Sostenibilidad y resiliencia de las infraestructuras a través de la planificación multinivel

Acaban de publicarnos un artículo en la revista International Journal of Environmental Research and Public Health (revista indexada en el JCR) sobre la aplicación de la planificación multinivel como herramienta para mejorar la sostenibilidad y la resiliencia de las infraestructuras. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Se aplica una metodología novedosa de control jerárquico con múltiples objetivos para abordar la vulnerabilidad urbana, la mejora del estado de la red de carreteras y la minimización del costo económico como objetivos en un proceso de planificación resistente en el que tanto las acciones como su ejecución se planifican para un desarrollo controlado y sostenible. Basándose en el Sistema de Apoyo al Planeamiento Urbano, una herramienta de planificación desarrollada previamente, el sistema mejorado de apoyo al planeamiento ofrece una alternativa de planificación en la red de carreteras española, con el mejor equilibrio multiobjetivo entre optimización, riesgo y oportunidad. El proceso de planificación formaliza entonces la capacidad de adaptación local como la capacidad de variar la alternativa de planificación seleccionada dentro de ciertos límites, y el control del riesgo global como las obligaciones que deben cumplirse a cambio. Por último, mediante la optimización multiobjetivo, el método revela los equilibrios multiobjetivo entre la oportunidad local, el riesgo global y los derechos y deberes a escala local, proporcionando así una comprensión más profunda para una toma de decisiones mejor informada.

El artículo se ha publicado en una revista de alto impacto internacional, Q1 de la WOS, Impact Factor = 2,468 (2018), en acceso abierto, que se puede descargar desde la siguiente dirección: https://www.mdpi.com/1660-4601/17/3/962

Abstract

Resilient planning demands not only resilient actions, but also resilient implementation, which promotes adaptive capacity for the attainment of the planned objectives. This requires, in the case of multi-level infrastructure systems, the simultaneous pursuit of bottom-up infrastructure planning for the promotion of adaptive capacity, and of top-down approaches for the achievement of global objectives and the reduction of structural vulnerabilities and imbalances. Though several authors have pointed out the need to balance bottom-up flexibility with top-down hierarchical control for better plan implementation, very few methods have yet been developed with this aim, least of all with a multi-objective perspective. This work addressed this lack by including, for the first time, the mitigation of urban vulnerability, the improvement of road network condition, and the minimization of the economic cost as objectives in a resilient planning process in which both actions and their implementation are planned for a controlled, sustainable development. Building on Urban planning support system (UPSS), a previously developed planning tool, the improved planning support system affords a planning alternative over the Spanish road network, with the best multi-objective balance between optimization, risk, and opportunity. The planning process then formalizes local adaptive capacity as the capacity to vary the selected planning alternative within certain limits, and global risk control as the duties that should be achieved in exchange. Finally, by means of multi-objective optimization, the method reveals the multi-objective trade-offs between local opportunity, global risk, and rights and duties at local scale, thus providing deeper understanding for better informed decision-making.

Keywords:

Multi-scale assessment; hierarchical relational modeling; cascading impacts; adaptive capacity; infrastructure integrated planning; road network; decentralization optimization

Referencia:

SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. International Journal of Environmental Research and Public Health, 17:962; DOI:10.3390/ijerph17030962

Descargar (PDF, 4.49MB)

Computación cuántica y gemelos híbridos digitales en ingeniería civil y edificación

La ciudad Estado de Singapur desarrolla una copia virtual de sí misma, un proyecto basado en big data, IoT, computación en la nube y realidad virtual. https://www.esmartcity.es/2019/03/22/singapur-gemelo-digital-posibilidades-ofrece-ciudad-inteligente-tener-copia-virtual-exacta

En menos de una década, gran parte de los ingenieros dejarán de hacer proyectos, tal y como lo conocemos ahora, y pasarán a ser gestores de gemelos híbridos digitales de infraestructuras.

Este podría ser un buen titular periodístico que, incluso podría parecer ciencia ficción, pero que tiene todos los visos de convertirse en realidad en menos tiempo del previsto. Se podría pensar que las tecnologías BIM o los modelos digitales actuales ya son una realidad, es decir, se trata de dar un nuevo nombre a lo que ya conocemos y está en desarrollo, pero de lo que estamos hablando es de un nuevo paradigma que va a revolver los cimientos de la tecnología actual en el ámbito de la ingeniería. Voy a desgranar esta conclusión explicando cada uno de los avances y los conceptos que subyacen al respecto.

La semana pasada tuve la ocasión de escuchar la conferencia magistral, en el Congreso CMMoST, de Francisco Chinesta, catedrático en la ENSAM ParisTech e ingeniero industrial egresado por la Universitat Politècnica de València. Trataba de un nuevo paradigma en la ingeniería basada en datos y no era otra que la de los gemelos híbridos digitales, un paso más allá de la modelización numérica y de la minería de datos. Este hecho coincidió con el anuncio en prensa de que Google había publicado en la prestigiosa revista Nature un artículo demostrando la supremacía cuántica, un artículo no exento de polémica, pues parece ser que se diseñó un algoritmo que tiene como objetivo generar números aleatorios mediante un procedimiento matemático muy complejo y que obligaría al superordenador Summit, que es actualmente el más potente del mundo gracias a sus 200 petaflops, a invertir 10.000 años en resolver el problema, que que el procesador cuántico Sycamore de 54 qubits de Google habría resuelto en tres minutos y 20 segundos.

Si nos centramos en la supuesta supremacía cuántica de Google, se debería matizar la noticia al respecto. En efecto, IBM ya se ha defendido diciendo que su ordenador Summit no se encuentra tan alejado, pues se ha resuelto un problema muy específico relacionado con generar números aleatorios y que parece que Sycamore sabe resolver muy bien. De hecho, IBM afirma que ha reajustado su superordenador y que ahora es capaz de resolver ese mismo problema en 2,5 días con un margen de error mucho menor que el ordenador cuántico. Aquí lo importante es saber si esta computación cuántica estará, sin trabas o límites, accesible a cualquier centro de investigación o empresa para resolver problemas de altísima complejidad computacional (problemas NP-hard como pueden ser los de optimización combinatoria). Tal vez los superordenadores convencionales servirán para resolver unos problemas específicos en tareas convencionales, y los cuánticos, imparables en resolver otro tipo de problemas. Todo se andará, pero parece que esto es imparable.

Por tanto, parece que el hardware necesario para la una computación ultrarrápida está o estará a nuestro alcance en un futuro no muy lejano. Ahora se trata de ver cómo ha cambiado el paradigma de la modelización matemática. Para ello podríamos empezar definiendo al “gemelo digital”, o digital twin. Se trata de un modelo virtual de un proceso, producto o servicio que sirve de enlace entre un ente en el mundo real y su representación digital que está utilizando continuamente datos de los sensores. A diferencia del modelado BIM, el gemelo digital no representa exclusivamente objetos espaciales, sino que también podría representar procesos, u otro tipo de entes sin soporte físico. Se trata de una tecnología que, según todos los expertos, marcarán tendencia en los próximos años y que, según el informe “Beyond the hype“, de KPMG, será la base de la cuarta Revolución Industrial.

https://www.geofumadas.com/por-que-usar-gemelos-digitales-en-la-construccion/

Sin embargo, el gemelo digital no es una idea nueva, pues a principios de este siglo ya la introdujo Michael Grieves, en colaboración con John Vickers, director de tecnología de la NASA. Esta tecnología se aplica al Internet de las Cosas, que se refiere a la interconexión digital de objetos cotidianos con internet. Además, se encuentra muy relacionada con la inteligencia artificial y con la minería de datosdata-mining“. Empresas como Siemens ya están preparando convertir sus plantas industriales en fábricas de datos con su gemelo digital, o General Electric, que cuenta ya con 800.000 gemelos digitales para monitorizar virtualmente la cadena de suministro.

Con todo, tal y como explicó el profesor Chinesta (Chinesta et al., 2018), existe actualmente un cambio de paradigma hacia los gemelos digitales híbridos que, extrapolando su uso, va a significar la gran revolución en la forma de proyectar y gestionar las infraestructuras, tal y como avancé al principio del artículo.

En efecto, los modelos utilizados en ciencia y en ingeniería son muy complejos. La simulación numérica, la modelización y la experimentación han sido los tres pilares sobre los que se ha desarrollado la ingeniería en el siglo XX. La modelización numérica, que sería el nombre tradicional que se ha dado al “gemelo digital” presenta problemas prácticos por ser modelos estáticos, pues no se retroalimentan de forma continua de datos procedentes del mundo real a través de la monitorización continua. Estos modelos numéricos (usualmente elementos finitos, diferencias finitas, volumen finito, etc.) son suficientemente precisos si se calibran bien los parámetros que lo definen. La alternativa a estos modelos numéricos son el uso de modelos predictivos basados en datos masivos big-data, constituyendo “cajas negras” con alta capacidad de predicción debido a su aprendizaje automáticomachine-learning“, pero que esconden el fundamento físico que sustentan los datos (por ejemplo, redes neuronales). Sin embargo, la experimentación es extraordinariamente cara y lenta para alimentar estos modelos basados en datos masivos.

El cambio de paradigma, por tanto, se basa en el uso de datos inteligentes “smart-data paradimg“. Este cambio se debe basar, no en la reducción de la complejidad de los modelos, sino en la reducción dimensional de los problemas, de la retroalimentación continua de datos del modelo numérico respecto a la realidad monitorizada y el uso de potentes herramientas de cálculo que permitan la interacción en tiempo real, obteniendo respuestas a cambios paramétricos en el problema. Dicho de otra forma, deberíamos poder interactuar a tiempo real con el gemelo virtual. Por tanto, estamos ante otra realidad, que es el gemelo virtual híbrido.

Por tanto, estamos ahora en disposición de centrarnos en la afirmación que hice al principio. La nueva tecnología en gemelos digitales híbridos, junto con la nueva capacidad de cálculo numérico en ciernes, va a transformar definitivamente la forma de entender, proyectar y gestionar las infraestructuras. Ya no se trata de proyectar, por ejemplo, un puente. Ni tampoco estamos hablando de diseñar un prototipo en 3D del mismo puente, ni siquiera de modelar en BIM dicha estructura. Estamos hablando de crear un gemelo digital que se retroalimentará continuamente del puente real, que estará monitorizado. Se reajustarán los parámetros de cálculo del puente con los resultados obtenidos de la prueba de carga, se podrán predecir las labores de mantenimiento, se podrá conocer con antelación el comportamiento ante un fenómeno extraordinario como una explosión o un terremoto. Por tanto, una nueva profesión, que será la del ingeniero de gemelos virtuales híbridos de infraestructuras será una de las nuevas profesiones que reemplazarán a otras que quedarán obsoletas.

Se tratará de gestionar el gemelo durante el proyecto, la construcción, la explotación e incluso el desmantelamiento de la infraestructura. Se podrán analizar cambios de usos previstos, la utilización óptima de recursos, monitorizar la seguridad, y lo más importante, incorporar nuevas funciones objetivo como son la sostenibilidad económica, medioambiental y social a lo largo del ciclo de vida completo. Este tipo de enfoque es el que nuestro grupo de investigación tiene en el proyecto DIMILIFE. Proyectos como puentes, presas, aeropuertos, redes de carreteras, redes de ferrocarriles, centrales nucleares, etc. tendrán su gemelo digital. Para que sea efectivo, se deberá prever, desde el principio, la monitorización de la infraestructura para ayudar a la toma de decisiones. Además, servirá para avanzar en la aproximación cognitiva en la toma de decisiones (Yepes et al., 2015).

Os paso a continuación un vídeo sobre el uso de los gemelos digitales en la ciudad de Singapur.

A continuación os pongo un vídeo sacado de la página de Elías Cueto, de la Universidad de Zaragoza, en la que vemos cómo se interactúa con un gemelo virtual de un conejo.

 

En este otro vídeo, el profesor Chinesta explica el cambio de paradigma del que hemos hablado anteriormente en el artículo.

¿Qué es la computación cuántica? Aquí tenemos un vídeo de Eduardo Sáenz de Cabezón:

Referencias:

Chinesta, F.; Cueto, E.; Abisset-Chavanne, E.; Duval, J.L. (2018). Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engineered Data. Archives of Computational Methods in Engineering, DOI: 10.1007/s11831-018-9301-4

Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. DOI:10.1016/j.acme.2015.05.001

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Motoniveladoras

Motoniveladora. Wikipedia

Son máquinas autopropulsadas sobre ruedas cuya función principal va a ser la de nivelación y refino del terreno, reperfilando el material de los pequeños montones altos y moviendo pequeñas cantidades del mismo a poca distancia. Consisten fundamentalmente en un tractor de neumáticos del que arranca un robusto puente-bastidor del que se suspende una hoja niveladora, que puede adoptar diversas posiciones en el espacio, y situada entre los ejes delantero y trasero, pero delante del motor.

Suele trabajar con motor diésel turboalimentado, situado tras la cabina del operador, esto es, en la parte zaguera de la unidad. Su potencia abarca una extensa gama que va desde 30 a 325 CV, siendo los modelos más usados en carreteras de 100 a 200 CV, con una velocidad de transporte que, en algunos modelos, puede llegar hasta los 45 km/h. La relación potencia/peso se sitúan entre 10 y 12 CV/t. La transmisión puede ser mecánica, hidrostática o hidrodinámica, siendo ésta última la normal, mediante convertidor de par. La caja de cambios es del tipo power shift, que permite cambios de marchas sin parar la máquina ni desembragar.

Como curiosidad, Humberto Acco, un contratista italiano, construyó en 1980 la que se considera la mayor motoniveladora del mundo. Construyó una máquina para el desierto de Libia, aunque no llegó a utilizarse por el embargo americano a Libia. La máquina se utilizó en algunos trabajos de explanación en Italia y esta plenamente operativa en las instalaciones de ACCO. Esta maquina pesa unas 200 t y monta dos motores Caterpillar uno de 1000 CV en la parte trasera y otro de 700 en la delantera, la cual pertenece a la cabeza tractora de una mototrailla Caterpillar 657. La hoja (cuchilla) tiene una longitud de 10 m.

La mayor motoniveladora del mundo. Vía http://ingenieriaycomputacion.blogspot.com

Os dejo unos cuantos vídeos sobre cómo funcionan estas máquinas. En el primero veréis cómo pueden recortarse taludes, en el segundo se aprecian bien los movimientos de la hoja y en el tercero no os perdáis cómo se hundió esta máquina (hacia el final del vídeo). Espero que os gusten y os aclaren ideas.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Compactador monocilíndrico vibratorio autopropulsado de patas apisonadoras

Son similares a los compactadores de rodillos lisos en sus características geométricas, de frecuencias, amplitudes y velocidades, pudiéndose en muchos modelos intercambiarse los equipos. Llevan de 130 a 165 patas por cilindro, adoptando la forma de tacos de 100 mm de altura, ocupando aproximadamente un tercio de la superficie del tambor. Son adecuados para suelos plásticos y granulares, recomendándose los modelos de 16-20 t, con tracción al tambor. Es conveniente que las patas penetren y no se apoye la parte lisa del tambor en la capa. Para ello los espesores de capa adecuados no deberían ser superiores a la altura de las patas.

Os dejo algún vídeo para que veáis cómo trabaja este compactador.

Referencias:

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Tesis doctoral: Análisis de la durabilidad de la señalización vial horizontal

Ayer 12 de septiembre de 2019 tuve la ocasión de participar como Presidente en el tribunal de la tesis doctoral de Andrés Coves Campos que se defendió en la Universidad de Alicante, titulada “Análisis de la durabilidad de la señalización vial horizontal atendiendo a su composición y posicionamiento en la calzada de carreteras secundarias en climas semiáridos cálidos”, dirigida por Salvador Ivorra Chorro y por Esther Perales Romero. Se le concedió la calificación de “Sobresaliente” por unanimidad. Debido al interés de la tesis, adjunto a continuación un resumen.

Resumen:

Las marcas viales constituyen la única guía óptica que en muchas ocasiones tienen los usuarios de la vía, su correcta aplicación y conservación nos puede llegar a determinar la gravedad de un accidente hasta el punto de poder llegar a evitarlo. Por tanto, el correcto mantenimiento y repintado de la señalización vial horizontal en las carreteras convencionales a nivel mundial y de la red viaria española en particular, la investigación en nuevas combinaciones de materiales y el estudio de su durabilidad dependiendo del posicionamiento que ocupa la marca vial en carretera, nos aportan, sin duda, un apoyo útil para progresar en la lucha contra la accidentalidad vial.

Por ese motivo, se ha investigado, no sólo la evolución temporal de las características fundamentales de la señalización vial horizontal como son: la visibilidad diurna, la visibilidad nocturna y la resistencia al deslizamiento de nuevas combinaciones de materiales de post-mezclado y materiales base, como es la pintura fosforescente; sino que, al mismo tiempo, se ha elaborado una relación y un estudio de la vida útil de la marca vial atendiendo a sus características fundamentales según la zona de la calzada que ocupa esa marca vial, estableciendo las pautas de comportamiento de las mismas y cuándo reemplazarlas por no cumplir con los criterios mínimos de aceptación, relacionando la sección de desgaste a cada una de las marcas viales que podemos encontrar en las carreteras convencionales de la red viaria española.

Para ello, se ha elaborado un ensayo de campo (TG1), en la carretera CV-904, con un total de 36 muestras, teniendo para cada sentido de circulación 18 combinaciones de materiales atendiendo a material base y material de post-mezclado (microesferas de vidrio, cargas antideslizantes no transparentes y grano de vidrio transparente), y a su sistema de aplicación (monocapa o bicapa).

Además, hemos ejecutado un segundo ensayo de campo (TG2), en la ronda interna de la propia Universidad de Alicante, donde, partiendo de los conocimientos obtenidos en el primer estudio, se han fabricado nuevas combinaciones de materiales incluyendo el material base, diferentes tipos de microesferas de vidrio y cargas antideslizantes como parte del material de post-mezclado, se ha añadido pintura con pigmentos fosforescentes para mejorar la visibilidad nocturna y barniz de recubrimiento premezclado con agregados antideslizantes para prolongar la vida útil de la marca vial, fabricando un total de 40 muestras analizadas en laboratorio.

No solo se han estudiado los resultados de los parámetros fundamentales de cada muestra, sino que nos hemos apoyado en la toma de fotografías in situ analizándolas cualitativamente, lo que nos ha ayudado a comprender su evolución y los resultados. Al mismo tiempo hemos tomado muestras de todas ellas para su observación en laboratorio.

Tras la comparativa entre la evolución de cada característica principal de las probetas y su análisis, hemos establecido los períodos de la vida útil de cada una de ellas según la zona de afección en la que están ubicadas atendiendo a la Norma 8.2-IC.

Cabe destacar que se ha dejado la línea de investigación relacionada con la interconexión entre el vehículo autónomo, la infraestructura viaria y la señalización vial horizontal abierta como principal futura línea de investigación.

Muestreo de aceptación por atributos. Ejemplo de caso resuelto.

El muestreo de aceptación constituye uno de los campos más amplios del control de calidad estadístico en recepción. Se trata de aceptar o rechazar un lote atendiendo a una serie de criterios establecidos. No se trata de determinar la calidad que presenta un lote, sino de determinar la forma de actuar. El muestreo de aceptación determina, por tanto, un procedimiento que si se aplica a una serie de lotes dará un riesgo especificado en cuanto a la aceptación de lotes de una calidad dada. Por tanto, el muestreo de aceptación proporciona un margen de seguridad en cuanto a la calidad.

Tampoco el muestreo de aceptación constituye un control de calidad propiamente dicho. Para ello tenemos otras herramientas como los diagramas de control, que pueden guiar al ingeniero en cuanto a la modificación de la producción con el objeto de mejorar los productos. Este punto debe tenerse muy en cuenta. Un muestreo de aceptación, tal y como hemos indicado antes, aceptará o rechazará lotes. Suponiendo que todos los lotes son de la misma calidad, aceptará unos y rechazará otros, sin que los aceptados sean mejores que los rechazados.

Sin embargo, esta práctica de muestreo proporciona un efecto indirecto muy importante. Si a un proveedor se le rechaza frecuentemente sus lotes, o cambia radicalmente su forma de producción, o el cliente buscará un nuevo proveedor.

A continuación os paso, totalmente resuelto, una práctica resuelta propuesta en clase de un muestreo de aceptación por atributos. En este caso, el producto es defectuoso o no lo es. Es evidente que, si se disponen de datos cuantitativos, sería mejor utilizar un muestreo de aceptación por variables, pero la filosofía y la estrategia es la misma.

En el caso del control de calidad en recepción por atributos, se han utilizado las tablas de la norma UNE 66-020 (actualmente la familia de normas vigentes son las UNE-ISO 2859), que proceden de la norma MIL-STD-105. Esta era una norma de defensa de los Estados Unidos que proporcionaba procedimientos y tablas para el muestreo por atributos basadas en las teorías de inspección de muestreo de Walter A. Shewhart, Harry Romig y Harold Dodge y fórmulas matemáticas.

Aunque el ejemplo trata de una producción industrial, el campo de aplicación podría extrapolarse a otros como la recepción de lotes en carreteras, que no deja de ser el resultado de un proceso de producción. En futuros artículos publicaré algunos ejemplos más. Por otra parte, para entender bien la resolución del problema, se recomienda al lector algún curso básico sobre estadística avanzada aplicada al control de calidad.

Descargar (PDF, 697KB)

 

 

 

 

Fases en la ejecución de una pavimentación asfáltica

Pavimentación

El profesor Miguel Ángel del Val, de la Universidad Politécnica de Madrid, nos explica en este vídeo la extensión de las mezclas asfálticas. Espero que os sea de utilidad.

 

 

 

 

 

Referencia:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

 

Barredora mecánica

Barredora mecánica. http://www.aplecgroup.com/Productos/indice%20de%20productos/Barredoras.htm

Previo a la aplicación de cualquiera de un riego de imprimación o de adherencia, es imprescindible limpiar perfectamente la superficie que haya de recibirlos de partículas sueltas, polvo, barro seco o cualquier material que perjudique la perfecta unión con la capa de aglomerado. En efecto, el polvo y el agua pueden formar una película alrededor de los áridos que impida la adhesión del ligante bituminoso.

La limpieza de las superficies que van a recibir la capa de aglomerado asfáltico la realizan las escobas o barredoras mecánicas. Son máquinas autopropulsadas o remolcadas dotadas de unos brazos hidráulicos con rodillos de fibra que puede ser de púas de alambre acerado, nylon o vegetales. En el caso de que sólo existiera polvo o partículas sueltas, bastaría un pequeño compresor portátil para soplar la suciedad fuera del tajo.

La acción mecánica de los cepillos permite la eliminación de la suciedad. Para ello el rodillo gira en sentido contrario a la marcha del vehículo, produciendo este giro el barrido del polvo. La velocidad de trabajo de la máquina es del orden de 3 a 4 km/h, siendo normal de 2 a 3 pasadas para completar la limpieza.

Os dejo algunos vídeos de esta máquina.

Reciclado de firmes in situ con cemento

Tren de reciclado. http://pa-12.blogspot.com.es/2009/03/tren-de-reciclado.html

El reciclado de firmes in situ con cemento constituye una técnica de rehabilitación que consiste en transformar el firme deteriorado tomando como fuente de suministro de áridos la propia carretera. Es una técnica sostenible, puesto que podría evitar, según el IECA, la extracción de unas 800.000 t de áridos. El procedimiento constructivo consiste en disgregar el firme existente en la profundidad requerida, mezclar el material resultante con cemento y agua y compactar la mezcla a la densidad adecuada. Con ello se consigue un firme en conjunto mucho más duradero, con menor susceptibilidad al agua y mayor resistencia a la fatiga. Aquí os dejo un enlace para descargaros la Guía Técnica de IECA sobre reciclado de firmes in situ.

¿Cómo se hace?, pues aquí tienes un didáctico vídeo sobre estabilización de suelos con cemento, procedente de la sección de vídeos de IECA. Espero que os guste.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Penalizaciones económicas por una mala compactación?

En un artículo anterior tuvimos ocasión de hablar en detalle de los aspectos básicos del control de calidad en la compactación de un suelo. Pero, ¿qué pasa si existe una desviación entre los resultados que esperábamos y los realmente obtenidos? Es un tema que levanta fuertes discusiones, sobre todo por la repercusión económica y de funcionalidad de la unidad de obra. Mi opinión es que hay que ser muy cauteloso con la aceptación de unidades de obra con mermas de calidad, pero a veces se admiten excepciones que deben estar documentadas y razonadas. Una posibilidad es imponer una penalización económica lo suficientemente fuerte que desaconseje al contratista entrar en esa zona cercana a la aceptación, pero que se encuentre ligeramente por debajo de las especificaciones.

A veces el incumplimiento de las especificaciones que afecten a una determinada parte de la obra de terraplén, y siempre que a criterio del Director Facultativo, estos defectos no impliquen una pérdida significativa en la funcionalidad y seguridad de la obra o parte de la obra y no sea posible subsanarlos posteriormente, pueden aplicarse penalizaciones en forma de deducción en la relación valorada. Esta posibilidad no debe nunca implicar una aceptación sin más de la merma de calidad, sino que solo es aplicable en casos excepcionales.

A modo de ejemplo, y sin que ello suponga que esta penalización sea la más adecuada para todos los casos, el artículo 32.31 del Pliego de Condiciones Técnicas Generales 1988, del Ayuntamiento de Madrid propone las siguientes fórmulas, que podrán ser modificadas o complementadas en el Pliego de Condiciones Técnicas Particulares:

 

P1  = 0,04 ·ΔC · P        (por defecto de compactación)

P2  = 0,20 · N · P        (por cambio de calidad en el material)

siendo:

P1 y P2             deducción unitaria por penalización €/m3

P                     precio unitario del terraplén €/m3

ΔC                  defecto en % del grado de compactación en relación con el especificado.

N                     coeficiente por cambio de calidad.

— de seleccionado a adecuado, N=1

— de seleccionado a tolerable, N=4

— de adecuado a tolerable, N=2.

 

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.