Acaban de publicar nuestro artículo en la revista Mathematics, indexada en QD1 del JCR. El artículo analiza cómo la inteligencia artificial y el control pueden mejorar la eficiencia y la seguridad en procesos industriales complejos, especialmente en la minería. Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal.
La pregunta de investigación central es: ¿Cómo pueden los métodos de control robusto, el aprendizaje automático y la teoría del caos mejorar la eficiencia, estabilidad y seguridad en procesos industriales complejos?
Esto define el problema específico del estudio, que se centra en encontrar enfoques matemáticos y computacionales para gestionar interacciones no lineales y la incertidumbre en sectores como la minería, la manufactura y la transición energética. También explica los objetivos del trabajo, que son evaluar estrategias de optimización con big data, ciberseguridad y control predictivo en entornos de alta variabilidad.
El estudio revisó la literatura entre 2015 y 2025 usando Scopus y Web of Science, encontrando 2628 referencias en Scopus y 343 en WoS. Se usó un programa informático para eliminar las referencias que no eran relevantes. Se consiguieron 2900 referencias, de las cuales 89 fueron muy relevantes. El análisis se hizo en seis áreas clave:
Transferencia de calor en fluidos magnetizados.
Control no lineal en sistemas de alta complejidad.
Optimización basada en big data.
Transición energética con SOEC.
Detección de fallos en válvulas de control.
Modelado estocástico con transiciones semi-Markovianas.
La metodología usa la vectorización TF-IDF y el análisis de conglomerados (k-means), y genera resúmenes temáticos automáticos con el modelo BART-Large-CNN. Se usaron herramientas de minería de textos y análisis bibliométrico para asegurar la calidad y relevancia de los artículos seleccionados.
El artículo tiene varias contribuciones importantes para la ingeniería:
Se identifican las tendencias actuales en el control de procesos no lineales, destacando la convergencia entre aprendizaje profundo, modelos de caos determinista y ciberseguridad en entornos industriales.
Se establece la importancia del control robusto y predictivo en la minería y la manufactura avanzada, permitiendo mitigar perturbaciones externas y mejorar la adaptabilidad de los sistemas.
Se analiza la aplicación de criptografía caótica para la protección de redes industriales, un factor clave en la implementación de Minería 4.0 y 5.0.
Se exploran las barreras para la implementación de modelos de optimización y big data, como la heterogeneidad de plataformas, la interoperabilidad y la disponibilidad limitada de datos.
El estudio muestra que el aprendizaje automático se usa cada vez más para mejorar procesos industriales difíciles. Los modelos híbridos (física + IA) son buenos para gestionar la incertidumbre y los modelos caóticos mejoran la ciberseguridad.
Pero aún hay problemas, como la necesidad de datos de alta calidad para entrenar modelos de machine learning, la escalabilidad de los algoritmos en entornos industriales distribuidos y la falta de estandarización en los protocolos de seguridad. También se destaca la importancia de usar análisis multi-escala y teoría del caos en el diseño de sistemas industriales resistentes.
El artículo propone varias líneas de investigación futura:
Desarrollo de modelos híbridos de predicción y control que combinen algoritmos de deep learning con principios de caos determinista y optimización bayesiana.
Integración de soluciones avanzadas de ciberseguridad, como sincronización de atractores caóticos y encriptación basada en memristores.
Implementación de proyectos piloto en minería e industrias de manufactura para validar la eficacia de los modelos de control predictivo en escenarios reales.
Desarrollo de metodologías de explicabilidad para la interpretación de modelos no lineales en la industria, permitiendo una adopción más amplia en el sector productivo.
El artículo analiza cómo se usan en la industria los modelos de control no lineal, la optimización con big data y las estrategias de ciberseguridad. El estudio subraya que es importante usar enfoques interdisciplinarios que integren la teoría del caos, el aprendizaje automático y las metodologías de control robusto. Esto se debe a que así se mejora la estabilidad y la eficiencia en la minería y la manufactura avanzada. También se destaca la importancia de crear normas y regulaciones para integrar estas tecnologías de manera segura y eficiente en la industria, enfrentando problemas externos y ciberataques.
Tenemos el placer de anunciar la publicación de un artículo en la revista Computers & Industrial Engineering, revista indexada en el primer cuartil del JCR. Se trata de una colaboración con colegas de Turquía, en especial con el profesor VedatToğan.
El artículo analiza si la integración de Graph Attention Networks (GAT) con metodologías multicriterio de toma de decisiones (MCDM) mejora la precisión y fiabilidad en la selección de proyectos de inversión en ingeniería de la construcción. La cuestión central es si los modelos de aprendizaje automático basados en redes superan a los métodos MCDM tradicionales a la hora de predecir la viabilidad de proyectos de inversión. Esta pregunta define el problema de la ineficacia en la selección de proyectos debido a la complejidad de los factores interdependientes y orienta el estudio hacia la evaluación de modelos predictivos basados en redes.
Metodología
El estudio emplea un enfoque híbrido que combina el juicio experto, los métodos MCDM y el aprendizaje automático avanzado. Se procesa un conjunto de datos de más de 33 000 proyectos de inversión en construcción, aplicando la selección de características mediante análisis de componentes principales (PCA) y la clasificación basada en criterios como el riesgo país, la calificación de desarrollo empresarial y el valor del proyecto. A partir de estos datos, se estructuran tres redes de inversión: regional, nacional y basada en el modo de financiación. Estas redes se introducen en modelos GAT, que aplican mecanismos de atención para predecir la viabilidad de la inversión. La validación del modelo se realiza mediante métricas de precisión, exhaustividad, puntuación F1 y curvas ROC, y se compara con árboles de decisión y modelos de bosque aleatorio.
Contribuciones relevantes
Integración de aprendizaje automático y MCDM: El estudio demuestra cómo los GATs pueden mejorar la precisión en la selección de proyectos, combinando métodos MCDM y aprendizaje profundo.
Desarrollo de modelos de inversión basados en redes: Se estructuran los datos de inversión en tres redes diferenciadas, proporcionando un marco novedoso para evaluar interdependencias entre proyectos.
Validación de la eficacia de los GATs: Se logra una precisión superior al 99 % en la red regional y superior al 98 % en las redes nacionales y de financiación, destacando el potencial de los GATs en la planificación estratégica de inversiones.
Aplicabilidad práctica en la toma de decisiones: Se demuestra la viabilidad de los GATs para mejorar herramientas de apoyo a la decisión en inversiones a gran escala, reduciendo riesgos financieros.
Discusión de resultados
Los modelos GAT basados en redes mejoran significativamente la precisión en la selección de proyectos de inversión en comparación con los métodos MCDM convencionales. La red regional es la que logra una mayor precisión, lo que sugiere que la agregación geográfica proporciona una base sólida para la toma de decisiones. Las redes nacionales y de financiación, aunque con una precisión ligeramente menor, siguen superando a los métodos tradicionales, lo que demuestra las ventajas del modelado de dependencias basadas en redes.
Las tasas de error, aunque mínimas, resaltan la necesidad de combinar modelos automatizados con la validación experta. En conclusión, los GAT son herramientas eficaces para la selección de proyectos, pero no deben reemplazar la toma de decisiones humanas. Además, se evidencia que los modelos basados en financiación capturan estructuras financieras clave que influyen en la viabilidad de los proyectos, lo que aporta un valor añadido a la evaluación del riesgo de inversión.
Líneas de investigación futuras
Ampliación de modelos basados en redes: Explorar redes adicionales que incluyan marcos regulatorios y estabilidad económica para optimizar la toma de decisiones.
Integración de datos en tiempo real: Incorporar tendencias de mercado y datos económicos actualizados para mejorar la capacidad predictiva.
Comparación con otros modelos de aprendizaje profundo: Evaluar el desempeño de los GATs frente a otras variantes de redes neuronales gráficas como Graph Convolutional Networks (GCNs).
Aplicación en otros sectores de infraestructura: Extender la metodología a sectores como el transporte y la planificación urbana para evaluar su aplicabilidad.
Desarrollo de sistemas híbridos de apoyo a la decisión: Combinar técnicas MCDM con predicciones en tiempo real para maximizar la usabilidad en la práctica.
Conclusión
El estudio demuestra que la integración de GAT con MCDM mejora la toma de decisiones en inversiones en ingeniería de la construcción. Al estructurar los datos en modelos basados en redes, se proporciona un marco más preciso y contextualizado para la selección de proyectos. Los resultados confirman la superioridad de los modelos basados en redes frente a los enfoques tradicionales, especialmente en lo que respecta a la gestión de dependencias complejas entre proyectos. No obstante, se destaca la importancia de la validación experta para mitigar errores de clasificación. Las futuras investigaciones deben centrarse en mejorar las capacidades del modelo, integrar datos dinámicos y perfeccionar las herramientas de apoyo a la toma de decisiones para optimizar la selección de inversiones en ingeniería de la construcción.
En un artículo anterior hablamos del aprendizaje no supervisado aplicado a la ingeniería civil. La otra rama del aprendizaje automático (machine learning) es el aprendizaje supervisado. Se trata de un enfoque que utiliza conjuntos de datos de entrada y sus correspondientes respuestas para entrenar modelos capaces de realizar predicciones sobre datos nuevos. Este método es particularmente útil en contextos donde se dispone de información previa sobre la variable que se desea predecir, lo que permite establecer relaciones y patrones en los datos.
El aprendizaje supervisado emerge como una herramienta muy poderosa en el campo de la ingeniería civil, ya que facilita la toma de decisiones y la optimización de procesos mediante el análisis de datos. Este enfoque se basa en el uso de algoritmos que aprenden a partir de un conjunto de datos etiquetados, lo que les permite realizar predicciones sobre nuevos datos. A continuación, se presentan algunas aplicaciones y beneficios del aprendizaje supervisado en este campo.
Técnicas de aprendizaje supervisado
Las técnicas de aprendizaje supervisado se dividen en dos categorías principales: clasificación y regresión. La clasificación se centra en predecir respuestas discretas, es decir, en asignar una etiqueta a un conjunto de datos. Por ejemplo, en el ámbito del correo electrónico, se puede clasificar un mensaje como genuino o spam. Este tipo de modelos se aplica en diversas áreas, como la imagenología médica, donde se pueden clasificar tumores en diferentes categorías de tamaño, o en el reconocimiento de voz, donde se identifican comandos específicos. La clasificación se basa en la capacidad de los modelos para categorizar datos en grupos definidos, lo que resulta esencial en aplicaciones como la evaluación crediticia, donde se determina la solvencia de una persona.
Por el contrario, la regresión se ocupa de predecir respuestas continuas, lo que implica estimar valores en un rango numérico. Por ejemplo, se puede utilizar la regresión para prever cambios en la temperatura o fluctuaciones en la demanda eléctrica. Este enfoque es aplicable en contextos como la previsión de precios de acciones, donde se busca anticipar el comportamiento del mercado, o en el reconocimiento de escritura a mano, donde se traduce la entrada manual en texto digital. La elección entre clasificación y regresión depende de la naturaleza de los datos y de la pregunta específica que se desea responder.
Selección del algoritmo adecuado.
La selección de un algoritmo de aprendizaje automático es un proceso que requiere un enfoque metódico, ya que hay que encontrar el equilibrio entre diversas características de los algoritmos. Entre estas características se encuentran la velocidad de entrenamiento, el uso de memoria, la precisión predictiva en nuevos datos y la transparencia o interpretabilidad del modelo. La velocidad de entrenamiento se refiere al tiempo que un algoritmo necesita para aprender de los datos, mientras que el uso de memoria se relaciona con la cantidad de recursos computacionales que requiere. La precisión predictiva es crucial, ya que determina la capacidad del modelo para generalizar a datos no vistos. Por último, la interpretabilidad se refiere a la facilidad con la que se pueden entender las decisiones del modelo, lo que es especialmente relevante en aplicaciones donde la confianza en el modelo es esencial.
El uso de conjuntos de datos de entrenamiento más grandes generalmente permite que los modelos generalicen mejor en datos nuevos, lo que se traduce en una mayor precisión en las predicciones. Sin embargo, la selección del algoritmo también puede depender del contexto específico y de las características de los datos disponibles.
Clasificación binaria y multicategoría
Al abordar un problema de clasificación, es fundamental determinar si se trata de un problema binario o multicategórico. En un problema de clasificación binaria, cada instancia se clasifica en una de las dos clases, como ocurre cuando se identifica la autenticidad de los correos electrónicos o su clasificación como spam. Este tipo de clasificación es más sencillo y, por lo general, se puede resolver con algoritmos diseñados específicamente para este propósito. En contraste, un problema de clasificación multicategórica implica más de dos clases, como clasificar imágenes de animales en perros, gatos u otros. Los problemas multicategóricos suelen ser más complejos, ya que requieren modelos más sofisticados que puedan manejar la diversidad de clases y sus interacciones.
Es importante señalar que algunos algoritmos, como la regresión logística, están diseñados específicamente para problemas de clasificación binaria y tienden a ser más eficientes durante el entrenamiento. Sin embargo, existen técnicas que permiten adaptar algoritmos de clasificación binaria para abordar problemas multicategóricos, lo que amplía su aplicabilidad.
Algoritmos de clasificación comunes
Existen diversos varios algoritmos de clasificación ampliamente utilizados en el campo del aprendizaje supervisado.
La regresión logística es uno de los métodos más comunes, ya que permite predecir la probabilidad de que una respuesta binaria pertenezca a una de las dos clases. Este algoritmo es valorado por su simplicidad y se emplea frecuentemente como punto de partida en problemas de clasificación binaria. Su capacidad para ofrecer una interpretación clara de los resultados lo convierte en una herramienta muy valiosa en diversas aplicaciones.
El algoritmo k-vecinos más cercanos (kNN) clasifica objetos basándose en las clases de sus vecinos más cercanos, utilizando métricas de distancia como la euclidiana o la de Manhattan. Este enfoque es intuitivo y fácil de implementar, aunque puede resultar costoso en términos de cálculo en conjuntos de datos grandes.
El soporte vectorial (SVM) es otro algoritmo destacado que clasifica datos al encontrar un límite de decisión lineal que separe las clases. En situaciones en las que los datos no son linealmente separables, se puede aplicar una transformación de kernel para facilitar la clasificación. Este método es especialmente útil en contextos de alta dimensionalidad, donde la complejidad de los datos puede dificultar la clasificación.
Las redes neuronales, inspiradas en la estructura del cerebro humano, son útiles para modelar sistemas altamente no lineales. Estas redes se entrenan ajustando las conexiones entre neuronas, lo que permite que el modelo aprenda patrones complejos en los datos. Aunque su interpretación puede ser más complicada, su capacidad para capturar relaciones no lineales las hace valiosas en diversas aplicaciones.
El clasificador Naïve Bayes se basa en la suposición de que la presencia de una característica en una clase no depende de la presencia de otras características. Este enfoque permite clasificar nuevos datos en función de la probabilidad máxima de pertenencia a una clase, lo que resulta útil en contextos en los que se requiere una clasificación rápida y eficiente.
El análisis discriminante clasifica los datos mediante combinaciones lineales de características, asumiendo que los diferentes conjuntos de datos tienen distribuciones gaussianas. Este método es apreciado por su simplicidad y facilidad de interpretación.
Los árboles de decisión permiten predecir respuestas basándose en decisiones tomadas en un árbol estructurado, donde cada rama representa una condición de decisión. Este enfoque es intuitivo y fácil de interpretar, por lo que es una opción popular en diversas aplicaciones.
Algoritmos de regresión comunes
Los algoritmos de regresión son esenciales para predecir valores continuos.
La regresión lineal es una técnica que describe una variable de respuesta continua como una función lineal de una o más variables predictoras. Este modelo es fácil de interpretar y se utiliza frecuentemente como referencia para modelos más complejos. Su simplicidad y eficacia en contextos lineales lo convierten en una opción inicial para el análisis de datos.
La regresión no lineal se utiliza cuando los datos presentan tendencias no lineales significativas. Este enfoque permite modelar relaciones más complejas que no pueden ser capturadas por modelos lineales, lo que resulta útil en contextos donde las variables interactúan de manera no lineal.
El modelo de regresión de procesos gaussianos es un enfoque no paramétrico que se utiliza para predecir valores continuos y es común en el análisis espacial. Este método es especialmente valioso en contextos donde se requiere interpolación y se trabaja con datos que presentan incertidumbre.
La regresión SVM, similar a su contraparte de clasificación, busca un modelo que se desvíe de los datos medidos en la menor cantidad posible. Este enfoque es útil en contextos de alta dimensionalidad, donde se espera que haya un gran número de variables predictoras.
El modelo lineal generalizado se utiliza cuando las variables de respuesta tienen distribuciones no normales, lo que permite abordar una variedad de situaciones en las que no se cumplen los supuestos de la regresión lineal.
Los árboles de regresión son una adaptación de los árboles de decisión que permiten predecir respuestas continuas, por lo que son útiles en contextos donde se requiere una interpretación clara y rápida.
Mejora de modelos
La mejora de un modelo implica aumentar su precisión y capacidad predictiva, así como prevenir el sobreajuste, que ocurre cuando un modelo se ajusta demasiado a los datos de entrenamiento y pierde capacidad de generalización. Este proceso incluye la ingeniería de características, que abarca la selección y transformación de variables, y la optimización de hiperparámetros, que busca identificar el conjunto de parámetros que mejor se ajustan al modelo.
La selección de características es un aspecto crítico en el aprendizaje supervisado, especialmente en conjuntos de datos de alta dimensión. Este proceso permite identificar las variables más relevantes para la predicción, lo que no solo mejora la precisión del modelo, sino que también reduce el tiempo de entrenamiento y la complejidad del mismo. Entre las técnicas de selección de características se encuentran la regresión por pasos, que implica agregar o eliminar características de manera secuencial, y la regularización, que utiliza estimadores de reducción para eliminar características redundantes.
La transformación de características es otra estrategia importante que busca mejorar la representación de los datos. Técnicas como el análisis de componentes principales (PCA) permiten realizar transformaciones lineales en los datos, que capturan la mayor parte de la varianza en un número reducido de componentes. Esto resulta útil en contextos donde se trabaja con datos de alta dimensionalidad, ya que facilita la visualización y el análisis.
La optimización de hiperparámetros es un proceso iterativo que busca encontrar los valores óptimos para los parámetros del modelo. Este proceso puede llevarse a cabo mediante métodos como la optimización bayesiana, la búsqueda en cuadrícula y la optimización basada en gradientes. Un modelo bien ajustado puede superar a un modelo complejo que no ha sido optimizado adecuadamente, lo que subraya la importancia de este proceso en el desarrollo de modelos efectivos.
Aplicaciones del aprendizaje supervisado en ingeniería civil
Predicción de fallos estructurales: los modelos de aprendizaje supervisado se utilizan para predecir fallos en estructuras como puentes y edificios. Al analizar datos históricos de inspecciones y condiciones ambientales, es posible identificar patrones que indiquen un posible fallo estructural. Esto permite a los ingenieros realizar mantenimientos preventivos y mejorar la seguridad de las infraestructuras.
Optimización de recursos en construcción: en la planificación de proyectos, el aprendizaje supervisado optimiza el uso de recursos como, por ejemplo, materiales y mano de obra. Al predecir la demanda de recursos en función de variables como el clima y la evolución del proyecto, es posible reducir costes y mejorar la eficiencia.
Análisis de riesgos: los modelos de aprendizaje supervisado son útiles para evaluar riesgos en proyectos de ingeniería civil. Al analizar datos sobre desastres naturales, como inundaciones y terremotos, se pueden identificar zonas vulnerables y desarrollar estrategias de mitigación eficaces.
Control de infraestructuras: la incorporación de sensores en infraestructuras permite la recolección de datos en tiempo real. Los algoritmos de aprendizaje supervisado pueden analizar estos datos para detectar anomalías y prever el mantenimiento necesario, lo que contribuye a la sostenibilidad y durabilidad de las estructuras.
Por tanto, el aprendizaje supervisado se está consolidando como una herramienta esencial en ingeniería civil, ya que ofrece soluciones innovadoras para predecir, optimizar y controlar infraestructuras. Su capacidad para analizar grandes volúmenes de datos y ofrecer información valiosa está transformando la forma en que se gestionan los proyectos en este ámbito.
Os dejo un mapa mental acerca del aprendizaje supervisado.
También os dejo unos vídeos al respecto. Espero que os sean de interés.
Referencias
Garcia, J., Villavicencio, G., Altimiras, F., Crawford, B., Soto, R., Minatogawa, V., Franco, M., Martínez-Muñoz, D., & Yepes, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142, 104532.
Kaveh, A. (2024). Applications of artificial neural networks and machine learning in civil engineering. Studies in computational intelligence, 1168, 472.
Khallaf, R., & Khallaf, M. (2021). Classification and analysis of deep learning applications in construction: A systematic literature review. Automation in construction, 129, 103760.
Mostofi, F., & Toğan, V. (2023). A data-driven recommendation system for construction safety risk assessment. Journal of Construction Engineering and Management, 149(12), 04023139.
Naderpour, H., Mirrashid, M., & Parsa, P. (2021). Failure mode prediction of reinforced concrete columns using machine learning methods. Engineering Structures, 248, 113263.
Reich, Y. (1997). Machine learning techniques for civil engineering problems. Computer‐Aided Civil and Infrastructure Engineering, 12(4), 295-310.
Thai, H. T. (2022). Machine learning for structural engineering: A state-of-the-art review. In Structures (Vol. 38, pp. 448-491). Elsevier.
El aprendizaje no supervisado es una rama del aprendizaje automático (Machine Learning) que se centra en analizar y estructurar datos sin etiquetas ni categorías predefinidas. A diferencia del aprendizaje supervisado, en el que los modelos se entrenan con datos etiquetados, en el aprendizaje no supervisado los algoritmos deben identificar de manera autónoma patrones, relaciones o estructuras ocultas dentro de los datos. Se trata de una herramienta poderosa para explorar y entender datos complejos sin la necesidad de etiquetas predefinidas, descubriendo patrones y estructuras ocultas que pueden ser de gran valor en diversas aplicaciones prácticas.
El aprendizaje no supervisado permite analizar datos sin un objetivo definido o sin conocimiento previo de su estructura. Este enfoque es ideal para explorar patrones latentes y reducir la dimensionalidad de grandes conjuntos de datos, lo que facilita una mejor comprensión de su estructura. Además, al no depender de etiquetas previamente asignadas, permite adaptarse de manera flexible a diversos tipos de datos, incluidos aquellos cuya estructura subyacente no es evidente. Esta característica lo hace especialmente valioso en ámbitos como la exploración científica y el análisis de datos de mercado, donde los datos pueden ser abundantes, pero carecer de categorías predefinidas.
A pesar de sus ventajas, el aprendizaje no supervisado plantea desafíos como la interpretación de los resultados, ya que sin etiquetas predefinidas puede ser difícil evaluar la precisión de los modelos. Además, la elección del número óptimo de grupos o la validación de las reglas de asociación descubiertas puede requerir la intervención de expertos y métodos adicionales de validación.
El aprendizaje no supervisado incluye diversas técnicas que permiten analizar y extraer patrones de grandes conjuntos de datos sin necesidad de etiquetas. Una de las principales técnicas es el agrupamiento (clustering), que busca dividir los datos en grupos basados en similitudes inherentes. Existen dos tipos de algoritmos de agrupamiento: el agrupamiento duro, que asigna un dato a un único grupo, y el agrupamiento suave, que permite que un dato pertenezca a varios grupos con diferentes grados de pertenencia. Técnicas como k-means y k-medoids se utilizan mucho en este contexto. Mientras que k-means busca minimizar la distancia entre los datos y los centros de los grupos, k-medoids es más robusto frente a valores atípicos y adecuado para datos categóricos. Por otro lado, el agrupamiento jerárquico genera un dendrograma que permite explorar relaciones jerárquicas en los datos. Los mapas autoorganizados, que emplean redes neuronales, se utilizan para reducir la dimensionalidad de los datos sin perder su estructura y facilitar su interpretación en campos como la bioinformática y la economía.
En situaciones donde los datos tienen relaciones difusas, el agrupamiento suave, como el fuzzy c-means, asigna grados de pertenencia a cada dato, lo que resulta útil en áreas como la biomedicina. Los modelos de mezcla gaussiana, que utilizan distribuciones normales multivariadas, también se aplican a problemas complejos como la segmentación de mercado o la detección de anomalías. Además, el aprendizaje no supervisado incluye técnicas de asociación que buscan descubrir relaciones entre variables en grandes bases de datos, como el análisis de la cesta de la compra, donde se identifican productos que suelen comprarse juntos. También se utilizan técnicas de reducción de la dimensionalidad, que simplifican los datos de alta dimensionalidad sin perder mucha variabilidad. El análisis de componentes principales (PCA) es una técnica común en este ámbito, ya que transforma los datos en combinaciones lineales que facilitan su visualización y análisis, especialmente en casos de datos ruidosos, como los procedentes de sensores industriales o dispositivos médicos. Otras técnicas, como el análisis factorial y la factorización matricial no negativa, también se utilizan para reducir la complejidad de los datos y hacerlos más manejables, y son útiles en áreas como la bioinformática, el procesamiento de imágenes y el análisis de textos.
El aprendizaje no supervisado tiene diversas aplicaciones, como el análisis de clientes, que permite identificar segmentos con características o comportamientos similares, lo que optimiza las estrategias de marketing y la personalización de los servicios. También se utiliza en la detección de anomalías, ya que ayuda a identificar datos atípicos que pueden indicar fraudes, fallos en los sistemas o comportamientos inusuales en áreas industriales y financieras; en este campo, el análisis factorial revela dinámicas compartidas entre sectores económicos, lo que mejora la predicción de tendencias de mercado. En el procesamiento de imágenes, facilita tareas como la segmentación, que consiste en agrupar píxeles con características similares para identificar objetos o regiones dentro de una imagen. Además, en el análisis de textos, técnicas como la factorización matricial no negativa permiten descubrir temas latentes en grandes colecciones de documentos, mejorando los sistemas de recomendación y el análisis de sentimientos. En la investigación genómica, el clustering suave ha permitido identificar genes implicados en el desarrollo de enfermedades, lo que ha contribuido a avanzar en la medicina personalizada. Esta capacidad para analizar patrones complejos en datos biológicos ha acelerado el descubrimiento de biomarcadores y posibles dianas terapéuticas. Este enfoque también permite identificar correlaciones entre variables macroeconómicas que de otra manera podrían pasar desapercibidas. Por otro lado, el PCA se ha aplicado con éxito en la monitorización de sistemas industriales, ya que permite predecir fallos y reducir costes operativos mediante el análisis de variaciones en múltiples sensores. En el ámbito de la minería de textos, la factorización no negativa permite descubrir temas latentes, lo que mejora los sistemas de recomendación y análisis de sentimiento. Esto resulta particularmente valioso en aplicaciones de marketing digital, donde la segmentación precisa del contenido puede aumentar la eficacia de las campañas.
El aprendizaje no supervisado ha encontrado diversas aplicaciones en el ámbito de la ingeniería civil, ya que permite optimizar procesos y mejorar la toma de decisiones. A continuación, se destacan algunas de ellas:
Clasificación de suelos y materiales de construcción: Mediante técnicas de agrupación (clustering), es posible agrupar muestras de suelo o materiales de construcción según sus propiedades físicas y mecánicas. Esto facilita la selección adecuada de materiales para proyectos específicos y optimiza el diseño de cimentaciones y estructuras.
Análisis de patrones de tráfico: El aprendizaje automático permite identificar patrones en los flujos de tráfico, detectando comportamientos anómalos o recurrentes. Esta información es esencial para diseñar infraestructuras viales más eficientes y aplicar medidas de control de tráfico.
Monitorización de estructuras: Mediante la reducción dimensional y el análisis de datos procedentes de sensores instalados en puentes, edificios y otras infraestructuras, se pueden detectar anomalías o cambios en el comportamiento estructural. Esto contribuye a la prevención de fallos y al mantenimiento predictivo.
Optimización de rutas para maquinaria pesada: En proyectos de construcción a gran escala, el aprendizaje no supervisado ayuda a determinar las rutas más eficientes para la maquinaria, considerando factores como el terreno, el consumo de combustible y la seguridad, lo que se traduce en una mayor productividad y reducción de costes.
Segmentación de imágenes por satélite y aéreas: Las técnicas de aprendizaje no supervisado permiten clasificar y segmentar imágenes obtenidas de satélites o drones, identificando áreas urbanas, vegetación, cuerpos de agua y otros elementos. Esto es útil para la planificación urbana y la gestión de recursos naturales.
Análisis de datos de sensores en tiempo real: En la construcción de túneles y excavaciones, el análisis en tiempo real de datos de sensores puede realizarse mediante algoritmos no supervisados para detectar condiciones peligrosas, como deslizamientos de tierra o acumulación de gases, lo que mejora la seguridad en las obras.
En conclusión, el aprendizaje no supervisado es una herramienta versátil y potente para abordar problemas complejos y descubrir patrones ocultos en datos sin etiquetar. Su aplicación trasciende sectores, ya que ofrece soluciones prácticas para la investigación, la industria y el análisis de datos. En un mundo impulsado por el crecimiento exponencial de la información, el dominio de estas técnicas se presenta como una ventaja competitiva fundamental. La capacidad para analizar grandes volúmenes de datos y extraer información útil sigue siendo un motor clave de innovación y progreso.
Os dejo un mapa mental acerca del aprendizaje no supervisado.
Para profundizar en este tema, puedes consultar la siguiente conferencia:
En un estudio pionero, investigadores de la Universitat Politècnica de València y la Pontificia Universidad Católica de Valparaíso (Chile) han revelado el enorme potencial del aprendizaje automático (Machine Learning, ML) en la mejora de la integridad y calidad de las infraestructuras hídricas.
Publicado en la Applied Sciences, revista del primer cuartil del JCR, el estudio analiza en profundidad la literatura científica reciente sobre el tema, para lo cual revisa 1087 artículos con el fin de identificar las áreas más prometedoras en la aplicación de estas tecnologías a la gestión del agua. Esta revisión va más allá de lo convencional al aplicar modelos avanzados de procesamiento del lenguaje natural (NLP), específicamente BERTopic, que permiten comprender el contexto y los temas emergentes en esta área de investigación.
Contexto y relevancia del estudio
El mantenimiento de infraestructuras de agua seguras y eficientes es un desafío global, especialmente en un contexto de cambio climático, urbanización creciente y escasez de recursos hídricos. A medida que aumentan los eventos climáticos extremos, las infraestructuras se ven sometidas a un estrés adicional. Estas condiciones afectan al acceso y a la distribución de agua de calidad, clave para la salud pública, el medio ambiente y sectores estratégicos como la agricultura, la industria y la energía.
En este contexto, el aprendizaje automático se presenta como una herramienta potente para gestionar y optimizar la calidad y el suministro del agua. Los algoritmos de ML pueden procesar grandes volúmenes de datos de sensores y otras fuentes para mejorar las predicciones y la toma de decisiones en tiempo real. Además, permiten diseñar protocolos de tratamiento del agua más eficientes, reducir las pérdidas en las redes de distribución y anticiparse a los problemas antes de que se conviertan en fallos significativos.
Metodología y clasificación de temas
Para explorar el uso del ML en la gestión de infraestructuras hídricas, el equipo realizó una búsqueda sistemática en la base de datos Scopus, centrada en artículos en inglés publicados desde 2015. Los investigadores aplicaron el modelo BERTopic, una técnica de NLP que utiliza redes neuronales (transformers) entrenadas para identificar y organizar los principales temas en la literatura. Esto permitió clasificar con precisión los estudios en cuatro grandes áreas de aplicación:
Detección de contaminantes y erosión del suelo: El uso de ML en esta área permite la detección avanzada de contaminantes como los nitratos y los metales pesados en las aguas subterráneas. Mediante imágenes satelitales y sensores en campo, estos modelos analizan factores ambientales y condiciones del suelo para predecir y mapear zonas de riesgo de contaminación y erosión.
Predicción de niveles de agua: El estudio destaca cómo las técnicas de aprendizaje automático, incluidas las redes neuronales y los modelos de series temporales, pueden prever las fluctuaciones en los niveles de agua de ríos, lagos y acuíferos. Esto resulta crucial para la gestión de los recursos hídricos en situaciones climáticas extremas, como las inundaciones y las sequías, y también para optimizar el uso del agua en la agricultura y la industria.
Detección de fugas en redes de agua: Las pérdidas de agua suponen un problema significativo en las redes de distribución, especialmente en las zonas urbanas. El estudio descubrió que el ML, junto con tecnologías de sensores IoT, permite la detección precisa de fugas mediante el análisis de patrones de flujo y presión en las tuberías. Los algoritmos pueden identificar y localizar fugas, lo que reduce el desperdicio y mejora la eficiencia de la distribución.
Evaluación de la potabilidad y calidad del agua: Garantizar el acceso a agua potable es fundamental para la salud pública, y el estudio subraya la utilidad del aprendizaje profundo en el control de la calidad del agua. Los algoritmos analizan parámetros de calidad como la turbidez, el pH y la presencia de sustancias químicas nocivas, con el fin de asegurar la potabilidad. Estos modelos también permiten automatizar los sistemas de alerta temprana en zonas con infraestructuras hídricas vulnerables.
Implicaciones y futuros pasos
Este estudio concluye que el uso de aprendizaje automático en la gestión del agua permite una mayor eficiencia y sostenibilidad, y supone un paso adelante en la administración de los recursos hídricos frente a los desafíos ambientales en aumento. Los autores señalan que la combinación de ML con sistemas de monitoreo avanzado puede transformar la forma en que gestionamos las infraestructuras hídricas, permitiendo predicciones precisas y decisiones basadas en datos en tiempo real.
En el futuro, se centrarán en mejorar la precisión de los modelos para áreas específicas, así como en implementar estos sistemas a gran escala. Además, se abren nuevas oportunidades para optimizar las redes de distribución mediante sistemas automatizados, algo vital en un contexto donde el agua es un recurso cada vez más valioso y escaso.
Este estudio no solo aporta conocimiento a la comunidad científica, sino que también proporciona una base sólida para que gestores y responsables de políticas públicas integren el aprendizaje automático en sus prácticas de gestión del agua, avanzando así hacia una gestión hídrica más sostenible y resiliente.
Acabamos de recibir la noticia de la publicación de nuestro artículo en la revista Applied Sciences, la cual está indexada en el JCR. Este estudio explora las diversas aplicaciones del aprendizaje automático (Machine Learning, ML) en relación con la integridad y calidad de las infraestructuras hidráulicas, identificando cuatro áreas clave donde se ha implementado con éxito. Estas áreas abarcan desde la detección de contaminantes en el agua y la erosión del suelo, hasta la predicción de niveles hídricos, la identificación de fugas en redes de agua y la evaluación de la calidad y potabilidad del agua.
Cabe destacar que esta investigación se llevó a cabo en el marco de una colaboración fructífera entre nuestro grupo de investigación e investigadores chilenos, liderados por el profesor José Antonio García Conejeros. El proyecto en sí, denominado HYDELIFE, forma parte de las iniciativas que superviso como investigador principal en la Universitat Politècnica de València.
Se realizó un análisis bibliográfico de artículos científicos a partir de 2015, que arrojó un total de 1087 artículos, para explorar las aplicaciones de las técnicas de aprendizaje automático en la integridad y la calidad de la infraestructura hídrica. Entre las contribuciones realizadas por el trabajo, caben destacar las siguientes:
Se identificaron cuatro áreas clave en las que el aprendizaje automático se ha aplicado a la gestión del agua: los avances en la detección de contaminantes del agua y la erosión del suelo, la previsión de los niveles del agua, las técnicas avanzadas para la detección de fugas en las redes de agua y la evaluación de la calidad y potabilidad del agua.
Destacó el potencial de las técnicas de aprendizaje automático (Random Forest, Support Vector Regresion, Convolutional Neural Networks y Gradient Boosting) combinadas con sistemas de monitoreo de vanguardia en múltiples aspectos de la infraestructura y la calidad del agua.
Proporcionó información sobre el impacto transformador del aprendizaje automático en la infraestructura hídrica y sugirió caminos prometedores para continuar con la investigación.
Empleó un enfoque semiautomático para realizar análisis bibliográficos, aprovechando las representaciones codificadas bidireccionales de Transformers (BERTopic), para abordar las limitaciones y garantizar una representación precisa de los documentos.
Las técnicas de aprendizaje automático ofrecen una alta precisión, un tiempo de procesamiento reducido y datos valiosos para la toma de decisiones en materia de gestión sostenible de los recursos y sistemas de alerta temprana.
La colaboración interdisciplinaria, los marcos integrados y las tecnologías avanzadas, como la teledetección y la IoT, son esenciales para avanzar en la investigación sobre la integridad y la calidad de la infraestructura hídrica.
Abstract:
Water infrastructure integrity, quality, and distribution are fundamental for public health, environmental sustainability, economic development, and climate change resilience. Ensuring the robustness and quality of water infrastructure is pivotal for sectors like agriculture, industry, and energy production. Machine learning (ML) offers the potential for bolstering water infrastructure integrity and quality by analyzing extensive data from sensors and other sources, optimizing treatment protocols, minimizing water losses, and improving distribution methods. This study delves into ML applications in water infrastructure integrity and quality by analyzing English-language articles from 2015 onward, compiling 1087 articles. A natural language processing approach centered on topic modeling was initially adopted to classify salient topics. From each identified topic, key terms were extracted and utilized in a semi-automatic selection process, pinpointing the most relevant articles for further scrutiny. At the same time, unsupervised ML algorithms can assist in extracting themes from the documents, generating meaningful topics often requires intricate hyperparameter adjustments. Leveraging the Bidirectional Encoder Representations from Transformers (BERTopic) enhanced the study’s contextual comprehension in topic modeling. This semi-automatic methodology for bibliographic exploration begins with broad categorizing topics, advancing to an exhaustive analysis. The insights drawn underscore ML’s instrumental role in enhancing water infrastructure’s integrity and quality, suggesting promising future research directions. Specifically, the study has identified four key areas where ML has been applied to water management: (1) advancements in the detection of water contaminants and soil erosion; (2) forecasting of water levels; (3) advanced techniques for leak detection in water networks; and (4) evaluation of water quality and potability. These findings underscore the transformative impact of ML on water infrastructure and suggest promising paths for continued investigation.
Keywords:
Water infrastructure integrity; machine learning; environmental sustainability; natural language processing; BERTopic
Acaban de publicarnos un artículo en Structures, revista indexada en el JCR. Se trata de la evaluación del coste del ciclo de vida mediante la función de densidad espectral de potencia en un puente de hormigón en ambiente costero. El artículo presenta una metodología que utiliza el aprendizaje profundo para acelerar los cálculos de las restricciones estructurales en un contexto de optimización, específicamente para un puente mixto de hormigón y acero. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
El modelo de aprendizaje profundo óptimo está integrado por tres metaheurísticas: el método Obamo (Old Bachelor Acceptance with a Mutation Operator), el Cuckoo Search (CS) y los algoritmos de coseno sinusoidal (SCA). Esta integración da como resultado un posible aumento de 50 veces en la velocidad computacional en ciertos escenarios. El estudio destaca la viabilidad económica, las ramificaciones ambientales y las evaluaciones del ciclo de vida social de las soluciones de diseño optimizadas. Demuestra las ventajas de combinar el aprendizaje profundo con la optimización del diseño de la ingeniería civil, especialmente en lo que respecta al aumento del límite elástico del acero para cumplir objetivos medioambientales y sociales. La metodología propuesta en el documento se puede adaptar a una variedad de otras configuraciones estructurales, por lo que es aplicable más allá del caso específico del puente compuesto
The ability to conduct life cycle analyses of complex structures is vitally important for environmental and social considerations. Incorporating the life cycle into structural design optimization results in extended computational durations, underscoring the need for an innovative solution. This paper introduces a methodology leveraging deep learning to hasten structural constraint computations in an optimization context, considering the structure’s life cycle. Using a composite bridge composed of concrete and steel as a case study, the research delves into hyperparameter fine-tuning to craft a robust model that accelerates calculations. The optimal deep learning model is then integrated with three metaheuristics: the Old Bachelor Acceptance with a Mutation Operator (OBAMO), the Cuckoo Search (CS), and the Sine Cosine Algorithms (SCA). Results indicate a potential 50-fold increase in computational speed using the deep learning model in certain scenarios. A comprehensive comparison reveals economic feasibility, environmental ramifications, and social life cycle assessments, with an augmented steel yield strength observed in optimal design solutions for both environmental and social objective functions, highlighting the benefits of meshing deep learning with civil engineering design optimization.
Keywords:
Deep learning; Sustainability; Optimization; Bridges; Machine learning; Composite structures
Acaban de publicarnos en la revista Journal of Building Engineering, que está en el primer decil del JCR, un artículo de revisión sobre el estado actual de los métodos modernos de construcción. Estos métodos, conocidos como “construcción inteligente“, son alternativas a la construcción tradicional. El gobierno del Reino Unido utilizó este término para describir una serie de innovaciones en la construcción de viviendas, la mayoría de las cuales se basan en tecnologías de construcción en fábrica. Este concepto abarca una amplia gama de tecnologías basadas en la fabricación modular, ya sea en el lugar de construcción o en otra ubicación, y está revolucionando la forma en que se construyen edificios de manera más rápida, rentable y eficiente. También se conoce comúnmente como construcción “off-site”. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
El creciente interés por la sostenibilidad, las energías alternativas y los cambios en el estilo de vida debido a la pandemia ha impulsado la fabricación de edificaciones empleando los métodos modernos de construcción (Modern Methods of Construction, MMC), especialmente en el ámbito residencial. Estos métodos, que utilizan tecnologías innovadoras como alternativa inteligente a la construcción tradicional, han sido objeto de un exhaustivo estudio que busca clasificarlos, detectar tendencias y vacíos de conocimiento, y delinear futuras áreas de investigación. El análisis, basado en 633 publicaciones desde 1975 hasta 2022, revela seis grupos temáticos y 18 subcategorías, empleando una novedosa metodología mixta que incorpora el análisis de procesamiento de lenguaje natural (NLP). Si bien se destaca la presencia dominante de herramientas y tecnologías integradas en la Construcción 4.0 y los aspectos de gestión de la industria, también se identifican importantes lagunas de investigación, como la necesidad de aplicar más los MMC en la rehabilitación de edificios y abordar enfoques para mejorar el entorno construido a través del nuevo paradigma del diseño regenerativo. Este estudio exhaustivo ofrece una comprensión más profunda y rigurosa del estado del arte en el campo de la construcción inteligente mediante un mapeo y caracterización de la estructura conceptual del corpus bibliográfico y una evaluación sistemática basada en revisión de literatura. El artículo sugiere que se necesita más investigación para comprender los sistemas de construcción interdependientes mediante el uso de gemelos digitales.
Aspectos destacables:
El estudio utiliza aprendizaje automático combinado con una revisión sistemática de la literatura.
Se propone una novedosa metodología mixta que incorpora análisis de procesamiento de lenguaje natural.
Se recomienda una clasificación recientemente revisada para todos los MMC aplicados en edificios.
La literatura sobre MMC se clasificó en seis grandes áreas con 18 subcategorías.
Los temas se identifican mediante análisis de bigrama y agrupamiento, además del conocimiento experto.
Podéis descargar el artículo gratuitamente al tratarse de una publicación en acceso abierto:
The concerns surrounding sustainability, alternative energies, and lifestyle changes due to the pandemic have resulted in a surge in the manufacturing of buildings utilizing Modern Methods of Construction (MMC), particularly in housing. These methods involve using new technologies as smart building alternatives to traditional construction. Against the backdrop of Industry 4.0, there is an urgent need for a systematic literature review of MMCs in building construction to classify them, detect trends and gaps, and outline future research areas. This study analyzed 633 publications from 1975 to 2022 and grouped them into six thematic clusters and 18 subcategories, using a novel mixed methodology incorporating natural language processing (NLP) analysis. The qualitative analysis of the literature indicates that research in the field is dominated by tools and technologies integrated into Construction 4.0 and the industry’s management aspects. However, this review also highlights several gaps in research, including the need for more application of MMC to building retrofitting and the need for approaches to improve the built environment through the new paradigm of regenerative design. The high-level mapping and characterization of the bibliographic corpus’s conceptual structure and the classical evaluation process based on systematic literature review (SLR) have provided a more profound and rigorous state-of-the-art understanding.
Keywords:
Modern methods of construction; Industrialized buildings; Emerging technologies; Construction industry; Machine learning; Systematic literature review
Acaban de publicarnos un artículo en la revista Automation in Construction, que es la revista indexada de mayor impacto JCR en el ámbito de la ingeniería civil. En este caso se ha realizado un análisis bibliométrico del estado del arte y de las líneas de investigación futura del Machine Learning en el ámbito de la construcción. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. En este caso, se trata de una colaboración con grupos de investigación de Chile, Brasil y España.
Los complejos problemas industriales, junto con la disponibilidad de una infraestructura informática más robusta, presentan muchos retos y oportunidades para el aprendizaje automático (Machine Learning, ML) en la industria de la construcción. Este artículo revisa las técnicas de ML aplicadas a la construcción, principalmente para identificar las áreas de aplicación y la proyección futura en esta industria. Se analizaron estudios desde 2015 hasta 2022 para evaluar las últimas aplicaciones de ML en la construcción. Se propuso una metodología que identifica automáticamente los temas a través del análisis de los resúmenes utilizando la técnica de Representaciones Codificadoras Bidireccionales a partir de Transformadores para posteriormente seleccionar manualmente los temas principales. Hemos identificado y analizado categorías relevantes de aplicaciones de aprendizaje automático en la construcción, incluyendo aplicaciones en tecnología del hormigón, diseño de muros de contención, ingeniería de pavimentos, construcción de túneles y gestión de la construcción. Se discutieron múltiples técnicas, incluyendo varios algoritmos de ML supervisado, profundo y evolutivo. Este estudio de revisión proporciona directrices futuras a los investigadores en relación con las aplicaciones de ML en la construcción.
Highlights:
State-of-the-art developed using natural language processing techniques.
Topics analyzed and validated by experts for consistency and relevance.
Topics deepened through application of bigram analysis and clustering in addition to traditional bibliographic analysis.
Identified five large areas, and detailed two to three groups of relevant lines of research.
Abstract:
Complex industrial problems coupled with the availability of a more robust computing infrastructure present many challenges and opportunities for machine learning (ML) in the construction industry. This paper reviews the ML techniques applied to the construction industry, mainly to identify areas of application and future projection in this industry. Studies from 2015 to 2022 were analyzed to assess the latest applications of ML techniques in construction. A methodology was proposed that automatically identifies topics through the analysis of abstracts using the Bidirectional Encoder Representations from Transformers technique to select main topics manually subsequently. Relevant categories of machine learning applications in construction were identified and analyzed, including applications in concrete technology, retaining wall design, pavement engineering, tunneling, and construction management. Multiple techniques were discussed, including various supervised, deep, and evolutionary ML algorithms. This review study provides future guidelines to researchers regarding ML applications in construction.
Mathematics (ISSN 2227-7390) is a peer-reviewed open-access journal that provides an advanced forum for studies related to mathematics and is published monthly online by MDPI.
Rapid publication: manuscripts are peer-reviewed, and a first decision provided to authors approximately 17.8 days after submission; acceptance to publication is undertaken in 2.8 days (median values for papers published in this journal in the first half of 2022).
Recognition of reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitled to a discount on the APC of their next publication in any MDPI journal in appreciation of the work done.
Institute of Concrete Science and Technology (ICITECH), Universitat Politècnica de València, 46022 València, Spain Interests: multiobjective optimization; structures optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty Special Issues, Collections and Topics in MDPI journals
Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2362804, Chile Interests: optimization; deep learning; operations research; artificial intelligence applications to industrial problems Special Issues, Collections and Topics in MDPI journals
Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile Interests: information systems; management information systems; operations research; constraint satisfaction problems; collaboration of solvers
Special Issue Information
Dear Colleagues,
Complex combinatorial problems have been successfully addressed through metaheuristic techniques. However, as the size of the problem increases, so does the need for robust optimization algorithms. An interesting method of strengthening these algorithms is through the application of hybrid techniques, specifically the hybridization of machine learning and metaheuristics. We invite researchers to submit articles on combined optimization and hybrid techniques for this Special Issue. Benchmarking problems or applications in the industry are also of interest.
The areas of machine learning and data science have received considerable research interest in recent years. These techniques have strongly excelled in supporting decision-making in complex and data-intensive scenarios. In this Special Issue, we are additionally interested in contributions to machine learning applications in the industry.
Prof. Víctor Yepes
Dr. José Antonio García
Dr. Broderick Crawford Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title, and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access semimonthly journal published by MDPI.