Motivos para renovar la metodología de diseño de las estructuras

https://construblogspain.wordpress.com/

Los métodos tradicionales empleados para el proyecto de un puente se basan en procedimientos de prueba y error que sirven para mejorar los diseños (Figura 1). Si bien la experiencia del proyectista permite definir “a priori” la geometría de la estructura, el resto de variables se determinan atendiendo al cumplimiento de los diferentes estados límite exigidos por los reglamentos para las situaciones de proyecto consideradas. De esta forma, la solución propuesta, si bien es funcionalmente correcta, no tiene porque ser la óptima. Los métodos de optimización, como pueden ser los algoritmos metaheurísticos o estocásticos, proporcionan una alternativa eficaz a los diseños estructurales basados en la experiencia. Estos algoritmos se caracterizan porque combinan unas reglas de decisión y la aleatoriedad para buscar de forma eficaz soluciones de alta calidad en espacios de soluciones de gran tamaño, tal y como son los originados por los problemas estructurales reales. Además, al explorar una gran cantidad de posibles combinaciones, encuentra soluciones que pueden estar alejadas de las reglas de diseño habituales empleadas por los proyectistas.

Figura 1. Diseño por prueba y error de las estructuras (Yepes, 2017)

Así, por ejemplo, los puentes de sección en cajón constituyen uno de las tipologías más habituales en los puentes continuos, pues presentan ventajas tanto desde la perspectiva de su eficiencia resistente como por su bajo peso propio. Sin embargo, las normas de diseño actuales no siempre contemplan los objetivos y las prioridades de una sociedad cambiante. El informe Brundtland (WCED, 1987) propone una visión a largo plazo para mantener los recursos, que serán necesarios para las necesidades futuras. El desarrollo sostenible requiere una triple visión que equilibre el desarrollo económico y las necesidades ambientales y sociales. Por lo tanto, las preocupaciones por construir un futuro más sostenible obligan a considerar aspectos como el impacto ambiental, la durabilidad y el nivel de seguridad, entre otros. Esto ha llevado al desarrollo de materiales de baja emisión de carbono, la búsqueda de nuevos diseños que reduzcan el impacto ambiental, la planificación de mantenimiento para prolongar la vida útil de las estructuras y la evaluación de su ciclo de vida para contemplar su impacto en su conjunto.

Esta nueva visión implica renovar la metodología de diseño de estructuras de modo que se consideren los criterios de sostenibilidad, que permita el uso de nuevos materiales y que, además, garantice un análisis estructural preciso. En este sentido, la optimización multiobjetivo encuentra soluciones óptimas con respecto a distintos objetivos, algunos de ellos contradictorios entre sí. Los actuales procedimientos de optimización heurística han permitido el diseño automatizado de estructuras óptimas. Sin embargo, existe una tendencia a considerar el diseño inicial y las operaciones de mantenimiento de la estructura como objetivos separados. Es decir, por una parte se estudia el diseño óptimo de una estructura para cumplir con los estados límite últimos y de servicio, y por otra parte, se considera la optimización de las operaciones de mantenimiento del puente durante su vida útil como un objetivo diferente, partiendo de una estructura ya construida, con un determinado estado de seguridad conocido. Como el mantenimiento depende del estado, el diseño inicial debe considerar los aspectos del ciclo de vida que también minimizan el mantenimiento futuro. Por lo tanto, es importante considerar la durabilidad con el fin de diseñar estructuras longevas y reducir los impactos a largo plazo. Es decir, se debe proyectar una estructura considerando todos los aspectos relacionados con su ciclo de vida.

La optimización multiobjetivo (MOO) de las estructuras reales requiere tiempos de cálculo elevados, incluso con la potencia de los actuales ordenadores, debido a la existencia de muchas variables de decisión, al procedimiento de análisis con métodos como el de los elementos finitos y al número de funciones objetivo consideradas. El uso de modelos predictivos tales como las redes neuronales artificiales (Artificial Neural Networks, ANNs) permite reducir el número necesario de evaluaciones exactas de la estructura y sustituir dicho cálculo por predicciones aproximadas. ANN aprende de los datos disponibles y permite predicciones incluso cuando las relaciones son altamente no lineales. Esta característica reduce el elevado coste computacional de las interaciones necesarias en los algoritmos de optimización heurística, al sustituir en dicho proceso una parte de los cálculos exactos por otros aproximados.

MOO conduce a una gama de soluciones óptimas, que se consideran igualmente buenas en función de los mútiples objetivos –la denominada frontera de Pareto-. El proceso de toma de decisiones para elegir la mejor de las opciones tiene lugar a posteriori, donde los expertos eligen la mejor solución en función de sus preferencias utilizando técnicas de toma de decisiones. Sin embargo, la asignación de pesos a cada uno de los objetivos del problema puede estar sujeta a incertidumbres o falta de objetividad. Sobre esta base, este trabajo sugiere una metodología capaz de introducir la información de selección (preferencia) en un proceso de toma de decisiones multicriterio en el que existen incertidumbres asociadas a la comparación de criterios.

Referencias:

  • García-Segura, T.; Yepes, V.; Alcalá, J.; Pérez-López, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92, 112–122.
  • García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325–336.
  • García-Segura, T.; Yepes, V.; Frangopol, D.M. (2017a). Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Structural and Multidisciplinary Optimization, 56(1):139-150.,
  • García-Segura, T.; Yepes, V.; Frangopol, D.M.; Yang, D. Y. (2017b). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391.
  • Martí, J.V.; García-Segura, T.; Yepes, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120, 231–240.
  • Martí, J.V.; González-Vidosa, F.; Yepes, V.; Alcalá, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48, 342–352.
  • Martí, J.V.; Yepes, V.; González-Vidosa, F. (2015). Memetic algorithm approach to designing precast-prestressed concrete road bridges with steel fiber reinforcement. Journal of Structural Engineering, 141(2), 04014114.
  • Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12), 1295.
  • Penadés-Plà, V.; Martí, J.V.; García-Segura, T.;  Yepes, V.(2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864.
  • Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.
  • Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015a). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.
  • Yepes, V.; Martí, J.V.; García-Segura, T. (2015). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123–134.
  • Yepes, V.; Martí, J.V.; García-Segura, T.; González-Vidosa, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4), 738-749.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

 

¿Qué se estudia en la asignatura Modelos Predictivos y de Optimización de Estructuras de Hormigón?

El programa de la asignatura Modelos Predictivos y de Optimización de Estructuras de Hormigón se ha diseñado basándose en el programa presentado en el departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil por parte de la unidad docente de “Procedimientos de Construcción y Gestión de Obras”, al que está adscrita en la actualidad la asignatura, y aprobado por el Consejo del Departamento. Las líneas maestras de los contenidos se definieron previamente en la Memoria de Verificación del título oficial de “Máster Universitario en Ingeniería del Hormigón por la Universitat Politècnica de València”. Se trata de una de las asignaturas de la materia “Análisis de estructuras de hormigón”, siendo obligatoria para todos los alumnos de esta titulación y se imparte en el primer cuatrimestre del primer curso. La asignación de créditos ECTS es de 5,0, repartidos en 3,0 créditos de teoría y 2,0 de prácticas, de acuerdo con el Plan de Estudios actualmente en vigor en el Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil.

Resultados de aprendizaje

Los resultados de aprendizaje de la asignatura se definen a partir de las competencias y de los contenidos (Yepes, 2017). Como resultado de aprendizaje general, al terminar con éxito esta asignatura, los estudiantes serán capaces de “comprender los diferentes métodos predictivos y procedimientos de optimización de estructuras de hormigón de modo que dispongan de las herramientas necesarias para la toma de decisiones en el ámbito del proyecto, construcción y mantenimiento de estas estructuras considerando los aspectos de sostenibilidad económica, social y ambiental”.

En relación con los resultados específicos de aprendizaje de la asignatura, tenemos los siguientes:

  • RA1    Seleccionar y aplicar las distintas técnicas procedentes de la estadística, de la investigación operativa y de la minería de datos en la toma de decisiones en el ámbito del hormigón
  • RA2    Modelizar un problema de optimización de una estructura de hormigón y resolverlo mediante algoritmos heurísticos secuenciales y poblacionales
  • RA3    Aplicar la inferencia estadística multidimensional para interpretar el comportamiento de las variables cualitativas y cuantitativas en el ámbito del hormigón
  • RA4    Formular modelos lineales de regresión múltiple e interpretar su validez límites predictivos
  • RA5    Emplear técnicas de diseño de experimentos para conocer los efectos principales y las interacciones entre los distintos factores que afectan a una variable de respuesta en el ámbito del hormigón
  • RA6    Optimizar el comportamiento de una estructura de hormigón utilizando la metodología de la superficie de respuesta
  • RA7    Aplicar redes neuronales artificiales en la predicción de sistemas altamente no lineales en el ámbito del hormigón
  • RA8    Aplicar técnicas de decisión multicriterio en la selección de la mejor tipología estructural considerando aspectos económicos, ambientales y sociales
  • RA9    Elegir la mejor opción de una frontera de Pareto tras aplicar técnicas de decisión multicriterio
  • RA10 Aplicar programas estadísticos avanzados, tales como SPSS o Minitab, y otros como Matlab, Sap y Excel en la predicción de variables de respuesta y en problemas de optimización en el ámbito del hormigón

 

Conocimientos previos

Los alumnos que cursan esta asignatura, tienen diversas procedencias: Ingeniería de Caminos, Canales y Puertos, Ingeniería Industrial, Arquitectura, Ingeniería Agronómica, Licenciado en Químicas, Ingeniería Geológica, Ingeniería Técnica de Obras Públicas, Ingeniería Técnica Industrial, o los actuales grados en ingeniería civil, de obras públicas o máster en ingeniería de caminos, canales y puertos, entre otros. Además los alumnos, en un porcentaje significativo, proceden de universidades latinoamericanas o europeas. Como es fácil de comprender, los alumnos tienen formaciones muy diferentes, habiendo estudiado las asignaturas relacionadas con el hormigón, con los métodos numéricos o la estadística de forma muy diversa, con niveles de adquisición de conocimientos descompensados. Esta situación implica cierta nivelación en cada uno de los temas, de forma que se adquieran los niveles básicos de comprensión de los contenidos de forma progresiva con el objetivo que todos los alumnos adquieran las competencias y los resultados de aprendizaje previstos.

Según la Guía Docente de la asignatura, los conocimientos recomendados versarían sobre estadística y sobre lenguajes de programación (MATLAB, SPSS, MINITAB, SAP, etc.), aunque no son imprescindibles.  Además, resultan necesarios unos conocimientos básicos sobre el hormigón y su análisis como material estructural. Ello obliga al profesor a sintetizar el contenido previo para la correcta comprensión de la asignatura.

 

Programa resumido de la asignatura

La asignatura se desarrolla siguiendo un programa que tiene en cuenta los resultados de aprendizaje antes definidos, las actividades formativas y el sistema propuesto para la evaluación. Ello permite organizar la asignatura en 25 temas y sus prácticas de informática asociadas.

  • Tema 1. La investigación operativa y la toma de decisiones
  • Tema 2. La modelización de un problema estructural de hormigón
  • Tema 3. Algoritmos y problemas de decisión
  • Tema 4. Optimización y programación matemática
  • Tema 5. Optimización combinatoria y algoritmos heurísticos
  • Tema 6. Clasificación y uso de heurísticas y metaheurísticas
  • Tema 7. Búsqueda local de máximo gradiente
  • Tema 8. Recocido simulado, aceptación por umbrales y búsqueda tabú
  • Tema 9. Sistemas de inteligencia de enjambre
  • Tema 10. Programación evolutiva y estrategias evolutivas
  • Tema 11. Algoritmos genéticos y meméticos
  • Tema 12. GRASP, búsqueda dispersa y búsqueda de la armonía
  • Tema 13. Heurísticas de optimización multiobjetivo
  • Tema 14. Inferencia estadística bidimensional
  • Tema 15. Inferencia estadística multidimensional
  • Tema 16. Modelos lineales de regresión múltiple
  • Tema 17. Modelos de ecuaciones estructurales
  • Tema 18. Diseño de experimentos
  • Tema 19. Optimización mediante la metodología de superficie de respuesta
  • Tema 20. Modelos Kriging y diseños robustos
  • Tema 21. Redes neuronales artificiales
  • Tema 22. Programación genética y lógica difusa
  • Tema 23. La toma de decisiones en el ciclo de vida de una estructura de hormigón
  • Tema 24. Técnicas de decisión multicriterio continua
  • Tema 25. Técnicas de decisión multicriterio discreta

 

 

Los 25 temas se encuentran agrupados en 4 bloques temáticos. El primero de los bloques es introductorio. Consta de 5 temas que presentan al alumno la aplicación de las técnicas de la investigación científica en el ámbito de la toma de decisiones en las empresas a través de lo que se conoce como investigación operativa. Se introduce al alumno en la forma de abordar los problemas reales en el ámbito de las estructuras de hormigón a través de modelos de distinto tipo. Se describen los componentes básicos de un problema de optimización: función objetivo, variables de decisión, parámetros y restricciones. A continuación se describe el concepto de algoritmo y complejidad algorítmica para explicar las limitaciones de la programación matemática en la resolución de problemas reales, lo cual da paso a la introducción de los algoritmos heurísticos como aproximaciones en la búsqueda de óptimos locales de calidad en tiempos de cálculo razonables.

El segundo de los bloques se centra en la descripción y aplicación de la optimización heurística en las estructuras de hormigón. Se describe paso a paso tanto las técnicas de búsqueda secuencial de máximo gradiente y de “hill-climbing” como otras técnicas poblacionales basadas en los algoritmos genéticos o en la inteligencia de partículas. Este bloque termina con una explicación de la optimización multiobjetivo y la construcción de fronteras de Pareto de calidad en el caso de confluencia de funciones objetivo contrapuestas.

El bloque tercero se centra específicamente en los modelos predictivos de las estructuras de hormigón. Se hace un repaso de las técnicas de inferencia bidimensional y multidimensional para pasar a los modelos predictivos lineales, tanto los basados en regresiones múltiples como en los modelos de ecuaciones estructurales. Posteriormente se aborda el diseño de experimentos como técnicas estadísticas básicas en la predicción de los efectos principales y las interacciones de los distintos factores que afectan a un problema de hormigón. El estudio de los diseños factoriales lleva directamente al planteamiento de la metodología de la superficie de respuesta, que permite realizar la optimización de la respuesta. Tanto la metodología de la superficie de respuesta como los modelos Kriging o las redes neuronales, constituyen metamodelos que se explican como herramientas muy útiles para simplificar el espacio de soluciones de los problemas reales del hormigón estructural. En particular, los modelos Kriging permiten el diseño robusto óptimo, es decir, aquel que se comporta bien incluso ante cambios en las variables o en las condiciones de contorno. Para los sistemas altamente complejos, se explican las redes neuronales artificiales que, además, permiten su uso como metamodelos o como parte de un algoritmo heurístico de optimización. La programación genética y la lógica difusa también se explican en una lección como herramientas posibles en el ámbito de los modelos predictivos y cuando los parámetros o restricciones del problema no son determinísticos.

El cuarto bloque se dedica a la toma de decisión multicriterio en las estructuras de hormigón. A los alumnos se les explica cómo, antes de realizar una optimización multiobjetivo, es necesario seleccionar la mejor tipología estructural con base en criterios que no siempre son objetivos: economía, plazo, estética, medioambiente, aspectos sociales, durabilidad, etc. Se introducen las distintas técnicas de toma de decisión multicriterio y se comentan su empleo, incluso, para la obtención de pesos objetivos de criterios que pueden ser incluso subjetivo, o bien para la selección de la mejor opción dentro de una frontera de Pareto tras una optimización multiobjetivo.

En la Tabla siguiente se muestra el programa resumido de la asignatura “Modelos Predictivos y de Optimización de Estructuras de Hormigón” (T, Teoría; P, Prácticas informáticas), indicándose el número de horas asignadas a cada tema.

Referencias:

YEPES, V. (2017). Proyecto docente. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 642 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

 

Antecedentes y motivación del proyecto de investigación DIMALIFE (2018-2020)

Hoy 2 de enero de 2018 empezamos oficialmente el proyecto de investigación DIMALIFE (BIA2017-85098-R): “Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”. Se trata de un proyecto trianual (2018-2020) financiado por el Ministerio de Economía, Industria y Competitividad, así como por el Fondo Europeo de Desarrollo Regional (FEDER). La entidad solicitante es la Universitat Politècnica de València y el Centro el ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Los investigadores principales son Víctor Yepes (IP1) y Eugenio Pellicer (IP2). Al proyecto también se le ha asignado un Contrato Predoctoral, que sacaremos a concurso próximamente. Con las restricciones presupuestarias tan fuertes en materia de I+D+i y con la alta competencia existente por conseguir proyectos de investigación, lo cierto es que estamos muy satisfechos por haber conseguido financiación. Además, estamos abiertos a cualquier tipo de colaboración tanto desde el mundo empresarial o universitario para reforzar este reto. Por tanto, lo primero que vamos a hacer es explicar los antecedentes y la motivación del proyecto.

La sostenibilidad económica y el desarrollo social de la mayoría de los países dependen directamente del comportamiento fiable y duradero de sus infraestructuras (Frangopol, 2011). Las infraestructuras del transporte presentan una especial relevancia, especialmente sus infraestructuras viarias y puentes, cuya construcción y mantenimiento influyen fuertemente en la actividad económica, el crecimiento y el empleo. Sin embargo, tal y como indica Marí (2007), estas actividades impactan significativamente en el medio ambiente, presentan efectos irreversibles y pueden comprometer el presente y el futuro de la sociedad. El gran reto, por tanto, será disponer de infraestructuras capaces de maximizar su beneficio social sin comprometer su sostenibilidad (Aguado et al., 2012). La sostenibilidad, de hecho, constituye un enfoque que ha dado un giro radical a la forma de afrontar nuestra existencia. El calentamiento global, las tensiones sociales derivadas de la presión demográfica y del reparto desequilibrado de la riqueza son, entre otros, los grandes retos que debe afrontar esta generación. Continue reading “Antecedentes y motivación del proyecto de investigación DIMALIFE (2018-2020)”

Palabras de Pedro Jaén en el Acto de Graduación del Máster Universitario en Ingeniería del Hormigón

El pasado miércoles 20 de diciembre de 2017 tuvo lugar el Acto de Graduación de la Promoción 2016-2018 del Máster Universitario en Ingeniería del Hormigón. En dicho acto, el Secretario del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil, D. Pedro Ildefonso Jaén Gómez, dirigió unas palabras a los asistentes. Ha tenido la amabilidad de pasarme su discurso y, por su interés, y con su autorización, lo transcribo a continuación:

  • Muy buenas tardes, Sr. Director del Dpto. de Ingeniería de la Construcción, Sra. Directora del Máster Universitario en Ingeniería del Hormigón, miembros de la comunidad Universitaria, señores y señoras, bienvenidos, bienvenidas a este acto de graduación de la promoción 2016-18 del Máster Universitario en Ingeniería del Hormigón. Soy Pedro Jaén, Secretario del DICPIC, y quisiera dirigirles unas palabras previas a la entrega de los Diplomas.
  • Nos encontramos en una muy buena universidad, la Politécnica de Valencia. Para sustentar esta afirmación, expondré algunos datos objetivos:

Continue reading “Palabras de Pedro Jaén en el Acto de Graduación del Máster Universitario en Ingeniería del Hormigón”

Optimización heurística mediante aceptación por umbrales

En algunos posts anteriores hemos comentado lo que es un modelo matemático de optimización, qué son las metaheurísticas, o cómo poder optimizar las estructuras de hormigón. A continuación os presentamos un Polimedia donde se explica brevemente cómo podemos optimizar siguiendo la técnica de optimización heurística mediante aceptación por umbrales. Podréis comprobar cómo se trata de un caso similar a la famosa técnica de la cristalización simulada. Espero que os sea útil.

Podéis consultar, a modo de ejemplo, algunos artículos científicos que hemos escrito a ese respecto en las siguientes publicaciones:

  • CARBONELL, A.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2011). Heuristic optimization of reinforced concrete road vault underpasses. Advances in Engineering Software, 42(4): 151-159. ISSN: 0965-9978.  (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)
  • YEPES, V.; MEDINA, J.R. (2006). Economic Heuristic Optimization for Heterogeneous Fleet VRPHESTW. Journal of Transportation Engineering, ASCE, 132(4): 303-311. (link)

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Encolado de dovelas prefabricadas en la construcción por voladizos sucesivos

D. Carlos Fernández Casado junto al puente de Castejón, sobre el Ebro
D. Carlos Fernández Casado, junto al puente de Castejón, sobre el Ebro. http://www.cfcsl.com/

Las dovelas prefabricadas utilizadas en la construcción de puentes por voladizos sucesivos se colocan mediante un aparato de elevación y se unen entre sí mediante un adhesivo de alta resistencia a base de resinas epoxi. Para encolar las dovelas, se mantiene la dovela suspendida sobre el tablero y próxima a la dovela anterior y se coloca la resina. La junta de la dovela se trata en acopio con chorro de arena o agua para eliminar desconchones, polvo, aceites y similares. La junta debe estar seca, aplicándose si fuera necesario calor. Se extiende la resina, como si fuera una pintura o un enlucido, en la cara posterior de la dovela suspendida, con un consumo entre 3 y 4 kg/m², que corresponde a una capa de unos 2 mm de espesor. Este procedimiento de construcción de grandes luces mediante el sucesivo encolado de dovelas requiere la intervención de personal altamente especializado.

En las fotografías se muestra el Puente de Castejón (1972), de la oficina de proyectos Carlos Fernández Casado S.L., construido por dovelas prefabricadas de 10 toneladas montadas con blondín; desde una pila se avanzó en voladizo único a partir de un vano lateral construido sobre cimbra, y desde la otra se avanzó en voladizos compensados de 50 m de longitud. Las dovelas se pegaron con resina epoxi en vez de mortero, solución que se utilizó en todos los puentes siguientes. Cada voladizo estaba formado por dos cajones que se montaban con dovelas unicelulares unidas in situ con la losa superior.

Puente de Castejón, construido con dovelas prefabricadas encoladas. http://www.cfcsl.com/
Puente de Castejón, construido con dovelas prefabricadas encoladas. http://www.cfcsl.com/

Las resinas presentan las siguientes características:

  1. Se forman por dos componentes, la resina (base) y en endurecedor (reactor).
  2. Existen resinas de acción rápida, media y lenta, correspondientes a la temperatura ambiente en la aplicación: 5-15 °C, 15-25 °C y 25-40 °C, respectivamente.
  3. El tipo de resina determina el tiempo de aplicación, es decir, el transcurrido entre la terminación de la mezcla y el instante en que no se puede aplicar, variando de unos 18 minutos a 35 °C, a un máximo de 40 minutos a 5 °C.
  4. Se dispone entre 45 y 60 minutos, dependiendo de la temperatura, para comprimir las dovelas entre sí y expulsar la resina.
  5. Aunque la resina presenta una resistencia a tensión tangencial superior a 4 MPa y de 75 MPa a compresión, esta resistencia no se considera en el cálculo, relegando la función de la resina a su actuación como lubricante durante el acoplamiento de las dovelas y como impermeabilizante de la junta.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Análisis del ciclo de vida: comparación entre dos puentes postesados óptimos de sección en cajón

Acaban de publicarnos un artículo en la revista del JCR (Q2) Sustainability que compara dos puentes postesados óptimos de sección en cajón atendiendo a su ciclo de vida. Creemos que la metodología empleada puede ser de interés para casos de estructuras de hormigón similares a las presentadas. El artículo forma parte del proyecto de investigación BRIDLIFE “Puentes pretensados de alta eficiencia social y medioambiental bajo presupuestos restrictivos“.

Os paso a continuación el resumen y el artículo propiamente dicho, pues está publicado en abierto.

 

 

Abstract:

The goal of sustainability involves a consensus among economic, environmental and social factors. Due to climate change, environmental concerns have increased in society. The construction sector is among the most active high environmental impact sectors. This paper proposes new features to consider a more detailed life-cycle assessment (LCA) of reinforced or pre-stressed concrete structures. Besides, this study carries out a comparison between two optimal post-tensioned concrete box-girder road bridges with different maintenance scenarios. ReCiPe method is used to carry out the life-cycle assessment. The midpoint approach shows a complete environmental profile with 18 impact categories. In practice, all the impact categories make their highest contribution in the manufacturing and use and maintenance stages. Afterwards, these two stages are analyzed to identify the process which makes the greatest contribution. In addition, the contribution of CO2fixation is taken into account, reducing the environmental impact in the use and maintenance and end of life stages. The endpoint approach shows more interpretable results, enabling an easier comparison between different stages and solutions. The results show the importance of considering the whole life-cycle, since a better design reduces the global environmental impact despite a higher environmental impact in the manufacturing stage.

Keywords:

sustainabilityenvironmental impactlife-cycle assessmentconstruction LCAbridge LCAReCiPe;sustainable construction

Reference:

PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.;  YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. doi:10.3390/su9101864 (link)

Descargar (PDF, 802KB)

Procedimientos de construcción de puentes viga de hormigón pretensado

Puente Shibanpo (China). Construcción original: 1980, desdoblamiento: 2005. Foto: 山城崽儿. Fuente: https://commons.wikimedia.org/wiki/File:Shibanpo_Bridge_in_Chongqing.jpg

Uno de los ingenieros que más contribuyó al desarrollo del hormigón armado, y que tuvo una actuación más destacada en el origen y desarrollo del hormigón pretensado, fue el francés Freyssinet. Sin embargo, no fue hasta después de la Segunda Guerra Mundial cuando los puentes viga de hormigón pretensado adquirieron toda su potencia y desarrollo. El hormigón pretensado ha demostrado sus ventajas económicas y técnicas tanto para puentes de luces medias (vigas prefabricadas, por ejemplo), como en grandes luces (puentes empujados y atirantados, entre otros). El récord de luz mundial para un puente cajón de hormigón pretensado es de 330 m en Shibanpo (China), terminado en 2005.

Tal es la importancia de que el proceso constructivo de un puente sea sencillo y económico, que los puentes viga se clasifican en función de dichos procedimientos. En general se pueden construir los puentes “in situ”, con piezas prefabricadas, o de una forma mixta. Además, salvo que el puente sea muy pequeño, los puentes viga se construyen por partes, o bien en subdivisiones longitudinales (vigas independientes que se unen mediante una losa, por ejemplo) o en subdivisiones transversales (dovelas de sección completa, que dan lugar a una gran variedad de métodos constructivos).

Los procedimientos constructivos de los puentes viga de hormigón pretensado pueden clasificarse en: (a) construcción sobre cimbra, (b) construcción por voladizos sucesivos, y (c) construcción por traslación horizontal o vertical.

Os dejo a continuación un pequeño vídeo explicativo al respecto.

 

 

 

 

¿Qué cualidades necesita un buen ingeniero? (Según E. Freyssinet)

Eugène Freyssinet (1879-1962)

Mi amigo Antonio Navarro Manso, profesor de la Universidad de Oviedo, me preguntaba por una cita famosa de Eugène Freyssinet sobre las cualidades que necesita un buen ingeniero. No la conocía, pero al final Antonio encontró la referencia en el libro que sobre este ilustre ingeniero escribió José A. Fernández Ordóñez en 1978. Creo que resulta de gran interés reproducir esta cita:

“… lo importante es la vocación y la fe en el propio esfuerzo, un amor sin límites hacia una tarea a la que se entrega la vida entera, sin restricciones ni reservas”. Lo demás, en la tarea del ingeniero es muy sencillo, solamente sentido común. Según él, basta con tres cualidades para ser buen ingeniero:

1º.— Ser capaz de resolver una regla de tres.

2º.— Estar convencido de que no puede subirse al cielo tirándose de los cabellos.

3º.— Saber que para colocar el sombrero en el perchero, no hay que ponerlo ni encima, ni debajo, ni a los lados

Por tanto, no me queda más que agradecer a Antonio la posibilidad de recoger este pensamiento de Freyssinet y compartirla con todos vosotros.

Os dejo un vídeo sobre Freyssinet (en francés, aunque subtitulado al inglés) que creo que os puede ser de interés. Espero que os guste.

Referencia:

FERNÁNDEZ-ORDÓÑEZ, J.A. (1978). Eugène Freyssinet. 2c Ediciones, Barcelona.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La construcción romana, el hormigón y otras cosas en Radio Nacional

Puente de Alcántara, puente romano en arco construido entre 104 y 106, que cruza el río Tajo en la localidad cacereña de Alcántara.

Resulta gratificante tener la oportunidad de conversar tranquilamente en un medio de comunicación como es Radio Nacional de España sobre ciencia, tecnología e ingeniería. El otro día me entrevistaron en el programa “24 horas“, presentado por Miguel Ángel Domínguez sobre la construcción romana, el hormigón y otros aspectos relacionados con la ingeniería civil y la inteligencia artificial. Se trata de un programa que dedica un espacio los miércoles a la tertulia científica y es, para la ingeniería, una oportunidad para acercar la técnica al gran público, facilitando la labor tan importante de divulgación científica.

 

 

Hablamos sobre las razones por las cuales las construcciones romanas han llegado hasta nuestros días, de la calidad de los hormigones romanos, del impacto medioambiental de la fabricación del cemento Portland, de la tecnología actual de la construcción y de la aplicación de la inteligencia artificial en el diseño automático y óptimo de puentes. Aunque la entrevista se quedó muy corta y nos dejamos en el tintero muchas cosas, os paso el post para que lo escuchéis en cualquier momento. También tenéis otras entrevistas anteriores relacionadas con el puente Hong Kong-Zhuhai-Macao, o con el Golden Gate. Espero que os sean de interés.