Disponibilidad de un conjunto de máquinas iguales trabajando en paralelo

Figura 1. Retroexcavadora alimentando a un camión-dúmper. Imagen: V. Yepes

En obra es habitual que una máquina principal esté alimentando a un conjunto de máquinas auxiliares. Por ejemplo, en movimiento de tierras, una retroexcavadora puede estar cargando a un conjunto de camiones-dúmper (Figura 1). Otro ejemplo es un buldócer que está empujando a un equipo de mototraíllas convencionales. En estos casos, si se avería una máquina auxiliar, el resto de unidades puede seguir trabajando, aunque con una menor producción. Pues bien, se dice que un equipo de máquinas auxiliares está trabajando en paralelo entre ellas. Sin embargo, el conjunto de máquinas auxiliares trabaja en serie o en cadena respecto a la principal, pues el fallo de la máquina principal, o del total de las auxiliares, paraliza al conjunto. Veamos cómo podemos calcular la disponibilidad intrínseca de un conjunto de máquinas iguales que trabaje en paralelo sabiendo que la disponibilidad intrínseca de cada una de ellas es d.

Sean n máquinas iguales trabajando en paralelo, con una disponibilidad intrínseca d. Si se dispone de un conjunto suficientemente grande de unidades, una fracción d de ellas se encontrarán en disposición, y otra fracción (1-d) no operativas. Si se extrae una muestra n de ellas -las que forma nuestro equipo-, la probabilidad de que se encuentren x máquinas en disposición sigue una distribución binomial:

La probabilidad que el equipo esté parado, es decir, que ninguna de las máquinas se encuentre activa será:

y la probabilidad de que el equipo se encuentre en disposición, aunque sea solo una de las máquinas será:

En la Figura 2 se muestra la probabilidad de que se encuentren x máquinas trabajando en paralelo operativas en un equipo de 15 en función de la disponibilidad intrínseca. Por ejemplo, para d = 0,80 lo más probable es que se encuentren 12 máquinas trabajando, siendo casi despreciable la probabilidad que trabajen menos de 6 unidades. Se observa que la probabilidad máxima aumenta con la disponibilidad intrínseca.

Figura 2. Probabilidad de que se encuentren trabajando x máquinas en paralelo en función de la disponibilidad intrínseca para un equipo de 15 máquinas. Elaboración propia.

En la Figura 3 se muestra la probabilidad de disposición de un conjunto de máquinas trabajando en paralelo en función del número de unidades del equipo y la cantidad de ellas que se encuentran trabajando, para una disponibilidad intrínseca d = 0,85. Por ejemplo, para un conjunto de 10 unidades, la probabilidad de que se encuentren trabajando 9 de ellas, es del 34,7%. Como resulta evidente, si hay solo un equipo, la probabilidad de que trabaje es del 85%, que coincide con su disponibilidad intrínseca. Se observa que las probabilidades máximas de disposición disminuyen conforme aumenta el número de unidades del equipo y la exigencia de que esté un número mayor de ellas trabajando.

Figura 3. Probabilidad de que se encuentren trabajando x máquinas en paralelo en función del número de unidades del equipo y del número de ellas que se encuentren activas, para una disponibilidad intrínseca d = 0,85. Elaboración propia.

 

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

ROJO, J. (2010). Manual de movimiento de tierras a cielo abierto. Fueyo Editores, S.L., Madrid, 926 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Conviene alargar la jornada laboral de la maquinaria empleada en la construcción?

Buldócer trabajando.

En un artículo anterior discutimos los distintos componentes del fondo horario de una máquina, o lo que es lo mismo, nos hacíamos la siguiente pregunta: ¿Por qué las máquinas pierden tanto tiempo en las obras? Ahora vamos a analizar si es conveniente alargar la jornada laboral de la maquinaria, aspecto muy relacionado con lo expuesto en aquel artículo.

El tiempo de calendario laborable o fondo horario bruto de la maquinaria es el tiempo oficial determinado por la legislación o por la organización de una obra para trabajar. Constituye un calendario predeterminado, pero que puede prorrogarse, por ejemplo, si se amplía la jornada laboral. La extensión de las horas de trabajo es posible bajo ciertas circunstancias, pero está sujeta a la legislación. Para ello, se podría dilatar los turnos de trabajo mediante horas extraordinarias o disponer más de un turno por jornada de trabajo.

Uno de los motivos de la ampliación la jornada laboral es aumentar la utilización de la maquinaria durante su permanencia en una obra. Al dividir los gastos fijos de la máquina por más horas útiles, disminuye el coste horario y se acorta el plazo de las tareas de la obra.

Sin embargo, hay que sopesar bien los inconvenientes. Las horas extraordinarias del operador son más caras que las normales. Además, crece su fatiga y disminuye su rendimiento. Si se opta por un nuevo turno de trabajo, las horas nocturnas se encarecen, las condiciones de visibilidad serán peores y la máquina tendrá varios conductores. Al compartir la máquina, los conductores ya no se sienten sus dueños, las responsabilidades se diluyen y tienden a aumentar las averías.

Por tanto, con ciclos de trabajo largos, el cansancio del operador es menor, por lo que, mientras no se incremente el coste horario de la máquina, se debe indagar la posibilidad de ampliar la jornada laboral. En cambio, en maquinaria pesada, donde el coste del operador es poco relevante respecto al total de la máquina, probablemente sea conveniente más de un turno de trabajo. Esta decisión es más acertada en máquinas robustas, de larga vida y menos propensas a las averías.

Otra forma de extender el tiempo es evitando que las máquinas se queden fuera de disposición es planificar las operaciones previsibles de mantenimiento operativo y preventivo para que se realicen fuera del tiempo del calendario laborable de la obra. También se pueden aumentar las horas útiles de trabajo evitando paradas por falta de trabajo. Eso se consigue con una buena planificación de la obra y con la posibilidad de tareas alternativas cuando sea posible. Además, los cambios de tajo suelen acarrear pérdidas de producción, por lo que una buena organización de la obra debería minimizarlos.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

ROJO, J. (2010). Manual de movimiento de tierras a cielo abierto. Fueyo Editores, S.L., Madrid, 926 pp.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El sistema de seguimiento del constructor según el Código Estructural

Figura 1. Imagen: V. Yepes

El constructor debe definir y desarrollar un sistema de seguimiento que verifique la conformidad de la ejecución de los trabajos. Para ello debe desarrollar dos documentos. Por una parte el plan de obra, que también se llama «cronograma» en el Código Estructural, y el procedimiento de autocontrol de la ejecución de la estructura (también llamado «programa de autocontrol». Ambos documentos desarrollan el plan de control definido en el proyecto. Entre los tres, darán lugar al programa de control que deberá aprobar la dirección facultativa. Por cierto, ya comentamos en un artículo anterior la confusión de términos cuando se mezclan «plan» y «programa» con «control» y «autocontrol». El Código Estructural se merece que se simplifiquen y aclaren los términos.

El plan de obra lo debe redactar el constructor antes del inicio de los trabajos. El Código también lo llama cronograma para enfatizar el hecho de poner plazos a lo planificado por el constructor. Téngase en cuenta que, junto con el plan de control del proyecto y el programa de autocontrol del constructor, el plan de obra sirve de base al programa de control que debe aprobar la dirección facultativa.

Los contenidos mínimos que debe disponer el sistema de seguimiento de la obra del constructor (plan de obra y programa de autocontrol) son los siguientes:

  • El plan de obra o cronograma.
  • El sistema de gestión de los materiales, productos y elementos que se vayan a colocar en la obra, para garantizar su trazabilidad.
  • Las particularidades, con relación a los medios, procesos y actividades, para ejecutar la obra.
  • Las comprobaciones a realizar en el seguimiento de la ejecución, incluyendo su justificación, designación del responsable y de cumplimiento con el proyecto y lo establecido en el Código. Los resultados se documentarán por el constructor en los registros de autocontrol.

El concepto «programa de autocontrol» se puede encontrar disperso a lo largo del Código Estructural. Según el Art. 17 Criterios generales para la gestión de la calidad de las estructuras, el procedimiento de autocontrol del constructor es el sistema de aseguramiento de la calidad propio que incluye las evidencias necesarias para dar cumplimiento a los requerimientos del control e inspección establecidos en el correspondiente proyecto de ejecución y en el Código Estructural. Pero las ideas fundamentales las podemos ver en el Art. 19 Plan y programa de control, Art. 22 Control de la conformidad de los procesos de ejecución, Art. 22.1 Control de la ejecución mediante comprobación del control de producción del constructor y Art. 22.2 Control de la ejecución mediante inspección de los procesos.

A continuación os dejo un mapa conceptual donde se aclaran las relaciones del programa de autocontrol del constructor con otros aspectos del seguimiento de la ejecución (Figura 2).

Figura 2. Mapa conceptual sobre el control de la ejecución de una obra según el Código Estructural. Imagen: V. Yepes.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Suplementos para el cálculo del tiempo básico de una operación

https://www.pxfuel.com/
Figura 1. https://www.pxfuel.com/

Aunque tengamos un método eficaz para realizar una tarea, es necesario añadir un tiempo suplementario al tiempo normal o básico de una tarea para el cálculo del tiempo tipo. Las necesidades personales, la fatiga, las demoras o las interferencias son, entre otros, motivos que justifican el cálculo de estos suplementos. El estudio del trabajo se encarga del cálculo de estos tiempos adicionales. Sin embargo, no es sencillo determinar con precisión qué tiempo hay que añadir a las tareas.

Los motivos de estos suplementos pueden deberse a varias circunstancias, destacando las siguientes:

  • Condiciones del operario: sexo, monotonía o repetición de los trabajos, cargas excesivas, posturas incómodas, necesidades fisiológicas, etc.
  • Condiciones ambientales: temperatura, humedad, ruido, iluminación excesiva o insuficiente, etc.
  • Condiciones de la tarea: peligrosidad o riesgo de accidentes, esperas a máquinas u otros operarios, etc.

La parte más importante de los suplementos son por descanso, que trata de reponer al operario de la fatiga. El resto de componentes solo se aplican bajo determinadas condiciones. En la Figura 2 se muestra un modelo básico para el cálculo de los suplementos.

Figura 2. Modelo básico para el cálculo de los suplementos (Caso, 2006)

El suplemento por descanso presenta una parte fija por necesidades personales y fatiga, y otra variable que se añade cuando las condiciones de trabajo difieren de las habituales. Para las necesidades personales (ir al baño, beber agua, etc.) se suele aplicar un suplemento entre un 5 y un 7 %. La fatiga y monotonía de un trabajo se valora en un 4 %.

El suplemento por contingencias incluye los retrasos inevitables y pequeños trabajos ocasionales que se producen esporádicamente. Los suplementos por política de empresa se motivan por por diversas razones organizativas o de producción propias. Se añaden suplementos especiales cuando hay actividades que no forman parte del ciclo del trabajo pero que son imprescindibles para su correcta ejecución. También se podría justificar unos suplementos por comienzo o cierre de la actividad, por herramientas, por montaje o desmontaje, por aprendizaje o formación, etc.

Os paso un vídeo del profesor Cristóbal Miralles, de la Universitat Politècnica de València, donde se explica el cálculo del suplemento de fatiga para la definición de estándares de trabajo. Espero que os sea útil.

En el documento que adjunto, correspondiente a la Organización Internacional del Trabajo (OIT), se recoge un sistema de suplementos por descanso como porcentajes de los tiempos básicos.

Pincha aquí para descargar

En este artículo se propone una revisión de las tablas de suplementos de la OIT.

Pincha aquí para descargar

Referencias:

CASO, A. (2006). Técnicas de medición del trabajo. FC Editorial, 2ª edición, Madrid, 231 pp. ISBN: 978-84-96169-89-8.

HARRIS, F.; McCAFFER, R. (1999). Construction Management. Manual de gestión de proyecto y dirección de obra. Ed. Gustavo Gili, S.A., Barcelona, 337 pp. ISBN: 84-252-1714-8.

JORDAN, M.; BALBONTIN, E. (1986). Organización, planificación y control. Escuela de la Edificación, UNED, Madrid. ISBN: 84-86957-39-7.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

VELASCO, J. (2014). Organización de la producción. Distribuciones en planta y mejora de los métodos y los tiempos. 3ª edición, Ed. Pirámide, Madrid. ISBN: 978-84-368-3018-7.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los incentivos a la productividad en la construcción

 

Una forma de aumentar la productividad en la construcción es disponer de un sistema de incentivos que aliente a los operarios a pasar de su ritmo normal de actividad a una actividad óptima. Estos incentivos pueden ser o no económicos. Por ejemplo, se puede aumentar la autoestima social y la satisfacción en el trabajo, pero también se pueden incrementar las remuneraciones, brindar oportunidades de ascenso, asistencia social, seguridad laboral o seguridad en caso de accidente.

Cualquiera que sea la forma de acrecentar la productividad sin aumentar los medios provocaría una reducción del coste total debido a una disminución en los plazos. Vamos a centrar este artículo en los sistemas de primas a la producción. Se basan en ofrecer a los operarios una parte del ahorro, distribuida según la importancia de las funciones que desempeña cada uno. Este sistema se introdujo a finales del siglo XIX y supuso un cambio en las relaciones laborales entre los empresarios y los trabajadores.

Las primas a la producción se pueden dividir en dos grandes grupos:

a) Gratificaciones. Son primas establecidas por calificaciones periódicas del personal. Es una cantidad de dinero concedida de una sola vez.

b) Primas formales. Se relaciona la prima con la producción, tras un análisis del trabajo detallado, estando garantizado un nivel de calidad mínimo. Se parte de un salario básico asegurado, y por tanto, es un complemento al salario contractual.

Las gratificaciones suelen emplearse cuando es complicado determinar un rendimiento normal de una actividad. Sin embargo, se desaconseja su uso debido a que los empleados la consideran como parte de su salario, siempre que tengan un buen comportamiento. De nada sirve si no hay una vigilancia constante. Además, al depender de calificaciones subjetivas, pueden ser injustas o propensas a errores.

Por el contrario, las primas formales, si se establecen correctamente, estimulan al operario a aumentar la producción, independientemente de una vigilancia estricta. Fomenta mejores sistemas de trabajo. También se garantiza la rentabilidad, sea cual sea la producción. Por último, facilita la selección del personal y la retención de los empleados valiosos. La condición para que prospere este sistema es el compromiso de la dirección para respetar las reglas de juego. Entre dichas normas deben figurar las circunstancias por las que se puede modificar la prima. Si se cumplen, mejora el ambiente de trabajo. Además, los trabajadores deben disponer de discrecionalidad suficiente para poder influir en la producción.

Por tanto, si se pretende implantar un sistema de incentivos económicos formales, se debe realizar lo siguiente:

  • Determinar el rendimiento normal mediante un minucioso y profundo estudio del trabajo. Debe definirse la tarea y su procedimiento. Además, debe haberse controlado la producción antes de implantar la prima, con un sistema consolidado.
  • Elegir un sistema de incentivos adecuado a las condiciones del tajo. Cuando se supere el rendimiento normal, la prima debe ser creciente con la mejora.
  • Calcular la rentabilidad. Es importante que el coste del incentivo sea inferior al ahorro producido por el aumento de la producción.

Veamos algunos vídeos explicativos respecto a este tema.

Referencias:

HARRIS, F.; McCAFFER, R. (1999). Construction Management. Manual de gestión de proyecto y dirección de obra. Ed. Gustavo Gili, S.A., Barcelona, 337 pp. ISBN: 84-252-1714-8.

JORDAN, M.; BALBONTIN, E. (1986). Organización, planificación y control. Escuela de la Edificación, UNED, Madrid. ISBN: 84-86957-39-7.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

VELASCO, J. (2014). Organización de la producción. Distribuciones en planta y mejora de los métodos y los tiempos. 3ª edición, Ed. Pirámide, Madrid. ISBN: 978-84-368-3018-7.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Diagrama de recorrido como herramienta de estudio de métodos

Figura 1. Diagrama de recorridos (Velasco, 2014)

El diagrama planimétrico de flujo o diagrama de recorrido es una representación gráfica sobre plano del área en la cual se desarrolla la actividad, con las ubicaciones indicadas de los puestos de trabajo y el trazado de los movimientos de los hombres y/o de los materiales.

Por cierto, el material de este artículo forma parte del curso que puedes seguir en línea, en el siguiente enlace: https://ingeoexpert.com/cursos/curso-de-gestion-de-costes-y-produccion-de-la-maquinaria-empleada-en-la-construccion/

Es un diagrama que se emplea para establecer el recorrido de un solo producto o proceso. Tiene en cuenta las operaciones, inspecciones, demoras, transporte y almacenamiento. Se utiliza la misma simbología que la de un diagrama de proceso.

Este diagrama permite identificar las posibles áreas congestionadas, determinar los avances y retrocesos del proceso y facilitar el desarrollo de una mejor distribución de la planta. El objetivo, por tanto, es la mejora de métodos, eliminando o reduciendo los recorridos mediante la adecuada distribución en planta. El diagrama de recorrido puede ser bidimensional, o incluso tridimensional.

El diagrama de recorrido normalmente puede disponer dos formatos, uno referido al operario o la máquina, y otro relacionado con el material.

La manipulación de los materiales incrementa el coste de producción sin añadir valor al producto. Por tanto, para reducirla se recomienda lo siguiente:

  • Disponer los materiales a la altura en la que se va a trabajar con ellos.
  • Disminuir en lo posible las distancias que recorre el material manipulado.
  • Aprovecharse de la gravedad cuando sea posible.
  • Transportar la máxima cantidad posible.
  • Mantener despejados los lugares de paso.

Una buena disposición en planta del lugar de trabajo depende, entre otros, de los siguientes factores:

  1. Peso, tamaño y movilidad del producto. Un producto pesado es difícil de manipular, requiriendo maquinaria específica. Por tanto, se debe mover lo menos posible.
  2. Complejidad del producto. Un producto con muchas piezas pasará por distintos sitios, con más recorrido. En consecuencia, la disposición en planta tratará de reducir tiempo y energía reduciendo los transportes.
  3. Duración del proceso. Si se dedica mucho tiempo al transporte, cualquier disminución del recorrido mejorará la productividad.

Normalmente, se aconseja utilizar el diagrama de análisis del proceso con el de recorrido cuando los procesos tienen un gran número de operaciones. En una obra normalmente los procesos son suficientemente sencillos para no ser necesario representar gráficamente lo que ocurre. Por tanto, el diagrama de recorrido sería de mayor utilidad en talleres y factorías.

Veamos a continuación algunos vídeos explicativos sobre el diagrama de recorridos.

Referencias:

HARRIS, F.; McCAFFER, R. (1999). Construction Management. Manual de gestión de proyecto y dirección de obra. Ed. Gustavo Gili, S.A., Barcelona, 337 pp. ISBN: 84-252-1714-8.

JORDAN, M.; BALBONTIN, E. (1986). Organización, planificación y control. Escuela de la Edificación, UNED, Madrid. ISBN: 84-86957-39-7.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

VELASCO, J. (2014). Organización de la producción. Distribuciones en planta y mejora de los métodos y los tiempos. 3ª edición, Ed. Pirámide, Madrid. ISBN: 978-84-368-3018-7.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Evaluación de la sostenibilidad de las técnicas de mejora del terreno

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production, revista de ELSEVIER indexada en el primer decil del JCR.

El terreno no siempre es adecuado o competente para soportar una cimentación superficial directa. En muchos casos, para evitar costosas cimentaciones profundas, está indicado sustituir, mejorar o reforzar dicho terreno. Este trabajo se centra en evaluar la contribución a la sostenibilidad entre diferentes técnicas de mejora del suelo y el resultado de su aplicación a la cimentación de una vivienda unifamiliar como alternativa a la construida. Se compara el rendimiento del ciclo de vida en materia de sostenibilidad entre el diseño de referencia (sin intervención), el relleno y la compactación del suelo, las columnas de suelo-cemento, la inclusión rígida de micropilotes y el clavado de viguetas prefabricadas. Para caracterizar la sostenibilidad, se propone un conjunto de 37 indicadores que integran los aspectos económicos o ambientales de cada alternativa de diseño y sus impactos sociales. Se obtiene un ranking de sostenibilidad para las diferentes alternativas basado en el método ELECTRE IS para la toma de decisiones multicriterio (MCDM). Se evalúa la sensibilidad de los resultados obtenidos frente a diferentes métodos MCDM (TOPSIS, COPRAS) y diferentes ponderaciones de criterios. La evaluación proporciona una visión transversal, comparando la capacidad y fiabilidad de cada técnica para priorizar la solución de consolidación del terreno que mejor contribuye a la sostenibilidad en el diseño de la subestructura de un edificio.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Podéis leer una versión preliminar el artículo en la siguiente dirección: https://doi.org/10.1016/j.jclepro.2022.131463

Highlights

  • Evaluation of soil consolidation techniques for a single-family house’s foundation.
  • A deep foundation is compared to four alternatives that consider soil improvement.
  • 37 indicators characterize the sustainability of substructure in residential buildings.
  • The aggregation of the different sustainability criteria is applied in 3 MCDM methods.
  • Nailing precast joists into the ground achieves the best sustainability result.

Abstract

The soil is not always suitable or competent to support a direct shallow foundation in construction. In many cases, to avoid costly deep foundations, it is indicated to replace, improve, or reinforce such soil. This paper focuses on evaluating the contribution to sustainability between different soil improvement techniques and the outcome of their application to the foundation of a single-family house as an alternative to the one built. The life-cycle performance in sustainability is compared between the baseline design (without intervention), backfilling and soil compaction, soil-cement columns, rigid inclusion of micropiles, and nailing of precast joists. To characterize sustainability, a set of 37 indicators is proposed that integrate the economic or environmental aspects of each design alternative and its social impacts. A sustainability ranking is obtained for the different alternatives based on the ELECTRE IS method for multi-criteria decision-making (MCDM). The sensitivity of the obtained results is evaluated against different MCDM methods (TOPSIS, COPRAS) and different criteria weights. The evaluation provides a cross-cutting view, comparing the ability and reliability of each technique to prioritize the ground consolidation solution that best contributes to the sustainability in the design of a building’s substructure.

Keywords

Sustainability; Construction; Multi-criteria decision analysis; Life cycle assessment; Modern methods of construction; Soil improvement; Foundations; ELECTRE IS; TOPSIS; COPRAS

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Evaluating the sustainability of soil improvement techniques in foundation substructures. Journal of Cleaner Production, 351: 131463. DOI:10.1016/j.jclepro.2022.131463

Pincha aquí para descargar

Determinación del tiempo tipo de un trabajo

Figura 1. Determinación del tiempo tipo de un trabajo

Uno de los aspectos más controvertidos cuando se realiza un estudio de tiempos de una actividad es la valoración del ritmo o actividad con el operario que realiza la operación. Además, también es objeto de discusión los suplementos a aplicar al tiempo necesario para realizar una actividad (Figura 1). El tema es delicado, pues sirve para fijar el que denominaremos como tiempo tipo y también para determinar el volumen de producción exigible a un trabajador y sus ingresos mensuales. El problema de fondo es que la medida del tiempo en el que se realiza una actividad y la estimación del ritmo de trabajo es subjetiva, sometida al criterio del analista. Pero veamos el problema con algo más de detalle.

Definiremos como trabajador cualificado a aquel a quien se reconoce que tiene las aptitudes físicas necesarias, posee inteligencia y formación, y ha adquirido la destreza y los conocimientos necesarios para efectuar el trabajo según normas de seguridad, cantidad y calidad. Este trabajador, si está incentivado, desarrolla una actividad óptima, diferente del trabajador representativo o promedio, que no tiene por qué ser cualificado.

Por tanto, dentro de la medición del trabajo, deberemos realizar una nivelación y una mayoración de tiempos que considere el factor de ritmo y los suplementos de tiempo para determinar el tiempo tipo de un trabajo.

Las diferencias en los valores de medición de un elemento se deben a:

  • Variaciones en la actuación del recurso, al ir más despacio o deprisa, por las diferencias en la atención prestada o por ajustarse o no al procedimiento previsto.
  • Cambios ajenos al operario como son los errores de medida, variaciones en el medio ambiente, en el material, etc.

Los factores causantes de que el mismo trabajo realizado por operarios diferentes sea distinto e, incluso, realizado por el mismo operario sea diferente una y otra vez son los siguientes:

  1. El procedimiento empleado.
  2. La precisión de los movimientos.
  3. La velocidad de los movimientos.

Estos tres factores determinan la llamada actividad o factor de ritmo. Así, si se sigue fielmente un método de trabajo, la actividad crecerá con la velocidad y la precisión de los movimientos.

Se define como actividad óptima la obtenida de forma natural y sin forzarse los trabajadores calificados, como promedio de la jornada o turno, siempre que conozcan y respeten el método especificado y se les haya dado motivo para querer aplicarse (incentivos). La actividad normal sería la correspondiente a los ¾ de la óptima. En la Tabla 1 se recoge una escala sencilla de clasificación de la actividad. Téngase en cuenta que hay otras escalas donde el 100, por ejemplo, se asigna a la actividad óptima.

Todo aumento de la actividad se corresponde con una disminución del tiempo, resultando el producto de ambos constante. Así, un cronometrador adiestrado debe determinar el ritmo o actividad de las operaciones antes de efectuar las medidas de tiempo.

La nivelación de los tiempos medidos de una operación consiste en reducir todos los tiempos empleados a actividad normal. Así, el tiempo normal o plazo básico de una actividad tn, que se ha medido m veces se calcula como:

donde ti es el tiempo observado y ai es la actividad durante la operación medida i.

Sin embargo, el trabajo desarrollado a lo largo de una jornada laboral no se puede consumar en el tiempo normal, puesto que son ineludibles ciertas pausas para recuperarse de la fatiga, realizar necesidades personales y por otras demoras inevitables. Se llama tiempo tipo o plazo estándar al tiempo normal de cada elemento más el necesario para compensar estos factores. Con el tiempo tipo, un trabajador cualificado con una actividad normal, a lo largo de un turno o jornada laboral, lograría un rendimiento tipo o estándar.

Dada la variabilidad de los trabajos de construcción, la diferencia entre el tiempo tipo y el normal puede ser considerable, por lo que es habitual que las bases de datos se refieran a los tiempos normales, siendo el usuario el que debe aplicar los imprevistos adecuados en cada caso. Un plazo realista de planificación suele ser el doble del tiempo normal.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Procedimiento Triger de excavación bajo nivel freático

Figura 1. Un esquema de un cajón abierto ideado por Triger (1846). https://es.wikipedia.org/wiki/Jacques_Triger

Tal día como hoy, 11 de marzo, nació el geólogo francés Jacques Triger (1801-1867), inventor del «procedimiento Triger» para ejecutar excavaciones bajo nivel freático. Se trata de realizar la excavación en el interior de una cámara o cajón abierta en su parte inferior a la que se bombea aire comprimido para evitar la entrada de agua (Figura 1).

Se empezó a emplear en las minas de carbón en 1839 (minas de Chalonnes-sur-Loire). Estas minas estaban situadas bajo el lecho del río Loira, y para llegar a la roca había que cortar 20 m de aluvión anegado de agua. En este caso, se inyectaba el aire a presión mediante una bomba de vapor.

En la Figura 2 se puede ver con mayor detalle cuál era el procedimiento constructivo ideado por Triger. Sobre la sección inferior presurizada y sellada por el terreno (B), había otra sección, (A), con esclusas arriba y abajo (M y N), con dos válvulas y un grifo. Una de las válvulas suministraba el aire comprimido a la caja y la otra lo llevaba al tubo. La válvula posibilitaba reponer el equilibrio de presión, entre la caja y las secciones contiguas. El agua se evacuaba por un tubo desde el fondo al exterior impulsado por la presión el aire, sin necesidad de bombas (S). Los descensos del tubo ocurrían al bajar la presión de la cámara.

Figura 2. Procedimiento de Jacques Triger en el pozo de Chalonne. https://jluisgsa.blogspot.com/2020/03/la-cara-oculta-de-los-puentes-con-pilas.html

Su invento fue ampliamente utilizado en la ingeniería de la construcción, especialmente para hundir los cimientos de los pilares de los puentes en los lechos de los ríos. Esta tecnología se utilizó por primera vez en Italia en la década de 1850 bajo la supervisión de empresas de construcción británicas y francesas. También se utilizó el procedimiento en obras emblemáticas como en la cimentación del puente de Brooklyn o en el puente del Firth of Forth en Escocia o en la cimentación de dos de los cuatro pilares de la Torre Eiffel (Figura 3).

Figura 3. Construcción de los cimientos de la Torre Eiffel (1887). https://es.wikipedia.org/wiki/Jacques_Triger

Esta técnica presenta riesgos elevados para los trabajadores, pues el entorno hiperbárico provoca graves daños si no se realiza una descompresión adecuada. Hoy en día, su uso es marginal y tiende a desaparecer. Otros métodos más seguros y económicos han sustituido a esta técnica.

En un artículo escrito en este blog sobre cimentación mediante aire comprimido se analiza con mayor detalle este procedimiento constructivo. Actualmente también es posible controlar el nivel freático mediante aire comprimido en excavaciones realizadas por escudos. Remito al lector a un artículo específico que escribimos en su día de esta tecnología.

Referencias:

  • GALLO, J.; PÉREZ, H.; GARCÍA, D. (2016). Excavación, sostenimiento y técnicas de corrección de túneles, obras subterráneas y labores mineras. Universidad del País Vasco, Bilbao, 277 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • MENDAÑA, F.; FERNÁNDEZ, R. (2011). Hidroescudos y tuneladoras E.P.B. Campos de utilización. Revista de Obras Públicas, 3525:67-86
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Control de la ejecución de la inyección en el Código Estructural

Inyección lechada en vaina. https://www.youtube.com/watch?v=nR56Qlnr2xw

Continuamos analizando las novedades del Código Estructural respecto de la Instrucción de Hormigón Estructural EHE-08, ya derogadaEn este caso, se trata del control de la ejecución de la inyección en las operaciones de pretensado, recogido en el artículo 67.2. En la EHE-08 este mismo apartado se trataba en el artículo 96.2. Existen pocas modificaciones en la nueva redacción de este artículo, pero algunas son de gran trascendencia. Vamos a comentarlas a continuación.

  • Se ha sustituido «frecuencia diaria» por «cada jornada«. La Real Academia Española indica que la jornada es «el tiempo de duración del trabajo diario«, por lo que no parece haber un motivo de fondo para este cambio.
  • Se aclara en la nueva redacción que es el constructor, y no otro, quien, cada diez jornadas en que se efectúen operaciones de inyección y no menos de una vez, deberá realizar los ensayos de resistencia de la lechada o mortero y los de exudación y reducción de volumen.
  • Se verificará si el constructor ha realizado los ensayos mediante el «control de contraste«. La verdad es que el Código es poco claro al respecto. La primera vez que aparece este término, sin definir, es en el artículo 67.1. Hay que esperar al Artículo 101.1 para entender que el control de contraste lo efectúa, en su caso, la dirección facultativa. Por tanto, sin una definición explícita al respecto, supondremos que el control de contraste es un control que, si así lo fuera, realiza la dirección facultativa sobre los controles que realiza el constructor. Nada hubiese costado ser más claro en la redacción de esta norma.
  • La novedad más relevante es la que obliga, de forma independiente, a la dirección facultativa y al constructor a realizar sendas inspecciones visuales de las vainas inyectadas transcurridos 7 días desde el final del curado. Se trata de comprobar que todos los anclajes se encuentran adecuadamente protegidos y que no existe fisuración no controlada en el mortero empleado. Resulta evidente la importancia de este punto, pues el Código impone un control redundante al respecto.

A continuación, les dejo el artículo 67.2 del Código Estructural para su consulta.

67.2 Control de la ejecución de la inyección.

Las condiciones que habrá de cumplir la ejecución de la operación de inyección serán las indicadas en el apartado 50.4.

Se controlará el plazo de tiempo transcurrido entre la terminación de la primera etapa de tesado y la realización de la inyección.

El constructor hará, cada jornada, los siguientes controles:

– del tiempo de amasado,
– de la relación agua/cemento,
– de la cantidad de aditivo utilizada,
– de la viscosidad, con el cono, en el momento de iniciar la inyección,
– de la viscosidad a la salida de la lechada por el último tubo de purga,
– de que ha salido todo el aire del interior de la vaina antes de cerrar sucesivamente los distintos tubos de purga,
– de la presión de inyección,
– de fugas,
– del registro de temperatura ambiente máxima y mínima las jornadas que se realicen inyecciones y en las dos jornadas sucesivas, especialmente en tiempo frío.

Cada diez jornadas en que se efectúen operaciones de inyección y no menos de una vez, el constructor realizarán los siguientes ensayos:

– de la resistencia de la lechada o mortero mediante la toma de 3 probetas para romper a 28 días,
– de la exudación y reducción de volumen, de acuerdo con el apartado 37.4.2.2.

El control de contraste verificará que el constructor realiza estos controles.

En el caso de sistemas de pretensado en posesión de un distintivo de calidad oficialmente reconocido, la dirección facultativa podrá eximir de cualquier comprobación experimental del control de la inyección.

Una vez inyectadas las vainas, tanto el constructor como la dirección facultativa llevarán a cabo sendas inspecciones visuales, que deben ser independientes, de las protecciones ejecutadas en los anclajes del pretensado. Se efectuarán transcurridos 7 días desde el final del curado para comprobar que todos los anclajes se encuentran adecuadamente protegidos y que no existe fisuración no controlada en el mortero empleado.

También os dejo el comentario que sobre este artículo deja el Código Estructural:

«En los cables verticales se tendrá especial cuidado en evitar los peligros de la exudación siguiendo lo indicado en el apartado 50.4.1.4″.

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.