Reducción de costes en la construcción con encofrados

Figura 1. Encofrado de aluminio. https://construccionesrmc.com/tipos-de-encofrados/

Los encofrados tienen la función de moldear el hormigón según el tamaño y la forma deseados, además de controlar su posición y alineación. Sin embargo, más que simplemente ser moldes, los encofrados son estructuras temporales que soportan su propio peso, el del hormigón recién colocado y las cargas vivas de la construcción, que incluyen materiales, equipos y personal.

El encofrado es una estructura temporal en el sentido de que se construye rápidamente, soporta una carga elevada durante unas pocas horas durante el vertido del hormigón, y se desmonta en pocos días para ser reutilizada en el futuro. Además, otros elementos clásicos en su naturaleza temporal son las conexiones, refuerzos, anclajes y dispositivos de ajuste necesarios para los encofrados.

En el caso de los encofrados de hormigón, la noción de “estructuras temporales” no refleja completamente la realidad. De hecho, los encofrados, sus componentes y accesorios se utilizan una y otra vez a lo largo de su vida útil. Por esta razón, es esencial emplear materiales altamente duraderos y de fácil mantenimiento. El diseño del encofrado debe permitir su montaje y desmontaje eficiente para maximizar la productividad en las obras. El proceso de desmontaje o desencofrado de los encofrados depende de factores como la adherencia entre el hormigón y el encofrado, así como la rigidez y contracción del hormigón. En lo posible, los encofrados deberían permanecer en su lugar durante todo el período de curado.

Sin embargo, para lograr su reutilización, es crucial determinar el momento óptimo para retirarlos, lo cual se basa en señales como la ausencia de deflexiones o distorsiones excesivas y la inexistencia de grietas u otros daños en el hormigón debido a la remoción del encofrado o sus apoyos. En cualquier caso, los encofrados no deben retirarse hasta que el hormigón haya alcanzado la suficiente dureza para soportar su propio peso y cualquier otra carga adicional que pueda tener. La superficie del hormigón también debe ser lo suficientemente resistente como para no dañarse ni marcarse al retirar cuidadosamente los encofrados.

Figura 2. Encofrado metálico. https://www.arcus-global.com/wp/funcion-y-tipos-de-encofrados/

En los procedimientos constructivos que emplean encofrados, los principales objetivos son garantizar la calidad, asegurar la seguridad tanto para los trabajadores como para la estructura de hormigón, y buscar soluciones económicas que cumplan con los requisitos de calidad y seguridad. Para lograr estos objetivos, es esencial una buena cooperación y coordinación entre el proyectista y el contratista. La economía es especialmente relevante, pues los costos de los encofrados pueden representar entre el 25% y el 35% del coste total de la estructura.

Tabla 1. Distribución de los costes asignados a cada una de las unidades componentes de la estructura de hormigón (Concrete Society, 1995)

Concepto Coste del material Coste de mano de obra y varios % del coste total
Hormigón 12% 8% 20%
Armaduras 19% 6% 25%
Encofrados y cimbras 8% 27% 35%
Varios 13% 7% 20%
Total 52% 48% 100%

Por tanto, si se tuviera que reducir el coste del encofrado, se deberían atender a los siguientes aspectos:

1. Planificación para el máximo reuso: Diseñar encofrados para un uso máximo puede implicar una mayor inversión en su resistencia y costo inicial, pero esto puede resultar en ahorros significativos en el costo total del proyecto.

2. Construcción económica del encofrado:

    • Utilizar encofrados prefabricados en taller: Proporciona la máxima eficiencia en condiciones de trabajo y en el empleo de materiales y herramientas.
    • Establecer un área de taller en el lugar de la obra: Ideal para encofrados de secciones grandes o cuando los costos de transporte son altos.
    • Emplear encofrados construidos en el lugar de la obra: Adecuados para trabajos más pequeños o cuando los encofrados deben adaptarse al terreno.
    • Comprar encofrados prefabricados (para múltiples reutilizaciones).
    • Alquilar encofrados prefabricados (mayor flexibilidad para ajustarse al volumen de trabajo).

3. Colocación y desmontaje:

    • Repetir tareas para incrementar la eficiencia del equipo a medida que avanza el trabajo.
    • Utilizar conexiones metálicas con abrazaderas o pasadores especiales que sean seguros y fáciles de montar y desmontar.
    • Incorporar características adicionales que faciliten el manejo, montaje y desmontaje, como asas o puntos de elevación.

4. Grúas y montacargas:

    • Limitar el tamaño de las secciones del encofrado a la capacidad de la grúa más grande planificada para el trabajo.
    • Completar las torres de escaleras temprano en el cronograma para utilizarlas en el traslado de personal y materiales.
    • Dejar una bahía abierta para permitir el movimiento de grúas móviles y camiones de hormigón.

5. Montaje de armadura:

    • El diseño del encofrado puede permitir que las barras de refuerzo se ensamblen previamente antes de la instalación, lo que crea condiciones más favorables.

6. Colocación del hormigón:

    • Los levantamientos altos en la construcción de paredes pueden dificultar la colocación y vibración del hormigón.
    • La tasa de colocación está limitada por el diseño del encofrado.

Implementar estrategias de reducción de costos en estas áreas clave contribuirá a una construcción más eficiente y rentable, sin comprometer la calidad y seguridad del proyecto.

Os dejo un vídeo explicativo que, espero, sea de vuestro interés.

Referencias:

  • CONCRETE SOCIETY (1995). Formwork: A guide to good practice. Concrete Society Special Publication CS030. 2nd edition, London, 294 pp.
  • PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.
  • RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3
  • YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La inteligencia artificial en la ingeniería civil: oportunidades y desafíos

Tengo el placer de compartir un artículo que se ha publicado en la revista IC Ingeniería Civil, que es una publicación mensual editada por el Colegio de Ingenieros Civiles de México. En este artículo se analiza el uso de la inteligencia artificial en la ingeniería civil, incluyendo la toma de decisiones, gestión de proyectos y monitorización de infraestructura. Destaca las oportunidades de la IA para elevar la calidad y la seguridad de las infraestructuras, reducir costos y acelerar la resolución de problemas complejos. También se señalan los desafíos y la necesidad de una colaboración interdisciplinaria para garantizar su utilización responsable y efectiva.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Referencia:

YEPES, V.; KRIPKA, M.; YEPES-BELLVER, L.; GARCÍA, J. (2023). La inteligencia artificial en la ingeniería civil: oportunidades y desafíos. IC Ingeniería Civil, 642:20-23.

Como se trata de un artículo en abierto, os lo paso para su lectura. Espero que os interese.

Descargar (PDF, 380KB)

Encofrados plásticos en forjados bidireccionales: bañeras o cubetas

Figura 1. Cubetas de plástico recuperable. https://www.ulmaconstruction.es/es-es/encofrados/encofrados-losas/encofrado-recuperable-forjado-reticular-recub

Las cubetas o bañeras son elementos de uso frecuente en forjados bidireccionales. Se presentan en dimensiones habituales de 80/80 – 90/90 y un espesor de 25/40 cm. Estos moldes, fabricados en plástico, ofrecen diversas ventajas, como su ligereza, resistencia al impacto, inmunidad al óxido y capacidad para generar superficies de hormigón lisas.

Es importante realizar una limpieza minuciosa después de cada uso, eliminando los residuos de hormigón con espátulas y aplicando agua a presión para garantizar una limpieza completa. La mayoría de estas cubetas incorpora una válvula que permite inyectar aire a presión en caso de que queden adheridas al hormigón, facilitando así su desencofrado.

Su vida útil puede variar, siendo de alrededor de dos años con un trato normal, un año con un trato descuidado y hasta cuatro años con una manipulación cuidadosa.

Cabe destacar que, en caso de rotura, estas piezas pueden ser reparadas mediante soldadura, aunque la decisión de reparar o reemplazar dependerá principalmente de criterios económicos, ya que el costo de reparación podría superar el de fabricación de una nueva pieza.

Figura 2. Forjado reticular de casetones recuperables. Imagen de Enrique Alario https://twitter.com/EnriqueAlario/status/1027113674455048192

Para prolongar la vida útil de las cubetas, es fundamental evitar ciertas prácticas. Se debe evitar tirar las piezas durante el desencofrado, instalarlas sin limpieza previa o sin aplicar desencofrantes, arrojar piezas del encofrado metálico sobre ellas, desplazarlas arrastrándolas sobre el forjado y apilarlas al aire libre sin protección. La exposición a la lluvia y al frío puede deformarlas.

Asimismo, en el mercado existen sistemas innovadores con piezas modulares plásticas que permiten un montaje rápido y ordenado desde la superficie de apoyo, gracias a su ligereza. También hay disponibles cubetas no recuperables (perdidas) diseñadas específicamente para forjados sanitarios, capaces de soportar sobrecargas de hasta 1000 kg/m².

Os dejo unos vídeos explicativos, que creo son de interés.

Referencias:

  • MONTERO, E. (2006). Puesta en obra del hormigón. Consejo General de la Arquitectura Técnica de España, 750 pp.
  • PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.
  • RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3
  • YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Productos desencofrantes de desmoldeo

Figura 1. Aplicación de un producto desencofrante. https://www.libreriaingeniero.com/2019/06/desencofrantes-tipos-usos-y-ventajas.html

El desencofrante es un producto químico diseñado para evitar que el hormigón o el mortero se adhieran al retirar el encofrado, lo que permite mantener la superficie encofrante en óptimas condiciones. Su uso proporciona una serie de ventajas significativas: ofrece un desencofrado rápido y eficaz, sin ser tóxico ni dañar el medio ambiente. Además, no mancha el hormigón y contribuye a prolongar la vida útil del encofrado, reduciendo el desgaste de la madera. Un punto importante es que no ataca ni afecta a los moldes metálicos ni a las partes de goma que conforman cualquier tipo de encofrado. Al ser altamente eficiente, su rendimiento es notable y, por ende, resulta económico. Utilizar este desencofrante ahorra tiempo y mano de obra en la limpieza posterior de los encofrados, lo que lo convierte en una opción valiosa y conveniente para proyectos de construcción y obras de hormigón.

Es fundamental emplear exclusivamente productos desencofrantes de fabricación industrial, proporcionando al director de ejecución información detallada sobre su marca, tipo y composición. Estos productos deben seleccionarse cuidadosamente para asegurar que no afecten la calidad ni el aspecto del hormigón, y su aplicación debe llevarse a cabo de forma meticulosa para evitar cualquier contacto con las armaduras activas o pasivas.

La razón principal para emplear estos productos radica en su capacidad para evitar la adherencia entre el hormigón y el encofrado, creando una película hidrófuga sobre la superficie del hormigón. No obstante, es crucial tener en cuenta que en ningún caso deben entrar en contacto con las armaduras, pues podría perjudicar la adherencia adecuada con el hormigón. Para mitigar cualquier riesgo asociado, se deben usar separadores que garanticen una correcta distancia y eviten cualquier posibilidad de contacto no deseado entre el producto desencofrante y las armaduras. Al seguir estas precauciones, se asegura un acabado óptimo y duradero en las estructuras de hormigón.

Los productos de este tipo deben cumplir con una serie de características fundamentales. En primer lugar, deben permitir una aplicación sencilla en capas continuas y uniformemente delgadas, sin provocar coqueras, variaciones de color u otros defectos en la superficie del hormigón. Es esencial que no se mezclen con el agua para evitar que penetren en el hormigón y alteren el fraguado. Asimismo, es importante que no reaccionen ni con el hormigón ni con el encofrado. Además, se espera que proporcionen una mayor durabilidad al encofrado, permitiendo un aumento en el número de usos. Durante su aplicación, no deben generar efectos nocivos como dermatitis o alergias en los operarios que los manipulan. Por último, deben facilitar la limpieza de los moldes, garantizando así un proceso más eficiente y efectivo en su utilización.

No obstante, la acción aislante de estos productos desmoldantes se ve limitada por la baja resistencia de la película a los efectos de temperatura y abrasión. Los desmoldantes basados en procesos químicos forman películas que ofrecen una mayor resistencia, pues la reacción entre la pasta de cemento y el producto crea una capa jabonosa que asegura una clara separación entre el hormigón y el encofrado. Para seleccionar el desmoldante adecuado, se realizan pruebas en un muro de muestra, teniendo en cuenta todos los factores que puedan influir en un proyecto específico.

Existen distintos tipos de desmoldantes, entre ellos:

  1. Aceites: Los desmoldantes de aceites minerales puros tienden a dejar residuos en el hormigón y su efecto separador es pequeño, basándose principalmente en procesos físicos. Se recomiendan para tareas simples de desencofrado con poca exigencia en la calidad del acabado superficial del hormigón. Algunos productos de aceite mineral incorporan aditivos para mejorar su efecto separador mediante la combinación de procesos físicos y químicos para lograr un mejor rendimiento.
  2. Emulsiones: Las emulsiones se dividen en dos tipos: agua en aceite y aceite en agua, siendo estas últimas más estables. Las emulsiones de aceite en agua se suministran como concentrados de aceite a los cuales se les agrega un determinado volumen de agua in situ. El efecto separador de estas emulsiones depende del índice de concentración. Al agregar agua a los desencofrantes más comunes del mercado, se observa que en ninguno de los casos es fácil removerlos con agua, pues el líquido resbala sobre la película formada.

La forma más sencilla de aplicar estos productos es mediante nebulización a presión, aunque en muchas ocasiones también se utilizan métodos convencionales como brocha o rodillo, siempre buscando obtener una capa delgada y uniforme. Es imprescindible que la superficie de los encofrados sobre los que se aplicará el producto esté completamente limpia y preparada. En el caso de encofrados de madera, es necesario saturarlos previamente con agua antes de aplicar el producto de desmoldeo. Si se trata de hormigones vistos, se recomienda realizar ensayos previos antes de seleccionar los productos adecuados. La elección cuidadosa y la correcta aplicación de estos productos son fundamentales para obtener un resultado óptimo y garantizar la calidad del acabado.

El artículo 48.4 del Código Estructural indica lo siguiente respecto a los productos desencofrantes:

“Salvo indicación expresa de la dirección facultativa, el constructor podrá seleccionar los productos empleados para facilitar el desencofrado y el fabricante de elementos prefabricados los correspondientes al desmoldeo. Los productos serán de la naturaleza adecuada y deberán elegirse y aplicarse de manera que no sean perjudiciales para las propiedades o el aspecto del hormigón, que no afecten a las armaduras o los encofrados, y que no produzcan efectos perjudiciales para el medioambiente. No se permitirá la aplicación de gasóleo, grasa corriente o cualquier otro producto análogo.

Además, no deberán impedir la posterior aplicación de revestimientos superficiales, ni la posible ejecución de juntas de hormigonado.

Previamente a su aplicación, el constructor facilitará a la dirección facultativa un certificado, firmado por persona física, que refleje las características del producto desencofrante que se pretende emplear, así como sus posibles efectos sobre el hormigón.

Se aplicarán en capas continuas y uniformes sobre la superficie interna del encofrado o molde, debiéndose verter el hormigón dentro del período de tiempo en el que el producto sea efectivo según el certificado al que se refiere el párrafo anterior”.

A continuación os dejo un catálogo de la empresa Fuchs que incluye los desencofrantes.

Descargar (PDF, 5.96MB)

Os dejo un par de vídeos sobre desencofrantes. Espero que os sean de interés.

Referencias:

  • MONTERO, E. (2006). Puesta en obra del hormigón. Consejo General de la Arquitectura Técnica de España, 750 pp.
  • PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.
  • RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3
  • YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Encofrados de contrachapado fenólico

Figura 1. Contrachapado fenólico para encofrados. https://www.ulmaconstruction.es/es-es/encofrados/vigas-madera-tableros/vigas-tableros-madera/tableros-contrachapados-fenolicos

Los tableros contrachapados son una variedad de tablero de madera compuesta por la unión de finas chapas de madera reforzada, las cuales se pegan con las fibras dispuestas transversalmente una sobre otra, utilizando resinas sintéticas y aplicando fuerte presión y calor. Esta técnica confiere al tablero una gran estabilidad dimensional y resistencia, logrando un aspecto similar al de la madera maciza. Estos tableros son conocidos con diferentes nombres según la región geográfica, como multilaminado, triplay o madera terciada, y en países de habla inglesa, se les llama plywood.

En su proceso de fabricación, se dispone un número impar de chapas, que se ensamblan alternando las direcciones de la veta. Es decir, cada chapa está dispuesta en sentido perpendicular respecto a la siguiente o la anterior. Esto les confiere muchas de sus ventajas frente a otras clases de paneles. Por lo general, se emplean chapas con espesores de 2 a 3 mm, aunque cabe mencionar que pueden existir variantes en cuanto al grosor utilizado.

Dentro de los tableros multicapas hay diferencias, así por poner un ejemplo para un acabado especial, se podría emplear un tablero abedul-abedul de 15 capas y para uno normal, otro abeto-abeto de 8 capas.

Los contrachapados se emplean en la construcción, especialmente para superficies de encofrados en contacto directo con el hormigón. En cuanto al encolado de estos encofrados, las resinas fenólicas soportan el ataque de microorganismos y tanto al agua fría como caliente.

Este tablero contrachapado de superficie lisa es altamente resistente y versátil, permitiendo una mayor cantidad de usos repetidos que los tableros convencionales, además de ofrecer un excelente acabado para el hormigón visto.

El contrachapado fenólico ha ganado una creciente popularidad en la industria de la construcción debido a sus propiedades mecánicas excepcionales y su notable resistencia a la intemperie. Ampliamente empleado en la construcción de puentes, muros y techos, este material ofrece una amplia gama de aplicaciones en encofrados.

Compuesto por múltiples capas de hojas de madera impregnada con resina fenólica, un material sintético extremadamente resistente, el contrachapado fenólico se une mediante un adhesivo robusto y es sometido a presión y calor para formar una hoja rígida y duradera. Como resultado, supera con creces tanto a la madera como al contrachapado en términos de resistencia y durabilidad, lo que lo convierte en una elección insuperable en numerosas aplicaciones de construcción.

Figura 2. Tablero contrachapado fenólico. https://www.alsina.com/es-la/productos-y-soluciones/componentes-y-fenolicos/

Entre las ventajas destacadas de estos paneles se encuentran sus dimensiones lo suficientemente grandes, sin juntas, lo que permite una colocación y retirada económicas; su variedad de espesores disponibles; sus propiedades físicas consistentes; la economía que ofrece debido a sus múltiples usos; las superficies lisas, lo que reduce el coste del acabado final de los paramentos; y su bajo coste de fabricación. Como inconvenientes se puede indicar que solamente permiten leves curvaturas.

El gran éxito del tablero contrachapado para encofrado se debe a varias razones fundamentales:

  1. Ahorro de madera: Gracias a la reducción de medidas, se minimizan las pérdidas de material.
  2. Rápido armado: Los operarios están familiarizados con el sistema utilizado en construcciones anteriores, lo que agiliza el montaje.
  3. Menos personal especializado: La facilidad de uso permite que personal semiespecializado pueda ensamblar los encofrados estandarizados, reduciendo la necesidad de mano de obra especializada.
  4. Prefabricación y estandarización: La fabricación en grandes series y el empleo de grúas ligeras para su manejo permiten un ahorro significativo de tiempo y mano de obra en la construcción.
  5. Ventajas en entornos congestionados: La posibilidad de fabricar las unidades del encofrado en la fábrica, en lugar de hacerlo en la obra, es especialmente beneficiosa en lugares de construcción con limitaciones de espacio.
  6. Plazos de entrega más cortos: La estandarización, prefabricación y reducción en el trabajo de acabado contribuyen a plazos de entrega más rápidos y menor gasto en intereses.

Los contrachapados presentan variaciones según su tipo, que incluyen la especie de madera utilizada, la calidad de las chapas (donde generalmente se especifica la calidad de las caras exteriores pero no siempre de las interiores), el espesor tanto de las chapas como del conjunto y el tipo de encolado utilizado. Estos parámetros influyen en las propiedades y usos específicos de cada tipo de contrachapado.

Según su uso o ambiente de utilización, se clasifican según las normas UNE-EN 335-1 y UNE-EN 314-2 para la calidad del encolado en:

  • Interior (Encolado 1): Fabricados empleando colas y resinas de urea-formaldehído.
  • Exterior Cubierto o semiexterior (Encolado 2): Se utilizan resinas de urea formaldehído melamínico.
  • Exterior (Encolado 3): En este tipo de ambientes, se requiere combinar maderas con buena resistencia natural a la humedad y podredumbre, junto con colas fenólicas.

Otro aspecto importante es la madera utilizada, pues diferentes tipos de madera otorgan distintas propiedades técnicas al contrachapado final. Por ejemplo, un contrachapado de abedul tendrá características diferentes al de okume. Además de la elección de la madera, es relevante considerar la calidad de la misma. Las fichas técnicas suelen hacer mención a la calidad de la cara, contracara y chapas interiores, ya que las necesidades varían según si el tablero se usará en construcción o en la fabricación de mobiliario.

En los encofrados, se utilizan dos tipos de contrachapados: uno diseñado para exteriores y otro para interiores. El contrachapado para exteriores se fabrica con una cola completamente impermeable y está destinado a lugares expuestos a condiciones climáticas adversas y humedad. Por otro lado, el contrachapado para interiores también es resistente a la humedad, aunque no es completamente impermeable. Se emplea en situaciones donde la exposición al mal tiempo y humedad no será excesiva. De esta manera, se asegura que cada tipo de contrachapado se emplea en el entorno adecuado, optimizando su rendimiento y durabilidad según las condiciones específicas de uso.

El contrachapado para exteriores se presenta con una o ambas caras revestidas por una capa dura y resistente de resinas fundidas impermeables, lo que garantiza una mayor durabilidad del pulido de las superficies y permite su reutilización en numerosas ocasiones. Los tableros de encofrado están recubiertos en ambos lados con una película fenólica, lo que les proporciona una superficie muy fina y también incrementa ligeramente su resistencia. Algunos constructores y fabricantes protegen las esquinas y los cantos usando perfiles de metal. Para prevenir la adhesión del hormigón al encofrado y asegurar un desencofrado sin dañar la superficie del hormigón o el encofrado, es completamente necesario aplicar pinturas de protección, aceitar los tableros o recubrirlos con películas fenólicas o film fenólico.

La medida más comúnmente utilizada en la industria de los tableros es el estándar de 244×122 cm, aunque también se encuentran tableros de 244×210 cm, especialmente para fines de construcción. En cuanto al espesor, varía entre 5 y 50 mm, siendo los espesores más frecuentes los mismos que para otros tableros, como 10, 12, 15, 16, 18 y 19 mm. Los espesores estándar del tablero contrachapado de encofrado son de 12 mm, que se utilizan en construcciones normales. Para construcciones más pesadas, se emplean tableros de 15-18 y 21 mm. Es importante destacar que los contrachapados con un espesor menor a 12 mm se reservan para aplicaciones en elementos especiales, como revestimientos de encofrados construidos con otros materiales o en superficies curvas, debido a que las láminas delgadas de madera contrachapada tienden a curvarse con relativa facilidad.

El contrachapado permite lograr curvas sencillas de forma fácil, obteniendo excelentes resultados cuando se cuenta con una superficie continua con la curvatura precisa para apoyar los paneles. En casos donde existan puntos críticos con curvaturas complicadas, se prefieren dos planchas delgadas superpuestas en lugar de una sola con el mismo grosor total. Además, si es necesario trabajar con radios de curvatura aún más pequeños, es posible lograrlos utilizando contrachapado para exteriores y aplicándoles previamente un tratamiento de humedecimiento y vaporización.

Para facilitar el despegado del encofrado, es necesario impregnar los tableros con una grasa especial o un agente similar. Para una mayor durabilidad, se puede aplicar una primera capa de pintura de aluminio. Este tratamiento asegura que el encofrado pueda retirarse sin dañar ni el hormigón ni la superficie del tablero. Es importante limpiar todos los residuos de hormigón y quitar los clavos antes de apilar los tableros para evitar el deterioro normal de la madera. Con un manejo adecuado, es posible emplear los mismos tableros un número elevado de veces. Incluso cuando están dañados y no son aptos para encofrar, todavía tienen un alto valor de recuperación para suelos, rampas o techos.

Los tableros fenólicos tienen una capacidad máxima de carga que puede variar dependiendo de las circunstancias. En situaciones normales, pueden soportar hasta 80 cargas, pero si se busca un acabado más cuidado, este número se reduce a 50. En condiciones especiales, la capacidad máxima puede disminuir aún más, llegando incluso a 20 o menos cargas. No obstante, la durabilidad del tablero fenólico depende no solo del espesor de la capa de revestimiento, que puede variar desde 540 hasta 120 g/m2, sino también del trato al que se le someta. Si se maneja con relativo cuidado, está bien sellado y se evita clavar en exceso, su vida útil será la adecuada.

Es crucial evitar el uso de un tablero inadecuado, pues esto podría ocasionar fallos superficiales en el hormigón. Un falso ahorro en esta partida podría generar costos adicionales mucho mayores para reparaciones o, en ocasiones extremas, incluso requerir demoliciones y nuevas construcciones.

Para prolongar la vida útil de los tableros, se deben seguir algunas recomendaciones durante su almacenamiento. En primer lugar, es fundamental evitar el contacto directo con agua y la exposición al sol. Al apilar los tableros sobre el suelo, es esencial comprobar que no haya presencia de agua ni barro en la zona de almacenamiento. Además, se debe evitar guardar los tableros en lugares excesivamente secos o con temperaturas elevadas, ya que esto podría provocar deformaciones. Al seguir estas pautas, se garantiza una mayor durabilidad y rendimiento de los tableros fenólicos.

Os dejo algunos vídeos explicativos. Espero que os sean de interés.

También os dejo un catálogo de Alsina sobre productos fenólicos y componentes.

Descargar (PDF, 4.71MB)

Referencias:

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Apeo de fachadas para el vaciado de edificios: estabilizadores de fachada

Figura 1. Apeo en fachada (Valencia). https://derribosdegeser.es/apeos-y-refuerzos-estructurales

La protección del patrimonio arquitectónico considera no solo el valor intrínseco de un edificio, sino también los valores que aporta al espacio público, especialmente la imagen exterior que ofrece la fachada. Las normas urbanísticas municipales muchas veces obligan a preservar dicha fachada y permiten demoler y reconstruir el resto de la estructura. Este es un proceso complejo que precisa del uso de apeos específicos que garanticen la seguridad y la estabilidad de estas fachadas mientras se procede a la demolición y reconstrucción del resto del edificio (Figura 1).

En los últimos años, se han incrementado significativamente este tipo de intervenciones, por lo que este tipo de apeos han llamado la atención y ha crecido la sensibilidad para que su empleo sea seguro. Estas estructuras de apeo, aunque sean temporales, deben proyectarse, calcularse y ejecutarse con el mismo nivel de detalle que cualquier otro tipo de estructura permanente. Además, al sustentar un elemento tan relevante en condiciones no previstas originalmente, que a menudo ha sido afectado por alteraciones o daños significativos, es fundamental llevar a cabo estudios pormenorizados que aborden estos aspectos con especial atención y cuidado.

Hemos asistido a una continua mejora en este tipo de intervenciones. Se refleja tanto en el cuidado con el que se resuelve el problema, empleando sistemas tradicionales de sustentación mediante estructuras tubulares interconectadas, como en el aumento de intervenciones basadas en estructuras de perfiles laminados diseñadas y construidas específicamente para este propósito. Además, se ha introducido en el mercado sistemas industrializados de estructuras para este tipo de apeos.

La estabilización del interior de la fachada (Figura 2) consiste en una estructura modular compuesta por vigas y tensores conectados mediante uniones atornilladas. Este sistema cuenta con diferentes niveles de correas y puntales, diseñados para unir los muros y solidarizar el movimiento entre ellos. Es importante que estos muros tengan la capacidad de soportar las cargas horizontales a las que estarán expuestos, pues la función del arriostramiento es asegurar una conexión sólida entre ellos, para que trabajen de manera conjunta y eficiente. La ingeniería de esta conexión posibilita la compatibilización de los desplazamientos horizontales entre el conjunto de muros y rigidizadores. Como resultado, parte de la carga se deriva hacia los otros muros arriostrados, lo que disminuye significativamente la tensión sobre el muro en estudio. Esto conlleva una reducción del riesgo de deformaciones y fisuraciones excesivas, contribuyendo a una mayor durabilidad y seguridad de la estructura.

Figura 2. Sistema de estabilización de fachada interior. https://www.incye.com/estabilizadores-de-fachada/interiores/

El proceso de apeo de la fachada involucra varias fases. En primer lugar, es importante obtener un profundo conocimiento previo de los elementos afectados por el apeo, lo que abarca tres aspectos esenciales: las características constructivas de la fachada y su relación con el resto del edificio, el estado de conservación y posibles daños, así como un estudio detallado del suelo y subsuelo donde se asentará el apeo. La siguiente etapa implica definir el propio apeo y establecer las medidas de seguridad necesarias, atendiendo a las particularidades específicas de la fachada y las lesiones presentes, considerando las acciones concretas requeridas, así como aspectos generales relacionados con la estabilización, como excentricidades de carga, pandeo, fuerzas del viento y sismicidad. Por último, la ejecución de las obras incluye medidas preliminares, como calado de forjados y tabiques para permitir el paso de elementos del apeo, junto con la implementación de apuntalamientos y consolidaciones específicas según el estado intrínseco de la fachada. Posteriormente, se construye la estructura de sustentación de la fachada y se procede a la demolición del interior del edificio para, finalmente, vincular el nuevo edificio de manera segura a la antigua fachada.

Figura 3. Apeo en fachada (Ayora). Imagen: V. Yepes (2022)

Aquí tenéis algunos vídeos que, espero, os interesen:

Os paso un documento donde se describen los estabilizadores de fachada, de la profesora Inmaculada Oliver Faubel, de la Universitat Politècnica de València.

Descargar (PDF, 872KB)

Referencias:

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Normas añejas que afectan a la justificación de precios de un proyecto

En ocasiones nos encontramos con rutinas y costumbres arraigadas en la redacción y revisión de proyectos de construcción. A lo largo del tiempo, estas prácticas se vuelven habituales y ni siquiera nos cuestionamos su validez, simplemente las seguimos porque “se hace así de toda la vida”. Es el típico argumento “ad antiquitatem” o apelación a la tradición, que implica que algo debe ser correcto o bueno porque es antiguo o tradicional, o porque es “como siempre han sido las cosas”. Sin embargo, es evidente que se trata de una falacia argumentativa.

Un ejemplo de esta situación es el frecuente “copiar y pegar” de artículos de los Pliegos de Prescripciones Técnicas Particulares de un proyecto, o cuando se justifican los precios sin tener conocimiento de las razones detrás del límite del 6% para el coeficiente K de costes indirectos en obras terrestres. Lo mismo ocurre con documentos como el Cuadro de Precios N.º 2 que, indagando en su historia, esta se desvanece en la oscuridad remota del pasado y no se sabe muy bien cuál es su origen. De alguna de estas cosas ya hemos hablado en algunos artículos anteriores.

Pero otras veces, hay que remontarse a Órdenes, Circulares o Notas Internas del Ministerio correspondiente, que son las que en un pasado distante dictaron, con mayor o menor fortuna, las formas y los contenidos en la forma de redactar los proyectos de construcción. Sin embargo, de manera mimética y sin autocrítica, seguimos aplicándolas como siempre. En ocasiones, surgen dudas razonables sobre si estas normativas, o parte de ellas, siguen en vigor o han sido reemplazadas por otras con un estatus legal diferente. Si buscáis un listado de la normativa aplicable sobre proyectos, podéis acudir a la página siguiente: http://carreteros.org/normativa/proyectos/proyectos.htm, aunque se trata de un enlace que podría no estar actualizado o sea incompleto.

A modo de ejemplo, os presento varias normas que han dado origen a una parte de la justificación de precios en un proyecto. Espero que os resulten útiles y, al mismo tiempo, os invito a reflexionar si, después de varias décadas, aún tiene sentido su aplicación o si es necesario replantear su redacción y contenido. Es posible que conozcan otras normas antiguas que aún mantengan vigente parte de su articulado.

Descargar (PDF, 1.22MB)

Descargar (PDF, 79KB)

Descargar (PDF, 160KB)

Descargar (PDF, 389KB)

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Método simplificado para el cálculo de la producción de una máquina

El cálculo de los rendimientos de los equipos no es un tema sencillo, pues son muchos los factores de producción de los que depende. No obstante, a veces necesitamos conocer, aunque sea de forma aproximada, la producción de la maquinaria, por ejemplo, para la justificación de los precios en un proyecto. Para resolver este problema, os propongo un método simplificado, pero que tiene en cuenta muchos de los factores que intervienen en la merma de la producción. Lo que es un error es considerar los rendimientos de los equipos que vienen dados en la justificación de precios de las bases de datos, pues son valores medios que, en numerosas ocasiones, se alejan peligrosamente de la realidad. Tampoco se deben usar los datos directamente proporcionados por los fabricantes, folletos, libros, internet, etc., pues son producciones que se alcanzan en casos ideales con maquinistas muy experimentados y en condiciones de trabajo que difícilmente se acercan a lo que realmente pasa en una obra.

Os dejo, por tanto, la propuesta de un método simplificado para el cálculo de la producción de una máquina y un pequeño problema resuelto. Este tipo de problemas forma parte del Curso de gestión de costes y producción de la maquinaria empleada en la construcción. Para los interesados, os dejo este enlace: https://ingeoexpert.com/cursos/curso-de-gestion-de-costes-y-produccion-de-la-maquinaria-empleada-en-la-construccion/

MÉTODO SIMPLIFICADO PARA EL CÁLCULO DE LA PRODUCCIÓN DE LA MAQUINARIA

Se propone el siguiente procedimiento simplificado para atender a la reducción de producción de un equipo debido a las condiciones de trabajo, la influencia del tráfico, la congestión de la obra, otras contingencias y de las condiciones atmosféricas en la producción de un equipo.

La producción real estará afectada por factores de reducción de la siguiente forma:

Se entiende por producción máxima, o producción tipo de un equipo, Pmáx, aquella capaz de realizar en 54 minutos por cada hora de trabajo de forma ininterrumpida siguiendo un determinado método de trabajo y en unas condiciones determinadas. A falta de datos específicos, esta producción es la que habitualmente proporcionan los fabricantes de los equipos. Seguidamente, se detalla el cálculo simplificado de los factores de producción.

El factor de las condiciones de trabajo de la obra para una máquina fc en un tajo determinado se puede obtener de la siguiente tabla:

Condiciones de trabajo fc
Óptima 1,00
Buena 0,95
Normal 0,85
Regular 0,75
Mala 0,65

 

El factor de retraso, fd, está relacionado con el mal tiempo o las interrupciones debidas al tráfico, congestión en la obra u otras contingencias, siendo su expresión la siguiente:

siendo

Donde

ft             factor de reducción como consecuencia del tráfico, congestión en la obra u otras contingencias

TTD        tiempo total de trabajo disponible

TPT        tiempo perdido debido al tráfico, congestión en la obra y otras contingencias durante las horas de trabajo

fw            factor de reducción por meteorología adversa

NTDA    número total de días (horas) en los que las condiciones atmosféricas permiten trabajar

NTD       número total de días (horas)

El factor de operación, fo, considera que el personal no trabaja al máximo rendimiento todas las horas, ni se pueden anticipar a imprevistos. En la tabla siguiente se muestra el factor sugerido en función de la calificación de los operadores y la organización de la obra.

Experiencia y motivación de los operadores
Muy buena Buena Mediana Mediocre Pobre
Organización de la obra Muy buena 0,90 0,84 0,78 0,73 0,67
Buena 0,88 0,82 0,77 0,71 0,65
Mediana 0,86 0,80 0,75 0,69 0,64
Mediocre 0,84 0,79 0,73 0,67 0,62
Pobre 0,82 0,77 0,71 0,65 0,60

 

El factor de fallo mecánico, fb, depende de la antigüedad de la máquina. Durante el primer año no se considera reducción alguna, por lo que fb = 1,00. Pero por cada año transcurrido a partir de ese momento, se reduce de forma lineal el factor, hasta llegar a fb = 0,85 al finalizar la vida económica de la máquina.

Para el cálculo del tiempo aprovechable en el trabajo, se utilizará el método de la D.G.C., que se puede ver aquí: https://victoryepes.blogs.upv.es/2022/05/07/metodo-de-la-direccion-general-de-carreteras-para-la-determinacion-del-tiempo-disponible-para-el-trabajo/

Descargar (PDF, 102KB)

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2012). Técnicas de planificación y control de obras. Editorial de la Universitat Politècnica de València. Ref. 189. Valencia, 94 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Comunicaciones presentadas al 27th International Congress on Project Management and Engineering AEIPRO 2023

Durante los días 10-13 de julio de 2023 tiene lugar en Donostia-San Sebastián (Spain) el 27th International Congress on Project Management and Engineering AEIPRO 2023. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.

BRUN-IZQUIERDO, A.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2023). Optimización energética de tableros tipo losa pretensados aligerados mediante modelos Kriging. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

El objetivo de este trabajo es desarrollar una metodología para optimizar la energía en la construcción de tableros losa pretensado aligerados. Se lleva a cabo un análisis de la sección transversal para determinar los parámetros de diseño a través de un estudio del estado del arte. A partir de ese análisis, se identifican las variables de diseño que mejorarán la eficiencia energética del tablero. La metodología se divide en dos fases: primero, se utiliza una técnica estadística llamada hipercubo latino para muestrear las variables del tablero y determinar una superficie de respuesta; y en segundo lugar, se optimiza la superficie de respuesta mediante un modelo de optimización basado en Kriging. Como resultado, se ha desarrollado una metodología que reduce el costo energético en la construcción de tableros losa pretensado aligerados. Las recomendaciones para mejorar la eficiencia energética incluyen emplear esbelteces elevadas (alrededor de 1/28), reducir el consumo de hormigón y armadura activa, y aumentar la cantidad de armadura pasiva.

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Durability assessment and re-design of coastal concrete bridge through a non-destructive damage detection method. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

Los expertos y los gobiernos llevan tiempo centrándose en reducir los costes de reparación y mantenimiento de estructuras cruciales como los puentes mediante un mantenimiento y una reparación continuos. Este estudio explora la rentabilidad de dos métodos de predicción de daños mediante el método de densidad espectral de potencia (PSD) en comparación con el método convencional de detección de daños mediante el rediseño de diferentes espesores de recubrimiento de hormigón para un puente costero de hormigón armado. El estudio evalúa el impacto de los iones cloruro en la localización y extensión de los daños a lo largo de la vida útil del puente y compara los costes totales de mantenimiento y reparación. Los resultados muestran que, si bien el método PSD es eficaz para estructuras de hormigón con recubrimientos de hormigón bajos, el aumento del espesor del recubrimiento de hormigón puede dar lugar a mayores costes de reparación.

YEPES, V.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.J.; BLIGHT, T. (2023). Códigos abiertos basados en Python para la construcción de nomogramas y su aplicación en la ingeniería de proyectos. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

La Nomografía es una disciplina científica que se encarga de representar gráficamente fórmulas complejas mediante nomogramas, permitiendo el cálculo de tres o más variables matemáticas. Durante el siglo XX, esta técnica fue ampliamente utilizada en áreas como la ingeniería, medicina, electrónica, ciencias físicas, biológicas, etc. Sin embargo, con la llegada de las calculadoras y computadoras, la construcción de nuevos nomogramas y su enseñanza en la universidad disminuyeron. En los últimos años, la nomografía ha resurgido gracias a la ayuda de códigos de programación como PyNomo y Nomogen, basados en Python, que pueden generar un nomograma en cuestión de segundos, frente a las horas que antes requerían. En este trabajo se presentan estos códigos abiertos y algunos nomogramas generados con ellos, analizando su usabilidad, precisión y contribución a la relación entre las variables de las expresiones matemáticas. Finalmente, se destacan las posibilidades del uso de los nomogramas en la enseñanza e ingeniería de proyectos.

El apeo de urgencia

Figura 1. Rescate urbano. Fuente: UME Ministerio de Defensa España. https://rescateurbanousar.wordpress.com/category/apuntalamiento/

La misión principal de los apeos de urgencia es evitar un colapso repentino de una estructura dañada y garantizar la seguridad del personal que realiza operaciones en el edificio. Dado que las condiciones de trabajo son peligrosas, es necesario utilizar elementos fabricados con materiales ligeros y de rápida entrada en carga y fáciles de ensamblar. En esta etapa de la actuación, los apeos telescópicos metálicos son los más adecuados, aunque también se emplean apeos ligeros de madera o metal. También existen puntales con sistemas hidráulicos y neumáticos con bloqueo que permiten un “apuntalamiento remoto”. Sin embargo, no supone una solución de apeo definitiva.

La principal diferencia entre un apeo de emergencia y uno programado radica en que, en el primer caso, no es posible realizar un estudio detallado de la distribución de cargas en la estructura ni diseñar el apeo de manera adecuada debido a la limitación de tiempo. Sin embargo, las condiciones técnicas deberían ser similares, lo que implica que el apeo de urgencia debe ser rápido y sencillo, permitiendo mejoras o extensiones posteriores a otras áreas o bajo diferentes criterios.

Se recomienda diseñar un apuntalamiento de urgencia que sea compatible con los trabajos de reparación o sustitución posteriores del elemento dañado. Sin embargo, lograr este nivel de precisión requiere una diagnosis precisa y la anticipación de si los trabajos futuros serán de reparación o sustitución, así como la técnica que se empleará. Esta tarea puede resultar complicada debido a la urgencia con la que se aborda, incluso si es realizada por un técnico que será responsable de la reparación posteriormente. Existe la posibilidad de que el técnico encargado del apuntalamiento de urgencia no sea el mismo que lleve a cabo la reparación, lo que podría generar discrepancias en los criterios de reparación.

En situaciones extremas, es posible que el apuntalamiento de urgencia sea ejecutado por bomberos u otros cuerpos de emergencia con el objetivo de salvar el edificio, incluso poniendo en riesgo su propia integridad. En este caso, su prioridad principal es proteger a las personas y asegurar rápidamente la estructura. Por lo tanto, aunque es deseable lograr una compatibilidad entre el apuntalamiento de urgencia y los trabajos posteriores, esto no siempre será posible, ya que se prioriza la rapidez y la seguridad de las personas.

Cuando se ejecuta un apeo, el proceso debe seguirse siempre de abajo hacia arriba, consolidando primero las partes inferiores y luego las superiores. Si se realiza el apuntalamiento desde el forjado dañado hacia el terreno, se someten los forjados a esfuerzos de flexión debido a las cargas adicionales del apuntalamiento, incluso si ya están apuntalados. Cuando se utiliza madera para el apeo, es crucial utilizar un material de buena calidad, seco y en buen estado. Se debe tener precaución al ajustar las cuñas, haciéndolo lentamente para que la carga se aplique gradualmente. Un ajuste excesivo puede ocasionar daños más graves a la estructura. Por lo tanto, un buen apeo, incluso en situaciones de urgencia, debe ser neutro, evitando levantar excesivamente la estructura mediante un apriete o acuñado excesivo de las piezas, pues esto podría causar lesiones más graves que las que se intentan corregir.

En el caso de utilizar puntales metálicos, es fundamental seleccionar el adecuado para alcanzar la altura deseada y asegurarse de que estén correctamente aplomados al colocarlos, de manera que transmitan las cargas de manera adecuada. Una vez finalizado el apeo, se recomienda colocar testigos de yeso para monitorear cualquier avance en la lesión que pueda requerir nuevas medidas de seguridad, y realizar revisiones periódicas.

Se puede reducir la gran flecha en el vano de un forjado mediante la colocación de una fila de puntales telescópicos. En el espacio bajo la cubierta, se instala un apeo enano compuesto por un pie derecho y un codal inclinado denominado tornapunta, que se coloca sin apretar, en lo que se conoce como posición “a la espera”. Estos elementos se aseguran mediante un pasador y descargan sobre una línea vertical de puntales y las cabezas de los tirantes. Para contrarrestar el empuje del codal hacia la sobrecarrera central, se fijan en ambos lados utilizando dos durmientes colocados sobre los tirantes, asegurándolos con tirafondos. En el caso de un muro socavado, se recomienda instalar otro codal de menor altura y con la menor inclinación posible para evitar su colapso. Para contrarrestar el empuje horizontal en la base, se realiza una excavación en el terreno donde se coloca un durmiente que asegura la base de la tornapunta.

Figura 2. Apuntalamiento con puntales. https://demodtres.com/servicios/apuntalamiento/

Existe un riesgo inminente de caída de alguna sección de cornisa hacia la vía pública, por lo tanto, es necesario delimitar un área de seguridad con vallas. En una etapa posterior, estas vallas deben reemplazarse por andamios con visera que permitan una circulación segura por el exterior. Entre las operaciones siguientes se incluye la instalación de un segundo conjunto de apeos, en consecuencia, los apeos actuales no deben obstaculizar ni impedir la instalación y ubicación de los siguientes. El orden y tipo de las operaciones posteriores dependerá del objetivo final previsto.

A continuación os dejo un documento de gran interés, elaborado por Pedro Sánchez Gálvez, donde se describen apeos y apuntalamientos de urgencia en edificios dañados por el sismo de Lorca el 11 de mayo del 2011.

Descargar (PDF, 25.09MB)

También puede resultar de interés este documento sobre evaluación de daños en emergencias, de la Región de Murcia, donde desarrolla un capítulo completo sobre los apeos de emergencia.

Descargar (PDF, 22.27MB)

En este documento se describen apeos y apuntalamientos de emergencia, cuyo autor es Francisco Javier Vivo Parra. Espero que también os sea de interés.

Descargar (PDF, 24.73MB)

Referencias:

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.