. Si el hormigonado se realiza en una sola fase, se debe permitir el paso del encofrado interior replegado por el interior del diafragma (Figura 4). Por otra parte, las dimensiones del paso del diafragma dependerán de la anchura y la altura de la sección en cajón.

Figura 4. Encofrado replegado para permitir el paso por el diafragma

A continuación os dejo un Polimedia donde se explica con mayor detalle lo anteriormente expuesto. Espero que os sea de interés.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

SEOPAN (2015). Manual de cimbras autolanzables. Tornapunta Ediciones, Madrid, 359 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

9 mayo, 2018
 
|   Etiquetas: ,  ,  ,  ,  |  

Previous Posts

Universidad Politécnica de Valencia