Vivienda social sostenible: un enfoque integrador de ciclo de vida y evaluación multicriterio

Acaban de publicar un artículo nuestro en Sustainable Cities and Society, una de las revistas de mayor impacto científico, ubicada en el primer decil del JCR. En este trabajo se propone un enfoque integrador basado en el ciclo de vida y en métodos de evaluación multicriterio para analizar la vivienda social sostenible. La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo.

Los principales resultados revelan que el sistema Light Steel Frame (LSF) es la alternativa más sostenible, ya que logra un equilibrio superior entre la eficiencia en el uso de los recursos, la durabilidad y la reducción del mantenimiento. Un descubrimiento crucial es el papel de la dimensión social, que representó casi el 40 % del peso total en la evaluación, por encima de las dimensiones económica y medioambiental. El análisis causal identifica el coste de construcción, la funcionalidad y los agentes de la cadena de valor como los principales factores que condicionan el rendimiento sostenible del resto del sistema.

El artículo presenta un marco metodológico integrador que combina evaluaciones basadas en el ciclo de vida —análisis de ciclo de vida (LCA), análisis de coste del ciclo de vida (LCC) y análisis de ciclo de vida estocástico (S-LCA)— con técnicas avanzadas de decisión multicriterio: método mejor-peor (BWM), análisis DEMATEL difuso y análisis MARCOS. Esta integración permite incorporar ponderaciones de expertos, modelar relaciones causales entre criterios y sintetizar resultados frente a soluciones ideales o anti-ideales, lo que aumenta la transparencia en la priorización de alternativas constructivas. Este enfoque se ha aplicado a un caso real de vivienda social en Perú, en el que se han comparado cinco sistemas estructurales representativos: LSF, LBSPS, RCW, RCF-M y RCF-CP. El estudio ha proporcionado pruebas empíricas sobre los costes del ciclo de vida, los impactos ambientales y las prestaciones sociales que respaldan las decisiones de diseño y las políticas.

El estudio analiza cinco sistemas constructivos adaptados a contextos de urbanización rápida (específicamente en Lima, Perú), que van desde métodos convencionales hasta industrializados:

Entre las aportaciones metodológicas, la combinación de BWM con una agregación basada en credenciales profesionales reduce la carga de comparación y atenúa los sesgos en la agregación de juicios, mientras que la extensión difusa de DEMATEL permite identificar los criterios que funcionan como impulsores del sistema y los que actúan como receptores. Esta capacidad para distinguir entre causas y efectos permite aclarar qué palancas hay que modificar para lograr efectos amplificados en la sostenibilidad. Por último, la validación cruzada con otros métodos de MCDM y los ensayos de sensibilidad aumentan la confianza en la estabilidad de los resultados.

Discusión de resultados

Los análisis económicos muestran que, en un horizonte de 50 años y por metro cuadrado, los sistemas basados en acero ligero (LSF) tienen los menores costes totales de ciclo de vida, mientras que algunas alternativas prefabricadas, como el LBSPS, tienen los mayores costes de construcción. Estos datos implican que si solo se tiene en cuenta la inversión inicial, se pueden tomar decisiones subóptimas, ya que no se consideran el mantenimiento y el fin de vida.

En términos ambientales, la evaluación con ReCiPe (endpoint) sitúa al LSF como el sistema con el menor impacto agregado, principalmente debido a su menor intensidad material. Por el contrario, las soluciones con mayor presencia de hormigón y ladrillo presentan una carga superior, especialmente en la dimensión de recursos. Esta diferenciación pone de manifiesto la influencia del perfil material y del proceso de fabricación en la huella medioambiental de la vivienda y sugiere que, en la práctica profesional, se deben priorizar medidas que reduzcan la demanda de materiales energéticamente intensivos en la fase de fabricación.

La S-LCA revela una tensión entre la industrialización y la exposición social: las alternativas más industrializadas, como el LSF y el LBSPS, presentan mayores valores de exposición laboral y de funcionalidad exigente, mientras que las tipologías convencionales de hormigón muestran menores riesgos sociales, medidos en Medium Risk Hours. Este resultado indica que la adopción de sistemas industrializados exige prestar atención explícita a la gestión del trabajo, la formación y la coordinación de la cadena de suministro para evitar que los impactos negativos se transfieran al personal y a la comunidad.

La síntesis mediante MARCOS ubica a LSF como la alternativa mejor valorada en el escenario analizado, seguida de RCW y RCF-M. Los sistemas LBSPS y RCF-CP quedan en posiciones inferiores. Las pruebas de sensibilidad (variación de los pesos de ±15 %, escenarios de distancia de transporte y estratificación de expertos) muestran que el orden general se mantiene, lo que indica cierta robustez frente a perturbaciones razonables en los supuestos. Estos resultados permiten extraer una conclusión práctica: en contextos con características similares a las del caso estudiado, las soluciones ligeras industrializadas pueden mejorar la relación entre coste, impacto ambiental y rendimiento técnico, siempre que se gestionen adecuadamente los aspectos sociales y de ejecución.

Un aspecto metodológico de interés es la identificación de los criterios causales. La técnica DEMATEL identifica el coste de construcción, la funcionalidad y las interacciones con la cadena de valor como criterios que inciden en el resto del sistema, mientras que los indicadores ambientales, como la salud humana y la conservación de los ecosistemas, se presentan principalmente como efectos. Esto sugiere que las intervenciones en los costes de construcción y en la organización funcional pueden provocar mejoras indirectas en la sostenibilidad ambiental y social, lo cual resulta relevante al diseñar políticas y contratos que incentiven las prácticas integradas.

Futuras líneas de investigación

Una línea de trabajo inmediata consiste en ampliar la diversidad y el tamaño del panel de agentes consultados para captar las variaciones en las prioridades y las competencias profesionales. Esto permitiría evaluar la sensibilidad de las ponderaciones y mejorar la representatividad social del proceso. Otra opción es trasladar y recalibrar el marco a otros contextos geográficos y tipologías constructivas, como viviendas de mayor altura o equipamientos públicos, para evaluar la transferibilidad de la clasificación y de la estructura causal identificada en este estudio.

En el ámbito técnico, utilizar datos primarios de obras reales en lugar de bases de datos secundarias aumentará la fiabilidad de la evaluación del ciclo de vida (LCA) y del análisis del ciclo de vida (S-LCA) y mejorará la precisión de los modelos de coste del ciclo de vida (LCC). La incorporación de enfoques dinámicos, como la LCA dinámica o las simulaciones acopladas a plataformas BIM, puede facilitar las evaluaciones en etapas iniciales y permitir análisis de sensibilidad más detallados relacionados con la sustitución de componentes, las reparaciones y las evoluciones tecnológicas. Asimismo, explorar técnicas de optimización multiobjetivo que vinculen explícitamente las restricciones económicas con las metas ambientales y sociales podría proporcionar soluciones de diseño más operativas para promotores y organismos públicos.

Desde la perspectiva social, investigar intervenciones concretas de capacitación, reorganización de procesos y de contratos que reduzcan la exposición de los trabajadores a los sistemas industrializados aportará pruebas sobre cómo mantener los beneficios ambientales y económicos sin incrementar los impactos sociales. Por último, el estudio de la interacción entre políticas públicas, incentivos financieros y la adopción tecnológica ofrecerá información útil para diseñar instrumentos que favorezcan soluciones constructivas más equilibradas en el marco de los programas de vivienda social.

Conclusión

El estudio proporciona un marco metodológico replicable y sólido que combina la evaluación del ciclo de vida con técnicas multicriterio capaces de representar las interdependencias y la incertidumbre. Los resultados empíricos indican que, en el caso analizado, las soluciones ligeras industrializadas presentan ventajas en términos de coste y de huella ambiental, aunque se requieren medidas específicas para reducir los riesgos sociales derivados de su ejecución. La metodología y los resultados obtenidos sientan las bases para orientar las políticas y las decisiones de los proyectos y ponen de manifiesto la necesidad de ampliar los datos primarios, diversificar la muestra de expertos y conectar el análisis con herramientas digitales de diseño y gestión.

Referencia:

LUQUE CASTILLO, X.; YEPES-BELLVER, L.; YEPES, V. (2026). Towards Sustainable Social Housing: An Integrative Life Cycle and Multi-Criteria ApproachSustainable Cities and Society, 137, 107164. DOI:10.1016/j.scs.2026.107164

Dejo a continuación el artículo completo, ya que está publicado en abierto.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Balance personal de 2025 en el ámbito docente e investigador

Cada 31 de diciembre siento que el tiempo nos invita a hacer una pausa. No porque el mundo cambie de un día para otro, sino porque hemos aprendido a ver este día como el cierre de una etapa y el comienzo de otra. Tal vez haya sido un solsticio o un equinoccio, pero esta es la fecha que nos lleva a mirar hacia atrás. Y eso es justo lo que hago ahora: repasar lo vivido en 2025. Un año intenso, de esos que dejan huella y que, estoy seguro, no olvidaremos fácilmente.

En 2025, hemos vivido un año marcado por retos que van mucho más allá de la ingeniería, pero que nos afectan de lleno: el regreso de Trump a la presidencia de Estados Unidos ha vuelto a influir en la política mundial y en decisiones estratégicas que repercuten en las infraestructuras críticas, mientras que la elección del papa León XIV, simbolizó un momento de transformación institucional. Las tensiones geopolíticas siguieron en aumento: la guerra en Ucrania no ha terminado y sigue afectando a ciudades e infraestructuras clave, con ataques continuos y enormes necesidades de reconstrucción y resiliencia civil. La tragedia en Gaza ha sacudido a la comunidad internacional, con miles de víctimas y un conflicto humanitario que no cesa, incluso después de las protestas internas contra Hamás y de los prolongados ataques en la franja. En nuestro entorno, España sufrió un gran apagón que puso de manifiesto la importancia de contar con redes eléctricas robustas y evidenció cómo la desinformación puede agravar las crisis técnicas, con bulos que provocaron pánico y confusión entre la población. Los incendios del verano y la reconstrucción de Valencia tras la DANA han servido de laboratorio real para mejorar el diseño urbano y la gestión de riesgos ante eventos extremos. Al mismo tiempo, las tensiones en el Caribe aumentaron con operaciones militares y bloqueos contra Venezuela, lo que complica aún más la estabilidad regional y nos recuerda que, en un mundo saturado de información —y de desinformación—, los ingenieros no solo construyen, sino que también interpretan y comunican hechos técnicos en medio de narrativas polarizadas y extremismos crecientes.

El pasado 21 de julio se conmemoró el bicentenario del nacimiento de Práxedes Mateo Sagasta, una de las figuras cumbre del liberalismo decimonónico y referente de la Restauración. Como ingeniero de Caminos y estadista, Sagasta fue clave en la modernización de nuestras infraestructuras y de nuestras libertades. Lamentablemente, este año de celebraciones también ha estado marcado por la pérdida de ingenieros ilustres como Javier Ruiz-Wamba Martija. Tuve el honor de recordar su legado participando en una de las mesas redondas del homenaje que se le rindió en el Colegio de Ingenieros de Caminos de Madrid.

Pero ya voy a centrarme en el balance personal que suelo hacer cada año en estas fechas. Este año estamos trabajando en nuestro nuevo proyecto de investigación RESILIFE, con una duración de tres años. En este momento, mi índice H es de 47 en la Web of Science, de 48 en Scopus y de 66 en Google Académico, y cuento con 206 artículos publicados en revistas indexadas en el JCR. Además de los 24 artículos científicos que he publicado en revistas indexadas en el JCR, ya hemos publicado tres en 2026 y nos han aceptado uno más. Nunca me cansaré de elogiar a los integrantes del grupo de investigación. Mejoran cada día. Destaco la defensa de tres tesis doctorales este año, que he dirigido dentro del proyecto RESILIFE, y mención especial la de Lorena Yepes Bellver, mi hija, dirigida por Julián Alcalá.

Este año sigo ejerciendo como Consejero en el Sector 4: docencia e investigación del Colegio de Ingenieros de Caminos, Canales y Puertos. También participé como secretario en la Comisión de Acreditación 15 de Ingeniería Civil de la ANECA. Asimismo, he participado en numerosas evaluaciones de proyectos de I+D+i con AENOR. Especial ha sido el reconocimiento que me otorgó la Universitat Politècnica de València por mi compromiso con la divulgación científica y con la atención a los medios de comunicación en la cobertura periodística vinculada a la DANA. Además, quiero destacar el Premio al mejor proyecto en la categoría «AI for Sustainable Development» de la European Universities Competition on Artificial Intelligence, organizada por la HAW Hamburg. También el premio recibido por mi antiguo doctorando, Zhiwu Zhu, por su excelencia en investigación, otorgado por la Escuela de Ingeniería Civil y Ambiental de la Universidad de Ciencias e Ingeniería de Hunan, China.

Demos un pequeño repaso de lo que ha sido este 2025. El 12 de febrero se defendió la tesis doctoral de Mehrdad Hadizadeh Bazaz, el 6 de mayo la tesis doctoral de Ashwani Kumar Malviya y el 19 de diciembre la tesis doctoral de Iván Antonio Negrín Díaz. Todas las tesis doctorales que he dirigido este año son de estudiantes internacionales, de Irán, India y Cuba, respectivamente. He participado en varios congresos, como el XI Congreso de Innovación Educativa y Docencia en Red (IN-RED 2025), el Congreso Nacional de Áridos, el IX Congreso Internacional de Estructuras (ACHE 2025), la International Conference on High Performance and Optimum Design of Structures and Materials (HPSM/OPTI 2025) y el 29th International Congress on Project Management and Engineering (AEIPRO 2025). También he tenido la oportunidad de dar una conferencia plenaria en el XLVI Ibero-Latin American Congress on Computational Methods in Engineering (CILAMCE 2025), que se celebró en Vitória, Espírito Santo, Brasil, del 24 al 27 de noviembre.

Este post es el número 205 de los que he escrito este año, lo cual no está nada mal. Ya he publicado 2243 artículos en mi blog desde que inicié esta andadura el 5 de marzo de 2012, por lo que este año se cumple una década de esta aventura. Sin darme cuenta, he tocado muchos temas relacionados con la ingeniería civil y la construcción en todos sus aspectos. Además, tengo una presencia cada vez mayor en las redes sociales. Tengo más de 35 000 seguidores en X (antes Twitter) y casi 26 000 en LinkedIn.

Por último, a continuación, os dejo algunas referencias sobre los artículos, congresos, libros y vídeos educativos que he realizado durante este año 2025. Cada año es más difícil mejorar los resultados del año anterior, pero haremos todo lo posible para 2026.

INVESTIGADOR PRINCIPAL EN PROYECTOS DE INVESTIGACIÓN COMPETITIVOS:

  • Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas. (RESILIFE). [Resilient life-cycle optimization of socially and environmentally efficient hybrid and modular structures under extreme conditions]. PID2023-150003OB-I00.

ARTÍCULOS INDEXADOS EN EL JCR:

  1. TRES JUNIOR, F.L.; DE MEDEIROS, G.F.; KRIPKA, M.; YEPES, V. (2025). Designing for Safety and Sustainability: Optimization of Fire-Exposed Steel-Concrete Composite Footbridges. Structural Engineering and Mechanics, 96 (4):337-350. DOI:10.12989/sem.2025.96.4.337
  2. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Life-cycle environmental impact optimization of an RC-THVS composite frame for sustainable construction. Engineering Structures, 345, 121461. DOI:10.1016/j.engstruct.2025.121461
  3. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Manufacturing cost optimization of welded steel plate I-girders integrating hybrid construction and tapered geometry. International Journal of Advanced Manufacturing Technology, 140, 1601-1624DOI:10.1007/s00170-025-16365-2
  4. ZHOU, Z.; ZHAO, Z.; ALCALÁ, J.; YEPES, V. (2025). Intelligent operation monitoring and finite element coupled identification of hyperstatic structures. Results in Engineering, 27, 106990. DOI:10.1016/j.rineng.2025.106990
  5. NEGRÍN, I.; CHAGOYÉN, E.; KRIPKA, M.; YEPES, V. (2025). An integrated framework for Optimization-based Robust Design to Progressive Collapse of RC skeleton buildings incorporating Soil-Structure Interaction effects. Innovative Infrastructure Solutions, 10:446. DOI:10.1007/s41062-025-02243-z
  6. YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Predictive modeling for carbon footprint optimization of prestressed road flyovers. Applied Sciences15(17), 9591. DOI:10.3390/app15179591
  7. VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649
  8. LUQUE CASTILLO, X.; YEPES, V. (2025). Multi-criteria decision methods in the evaluation of social housing projects. Journal of Civil Engineering and Management, 31(6), 608–630. DOI:10.3846/jcem.2025.24425
  9. ZHOU, Z.; TIAN, Q.; ALCALÁ, J.; YEPES, V. (2025). Research on the coupling of talent cultivation and reform practice of higher education in architecture. Computers and Education Open, 9:100268. DOI:10.1016/j.caeo.2025.100268.
  10. LUQUE CASTILLO, X.; YEPES, V. (2025). Life Cycle Assessment of Social Housing Construction: A Multicriteria Approach. Building and Environment, 282:113294. DOI:10.1016/j.buildenv.2025.113294
  11. ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692
  12. VITORIO JUNIOR, P.C.; YEPES, V.; ONETTA, F.; KRIPKA, M. (2025). Comparative Life Cycle Assessment of Warehouse Construction Systems under Distinct End-of-Life Scenarios. Buildings, 15(9), 1445. DOI:10.3390/buildings15091445
  13. ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270
  14. SIERRA-VARELA, L.; CALABI-FLOODY, A.; VALDÉS-VIDAL, G.; YEPES, V.; FILUN-SANTANA, A. (2025). Determination of the social contribution of sustainable additives for asphalt mixes through fuzzy cognitive mapping. Applied Sciences, 15(7):3994. DOI:10.3390/app15073994
  15. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Design optimization of a composite typology based on RC columns and THVS girders to reduce economic cost, emissions, and embodied energy of frame building construction. Energy and Buildings, 336:115607. DOI:10.1016/j.enbuild.2025.115607
  16. MOSTOFI, F.; BAHADIR, U.; TOKDEMIR, O.B.; TOGAN, V.; YEPES, V. (2025). Enhancing Strategic Investment in Construction Engineering Projects: A Novel Graph Attention Network Decision-Support Model. Computers & Industrial Engineering, 203:111033. DOI:10.1016/j.cie.2025.111033
  17. ROJAS, L.; YEPES, V.; GARCÍA, J. (2025). Complex Dynamics and Intelligent Control: Advances, Challenges, and Applications in Mining and Industrial Processes. Mathematics, 13(6):961. DOI:10.3390/math13060961
  18. FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2025). Structural damage index evaluation in BIM environmentsStructures, 74:108544. DOI:10.1016/j.istruc.2025.108544
  19. VILLALBA, P.; GUAYGUA, B.; YEPES, V. (2025). Optimal seismic retrofit alternative for shear deficient RC beams: a multiple criteria decision-making approach. Applied Sciences, 15(5):2424. DOI:10.3390/app15052424
  20. YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.
  21. BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426
  22. MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2025). Game Theory-Based Multi-Objective Optimization for Enhancing Environmental and Social Life Cycle Assessment in Steel-Concrete Composite Bridges. Mathematics, 13(2):273. DOI:10.3390/math13020273
  23. LI, Y.J.; ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2025). Research on spatial deformation monitoring and numerical coupling of deep foundation pit in soft soil. Journal of Building Engineering, 99:111636. DOI:10.1016/j.jobe.2024.111636
  24. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Metamodel-assisted design optimization of robust-to-progressive-collapse RC frame buildings considering the impact of floor slabs, infill walls, and SSI implementationEngineering Structures, 325:119487. DOI:10.1016/j.engstruct.2024.119487

OTROS ARTÍCULOS:

CAPÍTULOS DE LIBROS:

CONGRESOS:

  • YEPES, V. (2025). Advances in resilient optimization and decision-making in structures. [Plenary lecture]. XLVI Ibero-Latin American Congress on Computational Methods in Engineering (CILAMCE 2025), Vitória, Espírito Santo, Brazil.
  • YEPES, V. (2025). Infraestructuras resilientes frente a eventos climáticos extremos [Discurso de apertura]. Innotransfer, 28 de mayo, Universitat Politècnica de València.
  • MARTÍNEZ-PAGÁN, P.; YEPES, V.; ROSCHIER, L.; BLIGHT, T.; BOULET, D.; PERALES, A. (2025). Elaboración y uso de nomogramas para el ámbito de las explotaciones de áridos. Introducción de los códigos abiertos Pynomo y NomogenActas del VII Congreso Nacional de Áridos, Córdoba, pp. 1085-1100. ISBN 978-84-125559-2-9.
  • YEPES, V. (2025). Pensamiento lateral para mejorar la resolución de problemas complejos en estudios de máster. En libro de actas: XI Congreso de Innovación Educativa y Docencia en Red. Valencia, 17 – 18 de julio de 2025.
  • YEPES, V.; YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P. (2025). Impacto de la diversidad cultural en la resolución colaborativa de problemas en la docencia universitaria de ingeniería. En libro de actas: XI Congreso de Innovación Educativa y Docencia en Red. Valencia, 17 – 18 de julio de 2025.
  • SÁNCHEZ-GARRIDO, A.; NAVARRO, I.J.; YEPES, V. (2025). Resiliencia para la sostenibilidad de las estructuras de edificación mediante forjados con losas aligeradas biaxiales. IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).
  • YEPES-BELLVER, L.; NAVARRO, I.J.; ALCALÁ, J.; YEPES, V. (2025). Redes neuronales y Kriging para la optimización de la huella de carbono de puentes losa pretensados. IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).
  • YEPES, V.; ALCALÁ, J.; GARCÍA, J.A.; KRIPKA, J. (2025). Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas. IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).
  • YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Multi-attribute decision-making in prestressed concrete road flyover design. International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI 2025, 10-12 June 2025, Edinburgh, UK.
  • YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Multi-objective optimization of prestressed slab bridges using the
    CRITIC-MCDM approach. 29th International Congress on Project Management and Engineering, AEIPRO, 16-17 de julio, Ferrol (Spain). https://doi.org/10.61547/2502015
  • YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P.; YEPES, V. (2025). Nomograms for the economic pre-design of earth retaining walls. 29th International Congress on Project Management and Engineering, AEIPRO, 16-17 de julio, Ferrol (Spain). https://doi.org/10.61547/2502019

VÍDEOS EDUCATIVOS:

  1. Necesidad y fases del curado del hormigón. 8 minutos, 52 segundos.
  2. Puesta en obra del hormigón compactado con rodillo. 9 minutos, 51 segundos.
  3. Fabricación y puesta en obra del hormigón autocompactante. 8 minutos, 59 segundos.
  4. Hormigón al vacío. 10 minutos.
  5. Hormigón reforzado con fibra de vidrio. 9 minutos, 21 segundos.
  6. Hormigones ligeros. 9 minutos, 19 segundos.
  7. Alisadoras rotativas o fratasadoras. 10 minutos, 8 segundos.
  8. Vibradores de aguja para compactar el hormigón. 8 minutos, 58 segundos.

MEDIOS DE PRENSA:

Levante: Víctor Yepes, catedrático de la UPV: «Es un error reconstruir infraestructuras sin adaptarlas al cambio climático»

The Conversation: La ingeniería ante la dana: la reconstrucción no basta si se repiten los errores del pasado

Levante: «Si construimos todo igual, volverá a ocurrir una catástrofe similar»

La Opinión de Murcia: Una reconstrucción de dimensiones históricas con más de un millar de infraestructuras dañadas por la dana

Cadena Ser: Nueve meses después de la DANA la legislación urbanística sigue reconstruyendo sin tener en cuenta los riesgos

Cadena Ser: Un estudio de la UPV propone cómo construir viviendas sociales más baratas y sostenibles y de forma más rápida

Economía 3: UPV impulsa una nueva forma de construir viviendas sociales más eficientes

Cadena Ser: La UPV propone cómo hacer más duraderos los edificios junto al mar

La Vanguardia: Crean una herramienta que ayuda a alargar la vida útil de edificios situados junto al mar

RTVE: Reconstruir Valencia un año después: «cirugía urbana» y zonas verdes para protegerse de futuras danas

RTVE: Garajes en alto e ingeniería verde: la construcción a prueba de danas

iAgua: Lecciones aprendidas de la DANA: proteger a la población es la prioridad

EuroNews: Un año después de la DANA del 29-O, los expertos advierten: «Podría volver a pasar»

Construnews: Víctor Yepes: “La gran olvidada es la conservación: sin mantenimiento, ninguna infraestructura es sostenible”

El País: Así construían los albañiles de la antigua Roma

Tesis doctoral: Optimización sostenible y resiliente de edificios con estructuras híbridas y mixtas

De izquierda a derecha: Fermín Navarrina, Víctor Yepes, Iván Negrín, Tatiana García y Rasmus Rempling.

Hoy, 19 de diciembre de 2025, ha tenido lugar la defensa de la tesis doctoral de D. Iván Antonio Negrín Díaz, titulada “Metaheuristic optimization for the sustainable and resilient design of hybrid and composite frame building structures with advanced integrated modeling”, dirigida por los profesores Víctor Yepes y Moacir Kripka. La tesis ha obtenido la máxima calificación de sobresaliente «cum laude». A continuación, presentamos un breve resumen de la misma.

El cambio climático y la rápida expansión de las áreas urbanas han intensificado el impacto ambiental del sector de la construcción, responsable de cerca del 37 % de las emisiones globales de CO₂ y de más de un tercio del consumo energético mundial. Por tanto, mejorar la sostenibilidad y la resiliencia de las estructuras de edificios se ha convertido en una prioridad esencial, plenamente alineada con los Objetivos de Desarrollo Sostenible de las Naciones Unidas. Esta tesis doctoral aborda este reto mediante el desarrollo de un marco de diseño optimizado que permite obtener soluciones innovadoras, sostenibles y resilientes para estructuras porticadas.

El objetivo principal de la investigación es crear y validar metodologías avanzadas que integren tipologías estructurales híbridas y mixtas con estrategias de optimización de vanguardia apoyadas en modelos estructurales de alta fiabilidad. Para ello, se formulan problemas de optimización que consideran conjuntamente criterios económicos, ambientales, constructivos, de durabilidad y de seguridad estructural, e incorporan, además, aspectos frecuentemente ignorados, como la interacción suelo-estructura, la robustez frente al colapso progresivo y el desempeño ambiental a lo largo del ciclo de vida de la estructura. Entre los objetivos específicos, destacan los siguientes: evaluar metaheurísticas avanzadas y técnicas de optimización asistida por metamodelos; cuantificar los riesgos de modelos estructurales simplificados; integrar la resiliencia como restricción de diseño; valorar los beneficios de tipologías híbridas y mixtas; explorar estrategias de optimización multiobjetivo; y comparar enfoques de diseño basados en fases iniciales y en el ciclo de vida.

Los resultados muestran que las estrategias metaheurísticas avanzadas y asistidas por metamodelos (como BBO-CINS, enfoques basados en Kriging y Optimización Escalarizada de Pareto) superan claramente a los algoritmos tradicionales, ya que logran reducciones de hasta el 90 % en el coste computacional en problemas de un solo objetivo y mejoras de hasta el 140 % en la calidad del frente de Pareto en problemas de varios objetivos. Asimismo, se evidencia el riesgo de simplificar en exceso los modelos estructurales: omitir aspectos críticos, como la interacción suelo-estructura o los elementos secundarios (forjados, muros), puede distorsionar el diseño, comprometer la seguridad (por ejemplo, al subestimar la resistencia al colapso) y aumentar los impactos ambientales a largo plazo, debido al deterioro acelerado y a las mayores necesidades de mantenimiento. También se demuestra que, al incorporar la resiliencia como restricción de diseño en lugar de tratarla como un objetivo de optimización, es posible mejorar la robustez frente al colapso progresivo sin perjudicar la sostenibilidad y reducir la carga ambiental del diseño robusto en torno al 11 % al considerar elementos estructurales secundarios.

A nivel de componentes estructurales, la optimización de las vigas de acero soldadas confirmó las ventajas de la hibridación y de las geometrías variables, lo que dio lugar a la tipología Transversely Hybrid Variable Section (THVS), que reduce los costes de fabricación hasta en un 70 % respecto a las vigas I convencionales. Su integración en pórticos compuestos de hormigón armado y elementos THVS proporcionó mejoras adicionales en sostenibilidad, con reducciones del 16 % en emisiones y del 11 % en energía incorporada en las fases iniciales de diseño, y hasta un 30 % en emisiones de ciclo de vida en comparación con los sistemas tradicionales de hormigón armado. La inclusión de forjados y muros estructurales amplificó estos beneficios, reduciendo los impactos del ciclo de vida hasta en un 42 % respecto a configuraciones de pórticos en las que solo el esqueleto trabaja estructuralmente (omitiendo forjados y muros).

En conjunto, esta tesis demuestra que las metodologías de diseño basadas en la optimización, apoyadas en modelos estructurales realistas y en estrategias computacionales avanzadas, permiten concebir edificios que, al mismo tiempo, son más sostenibles y resilientes. Al resaltar las ventajas de las tipologías híbridas y mixtas e integrar la resiliencia sin comprometer la sostenibilidad, la investigación establece un marco claro para el diseño contemporáneo. Además, al enfatizar la optimización a lo largo de todo el ciclo de vida, ofrece una base metodológica sólida para impulsar una nueva generación de edificaciones alineadas con los objetivos globales de sostenibilidad y de acción climática.

Referencias:

  1. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Life-cycle environmental impact optimization of an RC-THVS composite frame for sustainable construction. Engineering Structures, 345, 121461. DOI:10.1016/j.engstruct.2025.121461
  2. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Manufacturing cost optimization of welded steel plate I-girders integrating hybrid construction and tapered geometry. International Journal of Advanced Manufacturing Technology, 140, 1601-1624DOI:10.1007/s00170-025-16365-2
  3. NEGRÍN, I.; CHAGOYÉN, E.; KRIPKA, M.; YEPES, V. (2025). An integrated framework for Optimization-based Robust Design to Progressive Collapse of RC skeleton buildings incorporating Soil-Structure Interaction effects. Innovative Infrastructure Solutions, 10:446. DOI:10.1007/s41062-025-02243-z
  4. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Design optimization of a composite typology based on RC columns and THVS girders to reduce economic cost, emissions, and embodied energy of frame building construction. Energy and Buildings, 336:115607. DOI:10.1016/j.enbuild.2025.115607
  5. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Metamodel-assisted design optimization of robust-to-progressive-collapse RC frame buildings considering the impact of floor slabs, infill walls, and SSI implementationEngineering Structures, 325:119487. DOI:10.1016/j.engstruct.2024.119487
  6. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2024). Optimized Transverse-Longitudinal Hybrid Construction for Sustainable Design of Welded Steel Plate Girders. Advances in Civil Engineering, 2024:5561712. DOI:10.1155/2024/5561712.
  7. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Multi-criteria optimization for sustainability-based design of reinforced concrete frame buildingsJournal of Cleaner Production, 425:139115. DOI:10.1016/j.jclepro.2023.139115
  8. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657
  9. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Design optimization of welded steel plate girders configured as a hybrid structure. Journal of Constructional Steel Research, 211:108131. DOI:10.1016/j.jcsr.2023.108131
  10. TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.
  11. NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631. DOI:10.1016/j.istruc.2023.04.006

 

Optimización y control inteligente de puentes atirantados

Acaban de publicar un artículo nuestro en Results in Engineeringuna de las revistas de mayor impacto científico, ubicada en el primer decil del JCR. Este trabajo trata sobre un sistema avanzado para el seguimiento de la salud estructural (SHM, por sus siglas en inglés) y la optimización de puentes de gran envergadura y estáticamente indeterminados (hiperestáticos).

La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. Además, muestra la internacionalización de nuestro grupo de investigación, en este caso, con China. A continuación, se presenta un resumen del trabajo y de la información de contexto.

 El problema central que se aborda en este trabajo es la insuficiencia de los métodos de supervisión tradicionales, ya que no permiten una vigilancia continua, en tiempo real y a distancia, crucial para garantizar la seguridad, la longevidad y el mantenimiento rentable de estas complejas infraestructuras.

La solución propuesta es una plataforma inteligente en la nube para el control y la alerta temprana que integra la informática, la ingeniería de comunicaciones, el control y la automatización y la mecánica de ingeniería. Este sistema combina los datos de supervisión en tiempo real, obtenidos mediante la tecnología de Internet de las Cosas (IoT), con modelos de elementos finitos (FEM) para evaluar con precisión el estado de la estructura.

Su eficacia se demostró mediante un estudio de caso del Puente del Río Amarillo en China (LZYB). El análisis de los datos de seguimiento y las simulaciones por elementos finitos revelaron que el diseño original del puente era excesivamente conservador, ya que la deflexión vertical real bajo cargas operativas representaba entre el 26,5 % y el 33,9 % del valor predicho en el diseño.

Con base en este hallazgo, se optimizó el diseño de la viga principal del puente, lo que permitió reducir el volumen de hormigón de la losa de fondo en un 15 %. Un análisis posterior del ciclo de vida (LCA) cuantificó los beneficios de esta optimización, que incluyen una reducción de 2009,65 toneladas de emisiones de CO₂ y un ahorro económico de 2 694 189,55 CNY, sin comprometer la seguridad ni el rendimiento estructural. Este enfoque representa un nuevo paradigma para el mantenimiento seguro, económico y sostenible de infraestructuras críticas.

1. Introducción y desafíos de la auscultación estructural.

Los puentes de gran envergadura y estáticamente indeterminados están sometidos a múltiples factores que pueden afectar a su integridad, como la respuesta dinámica de la estructura y el daño por fatiga acumulada debido a la interacción de cargas múltiples y condiciones ambientales complejas. Las microfisuras internas pueden propagarse hasta convertirse en fisuras macroscópicas y provocar la inestabilidad y el fallo de la estructura.

1.1. Limitaciones de los métodos tradicionales.

  • Inspección visual: los métodos iniciales, basados en la inspección visual realizada por personal cualificado para detectar defectos superficiales, como las grietas por fatiga, son imprecisos y propensos a errores.
  • Supervisión de la salud estructural (SHM) convencional: ha mejorado la precisión, pero enfrenta desafíos como la falta de sensores adecuados para el monitoreo autónomo a largo plazo y de algoritmos eficaces para predecir y diagnosticar daños locales por fatiga.
  • Enfoques basados en algoritmos: existen dos métodos principales: los basados en modelos, que utilizan un modelo de elementos finitos preciso, pero que consumen mucho tiempo, y los basados en datos, que analizan series temporales continuas, pero que pueden verse limitados por las bajas tasas de transmisión de datos de las redes inalámbricas.

El estudio aborda estas limitaciones combinando las ventajas de ambos enfoques e integrando algoritmos innovadores de alta eficiencia para avanzar en la monitorización continua de la salud estructural.

2. Marco teórico e innovación del sistema.

El trabajo establece un modelo teórico complejo y una plataforma inteligente que integra múltiples disciplinas para superar las barreras técnicas del seguimiento tradicional.

2.1. Puntos clave de la innovación.

  1. Modelo interdisciplinario: se desarrolló un modelo teórico modal complejo, multifactorial y de múltiples fuentes que combina la ciencia de la computación, la ingeniería de comunicaciones, el control y la automatización y la mecánica de ingeniería. Este modelo analiza el impacto de múltiples factores en las estructuras de los puentes y permite realizar un seguimiento de alertas tempranas en una plataforma en la nube.
  2. Supervisión basada en IoT: se adopta un monitoreo en línea, automatizado y en tiempo real basado en el Internet de las cosas (IoT). De este modo, se soluciona la incapacidad de la tecnología tradicional para lograr un seguimiento espaciotemporal continuo y a gran distancia, y se transforma el seguimiento de un «basado en puntos, indirecto y de ajuste de curvas» a otro «espacial, directo y continuo».
  3. Sistema de alerta temprana: proporciona un modelo eficaz de control y de alerta temprana para diversos tipos de deterioro, como grietas, deformaciones, envejecimiento y vibración dinámica. Valida la viabilidad de la estructura en términos de integridad, seguridad, durabilidad y control de la resistencia.

2.2. Componentes del modelo teórico.

El modelo matemático integra varios análisis para evaluar el estado de la estructura:

  • Daño por fatiga estructural: utiliza un modelo de daño por fatiga acumulativa no lineal para analizar la propagación de las fisuras y la degradación continua del módulo de elasticidad del hormigón.
  • Daño por fatiga del acero: se considera que la vida útil del puente está determinada principalmente por la fatiga de las barras de acero. El modelo calcula la profundidad crítica de la fisura y la tensión residual del acero.
  • Efecto de cargas múltiples: se aplica un modelo de mezcla gaussiana para analizar los datos de monitorización, que presentan una distribución de picos múltiples, y se calcula la deflexión total considerando la carga viva, la tensión térmica, la pérdida de pretensado y la retracción y la fluencia del hormigón.
  • Acoplamiento vehículo-puente: Construye una ecuación de un sistema de movimiento acoplado para analizar las interacciones mecánicas entre los vehículos y el puente.
  • Optimización dinámica estructural: utiliza un modelo matemático basado en la función lagrangiana para realizar un diseño de optimización dinámica con un ritmo de convergencia rápido.

3. Estudio de caso: el puente del río Amarillo (LZYB)

La metodología se aplicó a esta estructura atirantada, con un vano principal de 360 metros, ubicada en China.

3.1. Descripción del puente y sistema de control

  • Especificaciones: El LZYB es un puente extragrande para autopista de cuatro carriles con torres romboidales de hormigón armado (C50), una altura de torre de hasta 151 metros y cables atirantados de haces de alambre de acero paralelos galvanizados.
  • Sistema de monitorización: se instalaron 374 dispositivos de 10 tipos diferentes, incluidos sensores de temperatura y de humedad, acelerómetros, extensómetros y sensores de fibra óptica, entre otros. Estos dispositivos se ubicaron en puntos críticos de momento flector y de fuerza cortante, determinados mediante principios de mecánica y el modelo FEM. Los datos se transmiten en tiempo real a una plataforma en la nube basada en internet de las cosas (IoT, por sus siglas en inglés) para su análisis y alerta temprana.
Número Elementos de control Indicadores de alerta Método de adquisición
1 Análisis del modelo de vehículo Identificación de carga nominal (nº de ejes, longitud) Videovigilancia
2 Análisis del flujo de tráfico Autopista de 4 carriles (ADT 2 500-55 000 vehículos) Videovigilancia; captura de video
3 Análisis de sobrepeso Límite de 49 toneladas (se detectaron 82.5; 110 ton) Control dinámico de pesaje
4 Análisis de exceso de velocidad Límite de 80 km/h Control de flujo con exceso de velocidad
5 Control de temperatura ambiental Intervalo de control: -15 ~ 39 °C Sensor de fibra óptica de temperatura
6 Control de humedad ambiental 6,5 % ~ 98 % (torre principal); prevenir corrosión Sensor de fibra óptica de humedad
7 Control de carga de viento Velocidad del viento < 25,8 m/s Anemómetro
8  Control de carga sísmica E1 < 0,20g Instrumento de medición de movimiento del suelo
9  Control de respuesta estructural Frecuencia natural inferior al valor teórico calculado Equipo de monitorización de fibra óptica

3.2. Análisis de los datos de monitorización en tiempo real (abril-julio).

  • Cargas de tráfico: se observó un crecimiento mensual significativo en el volumen total de tráfico, en el número de vehículos con sobrepeso y en el de vehículos que circulaban a exceso de velocidad. El tráfico medio diario osciló entre 7319 y 14 431 vehículos, con picos en junio y julio.
  • Respuesta estructural (deformación): la respuesta de deformación bajo cargas de vehículos mostró una distribución de picos múltiples. El análisis identificó que dicha respuesta se concentraba en la sección de 3.50 L a 5.50 L del lado oeste.
  • Acoplamiento temperatura-deflexión: se halló una fuerte correlación positiva entre la temperatura ambiental y la deflexión de la viga principal (R² = 0,6953). La deflexión máxima registrada fue de 628,9 mm. El análisis identificó las zonas de la viga principal en las que la influencia de la temperatura sobre la deflexión era más marcada.

3.3. Acoplamiento y análisis mediante el modelo de elementos finitos (MEF).

Se creó un modelo 3D del LZYB en Abaqus/CAE 2021 para simular su comportamiento bajo cargas de diseño. Los resultados de la simulación fueron los siguientes:

  • Energía: la energía máxima se concentró en la losa de fondo de la viga principal, entre los vanos 2 y 3.
  • Deformación: la máxima deformación (0,004813 µε) se observó en la parte media de los cables atirantados.
  • Tensión: La tensión máxima (991,175 MPa) se localizó también en los cables atirantados, concretamente en el cable 3-1.
  • Desplazamiento: El desplazamiento vertical máximo calculado fue de 0,002267 metros en el centro del vano principal (sección 6L/12 de la viga).

4. Discusión: optimización y evaluación de la sostenibilidad.

La comparación entre los datos de supervisión en tiempo real y los resultados del FEM sirvió de base para optimizar el diseño.

4.1. Redundancia estructural identificada.

El análisis comparativo reveló una discrepancia significativa: la deflexión vertical global del puente durante su funcionamiento (entre 0,0021 y 0,5944 m) representaba entre el 26,50 % y el 33,90 % del valor máximo predicho por el modelo FEM con cargas de diseño (hasta 2,2434 m). Este hecho indica que el diseño estructural es significativamente conservador o «redundante».

4.2. Optimización del diseño de la viga principal.

Aprovechando la redundancia identificada, se llevó a cabo un proceso de optimización del diseño acoplado de la viga principal. Se analizó el impacto de reducir el volumen de hormigón de la viga de forma iterativa.

Resultado de la optimización: se determinó que era posible reducir el volumen de hormigón de la losa de fondo de la viga principal en un 15 % (es decir, reducir su espesor a 70 mm) sin comprometer el cumplimiento de los requisitos de rendimiento bajo las cargas de diseño originales.

4.3. Evaluación del ciclo de vida (LCA) y de los beneficios.

Se realizó una evaluación del ciclo de vida (LCA) para cuantificar los beneficios ambientales y económicos del diseño optimizado.

Beneficios ambientales y económicos: la reducción del 15 % del hormigón utilizado en la viga principal se traduce en un ahorro significativo a lo largo de todo el ciclo de vida del proyecto.

Indicador de evaluación Reducción
Calentamiento global (GWP100a) 2009,65 toneladas de CO2 eq.
Acidificación (AP) 8,86 toneladas de SO2 eq.
Eutrofización (FEP) 7,12 toneladas de PO4 eq.
Polvo en suspensión (PMFP) 79,63 toneladas
Ahorro económico (coste de material) 2 694 189,55 CNY

5. Conclusiones y hallazgos clave

La investigación demuestra con éxito la viabilidad de un sistema inteligente de supervisión en la nube, acoplado a un modelado FEM, para analizar la seguridad y optimizar el diseño de puentes de gran envergadura.

Resultados clave:

  1. Fallo de cables: el fallo de los cables es un factor crítico para la estabilidad de los puentes atirantados y debe ser un objetivo principal del seguimiento.
  2. Ubicación de la tensión máxima: la tensión más alta se concentra en los cables más largos (en este caso, el cable n.º 10), específicamente en la zona situada a menos de 2 metros de la parte superior de la torre principal.
  3. Diseño del sistema de monitorización subóptimo: el diseño actual de los puntos de control resulta ineficiente. No hay sensores en la parte superior de la torre, donde la tensión es máxima, mientras que hay demasiados en la viga principal.
  4. Enfoque del mantenimiento: el mantenimiento rutinario de los cables atirantados debe centrarse en las zonas de conexión de la parte superior de la torre y de la viga principal.

Innovación y limitaciones: La principal innovación del estudio consiste en aplicar de manera sistemática datos medidos y el modelado FEM 3D para resolver problemas de seguridad y optimización en puentes complejos. Esto ofrece un ejemplo práctico de supervisión en tiempo real y de análisis de la solidez de los datos. Una limitación reconocida es la falta de un estudio en profundidad sobre los efectos destructivos de las sobrecargas de peso y de velocidad, lo que sugiere una línea de investigación para el futuro.

Referencia:

ZHOU, Z.; ZHAO, Z.; ALCALÁ, J.; YEPES, V. (2025). Intelligent operation monitoring and finite element coupled identification of hyperstatic structures. Results in Engineering, 27, 106990. DOI:10.1016/j.rineng.2025.106990

Os dejo una conversación en la que podéis escuchar las ideas más interesantes de este trabajo.

En este vídeo se resumen las ideas más importantes.

Os he dejado una presentación que resume también lo más importante.

Pincha aquí para descargar

Os dejo el artículo completo, ya que está publicado en formato abierto.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Un nuevo enfoque para mejorar el diseño sostenible de cimentaciones tipo losa

Acaban de publicar nuestro artículo en la revista Environmental Impact Assessment Review (primer cuartil del JCR), en el que se propone un método directo y más riguroso para calcular el módulo de balasto en losas de cimentación, que incorpora un nuevo enfoque de seguridad y criterios de sostenibilidad para mejorar el diseño suelo-estructura.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València.

En las últimas décadas, el diseño de cimentaciones ha evolucionado hacia soluciones más seguras, eficientes y sostenibles. Sin embargo, el módulo de balasto vertical (Ks), uno de los parámetros más utilizados en la modelización del contacto suelo-estructura, sigue empleándose en muchos proyectos como si se tratara de una propiedad intrínseca del terreno. El artículo analizado sugiere un cambio de paradigma en esta práctica, al introducir un método directo para estimar Ks a partir de la relación carga-asentamiento, así como un nuevo marco de seguridad orientado al diseño sostenible. Esta aportación es especialmente relevante en el caso de las cimentaciones tipo losa, habituales en edificios y estructuras industriales.

El estudio parte de una cuestión fundamental: ¿cómo se puede estimar de forma rigurosa el módulo de balasto vertical (Ks) en losas de cimentación, considerando parámetros geotécnicos habitualmente ignorados y, al mismo tiempo, integrando criterios de sostenibilidad y seguridad en el diseño?

Esta cuestión surge de las deficiencias detectadas en los métodos indirectos y semidirectos que se emplean comúnmente, ya que no consideran aspectos clave como la profundidad de la influencia o los efectos de compensación de cargas.

Los autores desarrollan una metodología directa que combina varias herramientas avanzadas de análisis geotécnico:

  • Teoría del semiespacio elástico para representar el comportamiento del terreno.

  • Análisis de asientos por capas, con el fin de capturar la variabilidad en profundidad.

  • Mecánica de consolidación basada en ensayos edométricos, que permite incorporar la respuesta deformacional del suelo bajo carga.

  • Consideración explícita de la profundidad de la influencia y de la compensación de cargas, factores que rara vez se incluyen en los métodos tradicionales.

Con este planteamiento, se obtiene directamente un valor de Ks coherente con los principios de la energía elástica y adecuado para modelos avanzados de interacción suelo-estructura. El valor resultante, 5,30 MN/m³, se sitúa entre los límites inferiores y superiores calculados, lo que confirma la consistencia del método.

El estudio no se limita al aspecto puramente geotécnico, sino que también integra una evaluación de la sostenibilidad del ciclo de vida de tres alternativas de losa de hormigón armado. Para ello, combina un proceso jerárquico analítico neutrosófico (NAHP-G) con el método de decisión multicriterio ELECTRE III, considerando dimensiones estructurales, ambientales y socioeconómicas.

Además, se introduce un coeficiente de seguridad específico para Ks, calibrado para considerar la variabilidad espacial del subsuelo y mejorar el diseño en términos de servicio.

Los resultados del trabajo son especialmente significativos:

  • El método directo permite obtener un Ks más representativo del comportamiento real del terreno y de la losa bajo carga.

  • El nuevo coeficiente de seguridad proporciona un diseño más fiable y coherente con la incertidumbre del subsuelo.

  • Se logra una mejora de 2,5 veces en el índice de seguridad social y una reducción del 50 % en los impactos ambientales respecto a metodologías convencionales.

  • El estudio redefine Ks como una variable de diseño, no como una constante del suelo, corrigiendo así décadas de uso inapropiado en la ingeniería geotécnica.

Las conclusiones del artículo tienen un impacto directo en la práctica profesional:

  1. Mejora del diseño de losas: el método permite ajustar mejor los modelos numéricos y evitar tanto el sobredimensionamiento como los fallos por asientos excesivos.

  2. Integración de la sostenibilidad en fases tempranas del proyecto: el marco NAHP-G + ELECTRE IS proporciona una herramienta objetiva para comparar alternativas de cimentación no solo por criterios técnicos, sino también por criterios ambientales y sociales.

  3. Mayor seguridad y fiabilidad: el nuevo coeficiente de seguridad para Ks ayuda a gestionar la incertidumbre y aumenta los márgenes de seguridad de forma cuantificada.

  4. Aplicación en proyectos con elevada heterogeneidad del terreno: el enfoque resulta especialmente útil en suelos con variabilidad marcada, donde los métodos simplificados generan resultados poco fiables.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; MORENO-SERRANO, J.F.; NAVARRO, I.J.; YEPES, V. (2026). Innovative safety framework and direct load–settlement method to optimize vertical subgrade modulus in sustainable mat foundations. Environmental Impact Assessment Review, 118, 108191. DOI:10.1016/j.eiar.2025.108191

Os dejo el artículo completo para su descarga, ya que está publicado en abierto.

Pincha aquí para descargar

 

Europa premia a la UPV por revolucionar el diseño estructural con Inteligencia Artificial

La Universitat Politècnica de València (UPV) ha obtenido un reconocimiento destacado europeo al ganar el premio al mejor proyecto en la categoría «AI for Sustainable Development» de la European Universities Competition on Artificial Intelligence, organizada por la HAW Hamburg.

El trabajo galardonado, desarrollado en el ICITECH por el doctorando Iván Negrín, demuestra cómo la inteligencia artificial puede transformar el diseño estructural para hacerlo más sostenible y resiliente, con reducciones de hasta un 32 % en la huella de carbono respecto a los sistemas convencionales. Este logro posiciona a la UPV como un referente europeo en innovación ética e impacto y reafirma su compromiso con la búsqueda de soluciones frente al cambio climático y al desarrollo insostenible.

El trabajo se enmarca en el proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. La tesis doctoral de Iván la dirigen los profesores Víctor Yepes y Moacir Kripka.

Introducción: El dilema de la construcción moderna.

La industria de la construcción se enfrenta a un reto monumental: edificar las ciudades del futuro sin agotar los recursos del presente. El enorme impacto medioambiental de los materiales y procesos tradicionales, especialmente las emisiones de CO₂, es uno de los problemas más acuciantes de nuestra era.

¿Y si la solución a este problema no radicara en un nuevo material milagroso, sino en una nueva forma de pensar? ¿Y si la inteligencia artificial (IA) pudiera enseñarnos a construir de manera mucho más eficiente y segura?

Esa es precisamente la hazaña que ha logrado un innovador proyecto de la Universitat Politècnica de València (UPV). Su enfoque es tan revolucionario que acaba de ganar un prestigioso premio europeo, lo que demuestra que la IA ya no es una promesa, sino una herramienta tangible para la ingeniería sostenible.

Clave 1: una innovación europea premiada al más alto nivel.

Este no es un proyecto académico cualquiera. La investigación, dirigida por el doctorando Iván Negrín del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) de la UPV, ha recibido el máximo reconocimiento continental.

Inicialmente seleccionado como uno de los diez finalistas, el proyecto tuvo que defenderse en una presentación final ante un jurado de expertos. Tras la deliberación del jurado, el proyecto fue galardonado como el mejor en la categoría «AI for Sustainable Development Projects» de la competición «European Universities Competition on Artificial Intelligence to Promote Sustainable Development and Address Climate Change», organizada por la Universidad de Ciencias Aplicadas de Hamburgo (HAW Hamburg). Este reconocimiento consolida la reputación del proyecto en el ámbito de la innovación europea.

Clave 2: adiós al CO₂: reduce la huella de carbono en más del 30 %.

El resultado más impactante de esta investigación es su capacidad para abordar el principal problema medioambiental del sector de la construcción: las emisiones de carbono. La plataforma de diseño asistido por IA puede reducir la huella de carbono de los edificios de manera significativa.

En concreto, consigue una reducción del 32 % de la huella de carbono en comparación con los sistemas convencionales de hormigón armado, que ya habían sido optimizados. Esta reducción abarca todo el ciclo de vida del edificio, desde la extracción de materiales y la construcción hasta su mantenimiento y su eventual demolición.

En un sector tan difícil de descarbonizar, un avance de esta magnitud, impulsado por un diseño inteligente y no por un nuevo material, supone un cambio de paradigma fundamental para la ingeniería sostenible.

Clave 3: Rompe el mito: más sostenible no significa menos resistente.

Uno de los aspectos más revolucionarios del proyecto es la forma en que resuelve un conflicto histórico en ingeniería: la sostenibilidad frente a la resiliencia. La IA ha superado la barrera que obligaba a elegir entre usar menos material para ser sostenible o más material para ser resistente.

En una primera fase, el modelo optimizó estructuras mixtas de acero y hormigón (denominadas técnicamente RC-THVS) para que fueran altamente sostenibles, aunque con una resiliencia baja. Lejos de detenerse, la IA iteró sobre su propio diseño y, en una evolución posterior (RC-THVS-R), logró una solución altamente sostenible y resiliente frente a eventos extremos.

La metodología desarrollada permite compatibilizar la sostenibilidad y la resiliencia, superando el tradicional conflicto entre ambos objetivos.

Clave 4: Ahorro desde los cimientos. Menos costes, energía y materiales.

Los beneficios de esta IA no solo benefician al planeta, sino también al bolsillo y a la eficiencia del proyecto. La optimización inteligente de las estructuras se traduce en ahorros tangibles y medibles desde las primeras fases de la construcción.

Los datos demuestran un ahorro significativo en múltiples frentes:

  • -16 % de energía incorporada.
  • -6 % de coste económico.
  • – Reducción del 17 % de las cargas transmitidas a columnas y cimentaciones.

Este último punto es clave. Una menor carga en los cimientos no solo supone un ahorro directo de materiales, sino que tiene un efecto cascada en materia de sostenibilidad: al usar menos hormigón, se reduce la cantidad de cemento empleado, uno de los principales generadores de CO₂ a nivel mundial.

Clave 5: un enfoque versátil para las ciudades del futuro (y del presente).

La aplicación de esta metodología no se limita a los grandes edificios de nueva construcción. Su versatilidad la convierte en una herramienta estratégica para el desarrollo urbano integral.

Puede aplicarse a infraestructuras de transporte, como puentes y pasarelas, para minimizar su impacto ambiental. También es fundamental para la rehabilitación de estructuras existentes, ya que permite optimizar su seguridad y reducir las emisiones asociadas a los refuerzos.

Este enfoque se alinea con los Objetivos de Desarrollo Sostenible (ODS) de la ONU, concretamente con los ODS 9 (Industria, innovación e infraestructura), 11 (Ciudades y comunidades sostenibles) y 13 (Acción por el clima).

Conclusión: construyendo un futuro inteligente.

Este proyecto de la UPV demuestra que la inteligencia artificial ha dejado de ser una tecnología futurista para convertirse en una herramienta imprescindible en la ingeniería civil. Ya no se trata de promesas, sino de soluciones prácticas que resuelven problemas reales, medibles y urgentes.

La capacidad de diseñar estructuras más baratas, ecológicas, seguras y resistentes abre un nuevo capítulo en la construcción.

¿Estamos a las puertas de una nueva era en la ingeniería en la que la sostenibilidad y la máxima seguridad ya no son objetivos contrapuestos, sino aliados inseparables gracias a la inteligencia artificial?

En futuros artículos, explicaremos con más detalle el contenido de este proyecto ganador. De momento, os dejo una conversación que lo explica muy bien y un vídeo que resume lo más importante. Espero que os resulte interesante.

Os dejo un documento resumen, por si queréis ampliar la información.

Pincha aquí para descargar

Referencias:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Environmental Life-Cycle Design Optimization of a RC-THVS composite frame for modern building construction. Engineering Structures, 345, 121461. DOI:10.1016/j.engstruct.2025.121461

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Manufacturing cost optimization of welded steel plate I-girders integrating hybrid construction and tapered geometry. International Journal of Advanced Manufacturing Technology, 140, 1601-1624DOI:10.1007/s00170-025-16365-2

NEGRÍN, I.; CHAGOYÉN, E.; KRIPKA, M.; YEPES, V. (2025). An integrated framework for Optimization-based Robust Design to Progressive Collapse of RC skeleton buildings incorporating Soil-Structure Interaction effects. Innovative Infrastructure Solutions, 10:446. DOI:10.1007/s41062-025-02243-z

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Design optimization of a composite typology based on RC columns and THVS girders to reduce economic cost, emissions, and embodied energy of frame building construction. Energy and Buildings, 336:115607. DOI:10.1016/j.enbuild.2025.115607

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Metamodel-assisted design optimization of robust-to-progressive-collapse RC frame buildings considering the impact of floor slabs, infill walls, and SSI implementationEngineering Structures, 325:119487. DOI:10.1016/j.engstruct.2024.119487

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2024). Optimized Transverse-Longitudinal Hybrid Construction for Sustainable Design of Welded Steel Plate Girders. Advances in Civil Engineering, 2024:5561712. DOI:10.1155/2024/5561712.

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Multi-criteria optimization for sustainability-based design of reinforced concrete frame buildingsJournal of Cleaner Production, 425:139115. DOI:10.1016/j.jclepro.2023.139115

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Design optimization of welded steel plate girders configured as a hybrid structure. Journal of Constructional Steel Research, 211:108131. DOI:10.1016/j.jcsr.2023.108131

TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631. DOI:10.1016/j.istruc.2023.04.006

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Construcción sostenible: por qué nuestra intuición nos falla.

En un mundo cada vez más consciente de la emergencia climática, la construcción sostenible ha dejado de ser una opción para convertirse en una necesidad. Arquitectos, ingenieros y promotores buscan constantemente el método constructivo «perfecto»: aquel que sea económico, ecológico y socialmente responsable. Sin embargo, ¿qué pasaría si nuestras ideas más arraigadas sobre lo que es «mejor» estuvieran equivocadas?

Un detallado estudio científico realizado por nuestro grupo de investigación, dentro del proyecto RESILIFE, ha puesto a prueba nuestras creencias. En él, los investigadores compararon de forma exhaustiva cuatro métodos de construcción para una vivienda unifamiliar: uno tradicional y tres alternativas industrializadas que prometen mayor eficiencia y sostenibilidad. Sus conclusiones no solo son sorprendentes, sino que también revelan por qué nuestra intuición sobre la construcción sostenible a menudo falla. Este artículo desvela los hallazgos que nos obligan a replantearnos qué significa realmente construir de forma sostenible.

Vivienda unifamiliar adosada analizada.

Intuición fallida n.º 1: la búsqueda de un «campeón» absoluto.

La primera gran revelación del estudio es que no existe una solución mágica que destaque en todas las categorías. Nuestra intuición busca un único «campeón» de la sostenibilidad, pero la realidad es un complejo juego de equilibrios. Cada método constructivo destacó en una dimensión diferente, lo que demuestra que la opción ideal depende de las prioridades del proyecto.

El estudio identificó un ganador claro para cada una de las tres dimensiones:

  • Dimensión económica: la alternativa «PRE» (losa de hormigón aligerada con discos huecos) fue la más económica. Su ventaja radica en su alta eficiencia estructural, ya que requiere «la mitad de material para las mismas solicitaciones estructurales» en comparación con la losa convencional.
  • Dimensión medioambiental: la alternativa «YTN» (prefabricada con hormigón celular autoclavado) obtuvo el mejor rendimiento ecológico. Esto se debe a que es un «material 100 % mineral» que necesita poca materia prima (1 m³ de materia prima produce 5 m³ de producto) y tiene un «bajo consumo de energía en su fabricación».
  • Dimensión social: la alternativa «ELE» (elementos de doble pared) fue la óptima desde una perspectiva social, impulsada en gran medida por un mayor confort de usuario, gracias a su excepcional rendimiento térmico, derivado de la gruesa capa de EPS utilizada como encofrado perdido.

Este hallazgo es fundamental. La sostenibilidad real no consiste en maximizar una única métrica, como la reducción de CO₂, sino en encontrar un equilibrio inteligente entre factores que, a menudo, están en conflicto.

Intuición fallida n.º 2: asumir que lo más «verde» es siempre lo mejor.

Podríamos pensar que la opción con menor impacto medioambiental (YTN) sería automáticamente la más sostenible, pero no es así. Sin embargo, el estudio demuestra que no es tan simple. Al combinar todos los factores en un «Índice Global de Sostenibilidad Estructural» (GSSI), la alternativa ganadora fue la «PRE» (losa aligerada).

¿Por qué ganó? La razón es el equilibrio. Aunque no fue la mejor en los ámbitos medioambiental y social, la alternativa PRE ofreció un excelente rendimiento económico y resultados muy sólidos en las otras dos áreas. El estudio la selecciona como la opción más sostenible porque, en sus palabras, presenta las respuestas más equilibradas a los criterios. Esta conclusión subraya una idea crucial: la solución más sostenible no es un extremo, sino un compromiso inteligente y equilibrado.

Los métodos «modernos» no son infalibles: sorpresas en los costes.

El estudio desveló dos realidades incómodas sobre los costes, tanto económicos como medioambientales, de algunas de las alternativas más innovadoras y puso en tela de juicio la idea de que «moderno» siempre significa «mejor».

En primer lugar, el método prefabricado (YTN), que a menudo se asocia con la eficiencia y el ahorro, resultó ser el más caro de todos. Su coste de construcción fue un 30,4 % superior al del método convencional de referencia.

Pero el sobrecoste económico no es el único precio oculto que reveló el estudio. La alternativa más tecnológica, ELE, conlleva una elevada factura medioambiental. Aunque fue la mejor valorada socialmente, su rendimiento ecológico fue pobre debido al enorme consumo de energía necesario para producir el poliestireno expandido (EPS) que utiliza como encofrado perdido. El estudio es contundente al respecto:

«Esto significa que, solo en los forjados, la alternativa ELE provoca un consumo de energía tres veces superior al necesario para obtener el EPS que requiere la solución de referencia».

Este hallazgo nos recuerda la importancia de analizar el ciclo de vida completo de los materiales y no dejarnos seducir únicamente por etiquetas como «moderno» o «tecnológico».

El mayor riesgo es el «business as usual»: el método tradicional fue el peor.

Quizás el hallazgo más importante y aleccionador del estudio es el pobre desempeño del método de construcción convencional (denominado «REF»). Al compararlo con las tres alternativas industrializadas, el sistema tradicional resultó ser la opción menos sostenible en todos los aspectos.

La conclusión de los investigadores es clara e inequívoca: «La alternativa REF es la peor opción en todos los criterios individuales y, en consecuencia, obtiene la menor prioridad en la caracterización de la sostenibilidad». Este resultado debe hacer reflexionar al sector: seguir construyendo como siempre se ha hecho, sin evaluar ni adoptar nuevas alternativas, es la decisión menos sostenible que podemos tomar.

Conclusión: repensando la construcción sostenible.

Este estudio demuestra que la sostenibilidad es un problema complejo que desafía las soluciones simplistas y las ideas preconcebidas. No se trata de encontrar una solución universal, sino de evaluar de manera integral y equilibrada las dimensiones económica, medioambiental y social de cada proyecto.

Como resumen, los propios autores: «Solo la consideración simultánea de los tres campos de la sostenibilidad […] conducirá a diseños adecuados». Esto nos obliga a cambiar nuestra pregunta fundamental: en lugar de buscar el material más ecológico o la técnica más barata, debemos preguntarnos cuál es la solución más equilibrada para un contexto específico.

Teniendo en cuenta estos resultados, ¿cómo deberíamos redefinir «la mejor forma de construir» para conseguir un futuro verdaderamente sostenible?

Aquí tenéis un audio que explica estos conceptos.

Os dejo un vídeo resumen sobre estas ideas.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Resiliencia en las infraestructuras: cómo prepararnos para un futuro de incertidumbre

En nuestra vida cotidiana dependemos de una red invisible de infraestructuras que hace posible casi todo lo que hacemos: el agua que bebemos, la electricidad que ilumina nuestras casas, el transporte que nos conecta o las telecomunicaciones que nos mantienen informados. Sin embargo, basta con que una de estas piezas falle para que se produzca un efecto dominó con graves consecuencias. Un corte eléctrico prolongado puede paralizar hospitales y transportes, una rotura en la red de agua puede afectar a la higiene, la industria y la propia seguridad contra incendios, y un colapso en las telecomunicaciones puede aislar a comunidades enteras. Estas situaciones ponen de manifiesto la necesidad de ir más allá de la protección frente a fallos y centrarse en la resiliencia de los sistemas de infraestructuras.

La resiliencia de la infraestructura se define como «la capacidad de un sistema para minimizar la pérdida de rendimiento debido a una interrupción y para recuperar un nivel de rendimiento específico dentro de límites de tiempo y costes predefinidos y aceptables». Este concepto ha recibido mucha atención en los últimos años, en parte debido a la creciente frecuencia e intensidad de los eventos disruptivos de baja probabilidad y gran impacto, como el huracán Katrina, el tsunami de Indonesia y los atentados terroristas. La sociedad moderna depende en gran medida del funcionamiento casi continuo de sistemas de infraestructura vitales, como los de transporte, suministro de agua, alcantarillado, energía y telecomunicaciones. Estas infraestructuras están compuestas por elementos tangibles e intangibles que forman redes socioeconómicas y técnicas complejas e interdependientes. La interrupción grave de estos «salvavidas» puede tener enormes impactos negativos en las estructuras económicas y sociales de las comunidades humanas. Los conceptos de resiliencia, junto con los enfoques de protección, son fundamentales para garantizar la continuidad operativa de la infraestructura durante y después de tales eventos. La actual urbanización mundial ha aumentado también la población que depende de estas infraestructuras, lo que subraya aún más la necesidad de resiliencia.

En ingeniería, la resiliencia se define como la capacidad de un sistema de infraestructuras para absorber el impacto de una perturbación, mantener un nivel básico de servicio y recuperarse en un tiempo y con un coste socialmente aceptables. No basta con diseñar estructuras robustas que no se caigan; también es importante que, cuando sufran un daño o una interrupción inevitable, puedan volver a funcionar lo antes posible. A diferencia de la fiabilidad, que mide la probabilidad de que un sistema funcione sin fallos, o de la vulnerabilidad, que estima el grado de daño probable, la resiliencia se centra en el comportamiento del sistema antes, durante y después de la crisis.

Imaginemos una red de agua urbana: si sus tuberías están bien mantenidas y cuentan con sensores de fuga, será fiable, ya que es poco probable que falle; si, a pesar de todo, se produce una rotura y existen válvulas de sectorización, equipos de reparación rápida y depósitos de reserva, será resiliente, puesto que el servicio se recuperará en poco tiempo y con costes asumibles; y si la avería afecta a un hospital o a una zona muy poblada, mostrará una alta vulnerabilidad debido al gran impacto inicial.

Resiliencia en el diseño de infraestructuras

Un sistema resiliente se caracteriza por cuatro atributos fundamentales: robustez, que es la capacidad de resistir eventos disruptivos sin que su rendimiento se vea significativamente afectado; redundancia, que implica contar con elementos o recursos alternativos que puedan suplir a los que fallen durante una interrupción; inventiva, que es la capacidad de identificar problemas, priorizar acciones, movilizar recursos y procedimientos de manera eficaz para responder y recuperarse, y rapidez, es decir, la capacidad de contener daños y restaurar el funcionamiento a niveles aceptables en el menor tiempo posible. Además, la resiliencia se manifiesta a través de cuatro dimensiones (técnica, organizativa, social y económica), lo que subraya su carácter multidisciplinar y su relevancia para los sistemas de infraestructura civil.

Valoración de la resiliencia tras un evento extremo (Anwar et al., 2019)

Una de las formas más gráficas de explicar la resiliencia es mediante la curva de funcionalidad, también conocida como «triángulo de resiliencia». Imaginemos una red de suministro eléctrico que opera al 100 % de su capacidad. En el momento en que ocurre un huracán, la funcionalidad del sistema cae en picado, digamos, hasta un 40 %. A partir de ese momento, comienza la recuperación. En algunos casos, la curva puede ser lineal, con una mejora progresiva hasta alcanzar de nuevo el 100 %. En otros, puede presentar una forma exponencial, con una recuperación inicial rápida que se ralentiza al final. También puede ser trigonométrica, comenzando la recuperación lentamente y acelerándose después. El área bajo la curva, es decir, la «superficie» del triángulo de resiliencia, representa la pérdida acumulada de servicio y, por tanto, el coste social del fallo. Esta herramienta permite a los ingenieros comparar estrategias: un sistema con redundancia puede experimentar una caída inicial menor, mientras que otro con mejores recursos de reparación puede recuperarse más rápidamente.

Curvas de resiliencia: patrones de recuperación tras un evento disruptivo

La resiliencia de las infraestructuras no es un concepto aislado de la ingeniería estructural, sino que se nutre de múltiples disciplinas. La ecología, por ejemplo, plantea la idea de que los sistemas no siempre regresan a su estado original, sino que pueden alcanzar nuevos equilibrios tras un evento disruptivo. La economía ayuda a valorar las pérdidas no solo en términos de daños materiales, sino también en costes indirectos, como la pérdida de productividad o el impacto en la actividad social. Las ciencias sociales, por su parte, nos recuerdan que las infraestructuras existen para servir a la comunidad y que el tiempo de recuperación aceptable depende de la tolerancia y de las necesidades de la sociedad. La teoría de grafos, por su parte, ofrece herramientas matemáticas para analizar redes como las de agua o de telecomunicaciones e identificar qué nodos son críticos y qué sucede si se eliminan de forma aleatoria (simulando un desastre natural) o intencionada (como en un ataque).

Perspectiva interdisciplinaria de la resiliencia de las infraestructuras

Las infraestructuras modernas están muy interconectadas, por lo que existe un mayor riesgo de fallos en cadena: por ejemplo, un corte de energía puede afectar al suministro de agua, a las comunicaciones y al transporte. Aunque existen acuerdos de ayuda mutua entre sistemas para apoyarse durante las interrupciones, ello no garantiza que cada sistema sea más resiliente por sí mismo. Un evento grave que afecte a toda la región podría dejar a cada servicio dependiendo únicamente de sus propios recursos. Además, si se confía demasiado en la ayuda externa, se frena el desarrollo de la resiliencia propia. Por eso, es fundamental evaluar la resiliencia de cada sistema de manera individual para que esté mejor preparado ante fallos generalizados y situaciones imprevistas.

Los ejemplos de interdependencia entre infraestructuras ilustran bien la complejidad del problema. Imaginemos un terremoto que daña simultáneamente la red eléctrica y la de agua potable. Las estaciones de bombeo necesitan energía para funcionar, mientras que algunas centrales térmicas requieren agua para la refrigeración. Si falla la electricidad, no habrá agua, y si no hay agua, puede peligrar la producción de electricidad. Este círculo vicioso muestra cómo una perturbación localizada puede propagarse en cascada a otros sectores, multiplicando su impacto. Por ejemplo, un fallo en las telecomunicaciones puede impedir la coordinación de la reparación de carreteras o la distribución de combustible, lo que alarga los tiempos de recuperación. Estos ejemplos subrayan la importancia de diseñar infraestructuras robustas y conscientes de sus interconexiones.

Esquema de interdependencia de infraestructuras críticas: visualiza cómo agua, energía, telecomunicaciones y transporte dependen unas de otras y de la sociedad.

Para los futuros ingenieros, la resiliencia implica un cambio de mentalidad. No se trata solo de dimensionar una estructura para soportar una carga extrema, sino de considerar cómo responderá todo el sistema ante un fallo parcial. Supone aceptar la incertidumbre y trabajar con escenarios probabilísticos en los que se consideran eventos disruptivos, como el envejecimiento de los materiales, las sequías prolongadas o las crisis energéticas. Implica integrar la resiliencia en la gestión de activos y tomar decisiones como, por ejemplo, si es más eficaz duplicar una tubería para garantizar la redundancia o disponer de brigadas de intervención rápida que acorten los tiempos de reparación.

Traducir la resiliencia en aplicaciones prácticas para la infraestructura civil es todo un desafío debido a su complejidad y a su naturaleza transdisciplinaria. Las definiciones varían según la disciplina; es difícil medirla, y muchas metodologías se centran en aspectos aislados sin considerar su interacción. Además, para integrarla en los sistemas de gestión existentes y pasar del concepto teórico a la práctica, es necesario adoptar un enfoque integral que tenga en cuenta la variabilidad de los eventos disruptivos, las dimensiones técnicas y sociales, las implicaciones económicas y las características de red del sistema.

En conclusión, la resiliencia de las infraestructuras civiles no es un lujo, sino una necesidad estratégica en un mundo marcado por el cambio climático, la creciente urbanización y las redes interdependientes. Para los estudiantes de ingeniería, representa un campo fértil en el que confluyen la técnica, la economía y la sociedad, y en el que la innovación tendrá un impacto directo en la seguridad y la calidad de vida de millones de personas. Comprender y aplicar este enfoque significa prepararse para un futuro en el que la incertidumbre será constante, pero en el que nuestra mayor fortaleza será la capacidad de adaptación.

Os paso un vídeo que puede sintetizar bien las ideas de este artículo.

Referencias:

ANWAR, G.A.; DONG, Y.; ZHAI, C. (2020). Performance-based probabilistic framework for seismic risk, resilience, and sustainability assessment of reinforced concrete structures. Advances in Structural Engineering, 23(7):1454-1457.

BRUNEAU, M.; CHANG, S.E.; EGUCHI, R.T. et al. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra 19(4): 733–752.

GAY, L. F.; SINHA, S. K. (2013). Resilience of civil infrastructure systems: literature review for improved asset management. International Journal of Critical Infrastructures9(4), 330-350.

SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. International Journal of Environmental Research and Public Health, 17(3): 962.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Vigas de acero: 4 claves de las nuevas estructuras que están revolucionando la construcción.

Figura 1. a) caso básico en 3D; b) sección transversal con algunas variables geométricas; c) viga de canto variable con 4 puntos de transición

Acabamos de publicar un artículo en la revista indexada JCR The International Journal of Advanced Manufacturing Technology (2025), que presenta una metodología de optimización metaheurística para minimizar el coste de fabricación de las vigas I de placa de acero soldada. El estudio se centra en el desarrollo de tipologías más eficientes, como las vigas híbridas transversales de sección variable (THVS), que optimizan simultáneamente la geometría y la distribución del material en los planos transversal y longitudinal. La función objetivo tiene en cuenta no solo el coste de los materiales, sino también siete actividades clave de producción (soldadura, corte, pintura, etc.) y los diseños cumplen las especificaciones del Eurocódigo 3. Los principales resultados indican que la optimización del material es más importante para las vigas de tramos cortos, mientras que la optimización geométrica lo es más para las vigas de tramos largos. En última instancia, el artículo valida el enfoque propuesto mediante un caso de estudio, que demuestra que los elementos THVS pueden reducir los costes hasta en un 70 % en comparación con los diseños tradicionales.

La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo y de la información de contexto.

Como futuro profesional, ¿te has preguntado alguna vez si los perfiles de acero que eliges son realmente la mejor opción? En el diseño estructural, es habitual utilizar perfiles estándar (como los «IPE») por su simplicidad y disponibilidad. Aunque son prácticos, estos perfiles de sección constante a menudo resultan ineficientes, ya que utilizan más material del necesario y generan mayores costes.

El sector de la construcción se enfrenta a una encrucijada: la necesidad de crear estructuras eficientes y la obligación de reducir su enorme consumo de recursos. En este dilema, las vigas de acero son un elemento fundamental. Pero ¿son los diseños tradicionales la opción más eficiente o existen alternativas mejores? Un estudio reciente revela hallazgos sorprendentes que desafían las convenciones del diseño estructural. La respuesta se encuentra en cuatro claves contrarias a la lógica que demuestran cómo optimizar de forma inteligente el material y la geometría puede reducir los costes de fabricación hasta en un 70 %.

1. Material frente a la geometría: la regla inesperada que depende de la distancia.

El primer descubrimiento clave del estudio es que la estrategia óptima para reducir costes depende fundamentalmente de la longitud de la viga (vano). Este hallazgo desafía el enfoque de «talla única» y da lugar a dos conclusiones interesantes:

  • Para vigas cortas (por ejemplo, de 6 metros, una medida habitual en edificios), la optimización del material resulta más eficaz. El uso de aceros de diferentes resistencias para las alas y el alma permite obtener mayores ahorros que con la modificación de la geometría.
  • En el caso de las vigas largas (por ejemplo, de 14 o 20 metros, comunes en puentes), la optimización geométrica se convierte en el factor dominante. La estrategia más decisiva para el ahorro es crear vigas de sección variable.

 

El principio de ingeniería subyacente es el momento flector. En las vigas largas, la diferencia de esfuerzos entre el centro (donde el momento es máximo) y los apoyos (donde el momento es nulo) es considerable. Adaptar el canto de la viga a esta variación permite ahorrar material de manera significativa en las zonas donde no es necesario. En las vigas cortas, el momento flector es más uniforme, por lo que el ahorro de material al variar la geometría es mínimo y no compensa el coste adicional de fabricación (cortes y soldaduras complejas).

2. La campeona del ahorro: la viga híbrida de sección variable (THVS).

La solución más rentable identificada en el estudio es la viga «híbrida transversal con sección variable» (THVS). Este diseño combina de forma inteligente las dos estrategias de optimización:

  1. Estructura híbrida: utiliza acero de alta resistencia para las alas, que, al estar más alejadas del eje neutro, soportan la mayor parte de las tensiones de flexión. Para el alma, que se encarga principalmente de los esfuerzos cortantes, se emplea un acero más económico y de menor resistencia.
  2. Geometría variable: su altura no es constante, sino que se adapta a la distribución de esfuerzos. Es más alta cerca del centro, donde el momento flector es máximo, y disminuye hacia los apoyos.

El dato más impactante del estudio es que los elementos THVS pueden reducir los costes de fabricación hasta un 70 % en comparación con los diseños tradicionales de vigas de acero de canto constante.

3. El coste real no es solo el peso: una mirada a la fabricación.

Uno de los puntos fuertes de la investigación es que se centra en el coste total de fabricación, en lugar de limitarse al peso o al coste del material. El estudio incluyó siete actividades clave de producción en su modelo de costes:

  • Montaje en obra/Izado.
  • Pintura.
  • Soldadura.
  • Granallado.
  • Corte.
  • Aserrado.
  • Transporte.

Este enfoque holístico es crucial, ya que alinea el diseño estructural con la realidad de la producción industrial. Es precisamente este análisis de costes integral el que permite al estudio concluir que, en el caso de las vigas largas, el ahorro de material de una viga THVS compensa con creces la mayor complejidad de fabricación, algo que no revelaría un análisis de peso sencillo.

4. De la teoría a la práctica: una metodología para el diseño.

La investigación no se limita a la teoría, sino que ofrece una metodología de diseño con directrices aplicables para que los ingenieros puedan implementar estas soluciones. El estudio establece parámetros prácticos sobre:

  • Relaciones óptimas entre el canto y la luz de la viga.
  • Ángulos de achaflanado ideales.
  • Posiciones óptimas para las transiciones de sección.
  • Combinaciones de tipos de acero recomendadas.

Conscientes de que la innovación teórica debe enfrentarse a la realidad industrial, los propios autores moderan el optimismo mediante una evaluación pragmática de los próximos pasos.

«Los elementos THVS pueden reducir los costes hasta en un 70 % en comparación con los diseños tradicionales. No obstante, para aprovechar plenamente el potencial de estos diseños, deben abordarse los desafíos relacionados con la disponibilidad de materiales, la complejidad de la fabricación y los riesgos de pandeo local».

Conclusión: ¿Estamos listos para construir de forma diferente?

La idea central es clara: optimizar simultáneamente la geometría y el material de las vigas de acero, especialmente en los diseños THVS, permite ahorrar recursos y dinero de forma sin precedentes. Esta investigación establece una base teórica y una metodología de diseño que abren la puerta a una nueva era de eficiencia estructural. Con ahorros potenciales de hasta el 70 % demostrados, la pregunta para la industria no es si merece la pena, sino cómo superar los desafíos de fabricación, la disponibilidad de materiales y la actualización de normativas para convertir este potencial en una nueva realidad constructiva.

En este vídeo, se resumen las ideas fundamentales de este artículo, explicadas de forma sencilla.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Manufacturing cost optimization of welded steel plate I-girders integrating hybrid construction and tapered geometry. The International Journal of Advanced Manufacturing Technology, 140, 1601-1624DOI:10.1007/s00170-025-16365-2

Os dejo el artículo completo para su descarga, ya que está publicado en abierto.

Pincha aquí para descargar

¿Tus cimientos se diseñan con métodos desfasados? 5 revelaciones para proyectar de forma más segura y sostenible

Como profesionales de la ingeniería y la arquitectura, convivimos con una tensión permanente: garantizar la máxima seguridad de las estructuras mientras enfrentamos la presión de optimizar costes y reducir el impacto medioambiental. En el diseño de cimentaciones, esta tensión suele traducirse en incertidumbre y en un sobredimensionamiento conservador. Pero ¿qué sucede cuando uno de los supuestos básicos de nuestros cálculos se aleja de la realidad?

Un ejemplo claro es el módulo de reacción vertical del suelo, conocido como coeficiente de balasto o módulo de Winkler (Ks), un parámetro clave en el diseño de losas de cimentación que a menudo se interpreta incorrectamente y se obtiene de tablas genéricas con poco rigor. Una investigación reciente revela hallazgos significativos que cuestionan estas prácticas habituales y plantean alternativas para obtener cimentaciones más seguras, eficientes en costes y de menor impacto medioambiental.

Este artículo sintetiza una investigación publicada en la revista del primer decil del JCR, Environmental Impact Assessment Review, en la que se presenta una metodología rigurosamente formulada para la estimación directa del módulo (Ks) en cimentaciones por losa, superando las deficiencias clave de los enfoques convencionales. Su principal aportación es un modelo directo que integra la teoría del semiespacio elástico, el análisis de asientos en suelos multicapa y la mecánica de consolidación edométrica, considerando explícitamente la profundidad de influencia y los efectos de la compensación de cargas. La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo y de la información de contexto.

El estudio introduce un coeficiente de seguridad específico para Ks, lo que constituye una innovación que aborda la incertidumbre geotécnica y fortalece la fiabilidad del diseño en los estados límite de servicio. Esta metodología se integra en un marco de evaluación del ciclo de vida y decisión multicriterio (MCDM) que utiliza un proceso híbrido de AHP neutrosófico en grupo (NAHP-G) y ELECTRE IS para evaluar alternativas de diseño de cimentaciones según criterios económicos, ambientales y sociales.

Aplicado a un caso de estudio real, el método propuesto (denominado 3-NEW) demuestra ser la solución más sostenible. El diseño resultante (A3) mejora el rendimiento de sostenibilidad global en un 50 % y aumenta el índice de seguridad social en 2,5 veces en comparación con las metodologías de referencia. Este trabajo establece un marco unificado que avanza en la práctica del diseño geotécnico, optimiza el uso de materiales y alinea el diseño de cimentaciones con los principios de resiliencia y de economía circular.

A continuación os dejo algunas ideas clave contenidas en este estudio.

1. El módulo de balasto (Ks) no es una propiedad del suelo, sino una consecuencia de la interacción.

La primera idea consiste en entender que el módulo de balasto (Ks) no es una constante intrínseca del terreno, como el peso específico o la cohesión, que podamos consultar en una tabla. Se trata de un concepto más complejo. Es un parámetro variable que depende de la carga y de la profundidad de su influencia.

Esto significa que el módulo de balasto es el resultado de la interacción entre la cimentación (su tamaño y rigidez) y el terreno bajo una carga específica. Depende de la carga transmitida, de la geometría de la losa y de la profundidad del bulbo de presión generado. Este cambio de perspectiva es crucial, pues nos obliga a abandonar las tablas genéricas y a realizar un cálculo adaptado a las condiciones reales de cada proyecto. Así, reconocemos que el «mismo» suelo se comportará de manera diferente bajo una pequeña zapata que bajo una gran losa de un edificio. Esta idea, conocida en el ámbito geotécnico, no debería pasarse por alto.

 

2. Los métodos tradicionales no explican ni integran la paradoja de la rigidez infinita en cimentaciones totalmente compensadas.

Cuando se proyectan cimentaciones con sótanos, la excavación compensa parte de la carga del edificio al retirar el peso del suelo existente. En estos casos, los métodos convencionales de cálculo de Ks (el 1-BAS, un método empírico, y el 2-REF, un método semidirecto) o no tienen en cuenta la «paradoja del balasto infinito» (1) o no la integran ni la armonizan (2).

Si la carga neta transmitida al terreno es próxima a cero o negativa, la deformación generada por la cimentación tiende a cero, ya que la profundidad de influencia del bulbo de tensiones tiende a cero y, por tanto, el valor del balasto vertical tiende a infinito. Con la propuesta metodológica del trabajo (3-NEW, un método directo), se resuelve esta paradoja al vincular Ks directamente con los asientos elásticos reales y con las cargas transmitidas por la estructura, lo que explica el fenómeno físico y elimina la paradoja en el cálculo mediante un límite mínimo de la profundidad de influencia (el 5 % de la carga bruta transmitida). En escenarios totalmente compensados, el método regula la respuesta mediante umbrales y el factor de seguridad (FS), evitando así resultados físicamente inconsistentes.

3. Estamos olvidando el factor de seguridad donde más importa: en los asientos.

En geotecnia, es habitual aplicar un factor de seguridad (FS) de entre 2,5 y 3,0 frente a la rotura del terreno. Sin embargo, cuando el diseño se basa en el límite de asientos (algo muy común en grandes losas), aplicamos un factor de seguridad de 1,0.

Se debería buscar una mayor coherencia en esta práctica, ya que, como señala la investigación, los límites de servicio (como los asientos) quedan desprotegidos frente a la variabilidad e incertidumbre del subsuelo. En otras palabras, no dejamos margen de seguridad para proteger la estructura frente a la fisuración, las deformaciones excesivas o los daños en los acabados, que son consecuencia directa de los asientos. La investigación propone un factor de seguridad formal para el cálculo de Ks (FS = 1,2 en condiciones estándar), lo que permite armonizar la seguridad en los estados límite últimos y de servicio.

4. El diseño más seguro resultó también el más sostenible en su ciclo de vida.

El estudio comparó tres alternativas de diseño (A1-BAS, A2-REF y A3-NEW) mediante un análisis de sostenibilidad del ciclo de vida. Inicialmente, la alternativa A1 (diseñada con el método tradicional) parecía la más rentable en términos de costes y emisiones de CO₂.

Sin embargo, al introducir el criterio social de seguridad, que cuantifica la fiabilidad estructural y la seguridad para los usuarios y se deriva del nuevo marco de cálculo, la alternativa A1 fue penalizada drásticamente. La ganadora fue la alternativa A3 (diseñada con el nuevo método), no por ser la mejor en un único aspecto, sino por ofrecer el mejor equilibrio global, destacando en el criterio clave de seguridad. De hecho, A3 consiguió una mejora relativa del 50 % en el rendimiento agregado de sostenibilidad. En la práctica, esto se tradujo en un diseño que, en comparación con la alternativa A2, redujo los costes de construcción en un 12,5 % y, en comparación con la alternativa A1, disminuyó los costes de mantenimiento a largo plazo en casi un 24 %, lo que demuestra que la seguridad y la eficiencia económica pueden ir de la mano.

5. Una mayor precisión en el cálculo no implica un sobrecoste, sino un uso más eficiente del suelo.

Un análisis más riguroso de un problema no tiene por qué dar soluciones conservadoras y, por tanto, costosas. Este estudio demuestra lo contrario. Al comparar la presión admisible bruta (Qba) que el terreno puede soportar sin exceder los asientos permitidos, los resultados fueron reveladores:

  • Método convencional (2-REF): Qba = 0,146 MPa.
  • Nuevo método propuesto (3-NEW): Qba = 0,265 MPa.

Este notable aumento no se debe a una alteración del suelo, sino a que el nuevo método modela con mayor precisión la interacción suelo-estructura, considerando la profundidad de influencia (19 metros en este caso) y los asientos elásticos reales, lo que evita el conservadurismo innecesario de los métodos simplificados. Esta mayor eficiencia se traduce directamente en un diseño más optimizado y competitivo. Esta optimización no solo reduce costes, sino que también minimiza el consumo de hormigón y acero, lo que la convierte en un pilar fundamental de la construcción sostenible.

Conclusión

Hemos visto que el módulo de balasto no es una propiedad intrínseca del suelo, sino una interacción dinámica; que los métodos tradicionales caen en paradojas; que, en algunos casos, pueden comprometer la seguridad donde más importa; y que, al corregir estos errores, el diseño más seguro también se revela como el más sostenible y eficiente. Al abandonar las simplificaciones anticuadas o demasiado conservadoras y adoptar modelos que reflejen la realidad de la interacción suelo-estructura, no solo podremos construir con mayor confianza, sino también de manera más inteligente y responsable con nuestros recursos.

Así pues, nos surge una pregunta final: si los cimientos de nuestros edificios se basan en principios desactualizados, ¿qué otras suposiciones fundamentales de la ingeniería debemos reexaminar para construir un futuro más resiliente?

Referencia:

SÁNCHEZ-GARRIDO, A.J.; MORENO-SERRANO, J.F.; NAVARRO, I.J.; YEPES, V. (2026). Innovative safety framework and direct load–settlement method to optimize vertical subgrade modulus in sustainable mat foundations. Environmental Impact Assessment Review, 118, 108191. DOI:10.1016/j.eiar.2025.108191

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.