En un artículo anterior resolvimos el caso de la altura crítica de una excavación sin entibación para el caso del largo plazo, es decir, en condiciones drenadas. Sin embargo, vamos a ver a continuación un caso particular, donde tenemos un suelo puramente cohesivo en condiciones no drenadas, C = Cu y φ = 0, que corresponde a la estabilidad a corto plazo.
Se trata de un caso muy simple que permite resolver de forma sencilla la rotura del suelo. La realidad es más compleja, siendo necesario utilizar métodos más generales de análisis que permitan superficies de rotura curvas, perfiles más complicados del terreno y regímenes hidráulicos determinados. Para ello se remite al lector al estudio de los métodos de equilibrio límite.
Por cierto, este tipo de problemas también se puede resolver gráficamente con un nomograma. Os paso uno elaborado en colaboración con el profesor Pedro Martínez Pagán. En este caso, a modo de ejemplo, se ha considerado la resolución de un caso con un coeficiente de seguridad de 2.
En esta ocasión os paso un problema resuelto donde se calcula la máxima altura que podría tener una excavación a corto plazo en un terreno arcilloso. Para este problema se ha empleado un coeficiente de seguridad de 1 (caso estricto) que habría que particularizar al problema concreto de obra con un coeficiente de seguridad de, por ejemplo, 1,5. No obstante este valor, hay que ser prudentes cuando la altura sin entibar resulte un peligro para el enterramiento de las personas, especialmente en zanjas o pozos. Téngase en cuenta que el valor de la cohesión depende de la humedad del suelo, y esta disminuye con el tiempo. En dicho caso, en terrenos coherentes y sin solicitación de cimentación o próxima a vial (o acopio equivalente), la altura máxima sin entibar será de 1,30 m en un corte vertical.
La inestabilidad del fondo o sifonamiento ocurre cuando existe un flujo ascendente, un terreno granular no consolidado puede perder completamente su resistencia a corte y comportarse como un fluido (arenas movedizas, partículas sueltas, como en ebullición), por lo que al fenómeno también se le conoce como fluidificación. Ello ocurre cuando un incremento de la presión intersticial anula la presión efectiva, o dicho de otra forma, cuando las fuerzas producidas por la filtración superan el peso sumergido del suelo. Este fenómeno podría aparecer en pantallas o tablestacas con un empotramiento reducido (Figura 1). En un artículo anterior al que denominamos “El efecto Renard, o por qué un suelo parece que entra en ebullición: Sifonamiento”, explicamos con cierto detalle este fenómeno y resolvimos cuál debería ser la profundidad a la que debería hincarse una tablestaca para evitar que un suelo sin cohesión pierde completamente su resistencia al corte y pasa a comportarse como un fluido.
A este respecto, ya avisamos que una cosa es la profundidad mínima de empotramiento para evitar el sifonamiento y otra bien diferente es calcular el empotramiento necesario de una tablestaca para soportar los esfuerzos de empuje a los que está sometido. Por tanto, el empotramiento real será el mayor de los dos valores. Se recomienda siempre efectuar con detalle los cálculos geotécnicos y estructurales necesarios. Y sobre todo, utilizar el sentido común.
En una entrada anterior, donde se describían los problemas del agua en las excavaciones, ya se habló del levantamiento de fondo o taponazo: El fondo de la excavación se puede volver inestable cuando el peso del terreno no es capaz de equilibrar al empuje del agua (Figura 1). Es típico de un estrato de baja permeabilidad (como una arcilla o roca de baja permeabilidad sin fisuras) situado sobre un acuífero confinado de mayor conductividad hidráulica (como una grava, muy permeable). Suele resolverse el problema con pozos de alivio.
En una entrada anterior a este artículo se utilizó la Ley de Darcy y la línea de flujo más corta (de mayor gradiente crítico) para establecer una aproximación al caudal que habría que evacuar de una excavación en un solar. No obstante, para un estudio en detalle del flujo hidráulico en un medio poroso deberíamos acudir a la ecuación de Laplace y proceder a la integración de este tipo de ecuación en derivadas parciales atendiendo a las condiciones de contorno. En el siguiente vídeo que os he preparado tenéis una breve explicación. Este vídeo pertenece al curso de procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación.
Con todo, lo mejor es presentar un problema resuelto que, espero, os sea de interés.
Es un honor que la revista Publishers Weekly, en su número de abril del 2022, haya destacado uno de mis libros: Procedimientos de construcción de cimentaciones y estructuras de contención, como uno de los cinco ejemplares imprescindibles dentro de la producción editorial de la Universitat Politècnica de València. El libro tiene 480 páginas, 439 figuras y fotografías, así como 430 cuestiones de autoevaluación resueltas.
Tal y como apunta esta revista, “la revolución incruenta es la marca de agua de quien vislumbra un nuevo mundo y lo hace posible sin efectos colaterales“. En esta revolución se encuentra la editorial de la Universitat Politècnica de València, que en 2010 dio un giro a su producción, dirigida hasta entonces a la formación interna del alumnado, para adentrarse con éxito en la proyección internacional.
Es por este motivo la importancia de destacar uno de mis libros, dentro del gran volumen de libros y revistas editados por esta editorial, que asciende a 1.119, tal y como se recoge en esta publicación.
Os paso la entrevista realizada a la directora de la editorial, Reme Pérez García.
Cuando se está realizando una excavación para el vaciado, por ejemplo, de unos sótanos de un edificio, lo primero que se plantea es si es necesario algún sistema de contención provisional (muros pantalla, muro berlinés, tablestacas, suelo armado o apuntalamiento provisional) hasta que se permita construir unos muros o estructuras de contención definitiva de las tierras. Sin embargo, a veces no se precisa de una estructura de contención provisional, pues se puede ejecutar, bajo determinadas condiciones, el vaciado mediante una excavación vertical o en talud, mediante bermas o bien mediante bataches. Este artículo explica la excavación por bataches.
La primera consideración a tener en cuenta es que solo se podrán acometer excavaciones sin una contención provisional en el caso de que no se vea perjudicada por las aguas subterráneas o cuando no exista afección sobre estructuras vecinas o servicios públicos. Por tanto, la excavación por bataches solo será aplicable en el caso de que el vaciado se encuentre por encima del nivel freático, no existan cimentaciones próximas y se puedan mantener los taludes estables o se puedan apuntalar. En este caso, la excavación por bataches permite el vaciado mediante etapas. El sistema se basa en la excavación alterna de tramos del frente de una berma perimetral previamente ejecutada. En el caso de edificaciones, la excavación por bataches es habitual para un solo sótano, aunque se podrían excavar dos o tres sótanos con un sistema más complejo basado en la creación de anillos descendentes, normalmente anclados.
Tal y como se muestra en la Figura 2, el batache es la excavación que queda vertical entre dos espaldones, que actúan a modo de contrafuerte de terreno. Según la norma NTE-ADZ, el ancho E del batache no podrá superar los 2 m, ni tampoco podrá superar la altura vertical del espaldón HE, los 3 m (caso de realizar la excavación con maquinaria). En caso de que alguno de estos dos parámetros se incumpla, deberá procederse al entibado.
Con todo, hay que tener presente que en España las antiguas Normas Tecnológicas de la Edificación, NTE, del Ministerio de la Vivienda, se encuentran en desuso, haciendo referencia de forma genérica al ancho de excavación, sin tener en cuenta los parámetros geotécnicos del terreno. Por tanto, estas dimensiones límite de las NTE deben ser indicativas, pues se debería efectuar un estudio en mayor profundidad con datos reales para ajustar los límites en casos complejos. Por ejemplo, los anchos de los bataches podrían llegar incluso a 3-5 m en algunos casos concretos que requerirían un estudio en detalle, incluso la entibación.
Además, la norma NTE-CCT impone otra serie de restricciones a la hora de ejecutar un batache. Así, la berma superior del espaldón B deberá ser mayor a la mitad de la anchura E del batache; la distancia de la parte inferior del espaldón al paramento vertical A deberá ser mayor que su altura HE; además, la anchura del espaldón NE, deberá ser mayor a A.
Un aspecto de obra de gran interés es hacer coincidir el ancho E del batache con las dimensiones de las placas de encofrado. Sin embargo, la excavación deberá ser algo superior a la dimensión del elemento hormigonado, pues se debe permitir la presencia de las esperas de las armaduras horizontales. El exceso puede estimarse en unos 60 cm en cada lado, con un mínimo de 20-30 cm si se opta por doblar las armaduras. Por tanto, un batache de 2 m puede irse a unos 3 m, lo cual puede poner en riesgo la estabilidad de un terreno de baja cohesión durante la construcción (Cano et al., 2020).
El aspecto más importante de la excavación por bataches es el orden de ejecución, puesto que la excavación se realiza por tramos alternados para que el sostenimiento sea viable, buscando el efecto arco del terreno entre los espaldones para evitar el derrumbe. Hay que tener en cuenta que, una vez descubiertos los bataches, deben cubrirse por los muros lo más rápidamente posible, como mucho al día siguiente del descubrimiento del batache. Un posible orden de ejecución de los tramos podría ser el descrito en las Figuras 3 y 4. En primer lugar, se excavaría el batache A, ejecutándose dicho tramo de muro. A continuación se procede de la misma forma con el tramo B, y por último, con el C. Hay que tener en cuenta que la excavación mediante bataches normalmente se encofra a una sola cara el muro, dejando la otra sobre el terreno.
En la Figura 5 se observa el encofrado a una cara del muro de sótano y el ferrallado de un batache. Corresponde a la ejecución de un aparcamiento subterráneo.
Os dejo un vídeo que explica el procedimiento constructivo de muros mediante excavación por bataches. Espero que os sea útil.
En este otro vídeo, de Marcelo Pardo, también se explica el procedimiento constructivo de un muro de contención por la técnica de bataches.
A continuación os dejo las normas NTE-ADZ y NTE-CCT para su consulta.
Comparto este interesante trabajo de la universidad de Alicante en el que se estima la longitud máxima de los bataches para construir un muro de contención:
La hinca de tablestacas por impacto, percusión o golpeo es una de las técnicas más antiguas y que se emplea en aquellos casos de suelos de mayor consistencia donde la vibración no es suficiente. El martillo de golpeo sujeta a la tablestaca por su parte superior y le transmite los impactos generados por una maza alojada en su interior.
Resulta muy importante la razón entre el peso de la maza y el peso de la o las tablestacas que van a introducirse en el suelo. Es necesario un sobreretes y sufrideras para distribuir el golpe y proteger la cabeza de la tablestaca. El sombrerete o casco de protección es una pieza de acero fundido o chapones soldados que se colocan en la cabeza de la tablestaca, la sufridera es una pieza colocada en la parte superior del sombrerete que distribuye la onda de choque de la maza y la galleta o almohadilla, de pequeño espesor, asegura el buen asiento del sombrerete con la cabeza de la tablestaca.
Se pueden distinguir dos tipos fundamentales:
Martillos de simple efecto: el ariete cae libremente sobre la tablestaca. Sirve para cualquier terreno. Se utilizan mazas pesadas con recorridos cortos para minimizar el daño en la cabeza de la tablestaca y el ruído. Normalmente se dan unos 60 golpes por minuto.
Martillos de doble efecto: el ariete cae acelerado por la presión suministrada por aire/vapor o un sistema hidráulico. Son más eficientes, con hasta 120 golpes por minuto.
Según el Art. 673 del PG-3, En el caso de mazas de simple efecto, el peso de la maza propiamente dicha no será inferior a la cuarta parte (1/4) del peso de la tablestaca, si se hinca la tablestaca de una en una, o a la mitad del peso de la misma si se hinca por parejas. La energía cinética desarrollada en cada golpe, por las mazas de doble efecto, será superior a la producida, también en cada golpe, por la de simple efecto especificada, cayendo desde una altura de sesenta centímetros (60 cm).
Asismismo, las tecnologías empleadas para accionar el martillo de golpeo son:
Accionamiento neumático, para usarse sustentado por una grúa
Accionamiento diésel, acoplado a un vehículo autotransportado
Os dejo un vídeo de un martillo diésel que espero os guste:
Y este otro martillo neumático, que como veréis, es bastante pequeño y efectivo:
Referencias:
BENEGAS, M.J. (1977). Tablestacas: Sistemas de hinca y su práctica. Revista de Obras Públicas, 3141: 29-35. (link)
La técnica del soil nailing, o claveteado de suelos, consiste en una técnica de refuerzo del terreno que se ha utilizado frecuentemente para estabilizar taludes, terrraplenes, cortes del terreno, túneles y estructuras de contención (Figura 1). El soil nailing tiene su origen en la década de los 60 del siglo XX, cuando se introdujo el Nuevo Método Austríaco para la construcción de túneles. La introducción de barras de acero, la inyección de mortero fluido en las perforaciones y el revestimiento con hormigón proyectado permitieron soportar las excavaciones de rocas en túnel.
A medida que desciende la excavación, se introducen anclajes de refuerzo pasivos, generalmente subhorizontales, que trabajan principalmente a tracción, pero también pueden tomar cargas de flexión y corte. Estas barras pasivas son de acero y se conocen como pernos de roca o bulones en el ámbito de los túneles. Los refuerzos se complementan a medida que baja la excavación con un paramento superficial que puede ser rígido o flexible que impide el deslizamiento del suelo entre los puntos que se encuentran las barras instaladas. Este refuerzo del terreno permite mejorar su resistencia al corte a lo largo de superficies potenciales de falla (Figura 2).
Las barras se colocan en unos sondeos perforados previamente y que luego se rellenan con una lechada o mortero de inyección (“grout“). El diámetro de la perforación oscila entre 50 y 150 mm. Posteriormente, se ejecuta un revestimiento o pantalla (“facing“) que impida la caída de tierra entre los puntos donde se sitúan las inclusiones. Esto suele realizarse mediante hormigón proyectado (gunita), que suele reforzarse mediante una malla de acero (Figura 3). El espesor del revestimiento varía entre 50 y 150 mm, siendo más delgado en pendientes inclinadas y más gruesos en excavaciones verticales permanentes (Figura 4). La relación agua-cemento del mortero fluido generalmente varía entre 0,40 y 0,45.
La separación de los anclajes suele ser de entre 1,00 y 1,50 m, con inclinaciones entre 10º y 20º respecto a la horizontal. Las barras de acero suelen tener un diámetro entre 25 y 40 mm, con una longitud usual entre 4 y 20 m. Las condiciones del terreno indicarán la longitud del anclaje, aunque normalmente oscila entre 1,0 y 1,5 veces la altura del talud.
Este procedimiento no se puede aplicar bajo nivel freático, ni tampoco cuando el suelo es blando o muy blando, donde sea un control estricto de las deformaciones. Tampoco se utiliza en arenas y suelos sin cohesión, pues la perforación puede colapsar incluso durante la construcción. Resulta poco eficaz en taludes o deslizamientos muy altos, pues los anclajes serían de mucha longitud. Por último, la corrosión del acero implica medidas preventivas que pueden suponer costes adicionales.
Os paso unos cuantos vídeos informativos al respecto. Espero que os sean de utilidad.
Referencias:
MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos.Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia.
Se define como descabezado la operación por la cual se retira el hormigón contaminado, o de inferior calidad, o el exceso de la cabeza del muro-pantalla por encima del nivel de coronación previsto. Se trata de un procedimiento similar al descabezado de pilotes, tema que ya tratamos en un artículo anterior. A continuación vamos a describir brevemente los procedimientos usuales de descabezado de muros pantalla (Figura 1).
Son varias las razones por las que tenemos que descabezar un muro pantalla. En primer lugar, puede ocurrir que hayamos rellenado a una cota superior a la teórica, pero lo más habitual es que el hormigón de la parte superior de las pantallas esté contaminado con los lodos de perforación o con el propio terreno, por lo que debe sanearse. Se debe realizar el descabezado del hormigón hasta el nivel de coronación usando equipos y métodos que no dañen al hormigón, la armadura o cualquier instrumentación instalada en los paneles. En particular, es importante respetar las armaduras del muro pantalla para que solapen con la viga de coronación. En ocasiones se utilizan equipos mecánicos pesados que pueden ocasionar un riesgo de fisuración extensiva, por lo que, en ocasiones, se debe restringir el tipo y tamaño de la máquina empleada.
Cuando sea posible, se puede descabezar por encima del nivel de coronación antes de que el hormigón haya fraguado. Sin embargo, se debe hacer el descabezado final hasta el nivel de coronación solo después de que el hormigón haya alcanzado la suficiente resistencia.
Una de las preguntas habituales es saber qué distancia hay que descabezar. La respuesta fácil es que la Dirección Facultativa, en función de la contaminación de la parte superior de la pantalla, es quien debería determinar la magnitud requerida. En una conversación técnica mantenida con Luis Miguel Salazar (PONTEM), me comentó que la norma NTE-CCP, que trata sobre pantallas, se determina lo siguiente: “la cota final de hormigonado rebasará a la teórica en al menos 30 cm. Este exceso, en su mayor parte contaminado por el lodo, será demolido antes de construir la viga de atado de los paneles. Si la cota teórica coincide con la coronación de muretes se deberá hacer rebosar el hormigón hasta comprobar que no está contaminado”. Por tanto, ya tenemos una cota mínima: al menos 30 cm, pero la recomendación es comprobar la profundidad en la que el hormigón se encuentre contaminado.
Una de las formas habituales de descabezar el muro-pantalla es de forma manual con ayuda de martillos picadores. En la Figura 2 se puede ver esta operación. Se trata de un procedimiento que presenta poco rendimiento y que puede resultar penoso para los operarios. Es por ello que, en caso de descabezar grandes volúmenes, es preferible desde el punto de vista económico y de rendimiento el uso de medios más mecanizados. Por ejemplo, en la Figura 3 se observa un martillo rompedor manejado desde del brazo de una retroexcavadora.
El descabezado de muros pantalla mediante herramientas hidráulicas presenta ventajas respecto al empleo de martillos rompedores: una mayor productividad, mínimo daño sobre el propio muro pantalla, la posibilidad de dejar la armadura intacta, no hay grietas por debajo del nivel de corte, bajos costes de operación y alta eficiencia.
Se puede realizar el descabezamiento de muros pantalla mediante un quebrantador hidráulico, de forma similar a los pilotes (ver Figura 4). Se trata de un cilindro quebrantador que funciona con el principio de cuña. Existen quebrantadores que pueden manejarse por un solo operario con una fuerza de quebrantación superior a las 4000 kN. El trabajo es silencioso, sin polvo ni vibraciones, de peso ligero y apto para utilizarse en espacios cerrados o de difícil acceso.
También existen herramientas accionadas mediante gatos hidráulicos que permiten un descabezado limpio y preciso de la cabeza del muro-pantalla, tal y como podemos observar en las Figuras 5 y 6.
Otra de las opciones es emplear unas mandíbulas hidráulicas que, literalmente, “se comen” el hormigón, rompiéndolo (Figura 7).
También se pueden utilizar otros procedimientos como la hidrodemolición (ya se escribió sobre ello en un artículo sobre descabezado de pilotes) o bien se puede utilizar el fresado para el descabezado. Las Figuras 8 y 9 muestras dos tipos de máquinas que realizan un fresado de la cara interior del muro-pantalla. Sin embargo, la misma herramienta sirve para el descabezado, tal y como se puede ver en el vídeo que sigue.
Se utilizan los escudos o cajones de blindaje cuando se busca no solo un sostenimiento del terreno, sino una buena protección a los trabajadores. Se trata de dos paneles unidos por codales de longitud regulable (Figura 1). La longitud de la plancha oscila entre los 2,00 y 6,00 m. Además, no es apta para entibar con presencia transversal de servicios.
Los blindajes se ensamblan en obra, fuera de la zanja, con anchuras regulables en función de la zanja. Cuando se trata de zanjas profundas, se colocan unos blindajes encima de otros, unidos mediante guías. Los cajones de blindajes se pueden emplear hasta 4 m de profundidad, incluso en terrenos no cohesivos. A mayor profundidad los cajones se extraen con dificultad, pues se originan grandes esfuerzos sobre los codales y pueden aparecer descompensaciones del terreno totalmente desaconsejables. A partir de ahí, y hasta 6 m, deberían utilizarse cámaras con tablestacas.
Se distinguen dos tipos de sistemas de colocación de cajones de entibación: el método de descenso directo y el método de descenso escalonado.
El método de descenso directo, también llamado método de ajuste, consiste en introducir la entibación hasta el fondo en la zanja ya excavada. Esto es posible con paredes estables, verticales y con una excavación que presente la misma anchura que la entibación (ver Figura 2). El espacio entre la cara exterior del blindaje y el frente de excavación debe ser el mínimo posible, debiéndose rellenar para evitar los movimientos laterales del cajón. Estos escudos se montan en obra con una simple retroexcavadora o con una grúa pequeña.
El método de descenso escalonado, también llamado de “corte y bajada”, se utiliza para la colocación de cajones provistos de bordes cortantes. Consiste en empujar cada panel con la cuchara de una pala excavadora a uno y otro lado de la entibación, alternando el descenso con la excavación y retirada del suelo. El avance en el descenso no debe exceder 0,50 m del borde inferior de la plancha.
En el siguiente vídeo se muestra cómo se monta el sistema mediante el método de “corte y bajada”.