Modelo para la construcción sostenible: reducción de emisiones y eficiencia estructural hacia 2100

Un artículo reciente en Sustainable Cities and Society revista del primer decil del JCR, explora un innovador modelo de evaluación de la sostenibilidad en la industria de la construcción, con aplicaciones de gran impacto a nivel global.

Esta investigación, llevada a cabo por un equipo de expertos de la Universidad de Ciencia e Ingeniería de Hunan (China) y de la Universitat Politècnica de València (España), introduce el «modelo de acoplamiento multidisciplinar», una metodología que integra conocimientos avanzados de matemáticas, ingeniería, ciencias ambientales y sociología económica para analizar, de manera más precisa, los efectos de la construcción sobre la sostenibilidad a largo plazo. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Objetivos y contexto de la investigación

El trabajo parte de un desafío global urgente: reducir las emisiones de carbono en la industria de la construcción, que representa un porcentaje significativo del consumo energético y de las emisiones contaminantes a nivel mundial. Según estimaciones previas, esta industria generará más del 50 % de las emisiones de carbono para 2050 si no se implementan políticas de mitigación eficaces. En este contexto, el equipo de investigación plantea un enfoque innovador para analizar el ciclo de vida completo de las construcciones, desde la selección de materiales y el diseño, hasta la construcción, el mantenimiento y el desmantelamiento, conocido como evaluación del ciclo de vida (LCA, por sus siglas en inglés).

Además, para obtener una visión integrada que abarque el impacto ambiental, social y económico de cada proyecto, se emplea la evaluación social del ciclo de vida (SIA), que permite analizar los efectos en la sociedad y en la economía. El objetivo principal de la investigación es ofrecer un marco más robusto que ayude a los gobiernos y a las empresas del sector a tomar decisiones informadas que favorezcan el desarrollo urbano sostenible.

Metodología y desarrollo del modelo

Para desarrollar este modelo, los investigadores implementaron una técnica de «acoplamiento multidisciplinar» novedosa que incorpora algoritmos avanzados y teorías de optimización de estructuras en tres dimensiones. Este enfoque se basa en el uso de algoritmos de interpolación y ajuste de datos, capaces de proyectar los impactos de la construcción de manera más precisa. Además, el modelo emplea herramientas de software de análisis ambiental, como OpenLCA, que permite integrar datos económicos y medioambientales para evaluar la sostenibilidad.

El equipo realizó pruebas del modelo en cuatro regiones económicas clave de China: las provincias de Hubei, Jiangsu, Henan y Guangdong, seleccionando puentes de gran escala en cada una como ejemplos de estudio. A través de análisis finitos y optimización de topología de estas estructuras, lograron proyectar cómo variará el impacto ambiental y social a lo largo de los próximos cien años.

Resultados más destacados y proyecciones futuras

Los resultados obtenidos indican que la industria de la construcción en China alcanzará su máximo de emisiones en el año 2030, con un estimado de 2,73 giga toneladas (GT) de CO₂. Tras este pico, se proyecta una significativa reducción de las emisiones, con niveles de -2,78 GT anuales entre 2061 y 2098, debido a la implementación de técnicas de construcción más eficientes y al uso de materiales más sostenibles. A nivel social, la evaluación SIA prevé un pico de impacto en 2048, con 4,26 GT de CO₂ equivalente en afectaciones sociales, seguido también de una reducción en las décadas posteriores.

Para obtener estas cifras, el estudio utilizó un algoritmo de optimización de la estructura en las distintas fases del ciclo de vida, con el que identificó puntos de mejora y áreas críticas de impacto. Así, el modelo no solo ofrece una herramienta para la proyección de emisiones, sino que también permite evaluar el desempeño de cada estructura en términos de durabilidad, coste y adaptabilidad a cambios estructurales, lo cual podría ser crucial en regiones urbanas que experimentan un crecimiento acelerado.

Conclusiones y aplicación global

Este trabajo es una contribución pionera en la investigación sobre sostenibilidad en construcción, ya que ofrece un marco metodológico con potencial para ser replicado en otros países y sectores de la construcción. Su aplicación no solo está dirigida a la reducción de emisiones, sino también a la mejora de la resiliencia estructural y a la reducción de costes a largo plazo mediante un diseño optimizado. Los investigadores destacan que este modelo podría adaptarse a otros países que, como China, se enfrentan a grandes desafíos en la gestión de la sostenibilidad urbana y que buscan avanzar hacia economías bajas en carbono.

En conclusión, el modelo de acoplamiento multidisciplinar de esta investigación establece un estándar robusto para el análisis de sostenibilidad en construcciones complejas. Con este enfoque, gobiernos y empresas de construcción podrían optimizar sus prácticas para reducir los impactos negativos, no solo ambientales, sino también sociales y económicos, en sintonía con las metas de desarrollo sostenible. Este estudio ofrece, además, una guía para que la industria de la construcción pueda abordar sus desafíos actuales y proyectar una trayectoria sostenible para las próximas décadas.

Referencia:

ZHOU, Z.; ZHOU, J.; ZHANG, B.; ALCALÁ, J.; YEPES, V. (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, 101:105201. DOI:10.1016/j.scs.2024.105201

Métodos modernos de construcción mejoran la sostenibilidad de estructuras en entornos costeros agresivos

Un estudio reciente, titulado «Sustainable preventive maintenance of MMC-based concrete building structures in a harsh environment» ha sido publicado en el Journal of Building Engineering, una de las revistas de mayor prestigio en el ámbito de la ingeniería civil. Desarrollado en el marco del proyecto RESILIFE, investiga la sostenibilidad del mantenimiento preventivo de estructuras de hormigón armado en entornos agresivos, como las zonas costeras, donde la corrosión por cloruros representa una amenaza constante.

El trabajo se centra en aplicar métodos modernos de construcción (MMC) para optimizar el impacto ambiental, económico y social de las estructuras a lo largo de su ciclo de vida.

Contexto del estudio

La industria de la construcción es una de las mayores consumidoras de recursos no renovables y genera un impacto significativo en el medio ambiente. En la Unión Europea, el sector es responsable de más del 40 % del consumo energético y de un 36 % de las emisiones de CO₂. Ante este escenario, iniciativas como el Green Deal Europeo buscan mitigar estos impactos y alcanzar la neutralidad de carbono para 2050. En este contexto, los métodos de construcción sostenibles y eficientes han adquirido una gran relevancia. En este contexto, los MMC emergen como una alternativa innovadora que combina materiales convencionales con técnicas constructivas no convencionales, enfocadas en mejorar la eficiencia y reducir el impacto ambiental.

El objetivo de la investigación fue aplicar estos métodos a la construcción de estructuras de hormigón en áreas costeras, específicamente un edificio residencial público situado frente al mar en Sancti Petri (Cádiz). En el estudio se analizaron diez opciones de diseño para las losas de hormigón armado, considerando factores como la economía, el impacto ambiental y social, y los ciclos de mantenimiento preventivo que cada opción requeriría durante la vida útil del edificio, estimada en 50 años.

Metodología y opciones de diseño

El estudio se centró en evaluar la durabilidad y sostenibilidad de diferentes alternativas de diseño en condiciones adversas, como la exposición constante a cloruros, que aceleran la corrosión del refuerzo de acero en el hormigón. Para ello, se evaluaron varias técnicas, entre ellas la adición de humo de sílice al 5 %, cenizas volantes, el uso de cemento sulforresistente o el incremento de la capa de recubrimiento del hormigón. También se consideraron medidas como la protección catódica y el uso de inhibidores de corrosión hidrofóbicos, con el fin de minimizar los ciclos de mantenimiento necesarios para preservar la estructura.

Resultados más relevantes

Los resultados indicaron que el empleo de hormigón con un 5 % de humo de sílice fue la opción más sostenible en términos económicos y ambientales, ya que redujo significativamente los ciclos de mantenimiento. Este material mostró una excelente resistencia a la corrosión, por lo que se redujeron las reparaciones necesarias durante los 50 años de vida útil del edificio. Además, la impregnación hidrofóbica resultó eficaz para reducir los impactos sociales, puesto que requiere menos intervenciones durante la fase de mantenimiento, lo que reduce los riesgos laborales y los costes sociales asociados.

El estudio también subraya la importancia de adoptar un enfoque holístico en la evaluación de la sostenibilidad. En lugar de centrarse solo en los aspectos económicos o ambientales, los autores emplearon un método de toma de decisiones multicriterio que integra estos factores junto con el impacto social. De hecho, la investigación reveló que una opción basada en el uso de cemento sulforresistente logró un aumento del 86 % en su calificación de sostenibilidad en comparación con el diseño de referencia.

Implicaciones y conclusiones

Este trabajo tiene importantes implicaciones para el diseño y el mantenimiento de infraestructuras en entornos expuestos a condiciones agresivas. Los autores sugieren que el enfoque tradicional, que a menudo se centra en minimizar los costes iniciales de construcción, debe reorientarse hacia una estrategia a largo plazo que considere todo el ciclo de vida de la estructura. De este modo, no solo se puede garantizar la viabilidad económica, sino también la reducción del impacto ambiental y social de las construcciones.

Además, el estudio pone de relieve la necesidad de promover políticas y normativas que incentiven el uso de materiales duraderos y métodos de mantenimiento preventivo, especialmente en zonas costeras, donde los edificios son particularmente vulnerables a la corrosión. El uso de métodos modernos de construcción (MMC) y la evaluación integral del ciclo de vida podrían ser claves para cumplir con los objetivos de sostenibilidad globales y garantizar la durabilidad de las infraestructuras frente a los desafíos ambientales futuros.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2024). Sustainable preventive maintenance of MMC-based concrete building structures in a harsh environment. Journal of Building Engineering, 95:110155. DOI:10.1016/j.jobe.2024.110155

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 5.43MB)

Mantenimiento preventivo sostenible de estructuras de edificios de hormigón tipo MMC en un entorno adverso

Acaban de publicarnos en la revista Journal of Building Engineering, que está en el primer decil del JCR, un artículo sobre el mantenimiento preventivo y sostenible de los métodos modernos de construcción en entornos hostiles. Estos métodos, conocidos como “construcción inteligente“, son alternativas a la construcción tradicional. El gobierno del Reino Unido utilizó este término para describir una serie de innovaciones en la construcción de viviendas, la mayoría de las cuales se basan en tecnologías de construcción en fábrica. Este concepto abarca una amplia gama de tecnologías basadas en la fabricación modular, ya sea en el lugar de construcción o en otra ubicación, y está revolucionando la forma en que se construyen edificios de manera más rápida, rentable y eficiente. También se conoce comúnmente como construcción “off-site”. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La industria de la construcción desempeña un papel significativo en la presión medioambiental, atribuido principalmente a su importante consumo de recursos, impulsado sobre todo por el auge de la construcción residencial. Los Métodos Modernos de Construcción (MMC) presentan un paradigma innovador para diseñar y construir infraestructuras y edificios de forma más eficiente, utilizando materiales convencionales con técnicas no convencionales. El artículo pretende aplicar este enfoque a una estructura de edificación basada en MMC, minimizando el impacto de su ciclo de vida mediante la optimización del consumo de materiales de construcción, con especial atención a los efectos de la fase de mantenimiento desde un punto de vista preventivo. Este estudio se centra en la evaluación de la sostenibilidad de los forjados planos de hormigón armado que emplean un sistema de cuerpo estructural hueco, haciendo hincapié explícitamente en los factores de agresividad ambiental que contribuyen a la corrosión, como la carbonatación y los cloruros. La investigación explora diez opciones de diseño para un edificio residencial público frente al mar, examinando su impacto en la economía, el medio ambiente e incluso la sociedad en lo que respecta a los ciclos de mantenimiento necesarios a lo largo de la vida útil de la estructura, en función de la estrategia preventiva empleada para cada diseño. Para evaluar la sostenibilidad de estas opciones, los investigadores emplearon una combinación del método del mejor-peor (BWM) y la técnica VIKOR, teniendo en cuenta nueve criterios relacionados con la sostenibilidad. El estudio concluyó que el hormigón con un 5% de humo de sílice es la opción más rentable y respetuosa con el medio ambiente, y que la impregnación hidrófoba reduce el impacto social. Sin embargo, en comparación con las evaluaciones unidimensionales y bidimensionales, el estudio demuestra la importancia de considerar simultáneamente los impactos económicos, medioambientales y sociales del ciclo de vida de un diseño para lograr la sostenibilidad en el mantenimiento con una visión holística. Este enfoque condujo a una calificación de sostenibilidad un 86% más alta para un diseño que utilizaba cemento sulforresistente en la mezcla de hormigón que la opción de partida.

Aspectos destacables:

  • El estudio evalúa el impacto en el ciclo de vida de diez opciones de diseño mejoradas para un módulo hotelero de tres pisos en un entorno costero, con el objetivo de mejorar la durabilidad y reducir las necesidades de mantenimiento a lo largo de la vida útil de la estructura.
  • Los resultados óptimos se obtienen del intervalo de mantenimiento preventivo, lo que hace hincapié en la importancia de las estrategias de mantenimiento proactivo para mejorar la sostenibilidad y la longevidad de las estructuras de construcción de hormigón basadas en MMC.
  • El documento proporciona evaluaciones exhaustivas del ciclo de vida según las normas ISO 14040, que abordan las tres dimensiones simultáneamente, ofreciendo una visión holística del desempeño en materia de sostenibilidad en los proyectos de construcción.
  • Al centrarse en el mantenimiento preventivo, la investigación destaca el potencial de obtener beneficios ambientales y económicos a largo de un período de 50 años, ya que contribuyen a la sostenibilidad general de las estructuras de los edificios en entornos hostiles.
  • Al incorporar las opiniones de expertos a través del método de toma de decisiones multicriterio de BMW, el estudio proporciona un análisis completo de varios aspectos de la sostenibilidad en los proyectos de construcción, promoviendo prácticas de toma de decisiones sostenibles en la industria.
  • Los resultados subrayan la importancia de la toma de decisiones sostenibles en la construcción, en consonancia con los esfuerzos mundiales para reducir el impacto ambiental y promover prácticas ecológicas en la industria.
  • La investigación hace hincapié en la importancia de las estrategias de mantenimiento preventivo sostenibles para mejorar la longevidad y la sostenibilidad de las estructuras de construcción de hormigón basadas en el MMC, y destaca los beneficios de los enfoques de mantenimiento proactivo.

Podéis descargar el artículo gratuitamente al tratarse de una publicación en acceso abierto:

https://www.sciencedirect.com/science/article/pii/S2352710224017236

Abstract:

The construction industry plays a significant role in environmental strain, attributed mainly to its substantial resource consumption, primarily driven by the surge in residential construction. Modern Methods of Construction (MMC) presents an innovative paradigm for designing and constructing infrastructure and buildings more efficiently, using conventional materials with unconventional techniques. The article aims to apply this approach to an MMC-based building structure, minimizing its life cycle impact by optimizing the consumption of building materials, with particular attention to the effects of the maintenance phase from a preventive point of view. This study focuses on assessing the sustainability of reinforced concrete flat slabs, employing a hollow structural body system, explicitly emphasizing environmental aggressiveness factors contributing to corrosion, such as carbonation and chlorides. The research explores ten design options for a waterfront public residential building, examining their impact on the economy, the environment, and even society, regarding the maintenance cycles required over the structure’s lifetime, depending on the preventive strategy employed for each design. In assessing the sustainability of these options, researchers employed a combination of the best-worst method (BWM) and the VIKOR technique, considering nine criteria related to sustainability. The study found that 5% silica fume concrete is the most cost-effective and environmentally friendly option, with hydrophobic impregnation reducing social impacts. However, compared to one— and two-dimensional evaluations, the study demonstrates the importance of simultaneously considering a design’s life cycle’s economic, environmental, and social impacts to achieve sustainability in maintenance with a holistic view. This approach led to an 86% higher sustainability rating for a design using sulforesistant cement in the concrete mix than the baseline.

Keywords:

Modern Methods of Construction; Life Cycle Assessment; Sustainable design; Multi-criteria Decision-making; Preventive maintenance; Corrosion

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2024). Sustainable preventive maintenance of MMC-based concrete building structures in a harsh environment. Journal of Building Engineering,95:110155. DOI:10.1016/j.jobe.2024.110155

Como el artículo se encuentra en abierto, os lo podéis descargar aquí:

Descargar (PDF, 5.43MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Premio para Mehrdad Hadizadeh-Bazaz en el IX Encuentro de Estudiantes de Doctorado

Quisiera felicitar públicamente a nuestro estudiante de doctorado Mehrdad Hadizadeb-Bazaz por su Premio al mejor trabajo en la modalidad de póster otorgado por la Escuela de Doctorado de la Universitat Politècnica de València, dentro del IX Encuentro de Estudiantes de Doctorado. Tengo el honor y el placer de dirigir su tesis doctoral junto con el profesor Ignacio J. Navarro. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal. Es el segundo año consecutivo que Mehrdad consigue este premio.

Hoy en día, debido a los elevados costes de construcción, reparación y mantenimiento de grandes estructuras como los puentes, así como la creciente atención al ciclo de vida sostenible en todas las etapas, desde el diseño hasta el final de su vida útil, es crucial emplear diversos métodos para identificar daños y evaluar su eficacia en diferentes estructuras y condiciones. Esto no solo puede aumentar la vida útil de las estructuras y reducir los costes, sino también minimizar el impacto ambiental y social.

En este estudio, se examina la precisión de diversos métodos de detección de daños, tanto dinámicos como no destructivos, para identificar la magnitud, ubicación y momento en que se produce el daño en la estructura a lo largo de su vida útil. Se evalúa la precisión y posibles variaciones de cada uno de los métodos de detección de daños en distintos entornos, especialmente en ambientes costeros y ambientes agresivos. Además, se realiza una evaluación del desempeño y comparación de diferentes métodos de detección de daños no destructivos, teniendo en cuenta casos de sostenibilidad de diseño y evaluación del ciclo de vida, incluyendo aspectos económicos, ambientales e impactos sociales.

Os dejo el póster completo, para que lo podáis leer.

Descargar (PDF, 830KB)

Referencias:

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Life Cycle Assessment of a Coastal Concrete Bridge Aided by Non-Destructive Damage Detection Methods. Journal of Marine Science and Engineering, 11(9):1656. DOI:10.3390/jmse11091656

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023).  Life-cycle cost assessment using the power spectral density function in a coastal concrete bridgeJournal of Marine Science and Engineering, 11(2):433. DOI:10.3390/jmse11020433

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Structural Engineering and Mechanics, 85(2):197-206. DOI:10.12989/sem.2023.85.2.197

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2022). Performance comparison of structural damage detection methods based on Frequency Response Function and Power Spectral Density. DYNA, 97(5):493-500. DOI:10.6036/10504

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Evaluación de alternativas para la rehabilitación de pilares de hormigón armado en zona sísmica

Acaban de publicarnos un artículo en el Journal of Cleaner Production, revista indexada en el primer decil del JCR. El trabajo evalúa las alternativas de reacondicionamiento de columnas de hormigón armado en una región de alto riesgo sísmico, comparando, el recrecimiento de la sección de hormigón, el encamisado de acero y el refuerzo con fibra de carbono. El estudio destaca la importancia de tener en cuenta todas las etapas en la evaluación del ciclo de vida a la hora de rehabilitar edificios, incluidas las consideraciones de diseño, pruebas, construcción, uso y final de la vida útil. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Las contribuciones de este trabajo de investigación son las siguientes:

  • Evalúa las alternativas de reacondicionamiento de columnas de hormigón armado en una región de alto riesgo sísmico, comparando el recrecido de hormigón, el encamisado de acero y el refuerzo con fibra de carbono.
  • Realiza un análisis exhaustivo para evaluar los impactos económicos y ambientales mediante evaluaciones del ciclo de vida.
  • Presenta una jerarquía estructurada de criterios e indicadores para la evaluación de las opciones de modernización, lo que ayuda a los técnicos y a los responsables de la toma de decisiones.
  • El encamisado de acero se consideran la mejor opción debido a su rendimiento equilibrado en todos los criterios, mientras que los recrecidos de hormigón se consideran menos favorables debido a su elevado impacto ambiental y funcional. La rehabilitación con fibra de carbono es una alternativa viable con un menor impacto medioambiental y una mayor funcionalidad, a pesar de los importantes costes de las materias primas.

Abstract

The critical earthquakes of the last few years highlight the urgent seismic retrofitting of existing buildings due to their aging or inadequate design. This paper aims to evaluate reinforced concrete column retrofit alternatives in a region of high seismic risk. When deciding between various building retrofit options, significant economic, environmental, and functional factors must be considered. The study uses a cradle-to-grave analysis to examine the economic and environmental impacts through life cycle assessments. Specifically, the life-cycle performance of three classic alternatives for rehabilitating columns lacking adequate confinement is compared: concrete jacketing, steel jacketing, and carbon fiber incorporation. The research adopts a holistic approach using multi-criteria decision-making methods, integrating economic, environmental, and functional criteria. A set of criteria and indicators is presented in a structured hierarchy that facilitates the orderly evaluation of alternatives. The results suggest that steel jacketing is preferred, as it presents a balanced performance in most criteria. The incorporation of carbon fiber is viable due to its low environmental and functional impact, although the high production costs of the raw materials limit it. In contrast, concrete jacketing has the highest environmental and functional impacts, making it the least favorable option. The results of this study will provide relevant information for engineers and decision-makers to select the most suitable options for building retrofit when considering several simultaneous perspectives.

Keywords: 

Construction, CFRP, Decision making, Life cycle assessments, MCDM, Retrofit, Sustainable design.

Reference:

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2024). Life cycle evaluation of seismic retrofit alternatives for reinforced concrete columns. Journal of Cleaner Production, 455:142290. DOI:10.1016/j.jclepro.2024.142290

Os podéis descargar gratuitamente el artículo, pues está publicado en acceso abierto.

Descargar (PDF, 4.6MB)

 

Técnica Dematel aplicada a la evaluación de la sostenibilidad de puentes en ambiente marino

Figura 1. Puente de A Illa de Arousa. Imagen: V. Yepes (2023).

Acaban de publicar un artículo en el International Journal of Computational Methods and Experimental Measurements. El estudio evalúa diferentes alternativas de diseño para un puente de hormigón situado cerca de la costa utilizando técnicas de toma de decisiones como TOPSIS, COPRAS y VIKOR, con un enfoque en la sostenibilidad y la evaluación del ciclo de vida. La investigación destaca que el hormigón con humo de sílice funciona mejor a lo largo de su ciclo de vida en comparación con otras soluciones que mejoran la durabilidad, como la modificación de la relación agua/cemento o el aumento del recubrimiento del hormigón. Esta adición puede mejorar significativamente la sostenibilidad al aumentar la durabilidad frente a los cloruros y reducir los requisitos de mantenimiento. El estudio destaca que las decisiones de diseño de infraestructuras deben tener en cuenta los impactos sociales junto con los factores económicos y ambientales, y que las diferentes alternativas de diseño muestran diferentes impactos sociales. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La industria de la construcción es un sector crítico para alcanzar los Objetivos de Desarrollo Sostenible. Sin embargo, las actividades de construcción y las propias infraestructuras producen impactos positivos y negativos. Ello provoca que el diseño de infraestructuras sea el centro de la investigación actual para encontrar la mejor manera de satisfacer las demandas de sostenibilidad de la sociedad. Aunque los métodos para evaluar el ciclo de vida económico, medioambiental y social de las infraestructuras son bien conocidos, el reto reside en combinar estas dimensiones en un indicador global que ayude a la toma de decisiones. Este estudio utiliza tres técnicas de toma de decisiones, a saber, TOPSIS, COPRAS y VIKOR, para evaluar cinco alternativas de diseño diferentes para un puente de hormigón expuesto a un entorno costero. Para mejorar la coherencia del proceso de toma de decisiones multicriterio, se aplica un enfoque basado en DEMATEL. Los resultados del estudio demuestran que el hormigón que contiene incluso pequeñas cantidades de humo de sílice se comporta mejor a lo largo de su ciclo de vida que otras soluciones habitualmente consideradas para aumentar la durabilidad, como la reducción de la relación agua/cemento o el aumento del recubrimiento de hormigón.

ABSTRACT:

The construction industry has recently been recognized as a critical sector in achieving the Sustainable Development Goals. However, construction activities and infrastructure have both beneficial and non-beneficial impacts, making infrastructure design the focus of current research in finding the best way to meet society’s demands for sustainability. Although methods for economic, environmental, and social life cycle assessments of infrastructures are well-known, the challenge lies in combining these dimensions into a comprehensive indicator that aids decision-making. This study uses three decision-making techniques, namely TOPSIS, COPRAS, and VIKOR, to evaluate five different design alternatives for a concrete bridge exposed to a coastal environment. To enhance the consistency of the multi-criteria decision-making process, a DEMATEL-based approach is applied. The study’s results demonstrate unanimously that concrete containing even small amounts of silica fume performs better over its life cycle than other solutions typically considered to increase durability, such as reducing the water/cement ratio or increasing concrete cover.

KEYWORDS:

Sustainable design, bridges, life cycle assessment, DEMATEL, TOPSIS, VIKOR, COPRAS, multi-criteria decision-making.

REFERENCE:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2023). Dematel-Based Completion Technique Applied for the Sustainability Assessment of Bridges Near ShoreInternational Journal of Computational Methods and Experimental Measurements, 11(2):115-122. DOI:10.18280/ijcmem.110206

El artículo está publicado en abierto. Os lo dejo para su descarga.

Descargar (PDF, 1.13MB)

Toma de decisiones sobre infraestructuras viarias sostenibles: NSGA-II con operadores de reparación para optimización multiobjetivo

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. El trabajo trata sobre la toma de decisiones en infraestructuras viales sostenibles. Para ello se utiliza una variante personalizada de la técnica NSGA-II con operadores de reparación para una optimización multiobjetivo. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El documento propone un enfoque novedoso que combina la optimización multiobjetivo (MOO) con técnicas de toma de decisiones basadas en criterios múltiples (MCDM) para el diseño y la selección de estructuras modulares prefabricadas de hormigón armado (RCPMF) en infraestructuras viales, con un enfoque en la sostenibilidad. El estudio evalúa la eficacia de tres operadores de reparación a la hora de optimizar los objetivos económicos, ambientales y sociales, y utiliza algoritmos personalizados y un análisis del ciclo de vida (LCA) para una evaluación precisa. Los resultados muestran que el operador de reparaciones basado en estadísticas ofrece soluciones con un menor impacto en todas las dimensiones y demuestra una variabilidad mínima, lo que lo convierte en el más adecuado para cumplir con los requisitos de diseño del RCPMF.

Las contribuciones más importantes de este trabajo son las siguientes:

  • El documento presenta un enfoque novedoso que combina la optimización multiobjetivo (MOO) con técnicas de toma de decisiones basadas en criterios múltiples (MCDM) para el diseño y la selección de estructuras modulares prefabricadas de hormigón armado (RCPMF) en infraestructuras viales, con un enfoque en la sostenibilidad.
  • El estudio evalúa la eficacia de tres operadores de reparación (basados en estadísticas, aleatorios y de proximidad) a la hora de optimizar los objetivos económicos, ambientales y sociales.
  • El artículo presenta una versión personalizada del algoritmo NSGA-II (NSGA-II) de clasificación no dominada, complementada con un análisis detallado del ciclo de vida (LCA), para facilitar la evaluación precisa de las funciones objetivas.
  • El artículo demuestra el uso de dos técnicas de MCDM, a saber, la ponderación aditiva simple (SAW) y (FUCA), para puntuar y clasificar las soluciones MOO.
  • La investigación proporciona una estrategia clara y metódica para integrar el MOO y el MCDM, formando un marco coherente para la implementación práctica en contextos de ingeniería complejos.
  • El estudio destaca la importancia de tener en cuenta los principios de sostenibilidad desde la fase de diseño y de emplear las técnicas de MOO para encontrar soluciones equilibradas y óptimas en la ingeniería civil.

Abstract:

Integrating sustainability principles into the structural design and decision-making processes for transportation infrastructure, particularly concerning reinforced concrete precast modular frames (RCPMF), is recognized as crucial for ensuring environmentally responsible, economically feasible, and socially beneficial outcomes. In this study, this challenge is addressed, with the significance of sustainable development in modern engineering practices being underscored. A novel approach, which combines multi-objective optimization (MOO) with multi-criteria decision-making (MCDM) techniques, is proposed, tailored specifically for the design and selection of RCPMF. The effectiveness of three repair operators—statistical-based, random, and proximity based—in optimizing economic, environmental, and social objectives is evaluated. Precise evaluation of objective functions is facilitated by a customized Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm, complemented by a detailed life cycle analysis (LCA). The utilization of simple additive weighting (SAW) and fair un choix adéquat (FUCA) methods for the scoring and ranking of the MOO solutions has revealed that notable excellence in meeting the RCPMF design requirements is exhibited by the statistical-based repair operator, which offers solutions with lower impacts across all dimensions and demonstrates minimal variability. MCDM techniques produced similar rankings, with slight score variations and a significant correlation of 0.9816, showcasing their consistent evaluation capacity despite distinct operational methodologies.

Keywords:

Multi-objective optimization; multi-criteria decision-making; modular structure; life cycle sustainability; NSGA-II; simple additive weighting; fair un choix adéquat.

Reference:

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Sustainable Road Infrastructure Decision-Making: Custom NSGA-II with Repair Operators for Multi-objective Optimization. Mathematics, 12(5):730. DOI:10.3390/math12050730

Os paso el artículo para su descarga, pues se ha publicado en abierto:

Descargar (PDF, 1.06MB)

Evaluación del desarrollo sostenible de la industria de la construcción

Nos acaban de publicar en la revista Sustainable Cities and Society (1/68, CONSTRUCTION & BUILDING TECHNOLOGY, primer decil del JCR) un artículo relacionado con la evaluación del desarrollo sostenible de la industria de la construcción regional y nacional.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. Se corresponde con la colaboración internacional que mantiene nuestro grupo de investigación con la Hunan University of Science and Engineering, de China. El primer autor, Prof. Zhou, sigue perteneciendo a nuestro grupo de investigación, pues desarrolló con nosotros su tesis doctoral.

Los datos de la investigación muestran que la industria de la construcción en China alcanzará su pico más alto de emisiones, según la evaluación del ciclo de vida en 2030 y tendrá emisiones nocivas entre 2061 y 2098. La evaluación del impacto social indica que se alcanzará su punto máximo en 2048.

Las contribuciones más relevantes de esta investigación son las siguientes:

  • El artículo innova modelos teóricos, como la «ponderación de la sensibilidad de la respuesta estructural», a través de una investigación interdisciplinaria, que aborda las limitaciones de la precisión de la iteración multifactorial, multidiscreta, con múltiples restricciones y con un bajo acoplamiento.
  • La investigación proporciona un sistema integral de teoría de la investigación y estándares de referencia para el cálculo científico y la evaluación precisa del desarrollo sostenible de la industria de la construcción en varios países del mundo.
  • El documento presenta un modelo, el «peso de sensibilidad a la respuesta estructural (SRSW)», que determina de forma precisa e intuitiva los resultados de la evaluación del desarrollo sostenible de la industria de la construcción regional y nacional.
  • La investigación incluye estudios de casos para demostrar la solidez del modelo, y muestra el pico de emisiones y las emisiones nocivas más altas de la industria de la construcción en China según la evaluación del ciclo de vida más alto.
  • La investigación contribuye al campo de la investigación sobre sostenibilidad en la industria de la construcción, ya que proporciona información y datos para que los responsables políticos y los profesionales tomen decisiones informadas con respecto al entorno ecológico.

ABSTRACT:

Sustainability research in the construction industry is of great strategic significance to the ecological environment of countries worldwide. This paper innovates theoretical models such as “structural response sensitivity weight” through interdisciplinary research on advanced mathematics, engineering science, computer science, environmental management and economic sociology. The model solves the limitations of multi-factor, multi-discrete, multi-constraint and low coupling iteration accuracy. The article shows the robustness of the model through case studies. The research data shows that the construction industry in China will reach its highest life cycle assessment emission peak of 2.73 GT in 2030 and will have harmful emissions of -2.78 GT between 2061 and 2098. The social impact assessment will peak at 4.26 GT in 2048 and harmful emissions of −3.75 GT per year from 2061 to 2098. This research provides a comprehensive research theory system and reference standards for scientific calculation and accurate assessment of the sustainable development of the construction industry in various countries around the world.

KEYWORDS:

Gross domestic product; Life cycle cost; Life cycle assessment; Social impact assessment; Topology optimization.

REFERENCE:

ZHOU, Z.; ZHOU, J.; ZHANG, B.; ALCALÁ, J.; YEPES, V. (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, 101:105201. DOI:10.1016/j.scs.2024.105201

La editorial ELSEVIER permite el acceso directo y gratuito a este artículo hasta el 8 de marzo de 2024. El enlace para la descarga es: https://authors.elsevier.com/c/1iRse7sfVZE2dg

 

Durabilidad y rediseño de un puente de hormigón en ambiente costero mediante un método no destructivo de detección de daños

Durante los días 10-13 de julio de 2023 tuvo lugar en Donostia-San Sebastián (Spain) el 27th International Congress on Project Management and Engineering AEIPRO 2023. Fue una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso la primera de las comunicaciones presentadas. Cabe destacar que este trabajo recibió el accésit del Premio “Jaume Blasco” a la innovación, por lo que hay que felicitar al doctorando Mehrdad Hadizadeh-Bazaz por el extraordinario trabajo realizado. A ello hay que sumar el Premio que recibió al mejor trabajo en la modalidad de póster otorgado por la Escuela de Doctorado de la Universitat Politècnica de València, dentro del VIII Encuentro de Estudiantes de Doctorado.

Durante algún tiempo, los expertos y los gobiernos han estado enfocados en reducir los costos de reparación y mantenimiento de estructuras cruciales como los puentes a través de un enfoque continuo en el mantenimiento y la reparación. En este estudio, se investiga la rentabilidad de dos métodos de predicción de daños: el método de densidad espectral de potencia (PSD) en comparación con el método convencional de detección de daños a través del rediseño de diferentes espesores de recubrimiento de hormigón para un puente costero de hormigón armado.

El estudio evalúa el impacto de los iones cloruro en la ubicación y extensión de los daños a lo largo de la vida útil del puente, y compara los costos totales de mantenimiento y reparación. Los resultados revelan que si bien el método PSD es efectivo para estructuras con recubrimientos de hormigón bajos, aumentar el espesor del recubrimiento de hormigón puede dar lugar a mayores costes de reparación.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Palabras clave:

Evaluación del costo del ciclo de vida, métodos no destructivos de detección de daños, puente costero de hormigón, corrosión del acero, corrosión por cloruros, técnicas de mantenimiento y reparación.

Agradecimientos:

This research was funded by MCIN/AEI/10.13039/501100011033, grant number PID2020-117056RB-I00 and The APC was funded by ERDF A way of making Europe.

Referencia:

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Durability assessment and re-design of coastal concrete bridge through a non-destructive damage detection method. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain), pp. 386-401. DOI:10.61547/3371

A continuación os dejo un vídeo donde presentamos el trabajo. Espero que os sea de interés.

Os dejo la comunicación completa, pues está editada en abierto. Espero que os sea de interés.

Descargar (PDF, 2.38MB)

Aprendizaje profundo para la optimización del ciclo de vida de puentes mixtos de hormigón y acero

Acaban de publicarnos un artículo en Structures, revista indexada en el JCR. Se trata de la evaluación del coste del ciclo de vida mediante la función de densidad espectral de potencia en un puente de hormigón en ambiente costero. El artículo presenta una metodología que utiliza el aprendizaje profundo para acelerar los cálculos de las restricciones estructurales en un contexto de optimización, específicamente para un puente mixto de hormigón y acero. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El modelo de aprendizaje profundo óptimo está integrado por tres metaheurísticas: el método Obamo (Old Bachelor Acceptance with a Mutation Operator), el Cuckoo Search (CS) y los algoritmos de coseno sinusoidal (SCA). Esta integración da como resultado un posible aumento de 50 veces en la velocidad computacional en ciertos escenarios. El estudio destaca la viabilidad económica, las ramificaciones ambientales y las evaluaciones del ciclo de vida social de las soluciones de diseño optimizadas. Demuestra las ventajas de combinar el aprendizaje profundo con la optimización del diseño de la ingeniería civil, especialmente en lo que respecta al aumento del límite elástico del acero para cumplir objetivos medioambientales y sociales. La metodología propuesta en el documento se puede adaptar a una variedad de otras configuraciones estructurales, por lo que es aplicable más allá del caso específico del puente compuesto

La editorial permite la descarga gratuita del artículo hasta el 29 de noviembre de 2023 en la siguiente dirección: https://authors.elsevier.com/c/1humr8MoIG~oVG

Abstract:

The ability to conduct life cycle analyses of complex structures is vitally important for environmental and social considerations. Incorporating the life cycle into structural design optimization results in extended computational durations, underscoring the need for an innovative solution. This paper introduces a methodology leveraging deep learning to hasten structural constraint computations in an optimization context, considering the structure’s life cycle. Using a composite bridge composed of concrete and steel as a case study, the research delves into hyperparameter fine-tuning to craft a robust model that accelerates calculations. The optimal deep learning model is then integrated with three metaheuristics: the Old Bachelor Acceptance with a Mutation Operator (OBAMO), the Cuckoo Search (CS), and the Sine Cosine Algorithms (SCA). Results indicate a potential 50-fold increase in computational speed using the deep learning model in certain scenarios. A comprehensive comparison reveals economic feasibility, environmental ramifications, and social life cycle assessments, with an augmented steel yield strength observed in optimal design solutions for both environmental and social objective functions, highlighting the benefits of meshing deep learning with civil engineering design optimization.

Keywords:

Deep learning; Sustainability; Optimization; Bridges; Machine learning; Composite structures

Reference:

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2023). Deep learning classifier for life cycle optimization of steel-concrete composite bridges. Structures, 57:105347. DOI:10.1016/j.istruc.2023.105347