Inteligencia artificial y eficiencia en el diseño de edificios

La inteligencia artificial (IA) está transformando de manera radical el diseño arquitectónico y la edificación. En la actualidad, el sector de la construcción se enfrenta a tres tendencias clave: la industrialización, la sostenibilidad y la transformación digital e inteligente. La convergencia de estos factores genera numerosas oportunidades, pero también desafíos significativos.

Los proyectos contemporáneos son cada vez más grandes y complejos, y están sujetos a requisitos ambientales más estrictos, lo que aumenta la presión sobre los equipos de diseño en términos de procesamiento de información, tiempo y recursos. En este contexto, la IA no solo optimiza los procesos, sino que también mejora la eficiencia de los métodos tradicionales de diseño.

A continuación, analizamos cómo la IA puede impulsar la eficiencia del diseño, fomentar la innovación y contribuir a la sostenibilidad de los proyectos. La tecnología ya está presente en todas las etapas del ciclo de vida del edificio, desde el análisis predictivo y la supervisión de la construcción hasta el mantenimiento de las instalaciones.

La digitalización ha transformado profundamente la forma en que concebimos, proyectamos y gestionamos las infraestructuras. Tras la aparición del diseño asistido por ordenador (CAD) y el modelado de información para la construcción (BIM), la inteligencia artificial (IA) se presenta como el siguiente gran avance tecnológico. A diferencia de otras herramientas, la IA no solo automatiza tareas, sino que también aprende, genera propuestas y ayuda a tomar decisiones complejas de manera óptima. Como señalan Li, Chen, Yu y Yang (2025), la IA se está consolidando como una herramienta fundamental para aumentar la eficiencia en el diseño arquitectónico e integrar criterios de sostenibilidad, industrialización y digitalización en toda la cadena de valor.

La IA se puede definir como un conjunto de técnicas informáticas que buscan reproducir procesos propios de la inteligencia humana, como el razonamiento, el aprendizaje o el reconocimiento de patrones. Entre sus ramas se incluyen el aprendizaje automático (machine learning o ML), basado en algoritmos que identifican patrones en grandes volúmenes de datos; las redes neuronales artificiales, que imitan el funcionamiento del cerebro y permiten resolver problemas complejos, como la predicción energética (Chen et al., 2023); los algoritmos genéticos, que simulan procesos evolutivos para hallar soluciones óptimas en problemas con múltiples variables, y la IA generativa, capaz de crear contenidos originales, como imágenes o planos, a partir de descripciones textuales. Este último enfoque, también conocido como AIGC (contenido generado por IA), ha popularizado herramientas como Stable Diffusion o Midjourney (Li et al., 2025).

En el sector de la construcción confluyen tres grandes tendencias: la industrialización, vinculada a la modularización y la prefabricación de componentes; el desarrollo sostenible, que impulsa diseños energéticamente eficientes y con menor impacto ambiental; y la digitalización inteligente, en la que la IA desempeña un papel protagonista (Asif, Naeem y Khalid, 2024). Estas tres dinámicas están interrelacionadas: sin tecnologías de análisis avanzado, como la IA, sería mucho más difícil cumplir los objetivos de sostenibilidad o gestionar procesos constructivos industrializados.

Tendencias de la construcción

Las aplicaciones de la IA se extienden a lo largo de todo el ciclo de vida del edificio. En las primeras fases de diseño, los algoritmos generan en segundos múltiples alternativas de distribución, optimizando la orientación, la iluminación natural o la ventilación. El diseño paramétrico asistido por IA permite explorar variaciones infinitas ajustando solo unos pocos parámetros (Li et al., 2025). Durante la fase de proyecto, los sistemas basados en procesamiento del lenguaje natural pueden interpretar normativas y detectar incumplimientos de forma automática, lo que reduce la probabilidad de modificaciones en obra (Xu et al., 2024). Además, las técnicas de simulación permiten prever el comportamiento estructural, acústico o energético de un edificio antes de su construcción, lo que proporciona seguridad y precisión en la toma de decisiones.

Avances de la IA en el diseño arquitectónico

En el sector de la construcción, la IA se combina con sensores y análisis de datos en tiempo real para optimizar la producción y la logística. En la construcción industrializada, los algoritmos ajustan la fabricación de elementos prefabricados, optimizan los cortes y los ensamblajes, y mejoran la gestión de las obras (Li et al., 2025). Al mismo tiempo, la monitorización inteligente permite anticiparse a las desviaciones, planificar los recursos con mayor eficiencia e incrementar la seguridad en entornos complejos.

Optimización del ciclo de vida del edificio con IA

Uno de los campos más avanzados es la predicción y optimización del consumo energético. Algoritmos como las redes neuronales, las máquinas de soporte vectorial o los métodos evolutivos permiten modelizar con gran precisión el comportamiento energético, incluso en las fases preliminares (Chen et al., 2023). Gracias a estas técnicas, es posible seleccionar soluciones constructivas más sostenibles, diseñar envolventes eficientes e integrar energías renovables en el proyecto. Como señalan Ding et al. (2018), estas herramientas facilitan el cumplimiento de los sistemas de evaluación ambiental y apoyan la transición hacia edificios de energía casi nula.

Las ventajas de la IA son evidentes: aumenta la eficiencia, reduce los errores y permite generar múltiples alternativas en mucho menos tiempo (Li et al., 2025). También optimiza los aspectos energéticos y estructurales, lo que hace que los proyectos sean más fiables y competitivos. La automatización de tareas repetitivas agiliza la creación de planos y documentos, mientras que los profesionales pueden dedicarse a tareas creativas. Además, las herramientas de gestión de proyectos con IA ayudan a organizar mejor los recursos y los plazos. Gracias a su capacidad para analizar grandes volúmenes de datos, fomentan la innovación, diversifican los métodos de diseño y facilitan la selección de materiales y el rendimiento energético.

Beneficios de la IA en el diseño

Sin embargo, la IA también plantea importantes desafíos. Su eficacia depende de la calidad de los datos; sin información fiable, los algoritmos pierden precisión. Además, integrarla con plataformas como CAD o BIM sigue siendo complicado (Xu et al., 2024). A esto se suman cuestiones éticas y legales, como la propiedad intelectual de los diseños generados por IA, la opacidad en la toma de decisiones y el riesgo de que los diseñadores pierdan cierto control. En algunos lugares, como EE. UU., se han revocado derechos de autor sobre obras generadas por IA, lo que refleja la incertidumbre legal existente.

Otros retos son la homogeneización del diseño si todos usan herramientas similares, la reticencia de algunos profesionales a adoptar soluciones de IA por dudas sobre la personalización y la fiabilidad, y los altos costes y la limitada disponibilidad de hardware y software especializados. Aún así, la IA sigue siendo una herramienta poderosa que, si se utiliza correctamente, puede transformar la eficiencia, la creatividad y la sostenibilidad en el sector de la construcción, abriendo un futuro lleno de oportunidades.

Desafíos de la adopción de la IA en el diseño

Ya existen ejemplos prácticos que muestran el potencial de estas tecnologías. Herramientas como Stable Diffusion o FUGenerator pueden generar imágenes y maquetas a partir de descripciones en lenguaje natural y actúan como asistentes que multiplican la productividad del proyectista (Li et al., 2025). Estas plataformas no sustituyen la creatividad humana, pero ofrecen un apoyo decisivo en la fase de ideación.

Bucle interactivo de inferencia de diseño arquitectónico de FUGenerator (Li et al., 2025)

La IA se está convirtiendo en un pilar fundamental de la construcción, integrándose cada vez más con tecnologías como la realidad aumentada (RA), la realidad virtual (RV), la realidad mixta (RM) y los gemelos digitales. Gracias a esta combinación, no solo es posible visualizar cómo será un edificio, sino también anticipar su comportamiento estructural, energético o acústico antes de su construcción (Xu et al., 2024). Esto permite a los diseñadores y a los clientes evaluar las propuestas en las primeras etapas, lo que mejora la calidad del diseño y la experiencia del usuario.

La IA del futuro será más inteligente y adaptable, capaz de predecir con gran precisión los resultados del diseño y ofrecer soluciones personalizadas. Su impacto no se limita al diseño arquitectónico: la gestión de la construcción se beneficiará de la robótica asistida, lo que aumentará la seguridad y la eficiencia en tareas complejas o de alto riesgo; la operación de los edificios podrá monitorizar su rendimiento, anticipar las necesidades de mantenimiento y prolongar su vida útil, lo que reducirá los costes, y el análisis de mercado aprovechará el big data para prever la demanda y los precios de los materiales, lo que optimizará la cadena de suministro.

En ingeniería civil, la integración de la IA y las tecnologías avanzadas permite tomar decisiones más fundamentadas, minimizar riesgos y entregar proyectos más seguros y sostenibles (Xu et al., 2024). Así, la construcción del futuro se perfila como un proceso más eficiente, innovador y conectado, en el que la tecnología y la planificación estratégica trabajan juntas para lograr resultados óptimos.

En conclusión, la IA no pretende sustituir a los ingenieros y arquitectos, sino ampliar sus capacidades, como ya hicieron el CAD o el BIM (Asif et al., 2024; Li et al., 2025). Automatiza tareas repetitivas, agiliza el diseño, facilita la toma de decisiones basada en datos y ayuda a elegir materiales, mejorar la eficiencia energética y estructural e inspirar soluciones creativas. Su impacto trasciende el diseño y se extiende a la planificación, la supervisión de la construcción y la gestión del ciclo de vida del edificio. No obstante, su adopción plantea desafíos como los altos costes, la escasez de software disponible y la necesidad de contar con datos de calidad y algoritmos robustos. Si se depende en exceso de la IA, los diseños podrían homogeneizarse, por lo que es fundamental definir claramente los roles entre los arquitectos y la IA. Si se utiliza correctamente, la IA puede potenciar la creatividad, la eficiencia y la sostenibilidad, y ofrecer un futuro más innovador y dinámico para la construcción.

Os dejo un vídeo que resume las ideas más importantes.

Referencias:

Glosario de términos clave

  • Inteligencia Artificial (IA): Una disciplina científica y tecnológica de vanguardia que simula el aprendizaje y la innovación humanos para extender el alcance de la aplicación de la tecnología.
  • Inteligencia Artificial Generativa (GAI): Un subconjunto de la IA que utiliza el aprendizaje automático y las capacidades de procesamiento del lenguaje natural para que las computadoras simulen la creatividad y el juicio humanos, produciendo automáticamente contenido que cumple con los requisitos.
  • Diseño Paramétrico: Un método de diseño en el que se utilizan algoritmos para definir la relación entre los elementos de diseño, permitiendo la generación de diversas variaciones de diseño mediante el ajuste de parámetros.
  • Diseño Asistido por IA: Métodos en los que las herramientas de IA ayudan a los diseñadores a optimizar diseños, analizar datos, resolver problemas y explorar conceptos creativos.
  • Colaboración Hombre-Máquina: Un enfoque en el que humanos y máquinas trabajan juntos en tareas complejas, con la IA apoyando la innovación humana y el intercambio de información eficiente.
  • Redes Neuronales Artificiales (RNA o ANN): Un tipo de algoritmo de IA, modelado a partir del cerebro humano, que se utiliza para modelar relaciones complejas entre entradas y salidas, a menudo empleadas en la predicción del consumo de energía de los edificios.
  • Aprendizaje Profundo (Deep Learning): Un subcampo del aprendizaje automático que utiliza redes neuronales con múltiples capas (redes neuronales profundas o DNN) para aprender representaciones de datos con múltiples niveles de abstracción.
  • Redes Neuronales Profundas (DNN): Redes neuronales con numerosas capas ocultas que permiten que el modelo aprenda patrones más complejos en los datos, mejorando la precisión en tareas como la predicción del consumo de energía.
  • Máquinas de Vectores de Soporte (SVM): Un algoritmo de aprendizaje supervisado utilizado para tareas de clasificación y regresión, especialmente eficaz con conjuntos de datos pequeños y para identificar relaciones no lineales.
  • Procesamiento del Lenguaje Natural (PLN o NLP): Un campo de la IA que se ocupa de la interacción entre las computadoras y el lenguaje humano, permitiendo a los sistemas interpretar y generar lenguaje humano.
  • Modelado de Información de Construcción (BIM): Una metodología para la gestión de la información de construcción a lo largo de su ciclo de vida, utilizada con la IA para mejorar las simulaciones de rendimiento del edificio.
  • Algoritmos Genéticos (GA): Una clase de algoritmos de optimización inspirados en el proceso de selección natural, utilizados para encontrar soluciones óptimas en tareas de diseño complejas.
  • Adaptación de Bajo Rango (LoRA): Un método de ajuste de bajo rango para modelos de lenguaje grandes, que permite modificar el comportamiento de los modelos añadiendo y entrenando nuevas capas de red sin alterar los parámetros del modelo original.
  • Stable Diffusion: Una herramienta avanzada de IA para generar imágenes a partir de descripciones de texto o dibujos de referencia, que a menudo utiliza el modelo LoRA para estilos específicos.
  • Inception Score (IS) y Fréchet Inception Distance (FID): Métricas cuantitativas utilizadas para evaluar la calidad y diversidad de las imágenes generadas por modelos de IA, con IS evaluando la calidad y FID la similitud de la distribución entre imágenes reales y generadas.
  • FUGenerator: Una plataforma que integra varios modelos de IA (como Diffusion Model, GAN, CLIP) para respaldar múltiples escenarios de aplicación de diseño arquitectónico, desde la descripción semántica hasta la generación de bocetos y el control.
  • Industrialización (en construcción): Énfasis en métodos de construcción modulares y automatizados para mejorar la eficiencia y estandarización.
  • Desarrollo Ecológico (en construcción): Enfoque en la conservación de energía durante el ciclo de vida, el uso de materiales sostenibles y la reducción del impacto ambiental.
  • Transformación Digital-Inteligente (en construcción): Integración de sistemas de digitalización e inteligencia, aprovechando tecnologías como la GAI para optimizar procesos y mejorar la creación de valor.
  • Problema Mal Definido (Ill-defined problem): Problemas de diseño, comunes en arquitectura, que tienen propósitos y medios iniciales poco claros.
  • Problema Malicioso (Wicked problem): Problemas de diseño caracterizados por interconexiones y objetivos poco claros, que requieren enfoques de resolución complejos.
  • Integración del Internet de las Cosas (IoT): La interconexión de dispositivos físicos con sensores, software y otras tecnologías para permitir la recopilación y el intercambio de datos, crucial para los sistemas de control de edificios inteligentes

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Evolución histórica de la inteligencia artificial en la ingeniería civil: de los sistemas expertos a las infraestructuras inteligentes

La inteligencia artificial (IA) se ha ido integrando en la ingeniería civil y la construcción a lo largo de siete décadas, transformando los procesos de diseño, análisis, gestión y ejecución. El siguiente recorrido histórico muestra los avances más relevantes, que han pasado de meras exploraciones teóricas a aplicaciones prácticas que mejoran la eficiencia, la precisión y la toma de decisiones en proyectos de infraestructura.

El artículo examina la evolución histórica de la IA en la ingeniería civil, desde sus fundamentos teóricos en las décadas de los 50 y 60 hasta la actualidad. A continuación, aborda su popularización en la programación y el diseño a través de los sistemas expertos en las décadas de los 70 y 80. En las décadas siguientes, se integró en el análisis estructural y el diseño, y surgió el auge del aprendizaje automático y el análisis de datos para la gestión de proyectos. Más recientemente, la IA se ha combinado con la robótica y otras tecnologías avanzadas para aplicaciones en obra y monitorización. Finalmente, se vislumbra la creación de infraestructuras inteligentes mediante la convergencia de la IA y el Internet de las Cosas.

1. 1950 s–1960 s: Fundación de la IA
En la década de 1950, la IA surgió como disciplina académica, centrada en el desarrollo de máquinas capaces de simular funciones cognitivas humanas. Los primeros trabajos se orientaron hacia el razonamiento simbólico, los sistemas basados en reglas y los algoritmos de resolución de problemas. Estas investigaciones sentaron las bases teóricas necesarias para posteriores aplicaciones en ingeniería civil, aunque en aquel momento todavía no existían implementaciones específicas en el sector de la construcción.

2. 1970 s–1980 s: Sistemas expertos y sistemas basados en conocimiento
Entre los años 1970 y 1980 se popularizaron los sistemas expertos, que imitaban la forma en que los especialistas en dominios concretos tomaban decisiones. En ingeniería civil, estos sistemas se aplicaron a tareas como la programación de proyectos (scheduling), la optimización de diseños y la evaluación de riesgos, emulando el saber de ingenieros veteranos. Paralelamente, los sistemas basados en el conocimiento centralizaban esta información en bases de datos y ofrecían asistencia automatizada para la toma de decisiones en obra y en oficina técnica.

3. 1990 s–2000 s: Integración en análisis estructural y diseño
Durante los años 90 y principios de los 2000, la IA comenzó a tener un impacto directo en el análisis estructural y la optimización del diseño. Se emplearon redes neuronales y lógica difusa para modelar comportamientos complejos de materiales y estructuras. Al mismo tiempo, surgieron los primeros sistemas de monitorización de la salud estructural que, mediante algoritmos de IA, permitían evaluar el estado de puentes y edificios en tiempo real. En gestión de obra, las primeras herramientas asistidas por IA empezaron a abordar la programación, la estimación de costes y el análisis de riesgos.

4. 2000 s–2010 s: Aprendizaje automático y analítica de datos
La explosión del machine learning y el big data en estos años transformó la previsión de plazos, recursos y costes. Las técnicas de aprendizaje supervisado y no supervisado se integraron en plataformas de gestión de proyectos, mientras que la Modelización de la Información de Edificación (BIM) incorporó algoritmos de inteligencia artificial para mejorar la colaboración multidisciplinar, la detección de conflictos (clash detection) y la toma de decisiones basada en datos.

5. 2010 s–presente: Aplicaciones avanzadas y robótica
A partir de 2010, se intensificó la convergencia entre la inteligencia artificial y la robótica en obra. Aparecieron vehículos autónomos para tareas de excavación, drones integrados con visión por ordenador para inspeccionar los progresos y brazos robóticos en plantas de prefabricados. Asimismo, se generalizó el uso de la realidad virtual y aumentada para visualizar diseños y realizar simulaciones en tiempo real, lo que permite realizar ajustes adaptativos durante la ejecución de los proyectos.

6. Perspectivas futuras: IA e infraestructuras inteligentes
El documento señala la próxima convergencia de la IA con el Internet de las Cosas (IoT) para el desarrollo de infraestructuras inteligentes que puedan monitorizarse de forma continua y realizar mantenimiento predictivo. También se espera la aparición de materiales inteligentes y técnicas de diseño generativo que optimicen la sostenibilidad y la resiliencia de las construcciones, cerrando el ciclo de operación, mantenimiento y rehabilitación de infraestructuras.

Conclusión
Este artículo repasa la trayectoria que va desde los inicios teóricos de la IA hasta sus aplicaciones robóticas y de análisis en tiempo real actuales. Cada etapa ha aportado nuevas herramientas al ingeniero civil: desde los sistemas expertos de los años setenta hasta las infraestructuras inteligentes del mañana, la IA continuará redefiniendo la práctica de la ingeniería civil, haciéndola más eficiente, segura y sostenible.

Glosario de términos clave

  • Inteligencia Artificial (IA): Disciplina académica centrada en el desarrollo de máquinas capaces de simular funciones cognitivas humanas.
  • Sistemas Expertos: Programas informáticos que imitan la forma en que los especialistas en dominios concretos toman decisiones, utilizando conocimiento y reglas.
  • Sistemas Basados en Conocimiento: Sistemas que centralizan información en bases de datos para ofrecer asistencia automatizada en la toma de decisiones.
  • Razonamiento Simbólico: Enfoque inicial de la IA que se basa en la manipulación de símbolos para representar conocimiento y realizar inferencias.
  • Algoritmos de Resolución de Problemas: Procedimientos sistemáticos o heurísticos utilizados por la IA para encontrar soluciones a problemas definidos.
  • Redes Neuronales: Modelos computacionales inspirados en la estructura y funcionamiento del cerebro humano, utilizados para reconocer patrones y aprender de datos.
  • Lógica Difusa: Enfoque que permite el razonamiento con información imprecisa o incierta, utilizando grados de verdad en lugar de valores booleanos (verdadero/falso).
  • Monitorización de la Salud Estructural: Evaluación continua del estado de estructuras como puentes y edificios para detectar deterioros o fallos.
  • Machine Learning (Aprendizaje Automático): Subcampo de la IA que permite a los sistemas aprender de datos sin ser programados explícitamente, utilizando algoritmos para identificar patrones y hacer predicciones.
  • Big Data: Conjuntos de datos extremadamente grandes y complejos que requieren herramientas y técnicas avanzadas para su análisis.
  • Aprendizaje Supervisado: Tipo de machine learning donde el algoritmo aprende de datos de entrenamiento etiquetados (con resultados conocidos).
  • Aprendizaje No Supervisado: Tipo de machine learning donde el algoritmo busca patrones y estructuras en datos no etiquetados.
  • Modelización de la Información de Edificación (BIM): Proceso inteligente basado en modelos 3D que proporciona información sobre un proyecto de construcción a lo largo de su ciclo de vida.
  • Detección de Conflictos (Clash Detection): Proceso en BIM que identifica colisiones o interferencias entre diferentes elementos o sistemas de un diseño.
  • Robótica: Campo que combina la ingeniería y la ciencia para diseñar, construir, operar y aplicar robots.
  • Visión por Ordenador: Campo de la IA que permite a los ordenadores “ver” e interpretar imágenes y videos.
  • Realidad Virtual: Tecnología que crea un entorno simulado por ordenador con el que el usuario puede interactuar.
  • Realidad Aumentada: Tecnología que superpone información digital (imágenes, sonidos, datos) sobre el mundo real.
  • Internet de las Cosas (IoT): Red de objetos físicos (“cosas”) integrados con sensores, software y otras tecnologías para recopilar e intercambiar datos a través de internet.
  • Infraestructuras Inteligentes: Infraestructuras equipadas con sensores y sistemas de comunicación que utilizan IA e IoT para monitorizarse, gestionarse y optimizarse de forma autónoma.
  • Mantenimiento Predictivo: Estrategia de mantenimiento que utiliza datos y algoritmos para predecir cuándo es probable que falle un equipo o componente, permitiendo realizar acciones de mantenimiento antes de que ocurra la falla.
  • Diseño Generativo: Proceso de diseño donde los algoritmos de IA exploran un vasto espacio de posibles soluciones basándose en un conjunto de parámetros y objetivos definidos.

Referencias:

DONAIRE-MARDONES, S.; BARRAZA ALONSO, R.; MARTÍNEZ-PAGÁN, P.; YEPES-BELLVER, L.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2024). Innovación educativa con realidad aumentada: perspectivas en la educación superior en ingeniería. En libro de actas: X Congreso de Innovación Educativa y Docencia en Red. Valencia, 11 – 12 de julio de 2024. DOI: https://doi.org/10.4995/INRED2024.2024.18365

GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532

FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Journal of Building Engineering, 53:104318. DOI:10.1016/j.jobe.2022.104318.

YEPES, V.; KRIPKA, M.; YEPES-BELLVER, L.; GARCÍA, J. (2023). La inteligencia artificial en la ingeniería civil: oportunidades y desafíosIC Ingeniería Civil, 642:20-23.

Dinámica no lineal y control inteligente en la industria: avances, desafíos y aplicaciones en minería y procesos industriales

Acaban de publicar nuestro artículo en la revista Mathematics, indexada en QD1 del JCR. El artículo analiza cómo la inteligencia artificial y el control pueden mejorar la eficiencia y la seguridad en procesos industriales complejos, especialmente en la minería. Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal.

La pregunta de investigación central es: ¿Cómo pueden los métodos de control robusto, el aprendizaje automático y la teoría del caos mejorar la eficiencia, estabilidad y seguridad en procesos industriales complejos?

Esto define el problema específico del estudio, que se centra en encontrar enfoques matemáticos y computacionales para gestionar interacciones no lineales y la incertidumbre en sectores como la minería, la manufactura y la transición energética. También explica los objetivos del trabajo, que son evaluar estrategias de optimización con big data, ciberseguridad y control predictivo en entornos de alta variabilidad.

El estudio revisó la literatura entre 2015 y 2025 usando Scopus y Web of Science, encontrando 2628 referencias en Scopus y 343 en WoS. Se usó un programa informático para eliminar las referencias que no eran relevantes. Se consiguieron 2900 referencias, de las cuales 89 fueron muy relevantes. El análisis se hizo en seis áreas clave:

  1. Transferencia de calor en fluidos magnetizados.
  2. Control no lineal en sistemas de alta complejidad.
  3. Optimización basada en big data.
  4. Transición energética con SOEC.
  5. Detección de fallos en válvulas de control.
  6. Modelado estocástico con transiciones semi-Markovianas.

La metodología usa la vectorización TF-IDF y el análisis de conglomerados (k-means), y genera resúmenes temáticos automáticos con el modelo BART-Large-CNN. Se usaron herramientas de minería de textos y análisis bibliométrico para asegurar la calidad y relevancia de los artículos seleccionados.

El artículo tiene varias contribuciones importantes para la ingeniería:

  • Se identifican las tendencias actuales en el control de procesos no lineales, destacando la convergencia entre aprendizaje profundo, modelos de caos determinista y ciberseguridad en entornos industriales.
  • Se establece la importancia del control robusto y predictivo en la minería y la manufactura avanzada, permitiendo mitigar perturbaciones externas y mejorar la adaptabilidad de los sistemas.
  • Se analiza la aplicación de criptografía caótica para la protección de redes industriales, un factor clave en la implementación de Minería 4.0 y 5.0.
  • Se exploran las barreras para la implementación de modelos de optimización y big data, como la heterogeneidad de plataformas, la interoperabilidad y la disponibilidad limitada de datos.

El estudio muestra que el aprendizaje automático se usa cada vez más para mejorar procesos industriales difíciles. Los modelos híbridos (física + IA) son buenos para gestionar la incertidumbre y los modelos caóticos mejoran la ciberseguridad.

Pero aún hay problemas, como la necesidad de datos de alta calidad para entrenar modelos de machine learning, la escalabilidad de los algoritmos en entornos industriales distribuidos y la falta de estandarización en los protocolos de seguridad. También se destaca la importancia de usar análisis multi-escala y teoría del caos en el diseño de sistemas industriales resistentes.

El artículo propone varias líneas de investigación futura:

  • Desarrollo de modelos híbridos de predicción y control que combinen algoritmos de deep learning con principios de caos determinista y optimización bayesiana.
  • Integración de soluciones avanzadas de ciberseguridad, como sincronización de atractores caóticos y encriptación basada en memristores.
  • Implementación de proyectos piloto en minería e industrias de manufactura para validar la eficacia de los modelos de control predictivo en escenarios reales.
  • Desarrollo de metodologías de explicabilidad para la interpretación de modelos no lineales en la industria, permitiendo una adopción más amplia en el sector productivo.

El artículo analiza cómo se usan en la industria los modelos de control no lineal, la optimización con big data y las estrategias de ciberseguridad. El estudio subraya que es importante usar enfoques interdisciplinarios que integren la teoría del caos, el aprendizaje automático y las metodologías de control robusto. Esto se debe a que así se mejora la estabilidad y la eficiencia en la minería y la manufactura avanzada. También se destaca la importancia de crear normas y regulaciones para integrar estas tecnologías de manera segura y eficiente en la industria, enfrentando problemas externos y ciberataques.

Referencia:

ROJAS, L.; YEPES, V.; GARCÍA, J. (2025). Complex Dynamics and Intelligent Control: Advances, Challenges, and Applications in Mining and Industrial Processes. Mathematics, 13(6):961. DOI:10.3390/math13060961

Como el artículo está publicado en abierto, os lo dejo para su descarga.

Pincha aquí para descargar

Optimización de la inversión en ingeniería de la construcción mediante redes de atención gráfica y MCDM

Tenemos el placer de anunciar la publicación de un artículo en la revista Computers & Industrial Engineering, revista indexada en el primer cuartil del JCR. Se trata de una colaboración con colegas de Turquía, en especial con el profesor Vedat Toğan.

El artículo analiza si la integración de Graph Attention Networks (GAT) con metodologías multicriterio de toma de decisiones (MCDM) mejora la precisión y fiabilidad en la selección de proyectos de inversión en ingeniería de la construcción. La cuestión central es si los modelos de aprendizaje automático basados en redes superan a los métodos MCDM tradicionales a la hora de predecir la viabilidad de proyectos de inversión. Esta pregunta define el problema de la ineficacia en la selección de proyectos debido a la complejidad de los factores interdependientes y orienta el estudio hacia la evaluación de modelos predictivos basados en redes.

Metodología

El estudio emplea un enfoque híbrido que combina el juicio experto, los métodos MCDM y el aprendizaje automático avanzado. Se procesa un conjunto de datos de más de 33 000 proyectos de inversión en construcción, aplicando la selección de características mediante análisis de componentes principales (PCA) y la clasificación basada en criterios como el riesgo país, la calificación de desarrollo empresarial y el valor del proyecto. A partir de estos datos, se estructuran tres redes de inversión: regional, nacional y basada en el modo de financiación. Estas redes se introducen en modelos GAT, que aplican mecanismos de atención para predecir la viabilidad de la inversión. La validación del modelo se realiza mediante métricas de precisión, exhaustividad, puntuación F1 y curvas ROC, y se compara con árboles de decisión y modelos de bosque aleatorio.

Contribuciones relevantes

  1. Integración de aprendizaje automático y MCDM: El estudio demuestra cómo los GATs pueden mejorar la precisión en la selección de proyectos, combinando métodos MCDM y aprendizaje profundo.
  2. Desarrollo de modelos de inversión basados en redes: Se estructuran los datos de inversión en tres redes diferenciadas, proporcionando un marco novedoso para evaluar interdependencias entre proyectos.
  3. Validación de la eficacia de los GATs: Se logra una precisión superior al 99 % en la red regional y superior al 98 % en las redes nacionales y de financiación, destacando el potencial de los GATs en la planificación estratégica de inversiones.
  4. Aplicabilidad práctica en la toma de decisiones: Se demuestra la viabilidad de los GATs para mejorar herramientas de apoyo a la decisión en inversiones a gran escala, reduciendo riesgos financieros.

Discusión de resultados

Los modelos GAT basados en redes mejoran significativamente la precisión en la selección de proyectos de inversión en comparación con los métodos MCDM convencionales. La red regional es la que logra una mayor precisión, lo que sugiere que la agregación geográfica proporciona una base sólida para la toma de decisiones. Las redes nacionales y de financiación, aunque con una precisión ligeramente menor, siguen superando a los métodos tradicionales, lo que demuestra las ventajas del modelado de dependencias basadas en redes.

Las tasas de error, aunque mínimas, resaltan la necesidad de combinar modelos automatizados con la validación experta. En conclusión, los GAT son herramientas eficaces para la selección de proyectos, pero no deben reemplazar la toma de decisiones humanas. Además, se evidencia que los modelos basados en financiación capturan estructuras financieras clave que influyen en la viabilidad de los proyectos, lo que aporta un valor añadido a la evaluación del riesgo de inversión.

Líneas de investigación futuras

  1. Ampliación de modelos basados en redes: Explorar redes adicionales que incluyan marcos regulatorios y estabilidad económica para optimizar la toma de decisiones.
  2. Integración de datos en tiempo real: Incorporar tendencias de mercado y datos económicos actualizados para mejorar la capacidad predictiva.
  3. Comparación con otros modelos de aprendizaje profundo: Evaluar el desempeño de los GATs frente a otras variantes de redes neuronales gráficas como Graph Convolutional Networks (GCNs).
  4. Aplicación en otros sectores de infraestructura: Extender la metodología a sectores como el transporte y la planificación urbana para evaluar su aplicabilidad.
  5. Desarrollo de sistemas híbridos de apoyo a la decisión: Combinar técnicas MCDM con predicciones en tiempo real para maximizar la usabilidad en la práctica.

Conclusión

El estudio demuestra que la integración de GAT con MCDM mejora la toma de decisiones en inversiones en ingeniería de la construcción. Al estructurar los datos en modelos basados en redes, se proporciona un marco más preciso y contextualizado para la selección de proyectos. Los resultados confirman la superioridad de los modelos basados en redes frente a los enfoques tradicionales, especialmente en lo que respecta a la gestión de dependencias complejas entre proyectos. No obstante, se destaca la importancia de la validación experta para mitigar errores de clasificación. Las futuras investigaciones deben centrarse en mejorar las capacidades del modelo, integrar datos dinámicos y perfeccionar las herramientas de apoyo a la toma de decisiones para optimizar la selección de inversiones en ingeniería de la construcción.

Referencia:

MOSTOFI, F.; BAHADIR, U.; TOKDEMIR, O.B.; TOGAN, V.; YEPES, V. (2025). Enhancing Strategic Investment in Construction Engineering Projects: A Novel Graph Attention Network Decision-Support Model. Computers & Industrial Engineering, 203:111033. DOI:10.1016/j.cie.2025.111033

El artículo se puede descargar gratuitamente hasta el 5 de mayo de 2025 en el siguiente enlace: https://authors.elsevier.com/c/1kmrt1I2r-Q9z0

Aprendizaje supervisado en ingeniería civil

En un artículo anterior hablamos del aprendizaje no supervisado aplicado a la ingeniería civil. La otra rama del aprendizaje automático (machine learning) es el aprendizaje supervisado. Se trata de un enfoque que utiliza conjuntos de datos de entrada y sus correspondientes respuestas para entrenar modelos capaces de realizar predicciones sobre datos nuevos. Este método es particularmente útil en contextos donde se dispone de información previa sobre la variable que se desea predecir, lo que permite establecer relaciones y patrones en los datos.

El aprendizaje supervisado emerge como una herramienta muy poderosa en el campo de la ingeniería civil, ya que facilita la toma de decisiones y la optimización de procesos mediante el análisis de datos. Este enfoque se basa en el uso de algoritmos que aprenden a partir de un conjunto de datos etiquetados, lo que les permite realizar predicciones sobre nuevos datos. A continuación, se presentan algunas aplicaciones y beneficios del aprendizaje supervisado en este campo.

Técnicas de aprendizaje supervisado

Las técnicas de aprendizaje supervisado se dividen en dos categorías principales: clasificación y regresión. La clasificación se centra en predecir respuestas discretas, es decir, en asignar una etiqueta a un conjunto de datos. Por ejemplo, en el ámbito del correo electrónico, se puede clasificar un mensaje como genuino o spam. Este tipo de modelos se aplica en diversas áreas, como la imagenología médica, donde se pueden clasificar tumores en diferentes categorías de tamaño, o en el reconocimiento de voz, donde se identifican comandos específicos. La clasificación se basa en la capacidad de los modelos para categorizar datos en grupos definidos, lo que resulta esencial en aplicaciones como la evaluación crediticia, donde se determina la solvencia de una persona.

Por el contrario, la regresión se ocupa de predecir respuestas continuas, lo que implica estimar valores en un rango numérico. Por ejemplo, se puede utilizar la regresión para prever cambios en la temperatura o fluctuaciones en la demanda eléctrica. Este enfoque es aplicable en contextos como la previsión de precios de acciones, donde se busca anticipar el comportamiento del mercado, o en el reconocimiento de escritura a mano, donde se traduce la entrada manual en texto digital. La elección entre clasificación y regresión depende de la naturaleza de los datos y de la pregunta específica que se desea responder.

Selección del algoritmo adecuado.

La selección de un algoritmo de aprendizaje automático es un proceso que requiere un enfoque metódico, ya que hay que encontrar el equilibrio entre diversas características de los algoritmos. Entre estas características se encuentran la velocidad de entrenamiento, el uso de memoria, la precisión predictiva en nuevos datos y la transparencia o interpretabilidad del modelo. La velocidad de entrenamiento se refiere al tiempo que un algoritmo necesita para aprender de los datos, mientras que el uso de memoria se relaciona con la cantidad de recursos computacionales que requiere. La precisión predictiva es crucial, ya que determina la capacidad del modelo para generalizar a datos no vistos. Por último, la interpretabilidad se refiere a la facilidad con la que se pueden entender las decisiones del modelo, lo que es especialmente relevante en aplicaciones donde la confianza en el modelo es esencial.

El uso de conjuntos de datos de entrenamiento más grandes generalmente permite que los modelos generalicen mejor en datos nuevos, lo que se traduce en una mayor precisión en las predicciones. Sin embargo, la selección del algoritmo también puede depender del contexto específico y de las características de los datos disponibles.

Clasificación binaria y multicategoría

Al abordar un problema de clasificación, es fundamental determinar si se trata de un problema binario o multicategórico. En un problema de clasificación binaria, cada instancia se clasifica en una de las dos clases, como ocurre cuando se identifica la autenticidad de los correos electrónicos o su clasificación como spam. Este tipo de clasificación es más sencillo y, por lo general, se puede resolver con algoritmos diseñados específicamente para este propósito. En contraste, un problema de clasificación multicategórica implica más de dos clases, como clasificar imágenes de animales en perros, gatos u otros. Los problemas multicategóricos suelen ser más complejos, ya que requieren modelos más sofisticados que puedan manejar la diversidad de clases y sus interacciones.

Es importante señalar que algunos algoritmos, como la regresión logística, están diseñados específicamente para problemas de clasificación binaria y tienden a ser más eficientes durante el entrenamiento. Sin embargo, existen técnicas que permiten adaptar algoritmos de clasificación binaria para abordar problemas multicategóricos, lo que amplía su aplicabilidad.

Algoritmos de clasificación comunes

Existen diversos varios algoritmos de clasificación ampliamente utilizados en el campo del aprendizaje supervisado.

  • La regresión logística es uno de los métodos más comunes, ya que permite predecir la probabilidad de que una respuesta binaria pertenezca a una de las dos clases. Este algoritmo es valorado por su simplicidad y se emplea frecuentemente como punto de partida en problemas de clasificación binaria. Su capacidad para ofrecer una interpretación clara de los resultados lo convierte en una herramienta muy valiosa en diversas aplicaciones.
  • El algoritmo k-vecinos más cercanos (kNN) clasifica objetos basándose en las clases de sus vecinos más cercanos, utilizando métricas de distancia como la euclidiana o la de Manhattan. Este enfoque es intuitivo y fácil de implementar, aunque puede resultar costoso en términos de cálculo en conjuntos de datos grandes.
  • El soporte vectorial (SVM) es otro algoritmo destacado que clasifica datos al encontrar un límite de decisión lineal que separe las clases. En situaciones en las que los datos no son linealmente separables, se puede aplicar una transformación de kernel para facilitar la clasificación. Este método es especialmente útil en contextos de alta dimensionalidad, donde la complejidad de los datos puede dificultar la clasificación.
  • Las redes neuronales, inspiradas en la estructura del cerebro humano, son útiles para modelar sistemas altamente no lineales. Estas redes se entrenan ajustando las conexiones entre neuronas, lo que permite que el modelo aprenda patrones complejos en los datos. Aunque su interpretación puede ser más complicada, su capacidad para capturar relaciones no lineales las hace valiosas en diversas aplicaciones.
  • El clasificador Naïve Bayes se basa en la suposición de que la presencia de una característica en una clase no depende de la presencia de otras características. Este enfoque permite clasificar nuevos datos en función de la probabilidad máxima de pertenencia a una clase, lo que resulta útil en contextos en los que se requiere una clasificación rápida y eficiente.
  • El análisis discriminante clasifica los datos mediante combinaciones lineales de características, asumiendo que los diferentes conjuntos de datos tienen distribuciones gaussianas. Este método es apreciado por su simplicidad y facilidad de interpretación.
  • Los árboles de decisión permiten predecir respuestas basándose en decisiones tomadas en un árbol estructurado, donde cada rama representa una condición de decisión. Este enfoque es intuitivo y fácil de interpretar, por lo que es una opción popular en diversas aplicaciones.

Algoritmos de regresión comunes

Los algoritmos de regresión son esenciales para predecir valores continuos.

  • La regresión lineal es una técnica que describe una variable de respuesta continua como una función lineal de una o más variables predictoras. Este modelo es fácil de interpretar y se utiliza frecuentemente como referencia para modelos más complejos. Su simplicidad y eficacia en contextos lineales lo convierten en una opción inicial para el análisis de datos.
  • La regresión no lineal se utiliza cuando los datos presentan tendencias no lineales significativas. Este enfoque permite modelar relaciones más complejas que no pueden ser capturadas por modelos lineales, lo que resulta útil en contextos donde las variables interactúan de manera no lineal.
  • El modelo de regresión de procesos gaussianos es un enfoque no paramétrico que se utiliza para predecir valores continuos y es común en el análisis espacial. Este método es especialmente valioso en contextos donde se requiere interpolación y se trabaja con datos que presentan incertidumbre.
  • La regresión SVM, similar a su contraparte de clasificación, busca un modelo que se desvíe de los datos medidos en la menor cantidad posible. Este enfoque es útil en contextos de alta dimensionalidad, donde se espera que haya un gran número de variables predictoras.
  • El modelo lineal generalizado se utiliza cuando las variables de respuesta tienen distribuciones no normales, lo que permite abordar una variedad de situaciones en las que no se cumplen los supuestos de la regresión lineal.
  • Los árboles de regresión son una adaptación de los árboles de decisión que permiten predecir respuestas continuas, por lo que son útiles en contextos donde se requiere una interpretación clara y rápida.

Mejora de modelos

La mejora de un modelo implica aumentar su precisión y capacidad predictiva, así como prevenir el sobreajuste, que ocurre cuando un modelo se ajusta demasiado a los datos de entrenamiento y pierde capacidad de generalización. Este proceso incluye la ingeniería de características, que abarca la selección y transformación de variables, y la optimización de hiperparámetros, que busca identificar el conjunto de parámetros que mejor se ajustan al modelo.

  • La selección de características es un aspecto crítico en el aprendizaje supervisado, especialmente en conjuntos de datos de alta dimensión. Este proceso permite identificar las variables más relevantes para la predicción, lo que no solo mejora la precisión del modelo, sino que también reduce el tiempo de entrenamiento y la complejidad del mismo. Entre las técnicas de selección de características se encuentran la regresión por pasos, que implica agregar o eliminar características de manera secuencial, y la regularización, que utiliza estimadores de reducción para eliminar características redundantes.
  • La transformación de características es otra estrategia importante que busca mejorar la representación de los datos. Técnicas como el análisis de componentes principales (PCA) permiten realizar transformaciones lineales en los datos, que capturan la mayor parte de la varianza en un número reducido de componentes. Esto resulta útil en contextos donde se trabaja con datos de alta dimensionalidad, ya que facilita la visualización y el análisis.
  • La optimización de hiperparámetros es un proceso iterativo que busca encontrar los valores óptimos para los parámetros del modelo. Este proceso puede llevarse a cabo mediante métodos como la optimización bayesiana, la búsqueda en cuadrícula y la optimización basada en gradientes. Un modelo bien ajustado puede superar a un modelo complejo que no ha sido optimizado adecuadamente, lo que subraya la importancia de este proceso en el desarrollo de modelos efectivos.

Aplicaciones del aprendizaje supervisado en ingeniería civil

  • Predicción de fallos estructurales: los modelos de aprendizaje supervisado se utilizan para predecir fallos en estructuras como puentes y edificios. Al analizar datos históricos de inspecciones y condiciones ambientales, es posible identificar patrones que indiquen un posible fallo estructural. Esto permite a los ingenieros realizar mantenimientos preventivos y mejorar la seguridad de las infraestructuras.
  • Optimización de recursos en construcción: en la planificación de proyectos, el aprendizaje supervisado optimiza el uso de recursos como, por ejemplo, materiales y mano de obra. Al predecir la demanda de recursos en función de variables como el clima y la evolución del proyecto, es posible reducir costes y mejorar la eficiencia.
  • Análisis de riesgos: los modelos de aprendizaje supervisado son útiles para evaluar riesgos en proyectos de ingeniería civil. Al analizar datos sobre desastres naturales, como inundaciones y terremotos, se pueden identificar zonas vulnerables y desarrollar estrategias de mitigación eficaces.
  • Control de infraestructuras: la incorporación de sensores en infraestructuras permite la recolección de datos en tiempo real. Los algoritmos de aprendizaje supervisado pueden analizar estos datos para detectar anomalías y prever el mantenimiento necesario, lo que contribuye a la sostenibilidad y durabilidad de las estructuras.

Por tanto, el aprendizaje supervisado se está consolidando como una herramienta esencial en ingeniería civil, ya que ofrece soluciones innovadoras para predecir, optimizar y controlar infraestructuras. Su capacidad para analizar grandes volúmenes de datos y ofrecer información valiosa está transformando la forma en que se gestionan los proyectos en este ámbito.

Os dejo un mapa mental acerca del aprendizaje supervisado.

También os dejo unos vídeos al respecto. Espero que os sean de interés.

Referencias

  1. Garcia, J., Villavicencio, G., Altimiras, F., Crawford, B., Soto, R., Minatogawa, V., Franco, M., Martínez-Muñoz, D., & Yepes, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction142, 104532.
  2. Kaveh, A. (2024). Applications of artificial neural networks and machine learning in civil engineering. Studies in computational intelligence1168, 472.
  3. Khallaf, R., & Khallaf, M. (2021). Classification and analysis of deep learning applications in construction: A systematic literature review. Automation in construction129, 103760.
  4. Mostofi, F., & Toğan, V. (2023). A data-driven recommendation system for construction safety risk assessment. Journal of Construction Engineering and Management149(12), 04023139.
  5. Naderpour, H., Mirrashid, M., & Parsa, P. (2021). Failure mode prediction of reinforced concrete columns using machine learning methods. Engineering Structures248, 113263.
  6. Reich, Y. (1997). Machine learning techniques for civil engineering problems. Computer‐Aided Civil and Infrastructure Engineering12(4), 295-310.
  7. Thai, H. T. (2022). Machine learning for structural engineering: A state-of-the-art review. In Structures (Vol. 38, pp. 448-491). Elsevier.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Aprendizaje no supervisado en la ingeniería civil

El aprendizaje no supervisado es una rama del aprendizaje automático (Machine Learning) que se centra en analizar y estructurar datos sin etiquetas ni categorías predefinidas. A diferencia del aprendizaje supervisado, en el que los modelos se entrenan con datos etiquetados, en el aprendizaje no supervisado los algoritmos deben identificar de manera autónoma patrones, relaciones o estructuras ocultas dentro de los datos. Se trata de una herramienta poderosa para explorar y entender datos complejos sin la necesidad de etiquetas predefinidas, descubriendo patrones y estructuras ocultas que pueden ser de gran valor en diversas aplicaciones prácticas.

El aprendizaje no supervisado permite analizar datos sin un objetivo definido o sin conocimiento previo de su estructura. Este enfoque es ideal para explorar patrones latentes y reducir la dimensionalidad de grandes conjuntos de datos, lo que facilita una mejor comprensión de su estructura. Además, al no depender de etiquetas previamente asignadas, permite adaptarse de manera flexible a diversos tipos de datos, incluidos aquellos cuya estructura subyacente no es evidente. Esta característica lo hace especialmente valioso en ámbitos como la exploración científica y el análisis de datos de mercado, donde los datos pueden ser abundantes, pero carecer de categorías predefinidas.

A pesar de sus ventajas, el aprendizaje no supervisado plantea desafíos como la interpretación de los resultados, ya que sin etiquetas predefinidas puede ser difícil evaluar la precisión de los modelos. Además, la elección del número óptimo de grupos o la validación de las reglas de asociación descubiertas puede requerir la intervención de expertos y métodos adicionales de validación.

El aprendizaje no supervisado incluye diversas técnicas que permiten analizar y extraer patrones de grandes conjuntos de datos sin necesidad de etiquetas. Una de las principales técnicas es el agrupamiento (clustering), que busca dividir los datos en grupos basados en similitudes inherentes. Existen dos tipos de algoritmos de agrupamiento: el agrupamiento duro, que asigna un dato a un único grupo, y el agrupamiento suave, que permite que un dato pertenezca a varios grupos con diferentes grados de pertenencia. Técnicas como k-means y k-medoids se utilizan mucho en este contexto. Mientras que k-means busca minimizar la distancia entre los datos y los centros de los grupos, k-medoids es más robusto frente a valores atípicos y adecuado para datos categóricos. Por otro lado, el agrupamiento jerárquico genera un dendrograma que permite explorar relaciones jerárquicas en los datos. Los mapas autoorganizados, que emplean redes neuronales, se utilizan para reducir la dimensionalidad de los datos sin perder su estructura y facilitar su interpretación en campos como la bioinformática y la economía.

En situaciones donde los datos tienen relaciones difusas, el agrupamiento suave, como el fuzzy c-means, asigna grados de pertenencia a cada dato, lo que resulta útil en áreas como la biomedicina. Los modelos de mezcla gaussiana, que utilizan distribuciones normales multivariadas, también se aplican a problemas complejos como la segmentación de mercado o la detección de anomalías. Además, el aprendizaje no supervisado incluye técnicas de asociación que buscan descubrir relaciones entre variables en grandes bases de datos, como el análisis de la cesta de la compra, donde se identifican productos que suelen comprarse juntos. También se utilizan técnicas de reducción de la dimensionalidad, que simplifican los datos de alta dimensionalidad sin perder mucha variabilidad. El análisis de componentes principales (PCA) es una técnica común en este ámbito, ya que transforma los datos en combinaciones lineales que facilitan su visualización y análisis, especialmente en casos de datos ruidosos, como los procedentes de sensores industriales o dispositivos médicos. Otras técnicas, como el análisis factorial y la factorización matricial no negativa, también se utilizan para reducir la complejidad de los datos y hacerlos más manejables, y son útiles en áreas como la bioinformática, el procesamiento de imágenes y el análisis de textos.

El aprendizaje no supervisado tiene diversas aplicaciones, como el análisis de clientes, que permite identificar segmentos con características o comportamientos similares, lo que optimiza las estrategias de marketing y la personalización de los servicios. También se utiliza en la detección de anomalías, ya que ayuda a identificar datos atípicos que pueden indicar fraudes, fallos en los sistemas o comportamientos inusuales en áreas industriales y financieras; en este campo, el análisis factorial revela dinámicas compartidas entre sectores económicos, lo que mejora la predicción de tendencias de mercado. En el procesamiento de imágenes, facilita tareas como la segmentación, que consiste en agrupar píxeles con características similares para identificar objetos o regiones dentro de una imagen. Además, en el análisis de textos, técnicas como la factorización matricial no negativa permiten descubrir temas latentes en grandes colecciones de documentos, mejorando los sistemas de recomendación y el análisis de sentimientos. En la investigación genómica, el clustering suave ha permitido identificar genes implicados en el desarrollo de enfermedades, lo que ha contribuido a avanzar en la medicina personalizada. Esta capacidad para analizar patrones complejos en datos biológicos ha acelerado el descubrimiento de biomarcadores y posibles dianas terapéuticas. Este enfoque también permite identificar correlaciones entre variables macroeconómicas que de otra manera podrían pasar desapercibidas. Por otro lado, el PCA se ha aplicado con éxito en la monitorización de sistemas industriales, ya que permite predecir fallos y reducir costes operativos mediante el análisis de variaciones en múltiples sensores. En el ámbito de la minería de textos, la factorización no negativa permite descubrir temas latentes, lo que mejora los sistemas de recomendación y análisis de sentimiento. Esto resulta particularmente valioso en aplicaciones de marketing digital, donde la segmentación precisa del contenido puede aumentar la eficacia de las campañas.

El aprendizaje no supervisado ha encontrado diversas aplicaciones en el ámbito de la ingeniería civil, ya que permite optimizar procesos y mejorar la toma de decisiones. A continuación, se destacan algunas de ellas:

  • Clasificación de suelos y materiales de construcción: Mediante técnicas de agrupación (clustering), es posible agrupar muestras de suelo o materiales de construcción según sus propiedades físicas y mecánicas. Esto facilita la selección adecuada de materiales para proyectos específicos y optimiza el diseño de cimentaciones y estructuras.
  • Análisis de patrones de tráfico: El aprendizaje automático permite identificar patrones en los flujos de tráfico, detectando comportamientos anómalos o recurrentes. Esta información es esencial para diseñar infraestructuras viales más eficientes y aplicar medidas de control de tráfico.
  • Monitorización de estructuras: Mediante la reducción dimensional y el análisis de datos procedentes de sensores instalados en puentes, edificios y otras infraestructuras, se pueden detectar anomalías o cambios en el comportamiento estructural. Esto contribuye a la prevención de fallos y al mantenimiento predictivo.
  • Optimización de rutas para maquinaria pesada: En proyectos de construcción a gran escala, el aprendizaje no supervisado ayuda a determinar las rutas más eficientes para la maquinaria, considerando factores como el terreno, el consumo de combustible y la seguridad, lo que se traduce en una mayor productividad y reducción de costes.
  • Segmentación de imágenes por satélite y aéreas: Las técnicas de aprendizaje no supervisado permiten clasificar y segmentar imágenes obtenidas de satélites o drones, identificando áreas urbanas, vegetación, cuerpos de agua y otros elementos. Esto es útil para la planificación urbana y la gestión de recursos naturales.
  • Análisis de datos de sensores en tiempo real: En la construcción de túneles y excavaciones, el análisis en tiempo real de datos de sensores puede realizarse mediante algoritmos no supervisados para detectar condiciones peligrosas, como deslizamientos de tierra o acumulación de gases, lo que mejora la seguridad en las obras.

En conclusión, el aprendizaje no supervisado es una herramienta versátil y potente para abordar problemas complejos y descubrir patrones ocultos en datos sin etiquetar. Su aplicación trasciende sectores, ya que ofrece soluciones prácticas para la investigación, la industria y el análisis de datos. En un mundo impulsado por el crecimiento exponencial de la información, el dominio de estas técnicas se presenta como una ventaja competitiva fundamental. La capacidad para analizar grandes volúmenes de datos y extraer información útil sigue siendo un motor clave de innovación y progreso.

Os dejo un mapa mental acerca del aprendizaje no supervisado.

Para profundizar en este tema, puedes consultar la siguiente conferencia:

Pincha aquí para descargar

Referencia:

GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Investigación reciente muestra cómo la inteligencia artificial optimiza la gestión del agua

En un estudio pionero, investigadores de la Universitat Politècnica de València y la Pontificia Universidad Católica de Valparaíso (Chile) han revelado el enorme potencial del aprendizaje automático (Machine Learning, ML) en la mejora de la integridad y calidad de las infraestructuras hídricas.

Publicado en la Applied Sciences, revista del primer cuartil del JCR, el estudio analiza en profundidad la literatura científica reciente sobre el tema, para lo cual revisa 1087 artículos con el fin de identificar las áreas más prometedoras en la aplicación de estas tecnologías a la gestión del agua. Esta revisión va más allá de lo convencional al aplicar modelos avanzados de procesamiento del lenguaje natural (NLP), específicamente BERTopic, que permiten comprender el contexto y los temas emergentes en esta área de investigación.

Contexto y relevancia del estudio

El mantenimiento de infraestructuras de agua seguras y eficientes es un desafío global, especialmente en un contexto de cambio climático, urbanización creciente y escasez de recursos hídricos. A medida que aumentan los eventos climáticos extremos, las infraestructuras se ven sometidas a un estrés adicional. Estas condiciones afectan al acceso y a la distribución de agua de calidad, clave para la salud pública, el medio ambiente y sectores estratégicos como la agricultura, la industria y la energía.

En este contexto, el aprendizaje automático se presenta como una herramienta potente para gestionar y optimizar la calidad y el suministro del agua. Los algoritmos de ML pueden procesar grandes volúmenes de datos de sensores y otras fuentes para mejorar las predicciones y la toma de decisiones en tiempo real. Además, permiten diseñar protocolos de tratamiento del agua más eficientes, reducir las pérdidas en las redes de distribución y anticiparse a los problemas antes de que se conviertan en fallos significativos.

Metodología y clasificación de temas

Para explorar el uso del ML en la gestión de infraestructuras hídricas, el equipo realizó una búsqueda sistemática en la base de datos Scopus, centrada en artículos en inglés publicados desde 2015. Los investigadores aplicaron el modelo BERTopic, una técnica de NLP que utiliza redes neuronales (transformers) entrenadas para identificar y organizar los principales temas en la literatura. Esto permitió clasificar con precisión los estudios en cuatro grandes áreas de aplicación:

  1. Detección de contaminantes y erosión del suelo: El uso de ML en esta área permite la detección avanzada de contaminantes como los nitratos y los metales pesados en las aguas subterráneas. Mediante imágenes satelitales y sensores en campo, estos modelos analizan factores ambientales y condiciones del suelo para predecir y mapear zonas de riesgo de contaminación y erosión.
  2. Predicción de niveles de agua: El estudio destaca cómo las técnicas de aprendizaje automático, incluidas las redes neuronales y los modelos de series temporales, pueden prever las fluctuaciones en los niveles de agua de ríos, lagos y acuíferos. Esto resulta crucial para la gestión de los recursos hídricos en situaciones climáticas extremas, como las inundaciones y las sequías, y también para optimizar el uso del agua en la agricultura y la industria.
  3. Detección de fugas en redes de agua: Las pérdidas de agua suponen un problema significativo en las redes de distribución, especialmente en las zonas urbanas. El estudio descubrió que el ML, junto con tecnologías de sensores IoT, permite la detección precisa de fugas mediante el análisis de patrones de flujo y presión en las tuberías. Los algoritmos pueden identificar y localizar fugas, lo que reduce el desperdicio y mejora la eficiencia de la distribución.
  4. Evaluación de la potabilidad y calidad del agua: Garantizar el acceso a agua potable es fundamental para la salud pública, y el estudio subraya la utilidad del aprendizaje profundo en el control de la calidad del agua. Los algoritmos analizan parámetros de calidad como la turbidez, el pH y la presencia de sustancias químicas nocivas, con el fin de asegurar la potabilidad. Estos modelos también permiten automatizar los sistemas de alerta temprana en zonas con infraestructuras hídricas vulnerables.

Implicaciones y futuros pasos

Este estudio concluye que el uso de aprendizaje automático en la gestión del agua permite una mayor eficiencia y sostenibilidad, y supone un paso adelante en la administración de los recursos hídricos frente a los desafíos ambientales en aumento. Los autores señalan que la combinación de ML con sistemas de monitoreo avanzado puede transformar la forma en que gestionamos las infraestructuras hídricas, permitiendo predicciones precisas y decisiones basadas en datos en tiempo real.

En el futuro, se centrarán en mejorar la precisión de los modelos para áreas específicas, así como en implementar estos sistemas a gran escala. Además, se abren nuevas oportunidades para optimizar las redes de distribución mediante sistemas automatizados, algo vital en un contexto donde el agua es un recurso cada vez más valioso y escaso.

Este estudio no solo aporta conocimiento a la comunidad científica, sino que también proporciona una base sólida para que gestores y responsables de políticas públicas integren el aprendizaje automático en sus prácticas de gestión del agua, avanzando así hacia una gestión hídrica más sostenible y resiliente.

Referencia:

GARCÍA, J.; LEIVA-ARAOS, A.; DÍAZ-SAAVEDRA, E.; MORAGA, P.; PINTO, H.; YEPES, V. (2023). Relevance of Machine Learning Techniques in Water Infrastructure Integrity and Quality: A Review Powered by Natural Language Processing. Applied Sciences, 13(22):12497. DOI:10.3390/app132212497

Pincha aquí para descargar

Revisión de estado del conocimiento en infraestructuras hídricas usando técnicas de aprendizaje automático

Acabamos de recibir la noticia de la publicación de nuestro artículo en la revista Applied Sciences, la cual está indexada en el JCR. Este estudio explora las diversas aplicaciones del aprendizaje automático (Machine Learning, ML) en relación con la integridad y calidad de las infraestructuras hidráulicas, identificando cuatro áreas clave donde se ha implementado con éxito. Estas áreas abarcan desde la detección de contaminantes en el agua y la erosión del suelo, hasta la predicción de niveles hídricos, la identificación de fugas en redes de agua y la evaluación de la calidad y potabilidad del agua.

Cabe destacar que esta investigación se llevó a cabo en el marco de una colaboración fructífera entre nuestro grupo de investigación e investigadores chilenos, liderados por el profesor José Antonio García Conejeros. El proyecto en sí, denominado HYDELIFE, forma parte de las iniciativas que superviso como investigador principal en la Universitat Politècnica de València.

Se realizó un análisis bibliográfico de artículos científicos a partir de 2015, que arrojó un total de 1087 artículos, para explorar las aplicaciones de las técnicas de aprendizaje automático en la integridad y la calidad de la infraestructura hídrica. Entre las contribuciones realizadas por el trabajo, caben destacar las siguientes:

  • Se identificaron cuatro áreas clave en las que el aprendizaje automático se ha aplicado a la gestión del agua: los avances en la detección de contaminantes del agua y la erosión del suelo, la previsión de los niveles del agua, las técnicas avanzadas para la detección de fugas en las redes de agua y la evaluación de la calidad y potabilidad del agua.
  • Destacó el potencial de las técnicas de aprendizaje automático (Random Forest, Support Vector Regresion, Convolutional Neural Networks y Gradient Boosting) combinadas con sistemas de monitoreo de vanguardia en múltiples aspectos de la infraestructura y la calidad del agua.
  • Proporcionó información sobre el impacto transformador del aprendizaje automático en la infraestructura hídrica y sugirió caminos prometedores para continuar con la investigación.
  • Empleó un enfoque semiautomático para realizar análisis bibliográficos, aprovechando las representaciones codificadas bidireccionales de Transformers (BERTopic), para abordar las limitaciones y garantizar una representación precisa de los documentos.
  • Las técnicas de aprendizaje automático ofrecen una alta precisión, un tiempo de procesamiento reducido y datos valiosos para la toma de decisiones en materia de gestión sostenible de los recursos y sistemas de alerta temprana.
  • La colaboración interdisciplinaria, los marcos integrados y las tecnologías avanzadas, como la teledetección y la IoT, son esenciales para avanzar en la investigación sobre la integridad y la calidad de la infraestructura hídrica.

Abstract:

Water infrastructure integrity, quality, and distribution are fundamental for public health, environmental sustainability, economic development, and climate change resilience. Ensuring the robustness and quality of water infrastructure is pivotal for sectors like agriculture, industry, and energy production. Machine learning (ML) offers the potential for bolstering water infrastructure integrity and quality by analyzing extensive data from sensors and other sources, optimizing treatment protocols, minimizing water losses, and improving distribution methods. This study delves into ML applications in water infrastructure integrity and quality by analyzing English-language articles from 2015 onward, compiling 1087 articles. A natural language processing approach centered on topic modeling was initially adopted to classify salient topics. From each identified topic, key terms were extracted and utilized in a semi-automatic selection process, pinpointing the most relevant articles for further scrutiny. At the same time, unsupervised ML algorithms can assist in extracting themes from the documents, generating meaningful topics often requires intricate hyperparameter adjustments. Leveraging the Bidirectional Encoder Representations from Transformers (BERTopic) enhanced the study’s contextual comprehension in topic modeling. This semi-automatic methodology for bibliographic exploration begins with broad categorizing topics, advancing to an exhaustive analysis. The insights drawn underscore ML’s instrumental role in enhancing water infrastructure’s integrity and quality, suggesting promising future research directions. Specifically, the study has identified four key areas where ML has been applied to water management: (1) advancements in the detection of water contaminants and soil erosion; (2) forecasting of water levels; (3) advanced techniques for leak detection in water networks; and (4) evaluation of water quality and potability. These findings underscore the transformative impact of ML on water infrastructure and suggest promising paths for continued investigation.

Keywords:

Water infrastructure integrity; machine learning; environmental sustainability; natural language processing; BERTopic

Reference:

GARCÍA, J.; LEIVA-ARAOS, A.; DÍAZ-SAAVEDRA, E.; MORAGA, P.; PINTO, H.; YEPES, V. (2023). Relevance of Machine Learning Techniques in Water Infrastructure Integrity and Quality: A Review Powered by Natural Language Processing. Applied Sciences, 13(22):12497. DOI:10.3390/app132212497

Pincha aquí para descargar

Aprendizaje profundo para la optimización del ciclo de vida de puentes mixtos de hormigón y acero

Acaban de publicarnos un artículo en Structures, revista indexada en el JCR. Se trata de la evaluación del coste del ciclo de vida mediante la función de densidad espectral de potencia en un puente de hormigón en ambiente costero. El artículo presenta una metodología que utiliza el aprendizaje profundo para acelerar los cálculos de las restricciones estructurales en un contexto de optimización, específicamente para un puente mixto de hormigón y acero. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El modelo de aprendizaje profundo óptimo está integrado por tres metaheurísticas: el método Obamo (Old Bachelor Acceptance with a Mutation Operator), el Cuckoo Search (CS) y los algoritmos de coseno sinusoidal (SCA). Esta integración da como resultado un posible aumento de 50 veces en la velocidad computacional en ciertos escenarios. El estudio destaca la viabilidad económica, las ramificaciones ambientales y las evaluaciones del ciclo de vida social de las soluciones de diseño optimizadas. Demuestra las ventajas de combinar el aprendizaje profundo con la optimización del diseño de la ingeniería civil, especialmente en lo que respecta al aumento del límite elástico del acero para cumplir objetivos medioambientales y sociales. La metodología propuesta en el documento se puede adaptar a una variedad de otras configuraciones estructurales, por lo que es aplicable más allá del caso específico del puente compuesto

La editorial permite la descarga gratuita del artículo hasta el 29 de noviembre de 2023 en la siguiente dirección: https://authors.elsevier.com/c/1humr8MoIG~oVG

Abstract:

The ability to conduct life cycle analyses of complex structures is vitally important for environmental and social considerations. Incorporating the life cycle into structural design optimization results in extended computational durations, underscoring the need for an innovative solution. This paper introduces a methodology leveraging deep learning to hasten structural constraint computations in an optimization context, considering the structure’s life cycle. Using a composite bridge composed of concrete and steel as a case study, the research delves into hyperparameter fine-tuning to craft a robust model that accelerates calculations. The optimal deep learning model is then integrated with three metaheuristics: the Old Bachelor Acceptance with a Mutation Operator (OBAMO), the Cuckoo Search (CS), and the Sine Cosine Algorithms (SCA). Results indicate a potential 50-fold increase in computational speed using the deep learning model in certain scenarios. A comprehensive comparison reveals economic feasibility, environmental ramifications, and social life cycle assessments, with an augmented steel yield strength observed in optimal design solutions for both environmental and social objective functions, highlighting the benefits of meshing deep learning with civil engineering design optimization.

Keywords:

Deep learning; Sustainability; Optimization; Bridges; Machine learning; Composite structures

Reference:

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2023). Deep learning classifier for life cycle optimization of steel-concrete composite bridges. Structures, 57:105347. DOI:10.1016/j.istruc.2023.105347

Auge de la construcción inteligente: un estudio revela tendencias y desafíos para el futuro

Acaban de publicarnos en la revista Journal of Building Engineering, que está en el primer decil del JCR, un artículo de revisión sobre el estado actual de los métodos modernos de construcción. Estos métodos, conocidos como “construcción inteligente“, son alternativas a la construcción tradicional. El gobierno del Reino Unido utilizó este término para describir una serie de innovaciones en la construcción de viviendas, la mayoría de las cuales se basan en tecnologías de construcción en fábrica. Este concepto abarca una amplia gama de tecnologías basadas en la fabricación modular, ya sea en el lugar de construcción o en otra ubicación, y está revolucionando la forma en que se construyen edificios de manera más rápida, rentable y eficiente. También se conoce comúnmente como construcción “off-site”. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El creciente interés por la sostenibilidad, las energías alternativas y los cambios en el estilo de vida debido a la pandemia ha impulsado la fabricación de edificaciones empleando los métodos modernos de construcción (Modern Methods of Construction, MMC), especialmente en el ámbito residencial. Estos métodos, que utilizan tecnologías innovadoras como alternativa inteligente a la construcción tradicional, han sido objeto de un exhaustivo estudio que busca clasificarlos, detectar tendencias y vacíos de conocimiento, y delinear futuras áreas de investigación. El análisis, basado en 633 publicaciones desde 1975 hasta 2022, revela seis grupos temáticos y 18 subcategorías, empleando una novedosa metodología mixta que incorpora el análisis de procesamiento de lenguaje natural (NLP). Si bien se destaca la presencia dominante de herramientas y tecnologías integradas en la Construcción 4.0 y los aspectos de gestión de la industria, también se identifican importantes lagunas de investigación, como la necesidad de aplicar más los MMC en la rehabilitación de edificios y abordar enfoques para mejorar el entorno construido a través del nuevo paradigma del diseño regenerativo. Este estudio exhaustivo ofrece una comprensión más profunda y rigurosa del estado del arte en el campo de la construcción inteligente mediante un mapeo y caracterización de la estructura conceptual del corpus bibliográfico y una evaluación sistemática basada en revisión de literatura. El artículo sugiere que se necesita más investigación para comprender los sistemas de construcción interdependientes mediante el uso de gemelos digitales.

Aspectos destacables:

  • El estudio utiliza aprendizaje automático combinado con una revisión sistemática de la literatura.
  • Se propone una novedosa metodología mixta que incorpora análisis de procesamiento de lenguaje natural.
  • Se recomienda una clasificación recientemente revisada para todos los MMC aplicados en edificios.
  • La literatura sobre MMC se clasificó en seis grandes áreas con 18 subcategorías.
  • Los temas se identifican mediante análisis de bigrama y agrupamiento, además del conocimiento experto.

Podéis descargar el artículo gratuitamente al tratarse de una publicación en acceso abierto:

https://www.sciencedirect.com/science/article/pii/S235271022300904X?via%3Dihub

Abstract:

The concerns surrounding sustainability, alternative energies, and lifestyle changes due to the pandemic have resulted in a surge in the manufacturing of buildings utilizing Modern Methods of Construction (MMC), particularly in housing. These methods involve using new technologies as smart building alternatives to traditional construction. Against the backdrop of Industry 4.0, there is an urgent need for a systematic literature review of MMCs in building construction to classify them, detect trends and gaps, and outline future research areas. This study analyzed 633 publications from 1975 to 2022 and grouped them into six thematic clusters and 18 subcategories, using a novel mixed methodology incorporating natural language processing (NLP) analysis. The qualitative analysis of the literature indicates that research in the field is dominated by tools and technologies integrated into Construction 4.0 and the industry’s management aspects. However, this review also highlights several gaps in research, including the need for more application of MMC to building retrofitting and the need for approaches to improve the built environment through the new paradigm of regenerative design. The high-level mapping and characterization of the bibliographic corpus’s conceptual structure and the classical evaluation process based on systematic literature review (SLR) have provided a more profound and rigorous state-of-the-art understanding.

Keywords:

Modern methods of construction; Industrialized buildings; Emerging technologies; Construction industry; Machine learning; Systematic literature review

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Journal of Building Engineering, 73:106725. DOI:10.1016/j.jobe.2023.106725

Como el artículo se encuentra en abierto, os lo podéis descargar aquí:

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.