Evaluación de alternativas para la rehabilitación de pilares de hormigón armado en zona sísmica

Acaban de publicarnos un artículo en el Journal of Cleaner Production, revista indexada en el primer decil del JCR. El trabajo evalúa las alternativas de reacondicionamiento de columnas de hormigón armado en una región de alto riesgo sísmico, comparando, el recrecimiento de la sección de hormigón, el encamisado de acero y el refuerzo con fibra de carbono. El estudio destaca la importancia de tener en cuenta todas las etapas en la evaluación del ciclo de vida a la hora de rehabilitar edificios, incluidas las consideraciones de diseño, pruebas, construcción, uso y final de la vida útil. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Las contribuciones de este trabajo de investigación son las siguientes:

  • Evalúa las alternativas de reacondicionamiento de columnas de hormigón armado en una región de alto riesgo sísmico, comparando el recrecido de hormigón, el encamisado de acero y el refuerzo con fibra de carbono.
  • Realiza un análisis exhaustivo para evaluar los impactos económicos y ambientales mediante evaluaciones del ciclo de vida.
  • Presenta una jerarquía estructurada de criterios e indicadores para la evaluación de las opciones de modernización, lo que ayuda a los técnicos y a los responsables de la toma de decisiones.
  • El encamisado de acero se consideran la mejor opción debido a su rendimiento equilibrado en todos los criterios, mientras que los recrecidos de hormigón se consideran menos favorables debido a su elevado impacto ambiental y funcional. La rehabilitación con fibra de carbono es una alternativa viable con un menor impacto medioambiental y una mayor funcionalidad, a pesar de los importantes costes de las materias primas.

Abstract

The critical earthquakes of the last few years highlight the urgent seismic retrofitting of existing buildings due to their aging or inadequate design. This paper aims to evaluate reinforced concrete column retrofit alternatives in a region of high seismic risk. When deciding between various building retrofit options, significant economic, environmental, and functional factors must be considered. The study uses a cradle-to-grave analysis to examine the economic and environmental impacts through life cycle assessments. Specifically, the life-cycle performance of three classic alternatives for rehabilitating columns lacking adequate confinement is compared: concrete jacketing, steel jacketing, and carbon fiber incorporation. The research adopts a holistic approach using multi-criteria decision-making methods, integrating economic, environmental, and functional criteria. A set of criteria and indicators is presented in a structured hierarchy that facilitates the orderly evaluation of alternatives. The results suggest that steel jacketing is preferred, as it presents a balanced performance in most criteria. The incorporation of carbon fiber is viable due to its low environmental and functional impact, although the high production costs of the raw materials limit it. In contrast, concrete jacketing has the highest environmental and functional impacts, making it the least favorable option. The results of this study will provide relevant information for engineers and decision-makers to select the most suitable options for building retrofit when considering several simultaneous perspectives.

Keywords: 

Construction, CFRP, Decision making, Life cycle assessments, MCDM, Retrofit, Sustainable design.

Reference:

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2024). Life cycle evaluation of seismic retrofit alternatives for reinforced concrete columns. Journal of Cleaner Production, 455:142290. DOI:10.1016/j.jclepro.2024.142290

Os podéis descargar gratuitamente el artículo, pues está publicado en acceso abierto.

Descargar (PDF, 4.6MB)

 

Perspectiva social de un marco modular óptimo: análisis integral del ciclo de vida

Nos acaban de publicar en la Revista CIATEC-UPF (Revista de Ciências Exatas Aplicadas e Tecnológicas da Universidade de Passo Fundo, CIATEC-UPF – ISSN 2176-4565), un artículo relacionado con la optimización de pórticos de hormigón armado con sistemas de agrupación de columnas. Se trata de una colaboración con el profesor Moacir Kripka y está dentro del proyecto de investigación HYDELIFE.

Os paso a continuación el resumen y una copia descargable del artículo, pues está publicado en abierto. Espero que os sea de interés.

RESUMEN:

La perspectiva social es un aspecto fundamental en la construcción de infraestructuras sostenibles. Este estudio evalúa el análisis de ciclo de vida social de un marco articulado prefabricado de hormigón armado optimizado económicamente. Mediante el análisis de la contribución por fases al daño social total se identifica la fabricación como la etapa más influyente en el impacto social de la estructura. Adicionalmente, se verifica que la estructura modular presenta un impacto especialmente reducido en la etapa de construcción y final de vida útil. El análisis de los materiales y procesos más contribuyentes señala al acero de la armadura pasiva como el principal responsable tras el daño social de la estructura, seguido, pero en menor medida, por el hormigón y transporte. Los resultados destacan la importancia de considerar aspectos sociales en el desarrollo de la infraestructura de transporte, proporcionando información valiosa para responsables y partes interesadas en la toma de decisiones.

Palabras clave:

Marco articulado, prefabricado, análisis de ciclo de vida, optimización, sostenibilidad social

Referencia:

RUIZ-VÉLEZ, A.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2023). Perspectiva social de un marco modular óptimo: Análisis integral del ciclo de vida. Revista CIATEC-UPF, 15(1):1-19. DOI:10.5335/ciatec.v15i1.14974

Al tratarse de un artículo publicado en abierto, os dejo el mismo para su descarga. Espero que os sea de interés.

Descargar (PDF, 1.2MB)

Trabajo Fin de Máster sobre análisis del ciclo de vida y optimización del puente de la Bahía de Zhanjiang (China)

Acaba de defender su Trabajo Fin de Máster el estudiante Zijian Cao para obtener el Máster Universitario en Planificación y Gestión en Ingeniería Civil. Se trata del análisis del ciclo de vida y optimización aplicado al puente de la Bahía de Zhanjiang en China. He tenido la oportunidad de ser su director de máster, aunque ha sido un verdadero reto debido a la dificultad del idioma. Al cabo de unos años, Zijian ya habla español de forma fluida. Ha obtenido la calificación de sobresaliente. Mi más sentida enhorabuena.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. Os paso el resumen de su trabajo. Espero que os sea de interés.

En la actualidad, el mundo está avanzando hacia un modelo de desarrollo más sostenible para hacer frente al grave impacto ambiental. En este sentido, los investigadores tienen que enfocarse en la innovación de materiales, el manejo de personal y el uso de maquinarias con el fin de controlar y reducir la contaminación ambiental mediante métodos científicos y medidas eficaces de optimización, logrando así un desarrollo sostenible y respetuoso con el medio ambiente en las construcciones.

Puente de la Bahía de Zhanjiang. https://megaconstrucciones.net/?construccion=puente-bahia-zhanjiang

Para llevar a cabo este trabajo, se ha realizado una investigación exhaustiva de los factores que influyen en el impacto ambiental de las construcciones, analizando la información actual de los impactos ambientales en China y países europeos. Posteriormente, se ha establecido un modelo teórico efectivo que permita aplicar un Análisis de Ciclo de Vida (ACV) y utilizado modelos de cálculo y software de análisis para lograr los objetivos de la investigación.

El enfoque principal del trabajo es el análisis teórico y el estudio de casos. A través del modelo teórico establecido, se efectúa un análisis detallado de los impactos de los materiales, la planificación y el diseño, la instalación, el mantenimiento, la operación y la demolición de puentes complejos. Sobre la base del modelo teórico original, se han contemplado métodos en diseño, métodos de construcción y gestión, que se benefician del ahorro de costos y la reducción de emisiones. Este trabajo no solo contribuye con resultados concretos, sino que también establece un marco para futuras investigaciones en este campo. Además, proporciona datos, modelos y métodos de investigación para la sostenibilidad en la construcción.

Participación en el Comité Científico de Congreso Internacional IALCCE2023

Tengo el placer de anunciar mi participación en el Comité Científico del IALCCE2023, Eighth International Symposium on Life-Cycle Civil Engineering, que tendrá lugar en el campus del Politécnico de Milán (Italia), entre el 11 y el 15 de junio. Los Presidentes de este congreso son los profesores Fabio Biondini y Dan Frangopol.

El objetivo de IALCCE 2023 es reunir toda la investigación de vanguardia en el campo de la Ingeniería Civil de Ciclo de Vida y avanzar tanto en el estado de la técnica como en el de la práctica en este campo. Este simposio ofrecerá a académicos, ingenieros, arquitectos, consultores, contratistas, autoridades públicas y responsables de la toma de decisiones de todo el mundo la oportunidad de mantenerse al día con los últimos avances en el campo de la Ingeniería Civil de Ciclo de Vida.

Los sistemas de estructuras civiles e infraestructuras son la columna vertebral de la sociedad moderna y uno de los principales motores del crecimiento económico y el desarrollo sostenible de los países. Por lo tanto, es una prioridad estratégica consolidar y mejorar los criterios, métodos y procedimientos para proteger, mantener y mejorar la seguridad, la solidez, la durabilidad, la funcionalidad y la resistencia de los sistemas de estructuras e infraestructuras críticas en condiciones de incertidumbre.

En este contexto, la ingeniería civil está experimentando un profundo cambio hacia una filosofía de diseño orientada al ciclo de vida para satisfacer la creciente demanda de las necesidades económicas, medioambientales, sociales y políticas, y para incorporar los nuevos problemas medioambientales, como los efectos del calentamiento global y el cambio climático. También es necesario esforzarse por colmar el vacío existente entre la teoría y la práctica y fomentar la incorporación de los conceptos de ciclo de vida en los códigos, normas y especificaciones de diseño estructural. Para ello, se promueve la investigación y las aplicaciones en el seno de la Asociación Internacional de Ingeniería Civil del Ciclo de Vida (IALCCE).

 

Entrevista en El Confidencial sobre la importancia de invertir en el mantenimiento de infraestructuras

Uno de los dos tramos del viaducto desplomado en el A-6. (EFE/Ana Maria Fernández Barredo))

Con motivo del VIII Congreso de la Asociación Española de Ingeniería Estructural celebrado en Santander, me solicitaron una entrevista para El Confidencial sobre el problema del viaducto de la A-6 en el municipio leonés de Vega de Valcarce. Los que ya me conocéis, sabéis que nunca comento este tipo de problemas concretos, a no ser que tenga todos los datos disponibles. Pero aproveché para insistir en la importancia del mantenimiento de nuestras infraestructuras. Os paso en pdf el contenido de la entrevista que me realizó el periodista José Pichel, por si os resulta de interés.

También la podéis ver completa aquí: https://www.elconfidencial.com/tecnologia/ciencia/2022-06-23/ingeniero-avisa-derrumbe-invertir_3448284/

Descargar (PDF, 436KB)

¿Es obligatorio calcular la huella de carbono en los proyectos de construcción?

Una pregunta que suelen hacerme es si es necesario el cálculo de la huella de carbono en la redacción de los proyectos de construcción. A estas alturas nadie duda de la importancia que tiene la emisión de gases de efecto invernadero. En el ámbito científico y técnico, la metodología del análisis del ciclo de vida de un producto está plenamente desarrollada. Sin embargo, la docencia de este tipo de técnicas en las enseñanzas universitarias no acaba de incorporarse plenamente en los programas curriculares. Voy a relatar brevemente lo que está ocurriendo a nivel legislativo para que veáis hacia dónde va este tema.

Todo ello viene porque el pasado 1 de abril de 2022 el Pleno del Consell aprobó el proyecto de Ley de Cambio Climático y Transición Ecológica de la Comunitat Valenciana. Se trata de una propuesta de la Conselleria de Agricultura, Desarrollo Rural, Emergencia Climática y Transición Ecológica que traza una hoja de ruta para reducir las emisiones y contribuir a luchar contra el cambio climático.

La nueva normativa establece un objetivo de reducción de emisiones del 40% para 2030 y conseguir la neutralidad en el horizonte del 2050. En cuanto al consumo de energía, el objetivo es disminuir al menos un 35,4% para 2030. En relación con la transición energética, el objetivo es que el 42% del consumo de energía provenga de fuentes renovables, también en 2030. Una de las diversas obligaciones que impone el nuevo texto legislativo es que, a partir del 1 de enero de 2025, todos los municipios de la Comunitat Valenciana con más de 5.000 habitantes estén obligados a calcular y registrar su huella de carbono.

Asimismo, este requisito parece ser cada vez más como una condición necesaria para poder acogerse a determinadas ayudas públicas. A modo de ejemplo, la Resolución de 16 de febrero de 2022, de la Conselleria de Agricultura, Desarrollo Rural, Emergencia Climática y Transición Ecológica, por la que se convocan ayudas a los municipios de la Comunitat Valenciana para potenciar proyectos de lucha contra el cambio climático, para el ejercicio de 2022. Por su parte, las grandes y medianas empresas que operen en todo o parte de la Comunidad Valenciana estarán obligadas, de acuerdo con lo que se establezca reglamentariamente, a calcular y reconocer anualmente la correspondiente huella de carbono de sus actividades.

Este es un ejemplo, en el ámbito regional, de cómo se está imponiendo la evaluación de la huella de carbono en los ámbitos públicos y privados. En muchos más ámbitos y países se está legislando de una forma similar. Por tanto, y respondiendo a la pregunta planteada, la respuesta es que sí no es obligatorio calcular la huella de carbono en los proyectos, lo va a ser en el futuro próximo. Los Colegios Profesionales deberán estar atentos a estos cambios legislativos para exigir estos cálculos cuando se proceda al visado de los proyectos.

Como sabéis, nuestro grupo de investigación no solo está desarrollando la metodología para este cálculo en el ámbito ambiental y social, sino que está aplicando técnicas de decisión multicriterio para que el proyectista sea capaz de decidir la mejor de las opciones en el estudio de soluciones del proyecto. Además, para que estas técnicas sean efectivas, deben aplicarse sobre soluciones optimizadas.

Referencias:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Regional sustainable development impact through sustainable bridge optimization. Structures, 41, 1061-1076. DOI: 10.1016/j.istruc.2022.05.047

VITORIO, P.C., Jr.; YEPES, V.; KRIPKA, M. (2022). Comparison of Brazilian Social Interest Housing Projects considering Sustainability. International Journal of Environmental Research and Public Health, 19(10):6213DOI:10.3390/ijerph19106213

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Evaluating the sustainability of soil improvement techniques in foundation substructures. Journal of Cleaner Production, 351: 131463. DOI:10.1016/j.jclepro.2022.131463

MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization, 65:46. DOI:10.1007/s00158-021-03154-0

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

SIERRA, L.; ARAYA, F.; YEPES, V. (2021). Consideration of uncertainty and multiple disciplines in the determination of sustainable criteria for rural roads using neutrosophic logic.  Sustainability, 13(17):9854. DOI:10.3390/su13179854

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

HOOSE, A.; YEPES, V.; KRIPKA, M. (2021). Selection of Production Mix in the Agricultural Machinery Industry considering Sustainability in Decision Making. Sustainability, 13(16), 9110. DOI:10.3390/su13169110

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

BIANCHI, P.F.; YEPES, V.; VITORIO, P.C., Jr.; KRIPKA, M. (2021). Study of alternatives for the design of sustainable low-income housing in BrazilSustainability, 13(9):4757. DOI:10.3390/su13094757

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homesEnvironmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2021). Neutrosophic completion technique for incomplete higher-order AHP comparison matrices. Mathematics, 9(5):496. DOI:10.3390/math9050496

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

NAVARRO, I.J.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; REMPLING, R.; YEPES, V. (2020). Life cycle sustainability assessment for multi-criteria decision making in bridge design: A review. Journal of Civil Engineering and Management, 26(7):690-704. DOI:10.3846/jcem.2020.13599.

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental Research and Public Health, 17(16):5953. DOI:10.3390/ijerph17165953

PONS, J.J.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2020). Life cycle assessment of a railway tracks substructures: comparison of ballast and ballastless rail tracks. Environmental Impact Assessment Review, 85:106444. DOI:10.1016/j.eiar.2020.106444

MILANI, C.J.; YEPES, V.; KRIPKA, M. (2020). Proposal of sustainability indicators for the design of small-span bridges. International Journal of Environmental Research and Public Health, 17(12):4488. DOI:10.3390/ijerph17124488

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020:8823370. DOI:10.1155/2020/8823370

PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265

PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Engineering Structures, 209: 109968. DOI:10.1016/j.engstruct.2019.109968

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2020). Robust design optimization for low-cost concrete box-girder bridge. Mathematics, 8(3): 398. DOI:10.3390/math8030398

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258: 120556. DOI:10.1016/j.jclepro.2020.120556

SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. International Journal of Environmental Research and Public Health, 17(3): 962. DOI:10.3390/ijerph17030962

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7): 949-967. DOI:10.1080/15732479.2019.1676791

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multicriteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803. DOI:10.1155/2019/6134803

SALAS, J.; YEPES, V. (2019). VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain. Sustainability, 11(8): 2191. DOI:10.3390/su11082191

MARTÍNEZ-FERNÁNDEZ, P.; VILLALBA-SANCHÍS, I.; YEPES, V.; INSA-FRANCO, R. (2019). A review of modelling and optimisation methods applied to railways energy consumption. Journal of Cleaner Production, 222:153-162. DOI:10.1016/j.jclepro.2019.03.037

KRIPKA, M.; YEPES, V.; MILANI, C.J. (2019). Selection of sustainable short-span bridge design in Brazil. Sustainability, 11(5):1307. DOI:10.3390/su11051307

SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, 216:607-623. DOI:10.1016/j.jclepro.2018.12.083

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:10.1016/j.eiar.2018.10.001

GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202: 904-915. DOI:10.1016/j.jclepro.2018.08.177

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:10.1016/j.eiar.2018.05.003

PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420. DOI:10.1016/j.jclepro.2018.04.268

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI:10.1016/j.jclepro.2018.03.022

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:10.3390/su10030845

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. DOI:10.3390/su10030685

SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534. DOI:10.1016/j.jclepro.2017.12.140

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. DOI:10.1007/s00158-017-1653-0

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013

MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. DOI:10.1016/j.jclepro.2017.06.246

PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. DOI:10.3390/su9101864

SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53. DOI:10.1016/j.eiar.2017.02.004

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003

TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102. DOI:10.1016/j.jclepro.2017.01.100

ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048. DOI: 10.1016/j.jclepro.2016.10.085

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295

GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI:10.1016/j.engstruct.2016.07.012

MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI:10.1016/j.jclepro.2016.02.024

SIERRA, L.A.; PELLICER, E.; YEPES, V. (2016). Social sustainability in the lifecycle of Chilean public infrastructure. Journal of Construction Engineering and Management, 142(5):05015020. DOI:10.1061/(ASCE)CO.1943-7862.0001099

TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63. DOI:10.3141/2523-07

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridgesEngineering Structures, 92:112-122. DOI:10.1016/j.engstruct.2015.03.015

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI:10.1016/j.autcon.2014.10.013

TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56. DOI:10.4067/S0718-915X2014000200006

TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, 2014, 524329. DOI:10.1155/2014/524329

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI:10.1007/s11367-013-0614-0

MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(6):420-432. DOI:10.1631/jzus.A1100304

YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering, 26 (3):378-386. DOI:10.1061/(ASCE)CP.1943-5487.0000140

PAYÁ-ZAFORTEZA, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Optimization of Reinforced Concrete Frames by Simulated Annealing. Engineering Structures, 31(7): 1501-1508. DOI: 10.1016/j.engstruct.2009.02.034

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué alternativa de puente es la más sostenible medioambientalmente? ¿Y socialmente?

He empezado una serie de vídeos divulgativos donde quiero explicar, de forma breve, los resultados que estamos obteniendo en nuestro grupo de investigación. Considero que es importante hacerlo debido a que, muchas veces, los artículos científicos quedan almacenados en las grandes revistas y no llegan al técnico o al público en general.

En este caso, os he preparado un vídeo sobre en el que explico cómo hemos realizado el análisis del ciclo de vida de cuatro tipologías de puentes muy utilizados en nuestro país: losas macizas, losas aligeradas, secciones en cajón y secciones mixtas. Se analiza no solo el impacto social, sino también el medioambiental. Os explico qué metodología usamos, el software, las bases de datos, etc. Os llevaréis una relativa sorpresa con los resultados obtenidos. Ya os adelanto que las mejores alternativas medioambientales no se corresponden con las mejores desde el punto de vista social.

Los que queráis descargar gratuitamente el artículo, podéis acudir al siguiente enlace: https://www.mdpi.com/2071-1050/14/9/5186

Referencia:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Aplicación de la clase inversa a la evaluación del ciclo de vida de una pasarela mixta

Variables de la sección transversal del puente mixto

A continuación os paso una comunicación que hicimos en el congreso INTED en nuestra búsqueda constante de estrategias pedagógicas innovadoras. Este estudio describe cómo se ha introducido la evaluación del ciclo de vida en un curso de postgrado a través de la clase inversa. El análisis se realizó en la asignatura “Modelos predictivos y de optimización de estructuras de hormigón” enmarcada dentro de los estudios del Máster Universitario en Ingeniería del Hormigón. En esta asignatura introduce los métodos de optimización mediante la aplicación de algoritmos y otros conceptos, como la toma de decisiones multicriterio, el diseño de experimentos y los métodos predictivos y de regresión. En este caso, se llevó a cabo la evaluación del ciclo de vida de una pasarela mixta de 28 m de longitud. La sección consiste en una viga de acero con una losa de hormigón. Se modelaron distintos escenarios con ayudados con software específico. Se empleó la base de datos Ecoinvent, y el software openLCA, desarrollado por Greendelta. Esta metodología permite al estudiante adquirir ciertas competencias transversales, como la responsabilidad ética y medioambiental, el conocimiento de los problemas contemporáneos, el pensamiento crítico y el uso de instrumentos específicos, todo ello enmarcado en el proyecto institucional de la Universitat Politècnica de València. El trabajo también presenta futuros estudios relacionados con la evaluación del ciclo de vida de las pasarelas, no sólo desde el punto de vista energético y medioambiental, sino también teniendo en cuenta factores económicos y sociales.

ABSTRACT:

This study describes the introduction of the life cycle assessment methodology to a postgraduate course through a flipped classroom. The analysis was carried out in the subject predictive models and optimization of concrete structures framed within the Master’s Degree in Concrete Engineering studies. In this course, students are introduced to optimization methods through the application of algorithms and other concepts, such as multi-criteria decision-making, the design of experiments, and predictive and regression methods. In this case, the life cycle assessment of a 28 m span length steel-concrete composite pedestrian bridge was carried out. The section consists of a steel beam topped by a concrete slab. Computer tools were used in different implementation scenarios to model the different possibilities. The database used was Ecoinvent, and the software employed to assess the structure’s life cycle was openLCA, developed by Greendelta. This methodology allows the student to acquire transversal competencies, such as ethical and environmental responsibility, knowledge of contemporary problems, critical thinking, and the use of specific instruments, all of them framed within the institutional project of the Universitat Politècnica de València. This work also presents future studies related to the life cycle assessment of footbridges, not only from energy and environmental points of view but also accounting for economic and social factors. This learning process was achieved with a reverse teaching methodology that allows students to acquire knowledge more efficiently.

Keywords:

Technological resources; tools; active methodology; flipped teaching; life cycle assessment; transversal competencies.

Reference:

MARTÍNEZ-MUÑOZ, D.; ATA-ALI, N.; MARTÍ, J.V.; YEPES, V. (2019). Application of flipped learning to the life cycle assessment of a composite pedestrian bridge. 12th annual International Conference of Education, Research and Innovation ICERI 2019, 11-13 nov 2019, Sevilla, Spain, pp. 900-907. ISBN: 978-84-09-14755-7

Os dejo a continuación la comunicación completa.

Descargar (PDF, 198KB)

¿Qué es LEVEL(s)? El nuevo marco europeo de evaluación voluntario para mejorar la sostenibilidad en la edificación

https://www.construible.es/2020/10/20/ce-lanza-oficialmente-marco-europeo-edificios-sostenibles-level-s

A lo largo de estos años hemos visto un buen cúmulo de métodos de evaluación de la sostenibilidad en la edificación (MEES). Se trata de un campo donde nos encontramos en plena evolución conceptual, desde un enfoque inicial centrado en los impactos ambientales, hasta la inclusión paulatina de aspectos sociales y económicos de la sostenibilidad.

Todo esto ha llevado a la creación de un nuevo marco establecido por la Comisión Europea en materia de edificación que se conoce con el nombre de Level(s) y que se ha lanzado este mismo año 2021. Pero vamos a empezar contextualizando este tema y veamos después, a grandes rasgos, qué es esto de Level(s).

Se han contabilizado más de 700 métodos, desde la década de los 70, que intentan evaluar el comportamiento y rendimiento del edificio y sus impactos (López et al., 2019). Todos ellos son instrumentos basados en indicadores cuantitativos del rendimiento ambiental, económico, social y de usabilidad de los edificios que, como no puede ser de otra forma, se actualizan constantemente. No se trata solo de evaluar un edificio terminado, sino que estos métodos MEES pretenden una visión holística de la sostenibilidad que empiece desde el proyecto y que termine con el fin de la vida útil del edificio. Resulta en este punto interesante hacer referencia a la tesis doctoral de Carmen Díaz (2021), que realizó una investigación exhaustiva de 101 MEESs y que clasificó estos métodos en tres grupos: Sistemas de evaluación de la edificación sostenible, Estándares de edificación sostenible y Herramientas de evaluación.

  • Los sistemas de evaluación de la edificación sostenible tratan de evaluar, clasificar y certificar los edificios atendiendo a una serie de parámetros o categorías. En estos sistemas se establece, por tanto, una gradación entre las edificaciones. Un ejemplo sería la certificación LEED (Liderazgo en Energía y Diseño Ambiental, por sus siglas en inglés).
  • Los estándares de edificación sostenible presentan una exigencia de requisitos mínimos de desempeño y, por tanto, no establece una gradación entre las edificaciones. Sería un catálogo de soluciones constructivas o de buenas prácticas. Tenemos, por ejemplo, el caso del estándar Passivhaus (del alemán, casa pasiva).
  • Las herramientas de evaluación no evalúan, clasifican o certifican, sino que son un apoyo a otros métodos. Se trata de programas informáticos que simplifican los cálculos. Como ejemplo podemos citar EnergyPlus.
Prioridades de Level(s). https://gbce.es/blog/proyecto/levels/

Pues bien, en este contexto la Comisión Europea lanzó en 2021 un nuevo marco de evaluación voluntario denominado Level(s) que recoge los instrumentos y normas existentes con el objetivo de sensibilidad a las partes interesadas, incrementar el conocimiento, proporcionar un enfoque común, adaptarse al cambio climático y crear un marco de economía circular.

Cada indicador de Level(s) puede utilizarse para distintos tipos de evaluación del comportamiento, desde un nivel de base hasta un análisis del ciclo de vida (ACV) completo. Las prioridades que marcan los indicadores son las siguientes:

  • Emisiones de gases de efecto invernadero a lo largo del ciclo de vida del edificio.
  • Ciclos de vida de los materiales que sean circulares y eficientes en cuanto al uso de recursos.
  • Uso eficiente de los recursos hídricos.
  • Espacios sanos y confortables.
  • Adaptación y resiliencia al cambio climático
  • Coste y valor del ciclo de vida.

El proyecto se divide en 6 macroobjetivos y 16 indicadores distribuidos en tres áreas temáticas según su comportamiento. Además, Level(s) esta estructurado en tres niveles que se comportan de la siguiente manera:

Nivel 1: Nivel simple de tipo diseño conceptual del proyecto de construcción. Evaluación cualitativa para el diseño y la presentación de informes.
Nivel 2: Nivel intermedio de tipo diseño detallado y desempeño de la construcción del edificio. Evaluación cuantitativa del rendimiento diseñado y el seguimiento de la construcción de acuerdo con unidades y métodos estandarizados.
Nivel 3: Nivel avanzado de tipo desempeño tal como fue construido y el uso de cómo se desempeña el edificio después de la finalización y entrega al cliente. Evaluación cuantitativa del rendimiento del diseño y el seguimiento de la construcción de acuerdo con unidades y métodos estandarizados.

Visión general del marco de Level(s). https://itec.es/infoitec/sostenibilidad/levels-el-marco-europeo-para-edificios-sostenibles/

En este vídeo se explica, brevemente, en qué consiste Level(s).

Os paso un vídeo donde se explica la experiencia española sobre la propuesta Level(s). Espero que os sea de interés.

Referencias:

López, C. D., Carpio, M., Martín-morales, M., Díaz López, C., Carpio, M., Martín-morales, M., Zamorano, M. (2019). A comparative analysis of sustainable building assessment methods. Sustainable Cities and Society, 49, 101611. https://doi.org/10.1016/j.scs.2019.101611

Díaz-López, C. (2021). Sustainable building assessment methods: adaptation to climate change and implementation strategies. Tesis doctoral, Universidad de Granada.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Análisis del ciclo de vida de puentes usando matemática difusa bayesiana

Acaban de publicarnos un artículo en la revista científica Applied Sciences (indexada en el JCR, Q2) un artículo que trata sobre el análisis del ciclo de vida de puentes usando redes bayesianas y matemática difusa. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En la actualidad, reducir el impacto de la industria de la construcción en el medio ambiente es la clave para lograr un desarrollo sostenible. Son muchos los que utilizan software para evaluar el impacto ambiental de los puentes. Sin embargo, debido a la complejidad y discreción de los factores medioambientales de la industria de la construcción, es difícil actualizarlos y determinarlos rápidamente, y se da el fenómeno de la pérdida de datos en las bases de datos. La mayoría de los datos perdidos se optimizan mediante la simulación de Monte Carlo, lo que reduce en gran medida la fiabilidad y precisión de los resultados de la investigación. Este trabajo utiliza la teoría matemática difusa avanzada bayesiana para resolver este problema. En la investigación, se establece una evaluación de matemática difusa bayesiana y un modelo de discriminación prioritaria de sensibilidad de varios niveles, y se definen los pesos y los grados de pertenencia de los factores de influencia para lograr una cobertura completa de los factores de influencia. Con el apoyo de la modelización teórica, se evalúan exhaustivamente todos los factores de influencia de las etapas del ciclo de vida de la estructura del puente. Los resultados muestran que la fabricación de materiales, el mantenimiento y el funcionamiento del puente siguen produciendo contaminación ambiental; la fuente principal de las emisiones supera el 53% del total de las emisiones. El factor de impacto efectivo alcanza el 3,01. Al final del artículo, se estableció un modelo de sensibilidad de “big data“. Optimizando con estas técnicas, las emisiones contaminantes del tráfico se redujeron en 330 toneladas. Se confirma la eficacia y la practicidad del modelo de evaluación integral de la metodología propuesta para tratar los factores inciertos en la evaluación del desarrollo sostenible en el caso de los puentes. Los resultados de la investigación contribuye a alcanzar los objetivos de desarrollo sostenible en la industria de la construcción.

El artículo se ha publicado en abierto, y se puede descargar en el siguiente enlace: https://www.mdpi.com/2076-3417/11/11/4916

ABSTRACT:

At present, reducing the impact of the construction industry on the environment is the key to achieving sustainable development. Countries all over the world are using software systems for bridge environmental impact assessment. However, due to the complexity and discreteness of environmental factors in the construction industry, they are difficult to update and determine quickly, and there is a phenomenon of data missing in the database. Most of the lost data are optimized by Monte Carlo simulation, which greatly reduces the reliability and accuracy of the research results. This paper uses Bayesian advanced fuzzy mathematics theory to solve this problem. In the research, a Bayesian fuzzy mathematics evaluation and a multi-level sensitivity priority discrimination model are established, and the weights and membership degrees of influencing factors were defined to achieve comprehensive coverage of influencing factors. With the support of theoretical modelling, software analysis and fuzzy mathematics theory are used to comprehensively evaluate all the influencing factors of the five influencing stages in the entire life cycle of the bridge structure. The results show that the material manufacturing, maintenance, and operation of the bridge still produce environmental pollution; the main source of the emissions exceeds 53% of the total emissions. The effective impact factor reaches 3.01. At the end of the article, a big data sensitivity model was established. Through big data innovation and optimization analysis, traffic pollution emissions were reduced by 330 tonnes. Modeling of the comprehensive research model; application; clearly confirms the effectiveness and practicality of the Bayesian network fuzzy number comprehensive evaluation model in dealing with uncertain factors in the evaluation of the sustainable development of the construction industry. The research results have made important contributions to the realization of the sustainable development goals of the construction industry.

Keywords:

Construction industry; environmental; impact factor; analysis; contribution

Reference:

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

Descargar (PDF, 5MB)