Estribos cerrados de puentes

Figura 1. Esquema de estribo cerrado. Imagen: V. Yepes

El estribo cerrado es uno de los tipos más comunes de estribos utilizados en puentes. Consiste en un muro frontal, que constituye la estructura principal del estribo, aletas laterales (con o sin muro lateral), un murete guarda y una losa de transición. En la Figura 1 se puede ver el esquema de su sección transversal. El muro frontal se encarga de recibir la carga del tablero a través de los apoyos, los cuales permiten que el tablero se mueva de forma independiente a los movimientos ocasionados por las tierras circundantes. Además, el estribo cerrado se apoya en el terreno natural, en lugar de hacerlo sobre el terraplén, lo que ayuda a reducir los asientos a largo plazo. Esto es especialmente beneficioso para evitar asentamientos que podrían afectar al tablero si este fuera hiperestático.

El diseño de la parte superior del estribo se determina según el tipo de carga y los movimientos del tablero. Por otro lado, la parte inferior está influenciada por las acciones del tablero y el empuje de las tierras, especialmente cuando el estribo es alto. En el caso de puentes ferroviarios, donde el empuje horizontal en la parte superior debido al frenado es significativo, el diseño de la parte inferior del estribo, incluyendo la variación de los espesores, el tamaño del cimiento, entre otros aspectos, también se ve afectado por este efecto. En los viaductos destinados a trenes de alta velocidad, es común utilizar anclajes tipo Gewi o cables de pretensado para sujetar el tablero a uno de los estribos. Este estribo se denomina estribo fijo, mientras que la junta de dilatación se ubica en el estribo opuesto.

El cierre lateral del estribo depende de si hay posibilidad de derrame de tierras por delante de él. En el caso poco frecuente de estribos cerrados donde se pueda producir derrame, se soluciona colocando una pequeña aleta triangular perpendicular al muro frontal del estribo. La altura y longitud de la aleta dependerán del grosor del tablero y la inclinación del derrame del terraplén. En el caso más frecuente, donde no hay derrame de tierras por delante del estribo, existen dos soluciones posibles. La primera es extender muros en continuación del muro frontal, conocidos como “aletas en prolongación”. La segunda es disponer muros adyacentes al propio muro frontal y perpendiculares a este, conocidos como “muros en vuelta”. En este último caso, dependiendo de la altura del estribo y la inclinación de las tierras, puede ser necesario construir verdaderos muros de contención para contener el terraplén.

Este tipo de estribo permite no verter tierras por delante de él, lo cual es especialmente útil cuando se desea evitar invadir la vía inferior. En caso de que haya edificaciones cercanas, se puede extender lateralmente el estribo mediante la construcción de un muro en vuelta, que puede prolongarse según sea necesario. Estos muros en vuelta pueden tener un ángulo de 90º con el estribo (Figura 2), siguiendo la disposición del vial en caso de que el estribo se desvíe, o pueden formar un ángulo (generalmente de 30º) siguiendo la inclinación del terraplén.

Figura 2. Paso elevado sobre la línea del ferrocarril en el término municipal de Lodosa. http://www.navarra.es/NR/rdonlyres/36F08D42-4369-4D8F-B831-194DE72E5827/103157/110408op61b2.JPG

En el caso de estribos de gran altura, generalmente a partir de unos 8 m, existen dos opciones alternativas en lugar de mantener un espesor constante, que suele ser significativo y solo necesario en los últimos metros inferiores, donde el cortante y el momento flector son más altos. La primera opción es establecer un espesor variable, en la cual se suele cambiar el espesor cada 4 m, que coincide con la altura típica de las capas de hormigonado. La segunda opción es utilizar un muro frontal nervado con rigidizadores verticales. En este caso, el muro frontal transmite el empuje de las tierras a través de la flexión horizontal a los nervios, y estos, a su vez, lo transmiten verticalmente a la cimentación.

La impermeabilización es un elemento esencial en un estribo, tanto para garantizar su funcionalidad como para reducir los empujes del trasdós. Por esta razón, todos los estribos deben contar con una capa de material filtrante en el trasdós, así como con un tubo de drenaje en el fondo que permita la evacuación de las aguas acumuladas detrás del muro frontal hacia el exterior.

Los asientos que ocurren en el terraplén de acceso son más significativos que los que se producen en el muro. En los puentes de carretera, se evita el resalto abrupto que se generaría en la unión entre ambos elementos mediante el uso de una losa de transición. Esta losa se apoya en las tierras de un lado y en el muro del otro, proporcionando una transición suave entre ambos extremos. El tamaño de esta losa dependerá de la diferencia de asientos entre el muro y el terraplén, así como de la altura y calidad del terraplén. Por lo general, una losa de transición de 4 a 5 m de longitud suele ser suficiente (Manterola, 2006).

Os dejo un pequeño vídeo donde se explican los estribos de los puentes, incluido el estribo cerrado. Espero que os sea de interés.

Referencias:

ARENAS, J.J.; APARICIO, A.C. (1984). Estribos de puente de tramo recto. Santander: Universidad de Cantabria.

DIRECCIÓN GENERAL DE CARRETERAS (1994). Manual para el proyecto y ejecución de estructuras de suelo reforzado. Ministerio de Obras Públicas, Transportes y Medio Ambiente.

JURADO, C. (2016). Puentes (I). Evolución, tipología, normativa, cálculo. 2ª edición, Madrid.

MANTEROLA, J. (2006). Puentes II. Apuntes para su diseño, cálculo y construcción. Colección Escuelas. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328.

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Puente pórtico, entre el arco y las vigas

Figura 1. El puente sobre el río Arga de la A-12, en Puente la Reina (Navarra), de Javier Manterola, de 120 m de luz. https://www.hortacoslada.com/es/proyectos/puente-rio-arga/

El puente pórtico se caracteriza por ser un sistema estructural en el que el dintel trabaja en conjunto con las pilas, presentándose como un caso intermedio entre un puente arco y un puente viga. Estos puentes se caracterizan por su belleza estética. Al igual que los puentes de vigas, están formados por un tablero y pilas, y el tablero está sujeto a flexión. Sin embargo, a diferencia de los puentes de vigas, las pilas generan empujes horizontales significativos en los cimientos, por lo que se requiere un terreno resistente para minimizar los desplazamientos horizontales. Si el terreno no cumple los requisitos necesarios, por ejemplo, si es blando, las pilas pueden abrirse, colapsar o reducir el empuje horizontal, por lo que la ley de momentos se asemejaría nuevamente a la de una viga con dos apoyos.

El objetivo principal del sistema de aporticado es reducir los momentos flectores generados en el puente mediante el empotramiento parcial proporcionado por la rigidez de las pilas. Como resultado de esta configuración, se originan momentos negativos en la unión entre los pilares y el dintel. Al reducir los momentos máximos en el dintel, es posible construir puentes con luces más amplias. Sin embargo, la unión rígida del tablero con los estribos o las pilas para formar pórticos plantea desafíos en cuanto a las fuerzas axiales generadas por las cargas térmicas y las reacciones horizontales que el sistema del pórtico ejerce sobre las cimentaciones.

Con el fin de evitar el desplazamiento horizontal de la base de las pilas, es esencial contar con un terreno capaz de soportar las reacciones horizontales. Este requisito implica que el dintel del puente esté sometido a compresión. Esta respuesta estructural se conoce comúnmente como efecto pórtico, que presenta ligeras diferencias respecto al efecto arco, donde todo el puente en arco se somete a compresión.

Figura 2. El viaducto Sfalassà es un viaducto de 254 metros de altura situado cerca de Bagnara Calabra, Calabria, Italia. https://es.wikipedia.org/wiki/Viaducto_Sfalass%C3%A0

Existen diferentes tipologías básicas de puentes pórtico, que se describen a continuación:

  1. Pórtico de dos o tres vanos con pilares verticales y apoyos deslizantes en los estribos. Este tipo de estructura se utiliza cuando se requiere un gálibo muy estricto. Las pilas pueden dividirse en dos elementos en forma de V, lo que logra un resultado estético agradable y mayor esbeltez en el vano (Figura 3).
  2. Pórtico en forma de “pi” de tres vanos con pilares inclinados y apoyos deslizantes en los estribos. Esta solución es típica para la construcción de pasos superiores de autopistas.
  3. Pilas altas y flexibles, desde las cuales parten dos dinteles construidos mediante voladizos simétricos. Estos dinteles se unen en el centro de los vanos para formar pórticos. Normalmente, se emplean apoyos deslizantes en los estribos.
Figura 3. Nuevo puente de Anyos (Andorra, 2002). https://www.cfcsl.com/portfolio/nuevo-puente-de-anyos-andorra-2002/

La inclinación de las pilas de un puente pórtico cumple dos funciones principales. En primer lugar, reduce la longitud del vano central del dintel e introduce una importante componente axial en esa sección. Además, permite un mejor empotramiento en el vano central, compensado mediante la continuidad de los vanos laterales del dintel. Cuando las pilas están inclinadas, la respuesta estructural se asemeja a la de un puente en arco con un tablero conectado al arco sin montantes intermedios. En realidad, la forma en que estas dos estructuras soportan las cargas es muy similar, por lo que la distinción entre ellas es en gran medida arbitraria.

Por otro lado, si las pilas del puente pórtico son altas y esbeltas en comparación con la longitud del vano central, el empotramiento entre las pilas y el dintel se reduce. En este caso, el tablero funciona más como una viga continua apoyada en las pilas. En esta configuración, el efecto pórtico se reduce considerablemente, lo que implica una pérdida de la eficacia buscada en la estructura.

Si la unión entre las pilas y el dintel es de articulación simple, la deformación del tablero bajo cargas verticales será similar a la de una viga simplemente apoyada. Si la unión es empotrada, la deformación seguirá el patrón indicado en la Figura 4, lo que dependerá de si el terreno ejerce empujes horizontales.

Figura 4. En la izquierda el terreno no resiste los empujes horizontales, en la derecha, sí (Jurado, 2016).

En el caso de un puente pórtico biarticulado, la deformación es similar a la de una viga continua con tres vanos. El vano central corresponde a la longitud del pórtico, mientras que las luces de los vanos laterales representan la altura de las pilas. Se puede imaginar como si el pórtico se hubiera dividido en una viga recta apoyada en los puntos de unión entre la viga y el pilar y en los extremos, y sometida a la carga presente en el vano central. En este tipo de puente se producen interacciones constantes entre el suelo y la estructura, similares a las de los puentes en arco. A medida que el puente es más pequeño, estas interacciones son más importantes.

Referencias:

JURADO, C. (2016). Puentes (I). Evolución, tipología, normativa, cálculo. 2.ª edición, Madrid.

MANTEROLA, J. (2006). Puentes II. Apuntes para su diseño, cálculo y construcción. Colección Escuelas. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Proceso constructivo de un puente colgante

Figura 1. Gran Puente de Akashi Kaikyō, el puente colgante de mayor vano del mundo. Wikipedia.

El sistema de construcción de puentes colgantes tiene un impacto significativo en su estructura. Las fases principales en la ejecución de un puente colgante pasa por la construcción de las torres y contrapesos, el montaje de los cables principales y la ejecución del tablero.

Lo habitual es que el proceso constructivo comience con la ejecución de los anclajes y las torres. Los anclajes implican trabajos importantes de movimiento de tierras. Las torres o mástiles pueden ser de acero o de hormigón, presentando el desafío de la construcción en altura. En el caso del acero, se emplean técnicas bien desarrolladas de unión, como soldadura y tornillos de alta resistencia. Las torres de acero se montan por módulos prefabricados que se elevan mediante grúas trepadoras ancladas a la propia torre. En el caso del hormigón, se utilizan encofrados trepadores o deslizantes. En cualquier caso, se deben considerar los medios necesarios para elevar cargas de peso considerable a grandes alturas. Las grúas pueden ir creciendo a medida que las torres se elevan, estando ancladas a ellas.

Cuando los cables se anclan externamente, los contrapesos se vuelven indispensables y constituyen un elemento fundamental en la ejecución de la estructura. Los contrapesos requieren una precisa colocación de las piezas metálicas que servirán de anclaje al cable. En el caso de los puentes colgantes autoanclados, los cables principales se anclan al tablero, lo que elimina la necesidad de contrapesos. Por tanto, el tablero se convierte en el primer elemento a construir. Sin embargo, esta configuración conlleva la pérdida de una de las principales ventajas de la construcción de puentes colgantes, que es la capacidad de construir el tablero por etapas, sin importar la ubicación del puente.

Una vez ejecutadas las torres y los anclajes, es necesario proceder al montaje del cable principal, el cual constituye el elemento fundamental de la estructura resistente del puente colgante. El montaje de los cables principales es la fase más compleja, pues implica superar el vano existente entre las dos torres, lo que requiere tenderlo en el vacío. Se comienza lanzando unos cables guía, que son los primeros en abarcar la luz del puente y alcanzar los puntos de anclaje. En la mayoría de los puentes colgantes ubicados en áreas navegables, es posible pasar estos cables iniciales utilizando un remolcador. En la actualidad, este proceso ya no representa un problema gracias al uso de helicópteros e incluso drones.

Figura 2. Montaje de los cables en un puente colgante. https://www.ihi.co.jp/iis/en/technology/airspining/index.html

A partir del cable inicial, se instalan las pasarelas que se emplean para devanar los alambres del cable, ya sea mediante alambres individuales “in situ” (air spinning) o por cordones. Durante esta etapa, el viento representa el desafío más significativo, ya que puede ocasionar grandes desplazamientos laterales en la polea móvil. En algunas ocasiones, esto ha llevado a detener el proceso de montaje del puente, generando retrasos significativos en la construcción. Finalmente, se compacta el cable principal de manera discontinua por bandas de presión o de forma continua mediante recubrimiento de alambre.

En cuanto al montaje del tablero, se suele realizar por voladizos sucesivos, avanzando simétricamente desde una torre hacia el centro del vano y hacia los extremos. También es posible llevar las dovelas a su posición definitiva mediante flotación y elevarlas desde los cables principales con cabrestantes, colgándolas en su ubicación final con las péndolas.

Una vez se han montado los cables principales, adoptando la curva catenaria correspondiente a su propio peso, se procede al montaje del tablero. El proceso de montaje del tablero se suele realizar por voladizos sucesivos, avanzando simétricamente desde una torre hacia el centro del vano y hacia los extremos. Este método requiere el uso de grúas ubicadas sobre el tablero ya construido, capaces de elevar piezas de diferentes tamaños. También es posible llevar las dovelas estancas que se transportan flotando hasta su posición y elevarlas desde los cables principales con cabrestantes, colgándolas en su ubicación final con las péndolas. Este sistema de montaje resulta más económico que el anterior y, en este caso, la secuencia de montaje se ejecuta desde el centro del vano hacia las torres, de manera simétrica.

Una vez finalizado el montaje estructural, se pasa a una fase de ajustes y comprobaciones, en la que se controlan las tensiones de los cables, la nivelación del tablero y la geometría de la catenaria. También se realizan las pruebas de carga estática y dinámica necesarias para verificar el comportamiento global antes de ponerlo en servicio.

El mantenimiento de un puente colgante comienza en el momento de su inauguración. Los cables principales, las péndolas y los anclajes están sometidos a esfuerzos continuos y a la acción de agentes ambientales agresivos, por lo que deben inspeccionarse periódicamente. Las operaciones de mantenimiento habituales incluyen la limpieza y repintado de los cables, el control de la corrosión, la sustitución de péndolas o alambres deteriorados y la supervisión del comportamiento aerodinámico frente al viento.

Una correcta planificación de estas operaciones es esencial para garantizar la durabilidad del puente y la seguridad de los usuarios a lo largo de su vida útil, que puede superar fácilmente los cien años si se mantienen adecuadamente sus componentes estructurales.

Os dejo algún vídeo sobre la construcción de este tipo de puentes. También os recomiendo mi artículo sobre la construcción del puente del Estrecho de Mackinac.

Referencias:

JURADO, C. (2016). Puentes (I). Evolución, tipología, normativa, cálculo. 2.ª edición, Madrid.

MANTEROLA, J. (2006). Puentes II. Apuntes para su diseño, cálculo y construcción. Colección Escuelas. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estribos abiertos de puente

Figura 1. Esquema de estribo abierto. Imagen: V. Yepes

Se recomienda utilizar el estribo oculto bajo el terraplén en los puentes tipo paso superior, ya que esto mejora la visibilidad de los conductores que transitan por la vía inferior, lo cual a su vez aumenta la comodidad y la funcionalidad de la infraestructura. Si el estribo permite el paso de tierras a través de él, se considera un estribo abierto; de lo contrario, se clasifica como cerrado. En el caso de puentes con alturas superiores a 4 o 5 m, el uso de un estribo abierto ahorra materiales en comparación con uno cerrado. Estas alturas suelen ser comunes en los pasos superiores de las carreteras.

En esencia, un estribo abierto o falso se compone de un dintel o cargadero que sirve de apoyo para el tablero del puente. Este dintel descansa sobre pantallas o diafragmas que transfieren las cargas a la cimentación. Una característica importante del estribo abierto es que permite el vertido de tierra sobre él, lo cual ayuda a reducir el empuje horizontal ejercido por el terraplén. Para lograr esto, se crea una transición entre la viga cabezal que sostiene el dintel y el suelo de cimentación mediante el empleo de pantallas, pilotes u otros elementos que permiten el paso de la tierra. En esta solución, las pantallas desempeñan un papel crucial al reemplazar en gran medida el muro frontal del estribo cerrado, lo que resulta en un ahorro significativo de hormigón.

Estos estribos suelen estar compuestos por tres elementos principales (ver Figura 1): una viga cabezal que alberga los neoprenos y sirve como soporte y protección del tablero contra las tierras del terraplén; un murete de guarda o tape colocado sobre la viga para evitar la entrada de tierra en la zona de apoyo, con una aleta en cada extremo para mayor protección; dos pantallas que sustentan la viga cabezal o cargadero y permiten el paso del terraplén frente a ellas; y una zapata corrida que distribuye las cargas provenientes de las pantallas hacia el terreno de cimentación. Además, se incluye una losa de transición entre el terraplén y el tablero, la cual se apoya en la viga cabezal. Es frecuente que las alturas totales de los estribos y las tensiones admisibles de cimentación se encuentren en un rango de 6 a 15 m y de 0,2 a 0,5 MPa, respectivamente.

Figura 2. Geometría del estribo abierto: variables y principales parámetros (Luz et al, 2015).

La cantidad de pantallas a utilizar, así como su espesor y altura en la base, dependerán del ancho total del tablero y la altura del estribo. Incluso es posible contar con estribos abiertos que requieran solamente dos pantallas para tableros de aproximadamente 20 m de ancho, aunque en casos de tableros más anchos podrían ser necesarios diafragmas adicionales.

En este tipo de configuración, el dintel o cargadero se construye una vez completado el terraplén y los pilotes. Los pilotes, a su vez, se instalan después de finalizar los terraplenes para reducir en la medida de lo posible las presiones ejercidas por las tierras.

Sin embargo, este tipo de estribo no se considera apropiado para su uso en cauces fluviales debido a que la presencia de agua puede provocar la erosión del talud. Su utilización se limita a cruces de carreteras o vías férreas. Es imprescindible que el desbordamiento de tierras no cause inundaciones en la plataforma de tráfico inferior. Por lo tanto, el estribo debe estar adecuadamente separado de dicha plataforma, lo que implica que el tablero deba tener una longitud mayor.

Referencias:

ARENAS, J.J.; APARICIO, A.C. (1984). Estribos de puente de tramo recto. Santander: Universidad de Cantabria.

DIRECCIÓN GENERAL DE CARRETERAS (1994). Manual para el proyecto y ejecución de estructuras de suelo reforzado. Ministerio de Obras Públicas, Transportes y Medio Ambiente.

LUZ, A., YEPES, V., GONZÁLEZ-VIDOSA, F., MARTÍ, J. V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540): e114, doi: http://dx.doi.org/10.3989/ic.14.089.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estribos de puente de tierra estabilizada mecánicamente

Figura 1. Estribo de tierra estabilizada mecánicamente. Fuente: http://www.tierra-armada.com/

En situaciones en las que no es factible verter tierra frente al alzado del estribo debido a un terreno con baja capacidad portante, deformable o no se pueden realizar excavaciones, se requiere utilizar técnicas de tierra estabilizada mecánicamente, conocido también como suelo reforzado o bajo el nombre comercial de Tierra Armada®. Estas técnicas también son aplicables en zonas urbanas, donde es necesario evitar el derrame del terraplén y aprovechar las características estéticas que ofrecen este tipo de muros. Consisten en reforzar el material del terraplén mediante pletinas o flejes presentes en las escamas, fabricadas generalmente con materiales galvanizados o de fibra de carbono, que se colocan en el frente del estribo. Estas pletinas absorben eficientemente los empujes horizontales al interactuar con el suelo a través de la fricción.

El muro se complementa con escamas prefabricadas de hormigón, a las cuales se fijan los refuerzos (Figura 1). Estas escamas se entrelazan entre sí, presentando diversas formas, colores y texturas. En el trasdós de estas escamas se alojan armaduras o flejes que contrarrestan el empuje de las tierras mediante el rozamiento. La longitud de las armaduras debe ser igual o mayor a 0,7 veces la altura H del muro. En el caso de estructuras hiperestáticas, que pueden ser muy sensibles a los movimientos del macizo de tierra reforzada, es común separar el apoyo extremo del tablero del muro de tierra reforzada mediante la disposición de lo que podría considerarse como una pila adicional. En la coronación del muro, es posible disponer de un cargadero o durmiente que brinda soporte al tablero. Es frecuente separar el apoyo del tablero del muro mediante la colocación de una pila-estribo ubicada delante de este (Figura 2). La ejecución debe realizarse con cuidado para prevenir patologías, como descensos significativos o abultamiento de la pared exterior, entre otros problemas.

Figura 2. Estribo de tierra estabilizada mecánicamente. Fuente: http://www.tierra-armada.com/

La construcción de este tipo de estribos se caracteriza por ser rápida, sencilla y económica, lo que resulta en ahorros significativos, del orden del 15% al 40%, en comparación con estribos de puente ejecutados mediante sistemas convencionales. No obstante, es fundamental que estos estribos se ejecuten con gran precisión para evitar problemas posteriores como la ruptura de las escamas o desplazamientos.

El cargadero o estribo flotante debe diseñarse de manera que la presión transmitida al macizo de tierra reforzada sea adecuada, evitando una carga excesiva que requiera un alto número de armaduras en los niveles inferiores de escamas. Como referencia, se recomienda dimensionar la planta del durmiente de tal manera que la presión transmitida al lecho no supere los 0,2 MPa.

En el caso de estribos de altura moderada, la distancia mínima requerida entre el borde del durmiente y el paramento es de 10 cm. Por el contrario, para muros de 10 m de altura, dicha distancia no debe ser inferior a 15 cm. Es importante garantizar que el espacio entre el eje de los apoyos del tablero y el borde exterior del paramento no sea inferior a 1 m.

Al considerar las características geométricas de un estribo de tierra estabilizada mecánicamente, es fundamental tener en cuenta varios aspectos clave. Primero, la anchura B del macizo de suelo reforzado, determinada por la longitud de los flejes, debe ser mayor al 70% de H siempre que H sea inferior a 20 m, y mayor al 60 % de H más 2 m en el caso de muros más bajos. Además, la profundidad D del muro en el terreno debe ser de al menos 0,40 m, a menos que esté cimentado sobre un terreno compacto no susceptible a heladas, y generalmente supera el 10 % de H en estribos normales. Asimismo, la presión transmitida por el durmiente debido a las cargas permanentes debe ser inferior a 0,2 MPa, y la distancia entre el eje de los apoyos del tablero y el borde exterior del paramento debe ser de al menos 1 m. Es relevante que el estribo flotante se asiente sobre una capa de suelo tratado con un 3% a 5% de cemento, con un espesor mínimo de 0,50 m. La parte frontal del durmiente debe separarse al menos 10 cm del paramento, y en el caso de estribos con una altura superior a 10 m, se requiere una distancia mínima de 15 cm. Además, el durmiente debe contar con un resguardo mínimo de suelo tratado en su parte trasera de 30 cm.

En algunas ocasiones, se separa la función de contener las tierras de la de soportar el dintel. En este caso, el dintel estará pilotado y se ubicará por delante del muro. Sin embargo, es importante considerar que la carga del muro puede generar rozamientos negativos en los pilotes, lo que podría hacer que trabajen en tracción. Para evitar esta situación, se recomienda construir primero el muro y posteriormente ejecutar el pilotaje del durmiente. Es preferible pilotar lo más tarde posible para permitir que se produzca la mayor parte del asiento del muro antes de su ejecución.

Os dejo algunos vídeos de interés:

También os paso el manual de la Dirección General de Carreteras para el proyecto y ejecución de estructuras de suelo reforzado.

Pincha aquí para descargar

Referencias:

DIRECCIÓN GENERAL DE CARRETERAS (1994). Manual para el proyecto y ejecución de estructuras de suelo reforzado. Ministerio de Obras Públicas, Transportes y Medio Ambiente.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Premio para Mehrdad Hadizadeh-Bazaz en el VIII Encuentro de Estudiantes de Doctorado

Mehrdad Hadizadeb-Bazaz, junto al trabajo galardonado.

Quisiera felicitar públicamente a nuestro estudiante de doctorado Mehrdad Hadizadeb-Bazaz por su Premio al mejor trabajo en la modalidad de póster otorgado por la Escuela de Doctorado de la Universitat Politècnica de València, dentro del VIII Encuentro de Estudiantes de Doctorado. Tengo el honor y el placer de dirigir su tesis doctoral junto con el profesor Ignacio J. Navarro. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal.

En la actualidad, debido a los altos costos de construir grandes estructuras como puentes, resulta sumamente importante prestar atención a la reparación y mantenimiento de dichas estructuras, con el fin de aumentar su vida útil y utilizar los métodos adecuados para reducir los costos asociados a su mantenimiento y reparación. En este sentido, resulta crucial emplear métodos apropiados y no destructivos para diagnosticar y predecir los daños en estas estructuras. Además, es importante considerar la evaluación del ciclo de vida y la sostenibilidad de los diferentes métodos de detección de daños.

En este estudio, se examina la precisión de diversos métodos de detección de daños, tanto dinámicos como no destructivos, para identificar la magnitud, ubicación y momento en que se produce el daño en la estructura a lo largo de su vida útil. Se evalúa la precisión y posibles variaciones de cada uno de los métodos de detección de daños en distintos entornos, especialmente en ambientes costeros y ambientes agresivos. Además, se realiza una evaluación del desempeño y comparación de diferentes métodos de detección de daños no destructivos, teniendo en cuenta casos de sostenibilidad de diseño y evaluación del ciclo de vida, incluyendo aspectos económicos, ambientales e impactos sociales.

Os dejo el póster completo, para que lo podáis leer.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Visibilidad para el grupo de investigación CONSTRUCTION OPTIMIZATION – ICITECH UPV

En mi blog personal, suelo destacar los logros personales de los miembros de nuestro grupo de investigación, compuesto por profesores e investigadores jóvenes de varios países, que tienen su sede en el ICITECH (Instituto de Ciencia y Tecnología del Hormigón) de la Universitat Politècnica de València. Sin embargo, estos logros a menudo pasan desapercibidos debido a la falta de una vía de comunicación propia.

Desde 2006, nuestro grupo ha centrado sus investigaciones en la optimización multiobjetivo y la toma de decisiones multicriterio para garantizar la sostenibilidad económica, social y medioambiental a lo largo del ciclo de vida de puentes e infraestructuras. Hasta la fecha, hemos publicado unos 150 artículos científicos indexados en el JCR y hemos presentado numerosas comunicaciones en congresos nacionales e internacionales. Ya se han leído 15 tesis doctorales y, en este momento, se encuentran otras 10 en marcha.

No obstante, consideramos que es crucial aumentar la visibilidad de nuestro trabajo para acercarlo a la sociedad. De esta manera, esperamos que nuestra investigación pueda contribuir a la construcción de infraestructuras más sostenibles y eficientes en el futuro.

Como podréis observar, hemos diseñado un logotipo para identificar nuestro trabajo. El diseño sigue el estilo institucional de los grupos de investigación de nuestra universidad. En la parte inferior, en color rojo destacado, aparece el acrónimo de la UPV, mientras que encima figuran dos palabras que consideramos fundamentales: “CONSTRUCTION” y “OPTIMIZATION”. Las hemos escrito en inglés porque queremos comunicar nuestro trabajo a nivel internacional.

La primera de ellas transmite que nuestro objeto de investigación no se limita a las estructuras de hormigón o puentes, sino que abarcamos un amplio espectro de infraestructuras, como edificios, carreteras, ferrocarriles, puertos y presas, entre otros. Además, la palabra “optimización” resume la base y los inicios de nuestro grupo, ya que buscamos mejorar la sostenibilidad integral de las infraestructuras a lo largo de su ciclo de vida.

Sin lugar a dudas, lo más complicado para nosotros ha sido crear una silueta que capture, a modo de paraguas, el núcleo central de nuestro mensaje. Hemos creado un arco que simboliza un puente y también tiene la intención de representar una cúpula de un edificio, un tramo de carretera o una sección de una presa bóveda. En resumen, hemos buscado un diseño que sea fácil de comprender y que simbolice el trabajo que llevamos a cabo en nuestro grupo.

Pues bien, podéis encontrar toda la información que vaya generando el grupo en las siguientes redes de comunicación. Os invito a que las sigáis para estar al tanto de lo que está ocurriendo en la punta de lanza del conocimiento en este ámbito de la ingeniería de la construcción.

Twitter: https://twitter.com/ConstOptUPV

Facebook: https://www.facebook.com/groups/231497652653826

LinkedIn: https://www.linkedin.com/groups/12794089/

 

Diseño regenerativo y métodos modernos de construcción: La crisis del paradigma de la sostenibilidad

Figura 1. Edificio Media-TIC. Enric Ruiz Geli. El Poblenou, Barcelona. https://commons.wikimedia.org/wiki/File:Edificio_Media-TIC._Enric_Ruiz_Geli.jpg

La construcción y gestión de las infraestructuras constituye un sector económico clave, tanto por sí mismo como por su papel fundamental en el soporte de la actividad social. Sin embargo, la creciente conciencia sobre la necesidad de construir de manera sostenible ha impulsado la puesta en marcha de nuevas tecnologías y materiales. Entre las tecnologías clave para hacer más sostenibles las infraestructuras se encuentran el uso de materiales de construcción ecológicos y sostenibles, la adopción de energías renovables como paneles solares y aerogeneradores, la iluminación LED, sistemas urbanos de drenaje sostenible, materiales de aislamiento térmico y sistemas de sensorización y automatización. El empleo de estos materiales y tecnologías puede ayudar a reducir la huella de carbono de las infraestructuras, disminuir el consumo de energía y recursos no renovables, generar ahorros económicos y mejorar la calidad del agua. Además, estas opciones pueden favorecer la eficiencia de la infraestructura y la calidad de vida de los usuarios. Pero es claramente insuficiente.

El paradigma de la sostenibilidad está en crisis. Ya no se considera suficiente la reducción de los impactos ambientales asociados a la actividad humana, sino que se deben contemplar también los aspectos económicos y sociales. Alcanzar este equilibrio resulta complejo, pues a veces la sostenibilidad ambiental no es compatible con la social o la económica. No obstante, el reto es claro: preservar los recursos naturales, el patrimonio, la cultura, el equilibrio social, los ecosistemas y muchos otros aspectos más, para las generaciones futuras.

Por tanto, el paradigma actual se ve cuestionado cuando el antiguo canon de “reciclar, reducir y reutilizar” ya no es suficiente y debe ser reemplazado por otro que consiste en “restaurar, renovar y reponer”. Este enfoque representa un nuevo paradigma para mejorar el entorno construido: el Diseño Regenerativo (conocido como “regenerative design” en inglés). En la actualidad, reducir los impactos ambientales resulta insuficiente ante la aceleración del cambio, por lo que se hace necesario adoptar un enfoque de diseño regenerativo que genere impactos positivos a lo largo de todo el ciclo de vida de una infraestructura.

El diseño regenerativo implica la restauración de los ecosistemas y fomenta el desarrollo de los ecosistemas naturales y humanos. Para lograrlo, se requiere un cambio de pensamiento y de diseño, con un enfoque holístico e integrado. Además, este nuevo paradigma exige la incorporación de un alto nivel de conocimientos científicos que no se encuentran en el diseño convencional. No podemos ignorar la herencia de etapas anteriores, pero los proyectistas y los encargados de tomar decisiones necesitan expandir sus horizontes. El nuevo desafío requiere un profundo conocimiento de diversas áreas y, en algunos casos, la colaboración de varios especialistas y herramientas apropiadas, junto con nuevos métodos de investigación, pautas y estrategias de diseño.

Figura 2. Ciudad del Puerto de Malmö. Autor: Jorge Franganillo
https://www.flickr.com/photos/franganillo/43494905904

Los Métodos Modernos de Construcción (Modern Methods of Construction, en inglés) se refieren a un enfoque que utiliza tecnologías y procesos innovadores para mejorar la eficiencia y la calidad de la construcción. Incluyen la prefabricación de componentes en una fábrica, la utilización de materiales más ligeros y resistentes, y la adopción de técnicas constructivas más rápidas y precisas. Estos nuevos procedimientos se relacionan con el diseño regenerativo, pues ambos buscan promover prácticas más sostenibles y responsables con el medio ambiente. Este enfoque se basa en la comprensión de que los edificios y la infraestructura pueden tener un impacto positivo al proporcionar servicios ecosistémicos como la purificación del aire y del agua, la protección contra inundaciones y la mitigación del cambio climático.

Por tanto, estamos frente a un cambio de paradigma, ya que los métodos modernos de construcción pueden ser herramientas valiosas para el diseño regenerativo. Al emplear materiales más sostenibles, reducir los residuos de construcción y disminuir la huella de carbono, estos nuevos métodos pueden ayudar a crear edificios y comunidades más sostenibles y eficientes. Además, pueden contribuir a la creación de infraestructuras que promuevan la regeneración del medio ambiente y la salud de la comunidad.

La investigación y la innovación en este ámbito está siendo puntera en España, tanto en las universidades como en los institutos tecnológicos o las empresas. En el Instituto de Ciencia y Tecnología del Hormigón (ICITECH) de la Universitat Politècnica de València, el grupo de investigación que dirijo se enfoca en promover la sostenibilidad de las infraestructuras en todas las etapas de su ciclo de vida, desde el diseño hasta la demolición, a través de técnicas de optimización heurística multiobjetivo, toma de decisiones y análisis del ciclo de vida social y ambiental.

Figura 3. Puente de la Gran Belt, Dinamarca. https://commons.wikimedia.org/wiki/File:GreatBeltBridgeTRJ1-edit.JPG

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Trabajo Fin de Máster sobre análisis del ciclo de vida y optimización del puente de la Bahía de Zhanjiang (China)

Acaba de defender su Trabajo Fin de Máster el estudiante Zijian Cao para obtener el Máster Universitario en Planificación y Gestión en Ingeniería Civil. Se trata del análisis del ciclo de vida y optimización aplicado al puente de la Bahía de Zhanjiang en China. He tenido la oportunidad de ser su director de máster, aunque ha sido un verdadero reto debido a la dificultad del idioma. Al cabo de unos años, Zijian ya habla español de forma fluida. Ha obtenido la calificación de sobresaliente. Mi más sentida enhorabuena.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. Os paso el resumen de su trabajo. Espero que os sea de interés.

En la actualidad, el mundo está avanzando hacia un modelo de desarrollo más sostenible para hacer frente al grave impacto ambiental. En este sentido, los investigadores tienen que enfocarse en la innovación de materiales, el manejo de personal y el uso de maquinarias con el fin de controlar y reducir la contaminación ambiental mediante métodos científicos y medidas eficaces de optimización, logrando así un desarrollo sostenible y respetuoso con el medio ambiente en las construcciones.

Puente de la Bahía de Zhanjiang. https://megaconstrucciones.net/?construccion=puente-bahia-zhanjiang

Para llevar a cabo este trabajo, se ha realizado una investigación exhaustiva de los factores que influyen en el impacto ambiental de las construcciones, analizando la información actual de los impactos ambientales en China y países europeos. Posteriormente, se ha establecido un modelo teórico efectivo que permita aplicar un Análisis de Ciclo de Vida (ACV) y utilizado modelos de cálculo y software de análisis para lograr los objetivos de la investigación.

El enfoque principal del trabajo es el análisis teórico y el estudio de casos. A través del modelo teórico establecido, se efectúa un análisis detallado de los impactos de los materiales, la planificación y el diseño, la instalación, el mantenimiento, la operación y la demolición de puentes complejos. Sobre la base del modelo teórico original, se han contemplado métodos en diseño, métodos de construcción y gestión, que se benefician del ahorro de costos y la reducción de emisiones. Este trabajo no solo contribuye con resultados concretos, sino que también establece un marco para futuras investigaciones en este campo. Además, proporciona datos, modelos y métodos de investigación para la sostenibilidad en la construcción.

Optimización multiobjetivo de pasarelas atendiendo a criterios de sostenibilidad y confort del usuario

Acaban de publicarnos un artículo en el International Journal of Environmental Research and Public Health, revista indexada en el JCR. Se trata de la optimización multiobjetivo de pasarelas atendiendo al coste, las emisiones de CO₂ y la aceleración vertical causada por el paso humano. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. Se trata de una colaboración con la universidad Passo Fundo, de Brasil.

La tendencia hacia estructuras más sostenibles se está convirtiendo en una demanda creciente, y los ingenieros pueden aplicar técnicas de optimización para mejorar el proceso de diseño y dimensionamiento. Esto permitirá encontrar soluciones que reduzcan los costos y los impactos ambientales y sociales. En el caso de las pasarelas peatonales, es esencial garantizar el bienestar de los usuarios, además de cumplir con los estándares de seguridad, especialmente en lo que se refiere a las vibraciones humanas. Con este objetivo en mente, se llevó a cabo una optimización multiobjetivo de un puente peatonal de acero y hormigón. Se buscó minimizar el costo, las emisiones de dióxido de carbono y la aceleración vertical causada por la actividad humana. Se aplicó la técnica de Búsqueda de Armonía Multiobjetivo (MOHS) para obtener soluciones no dominadas y crear un Frente de Pareto. Se analizaron dos escenarios con diferentes emisiones unitarias obtenidas de una evaluación de su ciclo de vida en la literatura. Los resultados demuestran que, aumentando el costo de la estructura en un 15%, la aceleración vertical disminuye de 2,5 a 1,0 m/s². Para ambos escenarios, la relación óptima entre la altura del alma y la luz total se encuentra entre Le/20 y Le/16. La altura del alma, la resistencia del hormigón y el espesor de la losa son las variables de diseño que tienen el mayor impacto en la aceleración vertical. Las soluciones Pareto-óptimas mostraron una sensibilidad considerable a los parámetros variados en cada escenario, resultando en un cambio en el consumo de hormigón y en las dimensiones de la viga de acero soldado. Esto destaca la importancia de realizar un análisis de sensibilidad en los problemas de optimización.

Abstract:

The demand for more sustainable structures has been shown as a growing tendency. Engineers can use optimization techniques to aid in designing and sizing, achieving solutions that minimize cost and environmental and social impacts. In pedestrian bridges, which are subjected to human-induced vibrations, it is also important to ensure the users’ comfort, besides the security verifications. In this context, this paper aims to perform a multi-objective optimization of a steel-concrete composite pedestrian bridge, minimizing cost, carbon dioxide emissions, and vertical acceleration caused by human walking. For this, the Multi-Objective Harmony Search (MOHS) was applied to obtain non-dominated solutions and compose a Pareto Front. Two scenarios were considered with different unit emissions obtained from a life cycle assessment in the literature. Results show that by increasing 15% the structure cost, the vertical acceleration is reduced from 2.5 to 1.0 m/s2. For both scenarios, the optimal ratio for the web height and total span (Le) lies between Le/20 and Le/16. The web height, concrete strength, and slab thickness were the design variables with more influence on the vertical acceleration value. The Pareto-optimal solutions were considerably sensitive to the parameters varied in each scenario, changing concrete consumption and dimensions of the welded steel I-beam, evidencing the importance of carrying out a sensitivity analysis in optimization problems.

Keywords:

Multi-objective optimization; pedestrian bridge; sustainability; harmony search; carbon emissions

Reference:

TRES JUNIOR, F.L.; YEPES, V.; MEDEIROS, G.F.; KRIPKA, M. (2023). Multi-objective Optimization Applied to the Design of Sustainable Pedestrian Bridges. International Journal of Environmental Research and Public Health, 20(4), 3190. DOI:10.3390/ijerph20043190

Pincha aquí para descargar