Estructuras híbridas de acero

Viga armada de acero. https://www.renedometal.es/vigas-armadas-la-rioja/

El desarrollo de estructuras de acero ha sido un pilar fundamental en la ingeniería civil desde el siglo XIX. Obras emblemáticas como el puente de Brooklyn y la torre Eiffel son ejemplos tempranos de su aplicación con éxito. La evolución tecnológica ha dado lugar al desarrollo de conceptos avanzados como las vigas híbridas de acero, que permiten un mejor aprovechamiento del material y reducen los costes de manera significativa. Las vigas híbridas de acero son una solución avanzada en el ámbito de la construcción que permite optimizar el uso de materiales, reducir costes y mejorar la eficiencia estructural. Estas vigas combinan diferentes tipos de acero en sus componentes para maximizar la resistencia y minimizar el peso, por lo que constituyen una alternativa eficaz a las vigas homogéneas tradicionales.

Históricamente, han dominado el mercado las vigas de acero convencionales, en las que tanto el alma como las alas tienen la misma resistencia a la fluencia. Sin embargo, esta configuración puede llevar a un uso ineficiente del material, ya que las alas soportan la mayor parte de las tensiones de flexión. La incorporación de diferentes resistencias en las partes de la viga es una solución innovadora para optimizar el empleo del acero.

El concepto de viga híbrida implica el uso de acero de alta resistencia en las alas, donde se producen tensiones de tracción y compresión máximas, y de acero de resistencia moderada en el alma, que soporta tensiones menores. Esta configuración permite reducir el peso total de la viga, disminuir costes y mejorar la sostenibilidad mediante una utilización más eficiente de los recursos.

La investigación sobre vigas híbridas ha seguido tres enfoques principales: estudios experimentales, simulaciones computacionales y revisiones bibliográficas. Los ensayos experimentales evalúan el comportamiento estructural bajo diversas condiciones de carga. Las simulaciones computacionales permiten modelar situaciones complejas mediante el método de elementos finitos. Las revisiones bibliográficas consolidan el conocimiento existente y permiten identificar lagunas en la investigación.

Las estructuras híbridas son objeto de nuestros proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. En las referencias se encuentran tres de los artículos publicados al respecto, los cuales se pueden descargar por estar publicados en abierto. Además, ya publicamos varias entradas sobre estos trabajos hace unos meses.

En un artículo anterior (Terreros-Bezoya et al., 2023), ya hicimos referencia a un estudio del estado del arte al respecto. En dicha investigación se revisaron 128 publicaciones sobre diseño de vigas y se utilizó un análisis de correspondencia para identificar patrones en variables como la resistencia de alas y alma, las condiciones de carga y los métodos de cálculo. Se sistematiza el conocimiento existente y se destacan enfoques de diseño eficaces. Se identifican ratios híbridos ideales, con un equilibrio entre resistencia y economía de material, que oscilan entre 1,3 y 1,6. Además, el estudio destaca las ventajas ambientales y económicas de las vigas híbridas, ya que al reducir el peso de las estructuras, disminuyen los costes de transporte, instalación y materiales, y, por tanto, las emisiones de CO₂. Esta estrategia se alinea con los objetivos de la Unión Europea para lograr la neutralidad climática en 2050 y mejora la viabilidad de proyectos a gran escala al reducir los costes de fabricación y montaje.

Estudios recientes han demostrado que las vigas híbridas son superiores en términos de resistencia y eficiencia económica. Ensayos experimentales muestran que pueden soportar cargas hasta un 40% mayores que las vigas convencionales debido a su capacidad para distribuir tensiones de manera más efectiva. Además, su uso puede reducir los costos de construcción en un 20%, considerando ahorros en materiales, transporte e instalación.

En términos de distribución geográfica, la investigación sobre vigas híbridas está dominada por Estados Unidos, China y Europa, con un crecimiento notable en Asia debido a su desarrollo infraestructural. Los estudios se centran en tres áreas principales: comportamiento estructural, desarrollo de metodologías de diseño y optimización económica.

Las investigaciones sobre flexión pura revelan que una resistencia a la fluencia de 300 MPa en el alma y 500 MPa en las alas mejora significativamente el rendimiento estructural. En términos de corte puro, se ha logrado mejorar la resistencia en un 25% mediante el desarrollo de campos de tensión diagonales. La interacción flexión-corte permite incrementar la resistencia última hasta un 30% al diseñar refuerzos de ala y distribuciones de carga adecuadas.

El trabajo de Negrín et al. (2023) presenta una metodología para optimizar el diseño de vigas híbridas de acero soldado y, por tanto, mejorar su coste. Se formula un problema de optimización que permite configuraciones híbridas con diferentes tipos de acero y se considera el coste de fabricación como función objetivo. Los resultados indican que el diseño optimizado puede ser hasta un 50 % más económico que los métodos tradicionales. Además, se sugieren métodos para comparar soluciones óptimas y se establecen líneas de investigación futuras basadas en los resultados obtenidos.

El estudio de Negrín et al. (2024) destaca los beneficios económicos de las vigas de acero híbridas transversal-longitudinalmente (TLH), mostrando una reducción de costos de fabricación superior al 50% en comparación con diseños tradicionales. Se identifican configuraciones TLH como más eficaces para elementos grandes, con recomendaciones para puntos de transición y configuraciones de materiales según niveles de tensión. Además, la metodología propuesta promueve un diseño sostenible, optimizando elementos TLH para mejorar aspectos económicos y ambientales, lo que sugiere futuras investigaciones en comportamiento estructural y sostenibilidad.

Sin embargo, persisten desafíos en áreas como la soldadura y la fabricación. La unión de materiales con diferentes propiedades requiere técnicas especializadas y electrodos adecuados para garantizar la integridad estructural. Además, los estándares de diseño actuales deben actualizarse para reflejar las características específicas de las vigas híbridas y proporcionar directrices más detalladas para su aplicación.

En conclusión, las vigas híbridas de acero ofrecen una combinación única de resistencia, sostenibilidad y economía. Los avances en fabricación, en métodos computacionales y en el análisis del ciclo de vida continúan impulsando su desarrollo. La colaboración entre instituciones académicas, la industria y los organismos reguladores será esencial para su adopción generalizada. La actualización de los códigos de diseño y la estandarización de los procesos de fabricación mejorarán su competitividad en proyectos de infraestructura a gran escala.

Referencias:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2024). Optimized Transverse-Longitudinal Hybrid Construction for Sustainable Design of Welded Steel Plate Girders. Advances in Civil Engineering, 2024:5561712. DOI:10.1155/2024/5561712.

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Design optimization of welded steel plate girders configured as a hybrid structure. Journal of Constructional Steel Research, 211:108131. DOI:10.1016/j.jcsr.2023.108131

TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Diseño optimizado de edificios de pórticos de hormigón armado frente al colapso progresivo mediante metamodelos

El diseño estructural de los edificios plantea importantes retos para garantizar su seguridad y sostenibilidad. El colapso progresivo, provocado por eventos extremos como terremotos o explosiones, puede ocasionar daños catastróficos. Para reducir este riesgo, se propone una metodología de diseño apoyada en metamodelos que combina optimización estructural y criterios de seguridad, y que tiene en cuenta elementos que a menudo se pasan por alto, como los forjados, las pantallas de arriostramiento y la interacción suelo-estructura (SSI, por sus siglas en inglés).

El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. También es fruto de la colaboración con investigadores de Brasil y Cuba.

Metodología

Descripción del problema

Se estudiaron cinco edificios de pórticos de hormigón armado con diferentes configuraciones de plantas y luces. Las estructuras incluyen vigas, columnas, forjados y pantallas de arriostramiento. Además, se incorporó el diseño optimizado de cimentaciones, considerando la interacción con el suelo mediante modelos de elasticidad lineal. Las dimensiones de los elementos estructurales se ajustaron siguiendo las normas internacionales de diseño y se consideraron distintas combinaciones de carga para evaluar escenarios críticos.

Se realizaron simulaciones numéricas avanzadas que tuvieron en cuenta escenarios de carga extremos, incluyendo la pérdida de columnas críticas en diversas posiciones. En el análisis se tuvieron en cuenta factores de seguridad, límites de servicio y fallos estructurales para determinar los diseños óptimos. También se tuvieron en cuenta criterios de sostenibilidad y se midieron las emisiones de CO₂ asociadas a cada solución.

Optimización basada en un diseño robusto frente al colapso progresivo (ObRDPC)

La metodología ObRDPC se centra en minimizar las emisiones de CO₂ como función objetivo, garantizando simultáneamente la robustez estructural mediante restricciones de seguridad. Para evaluar el colapso progresivo y simular la pérdida de columnas críticas, así como analizar la redistribución de cargas, se empleó el método de camino alternativo (AP). La metodología incluye la verificación de estados límite últimos y de servicio, lo que garantiza el cumplimiento de los requisitos normativos.

El proceso de optimización incluye la definición precisa de las variables de diseño, como las dimensiones de las vigas, columnas y cimentaciones, así como el tipo de hormigón utilizado. Para maximizar la eficiencia estructural y minimizar los costos ambientales, se aplican técnicas de programación matemática.

Modelización de forjados y pantallas de arriostramiento

  • Forjados: se modelaron como elementos tipo placa de 12 cm de espesor y se conectaron a las vigas mediante nodos rígidos para asegurar la continuidad estructural. Se realizó una discretización adecuada para representar su comportamiento realista ante cargas verticales y horizontales. El análisis incluyó el comportamiento a flexión, los efectos de cargas concentradas y la interacción con los elementos perimetrales. Se consideraron diferentes configuraciones de refuerzo para maximizar la resistencia y minimizar las deformaciones.
  • Pantallas de arriostramiento: representadas mediante diagonales equivalentes elásticas, según las especificaciones normativas. Se definieron sus propiedades mecánicas mediante modelos experimentales previos, incluyendo el módulo de elasticidad y la resistencia a compresión. Se estudiaron distintos tipos de mampostería y su influencia en la resistencia general. Las pantallas de arriostramiento también se evaluaron como elementos activos en la redistribución de cargas después de eventos que provocan la pérdida de soporte, lo que mejora la estabilidad global del sistema estructural.

Interacción suelo-estructura (SSI)

Se consideró el asentamiento diferencial de las cimentaciones mediante coeficientes de rigidez calculados según modelos elásticos. El suelo se modeló como un medio elástico semiespacial. En el análisis se incluyó la interacción entre la superestructura y el terreno para capturar los efectos de asentamientos desiguales y su impacto en el estado de esfuerzos y deformaciones.

En el análisis se tuvieron en cuenta diferentes tipos de suelos, desde arcillas de baja resistencia hasta suelos granulares compactados. Se realizaron estudios paramétricos para evaluar la sensibilidad del sistema a variaciones en la rigidez del terreno y el módulo de elasticidad del hormigón.

Cinco estudios de casos que consideran la modelización de cimientos, forjados y pantallas de arriostramiento.

Optimización asistida por metamodelos

Se utilizaron técnicas avanzadas de optimización asistida por metamodelos para reducir la carga computacional. El proceso incluyó un muestreo inicial mediante muestreo hipercúbico latino para cubrir eficientemente el espacio de diseño, seguido de la construcción del metamodelo a través de técnicas de interpolación Kriging para aproximar las respuestas estructurales, evaluando múltiples configuraciones para garantizar la precisión. Posteriormente, se aplicó una optimización global utilizando algoritmos evolutivos, como la Biogeography-based Optimization (BBO), para explorar soluciones factibles y un método iterativo para refinar las soluciones y garantizar su viabilidad en condiciones críticas.

Resultados

Impacto de forjados y pantallas de arriostramiento

La inclusión de forjados y pantallas de arriostramiento mejoró significativamente la redistribución de cargas y la resistencia al colapso progresivo. El análisis mostró una reducción del 11 % en el impacto ambiental para diseños resistentes al colapso, en comparación con modelos que solo consideran vigas y columnas.

Se observó una mejora notable en la capacidad de redistribución de cargas después de la pérdida de columnas críticas. Las pantallas de arriostramiento actuaron como elementos resistentes adicionales, mitigando fallos en los elementos primarios y reduciendo los desplazamientos globales.

Comparación de enfoques de diseño

Se observó que aumentar el número de niveles incrementa la robustez estructural debido a la mayor redundancia de elementos. Sin embargo, el incremento de la longitud de las luces de las vigas reduce esta capacidad, por lo que es necesario utilizar secciones más robustas y aplicar mayores refuerzos.

Los modelos con luces de 8 m presentaron un aumento del 50 % en las emisiones de CO₂ cuando no se incluyeron forjados ni pantallas de arriostramiento. Al incorporarlos, se consiguió reducir este incremento a la mitad.

Recomendaciones prácticas para el diseño estructural

  1. Incluir forjados y pantallas de arriostramiento: Su integración mejora significativamente la resistencia al colapso progresivo, particularmente en edificios con luces amplias.
  2. Optimizar secciones estructurales: Diseñar secciones de vigas y columnas equilibrando rigidez y eficiencia económica.
  3. Evaluar diferentes tipos de cimentaciones: Incorporar análisis de interacción suelo-estructura para definir bases óptimas.
  4. Aplicar análisis paramétricos: Evaluar la sensibilidad de los diseños a variaciones en la resistencia del hormigón y las condiciones geotécnicas.
  5. Considerar combinaciones de carga extremas: Simular múltiples fallos para garantizar diseños robustos y seguros.

Conclusión

La optimización basada en un diseño robusto frente al colapso progresivo (ObRDPC) permite diseñar estructuras resistentes al colapso progresivo con menor impacto medioambiental. El uso de metamodelos y la consideración de forjados, pantallas de arriostramiento y la interacción suelo-estructura mejoran significativamente la seguridad estructural y la sostenibilidad del diseño. Se recomienda ampliar esta investigación a otros tipos de estructuras y condiciones geotécnicas complejas para validar y perfeccionar la metodología propuesta.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Metamodel-assisted design optimization of robust-to-progressive-collapse RC frame buildings considering the impact of floor slabs, infill walls, and SSI implementation. Engineering Structures, 325:119487. DOI:10.1016/j.engstruct.2024.119487

El artículo os lo podéis descargar gratuitamente, hasta el 1 de febrero de 2025, en el siguiente enlace: https://authors.elsevier.com/c/1kFtRW4G4f7uC

Tesis doctoral: Optimización social y ambiental de estructuras prefabricadas de hormigón armado bajo presupuestos restrictivos

De izquierda a derecha: Julián Alcalá, Tatiana García, Andrés Ruiz, Salvador Ivorra, Antonio Tomás y Víctor Yepes

Ayer, 4 de diciembre de 2024, tuvo lugar la defensa de la tesis doctoral de D. Andrés Ruiz Vélez, titulada “Optimal design of socially and environmentally efficient reinforced concrete precast modular road frames under constrained budgets”, dirigida por los profesores Víctor Yepes Piqueras y Julián Alcalá González. La tesis recibió la calificación de sobresaliente «cum laude». A continuación, presentamos un pequeño resumen de la misma.

Resumen:

La infraestructura de transporte es esencial para el desarrollo humano, ya que impulsa el crecimiento industrial y promueve la evolución social al mejorar la interacción y la conectividad. Su construcción actúa como un catalizador de transformaciones socioeconómicas, puesto que fomenta las economías locales y facilita el flujo de recursos y de la fuerza laboral. Sin embargo, la creciente concienciación sobre los impactos negativos de las prácticas insostenibles en la ingeniería de la construcción exige una transición hacia métodos más responsables. Históricamente, la viabilidad económica ha sido el enfoque principal en ingeniería estructural. No obstante, en la actualidad se otorga mayor relevancia a la evaluación de los impactos a lo largo del ciclo de vida de los proyectos. Aunque este enfoque supone un avance en la integración del diseño estructural con los objetivos de desarrollo sostenible, todavía no abarca plenamente la complejidad y diversidad que implica la sostenibilidad a lo largo de todo el ciclo de vida de las infraestructuras.

Esta tesis doctoral desarrolla de manera sistemática un marco de diseño que integra la sostenibilidad en la construcción de infraestructuras de transporte. Se propone un enfoque modular y prefabricado para proyectos de estructuras viales, que se posiciona como una alternativa más eficiente y atractiva frente a los métodos tradicionales de hormigonado in situ. El diseño estructural, junto con los procesos ambientales y sociales asociados al ciclo de vida de la estructura, se modela mediante un enfoque matemático avanzado. Este modelo permite aplicar técnicas de optimización monoobjetivo y multiobjetivo, combinadas con algoritmos multicriterio de toma de decisiones. Dada la complejidad y la diversidad de variables involucradas, el uso de métodos exactos de optimización no es viable. Por ello, la investigación adopta metaheurísticas híbridas y basadas en entornos para minimizar el coste final de la estructura desde una perspectiva monoobjetivo. Entre las técnicas evaluadas, las metaheurísticas de recocido simulado y aceptación por umbrales, calibradas con cadenas de mayor longitud, ofrecen resultados de alta calidad, aunque con un considerable esfuerzo computacional. En contraste, una versión híbrida del recocido simulado enriquecida con un operador de mutación común en algoritmos basados en poblaciones alcanza soluciones de calidad comparable con un menor esfuerzo computacional. La hibridación de metaheurísticas se presenta como una estrategia eficaz para ampliar las capacidades exploratorias de estos algoritmos, optimizando el equilibrio entre la calidad de los resultados y la eficiencia computacional.

El análisis del ciclo de vida de diferentes configuraciones de marcos con un coste óptimo revela claras ventajas ambientales del enfoque modular prefabricado en comparación con la construcción convencional in situ. Sin embargo, las implicaciones sociales son más complejas y destacan la relevancia de incorporar los impactos del ciclo de vida como funciones objetivo en el proceso de optimización. Este hallazgo subraya la necesidad de emplear técnicas multicriterio para evaluar y clasificar eficazmente las alternativas. De este modo, se garantiza un equilibrio adecuado entre los impactos ambientales y sociales, y se asegura una toma de decisiones más integral y sostenible dentro del marco del diseño y la planificación.

Esta investigación desarrolla operadores de cruce, mutación y reparación diseñados para discretizar eficazmente el problema de optimización, dotando así a los algoritmos genéticos y evolutivos de la capacidad necesaria para abordar la complejidad del proceso de optimización multiobjetivo. En particular, el operador de reparación estadístico muestra un buen rendimiento cuando se combina con los algoritmos genéticos NSGA-II y NSGA-III, así como con el algoritmo evolutivo RVEA. Aunque existen diferencias metodológicas entre estas técnicas, la herramienta de toma de decisiones FUCA produce clasificaciones equivalentes a las obtenidas mediante el método de ponderación aditiva simple. Esta coherencia también se observa con técnicas como TOPSIS, PROMETHEE y VIKOR. Para garantizar la imparcialidad en la ponderación de criterios, se aplica un proceso de cálculo basado en la teoría de la entropía, lo que proporciona un enfoque metódico a las técnicas de decisión multicriterio. La integración de algoritmos de optimización multiobjetivo con herramientas de decisión multicriterio en un marco de diseño fundamentado en modelos matemáticos permite identificar y clasificar diseños óptimos no dominados. Estos diseños logran un equilibrio integral entre las dimensiones económica, ambiental y social, y promueven la sostenibilidad del ciclo de vida de la estructura.

Referencias:

RUIZ-VÉLEZ, A.; GARCÍA, J.; PARTSKHALADZE, G.; ALCALÁ, J.; YEPES, V. (2024). Enhanced Structural Design of Prestressed Arched Trusses through Multi-Objective Optimization and MCDM. Mathematics, 12(16), 2567. DOI:10.3390/math12162567

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Enhancing Robustness in Precast Modular Frame Optimization: Integrating NSGA-II, NSGA-III, and RVEA for Sustainable Infrastructure. Mathematics, 12(10):1478. DOI:10.3390/math12101478

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Sustainable Road Infrastructure Decision-Making: Custom NSGA-II with Repair Operators for Multi-objective Optimization. Mathematics, 12(5):730. DOI:10.3390/math12050730

RUIZ-VÉLEZ, A.; ALCALÁ, J.; YEPES, V. (2023). A parametric study of optimum road modular hinged frames by hybrid metaheuristics. Materials, 16(3):931. DOI:10.3390/ma16030931

RUIZ-VÉLEZ, A.; ALCALÁ, J.; YEPES, V. (2023). Optimal design of sustainable reinforced concrete precast hinged frames. Materials, 16(1):204. DOI:10.3390/ma16010204

RUIZ-VÉLEZ, A.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2023). Perspectiva social de un marco modular óptimo: Análisis integral del ciclo de vida. Revista CIATEC-UPF, 15(1):1-19. DOI:10.5335/ciatec.v15i1.14974

RUIZ-VÉLEZ, A.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2022). Optimización de marcos articulados prefabricados de hormigón armado mediante recocido simulado. Revista CIATEC-UPF, 14(3):41-55. DOI:10.5335/ciatec.v14i3.14079

 

Losas aligeradas con análisis multivariante: innovación, eficiencia y sostenibilidad en los Métodos Modernos de Construcción

Innovación y optimización en el diseño estructural: losas aligeradas con análisis multivariante

La construcción moderna está en constante evolución para superar los retos asociados al alto consumo de materiales, la sostenibilidad ambiental y los costes elevados. En este contexto, las losas aligeradas con esferas o discos plásticos presurizados se presentan como una solución estructural innovadora que combina eficiencia, sostenibilidad y funcionalidad. Este artículo detalla, basándose en el análisis exhaustivo del documento presentado, cómo la metodología de análisis multivariante permite dimensionar con precisión este tipo de losas, optimizando recursos y reduciendo el impacto ambiental.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Losas de hormigón armado sin vigas, aligeradas con esferas o discos plásticos. https://www.prenovaglobal.com/index.php/es/losas-sin-vigas-con-esferas-o-discos/

Introducción a las losas aligeradas

Las losas de hormigón armado son elementos clave en cualquier edificación, diseñadas para soportar cargas verticales y transferirlas a los soportes principales. Sin embargo, su peso propio plantea un desafío técnico y económico, especialmente cuando hay grandes luces entre apoyos, ya que se necesitan más materiales y refuerzos, lo que aumenta los costos y el impacto ambiental.

El concepto de losas aligeradas

Este sistema estructural combina los Métodos Modernos de Construcción (MMC) con la sostenibilidad ambiental e integra aligeradores huecos de materiales reciclados, como discos o esferas plásticas presurizadas, en el núcleo de las losas. Estas estructuras reducen el peso propio, optimizan las cargas transmitidas y permiten utilizar menos hormigón y acero sin comprometer la resistencia estructural.

Innovación técnica: metodología para el dimensionamiento

Base del estudio

La metodología presentada analiza 67 edificios construidos con losas aligeradas y registra 75 observaciones de forjados. Estos datos se procesaron mediante análisis estadístico y modelos de regresión multivariante, lo que permitió desarrollar ecuaciones predictivas altamente precisas para calcular el espesor de las losas en función de sus características estructurales.

Variables clave

  1. Luz principal (L): Distancia entre los apoyos principales.
  2. Espesor de la losa (E): Variable dependiente del modelo.
  3. Altura del disco o diámetro de la esfera (H): Elemento aligerante.
  4. Sobrecarga (Q): Definida por el uso del edificio.
  5. Superficie construida: Influye en la carga total transferida.
  6. Número de plantas: Relacionado con la distribución de cargas.

Resultados del análisis

El estudio identificó una fuerte correlación entre estas variables, especialmente entre el espesor de la losa y la luz entre apoyos. Esto permitió formular una ecuación que explica hasta el 98,34 % de la variabilidad del espesor de las losas aligeradas.

Ecuación ajustada del modelo final:

Aspectos destacados:

  • La relación cuadrática entre la luz y el espesor refleja la carga que predomina en la sección.
  • La altura del disco aligerante influye directamente en el diseño, que está condicionada por los espesores comerciales disponibles.

Validación estadística

Se realizaron pruebas de normalidad (Shapiro-Wilk y Kolmogorov-Smirnov) y análisis de residuos. Los residuos siguieron una distribución normal, confirmando la robustez y validez del modelo propuesto.

Criterios de diseño

  • Para luces mayores de 7,2 m o sobrecargas superiores a 2 kN/m², el modelo proporciona cálculos más precisos que las reglas tradicionales.
  • Se recomienda utilizar este modelo como guía inicial para seleccionar el tamaño adecuado de los aligeradores.

Beneficios económicos y ambientales

El uso de losas aligeradas supone una mejora sustancial en términos de costes y sostenibilidad:

Ahorro de materiales

  • Se ha reducido el consumo de hormigón hasta en un 30 %, lo que equivale a 1000 m³ menos por cada 10 000 m² de losas construidas.
  • Disminución del uso de acero en un 20 %, lo que optimiza los refuerzos y las cimentaciones.

Impacto ambiental

  • Reducción de emisiones de CO₂: por cada 10 000 m² de losas, se evita la emisión de 220 toneladas de CO₂.
  • Uso de materiales reciclados para los aligeradores, lo que promueve la economía circular.
  • Se consume menos agua y energía durante la construcción.

Optimización de costes

  • Las estructuras más ligeras reducen la demanda de cimentaciones y elementos de soporte.
  • Se necesita menos cimbrado y los tiempos de construcción son más cortos.
  • Aumento de la eficiencia global del proyecto.

Aplicaciones y comparativas estructurales

Las losas aligeradas son particularmente útiles en edificios residenciales, comerciales e industriales donde se requieren luces amplias (de 5 a 16 m). Su flexibilidad y adaptabilidad permiten su uso en una amplia variedad de aplicaciones.

Comparación con losas macizas

  1. Peso y carga:
    • Las losas aligeradas reducen el peso propio hasta en un 30 %.
    • Al transferir menos cargas a los pilares y cimentaciones, se reduce el riesgo de daños.
  2. Resistencia estructural:
    • Ofrece una resistencia a la flexión y al punzonamiento comparable a la de las losas macizas.
    • Incorporación de zonas macizas alrededor de los pilares para mejorar la capacidad cortante.
  3. Flexibilidad en el diseño:
    • Permite mayores luces y diseños arquitectónicos más libres.
    • Facilita la apertura de huecos para instalaciones o reformas en el futuro.

Desafíos y perspectivas futuras

Aunque este sistema presenta numerosos beneficios, aún enfrenta ciertos retos que deben abordarse:

  1. Estandarización del diseño:
    • Es necesario desarrollar normas que regulen el uso de aligeradores en distintos contextos.
    • Hay que incorporar criterios adicionales, como la resistencia al fuego y la durabilidad, en los modelos de diseño.
  2. Optimización del sistema:
    • Explorar nuevos materiales reciclados para mejorar la sostenibilidad del sistema.
    • Desarrollar herramientas digitales basadas en dicho modelo para facilitar su aplicación.
  3. Estudios comparativos ampliados:
    • Evaluar el rendimiento de las losas aligeradas frente a sistemas tradicionales, como los forjados reticulares.
    • Realizar un análisis del ciclo de vida completo que tenga en cuenta el impacto económico, ambiental y social.

Conclusiones

Este estudio ofrece una herramienta innovadora para el dimensionamiento eficiente de losas aligeradas, basada en el análisis multivariante y en criterios estadísticos rigurosos. Estas estructuras no solo optimizan el uso de materiales, sino que también reducen el impacto ambiental y fomentan la sostenibilidad en la construcción.

Con un enfoque que combina diseño avanzado, ahorro de recursos y flexibilidad arquitectónica, las losas aligeradas están transformando la forma de construir edificios modernos. A medida que se perfeccionen los modelos y se amplíen sus aplicaciones, este sistema se perfilará como una solución fundamental para construir un futuro más sostenible y eficiente.

Os dejo la presentación que se hizo en el congreso:

Como está publicado en abierto, os dejo la comunicación completa a continuación:

Descargar (PDF, 1.39MB)

Referencia:

SÁNCHEZ-GARRIDO, A.; GUAYGUA, B.; VILLALBA, P.; YEPES, V. (2024). Ingeniería de proyectos basada en modelos de análisis multivariante. Aplicación al dimensionamiento de losas planas aligeradas. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain), pp. 445-459. DOI:10.61547/2402013

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Innovación en puentes de gran escala: optimización 3D y sostenibilidad mediante análisis acoplado de elementos finitos

Un artículo reciente publicado en la revista Structures, del primer cuartil del JCR, presenta un enfoque innovador de optimización estructural acoplada con el fin de mejorar la sostenibilidad y la eficiencia en la construcción de puentes hiperestáticos de gran escala. Este trabajo, titulado «Three-dimensional finite element-coupled optimisation assessment of extra-large bridges», se centra en el diseño de puentes con doble torre y cableado, y presenta un modelo de optimización estructural que integra métodos matemáticos avanzados, simulaciones de elementos finitos y un análisis detallado de variables aleatorias. Esta investigación constituye un importante avance en la búsqueda de métodos sostenibles que minimicen la huella medioambiental del sector de la construcción y contribuyan a los objetivos de desarrollo sostenible en ingeniería civil.

Esta trabajo, llevado a cabo por un equipo de expertos de la Universidad de Ciencia e Ingeniería de Hunan (China) y de la Universitat Politècnica de València (España), se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València.

Contexto de la investigación: la construcción sostenible y sus retos

La construcción es una de las industrias con mayor impacto ambiental a nivel mundial, ya que genera el 33 % de las emisiones de carbono y es un gran consumidor de agua y energía. En particular, el diseño y construcción de grandes infraestructuras, como puentes, requiere de grandes cantidades de recursos y genera altos niveles de emisiones de gases contaminantes debido al uso extensivo de materiales como el hormigón armado y el acero. Frente a este desafío, el estudio propone un enfoque para optimizar el diseño de puentes hiperestáticos y promover prácticas de construcción sostenibles mediante el uso de herramientas avanzadas de optimización.

Objetivos de la investigación

El objetivo principal del artículo es reducir el consumo de materiales y optimizar el diseño estructural de puentes con múltiples torres y sistemas de cableado, como los puentes atirantados de doble torre. Dicha optimización incluye la implementación de una metodología que integra diversas herramientas matemáticas y de simulación, como modelos de microestructura reticulada y métodos estadísticos para gestionar las variables aleatorias que influyen en el comportamiento estructural de los puentes.

Entre los objetivos específicos del estudio destacan:

  1. Desarrollar un modelo que permita la optimización topológica en 3D de puentes hiperestáticos.
  2. Reducir el impacto ambiental mediante el uso eficiente de materiales.
  3. Mejorar la estabilidad y el rendimiento estructural de estos puentes en condiciones de carga complejas.
  4. Proporcionar un marco teórico para futuras investigaciones sobre la optimización de grandes infraestructuras.

Metodología:

El enfoque metodológico del estudio integra varios modelos teóricos y herramientas de simulación estructural, entre las que se incluyen:

  1. Modelo de optimización: La investigación utiliza un modelo de optimización para el diseño estructural de puentes. Este modelo se basa en la disposición de microelementos en una red tridimensional para optimizar el uso de materiales y la capacidad estructural. Este enfoque permite controlar la densidad y distribución del material en áreas específicas de la estructura, como las torres y los cables del puente, donde las cargas y tensiones son mayores.
  2. Optimización estadística de variables discretas: Las estructuras de puentes están sujetas a fuerzas externas e imprevistos, como fluctuaciones en la velocidad del viento o cambios en la carga de vehículos. Para hacer frente a esta incertidumbre, el estudio implementa un modelo matemático basado en la estadística de variables discretas. Este modelo incorpora métodos de perturbación para evaluar el comportamiento de las variables aleatorias y su influencia en la estructura, garantizando así una mayor estabilidad y precisión en el diseño.
  3. Convergencia y estabilidad estructural: Uno de los mayores retos en la optimización de estructuras complejas es garantizar la estabilidad bajo condiciones no lineales. Zhou et al. utilizan técnicas avanzadas de resolución de ecuaciones no lineales y una combinación de diferencias finitas con métodos característicos. Este enfoque permite alcanzar soluciones precisas y asegurar que la estructura mantenga su integridad ante cargas variables.

Estudio de caso: Puente Nan Ao Da

Para validar su enfoque, los autores realizaron un análisis detallado del puente Nan Ao Da (NADB) en la provincia de Cantón, en el sur de China. Este puente atirantado, que tiene una longitud total de 9341 metros y una configuración de doble torre, es un caso de estudio ideal para aplicar la metodología de optimización propuesta. El estudio abarcó varios aspectos clave:

  1. Cargas estructurales y condiciones de diseño: El diseño del NADB tiene en cuenta múltiples tipos de carga, como el peso estructural, la presión del viento y las cargas vehiculares. Para optimizar la estructura, se realizaron cálculos de elementos finitos en secciones específicas del puente. La simulación modeló factores como la gravedad, la presión del viento a diferentes alturas y los efectos de las cargas en los cables de suspensión, lo que permitió comprender completamente la distribución de fuerzas en la estructura.
  2. Simulación y análisis de elementos finitos: La simulación de elementos finitos en el NADB implicó dividir la estructura en más de 79 000 elementos, lo que permitió realizar cálculos detallados de tensiones y desplazamientos en diversas partes del puente. La metodología incluyó la evaluación de 122 puntos de monitorización distribuidos en la estructura para analizar cómo las fuerzas y los desplazamientos afectaban a los elementos críticos de esta. Los resultados identificaron áreas de alta tensión, particularmente en las torres y los cables de soporte, que se optimizaron para reducir el uso de material sin comprometer la seguridad.
  3. Optimización de materiales y reducción de volumen: Mediante la optimización topológica, se logró reducir el volumen de materiales de las principales secciones del puente en un 2 %. Esta reducción no solo mejora la estabilidad estructural, sino que también reduce significativamente el peso total y el coste de construcción. Además, el ahorro de materiales implica una disminución de las emisiones de carbono y otros contaminantes.
Nan’ao Bridge

Resultados: impacto estructural y ambiental

La implementación de la optimización topológica en el NADB generó resultados significativos en términos estructurales y ambientales:

  1. Mejora en la estabilidad estructural: La reducción de material se logró al optimizar las áreas de mayor carga, como las torres y los cables, lo que resultó en una distribución de tensiones más eficiente. Los análisis de sensibilidad indicaron que, tras la optimización, las áreas de mayor energía interna se concentraban en los elementos de soporte, lo que facilitaba una transmisión de energía más efectiva y aseguraba la estabilidad estructural.
  2. Reducción de emisiones y eficiencia ambiental: Se realizó un análisis del ciclo de vida del puente optimizado utilizando el software OpenLCA y la base de datos Ecoinvent. Los resultados mostraron una reducción del 3,76 % en emisiones totales, así como disminuciones del 6,32 % en acidificación, eutrofización y generación de polvo atmosférico. Estos logros están alineados con los objetivos de sostenibilidad global y demuestran el potencial de la optimización estructural para reducir el impacto ambiental de la construcción..
  3. Ahorro económico: Desde una perspectiva económica, la reducción del uso de materiales se tradujo en un ahorro de 1,7 millones de yuanes chinos (CNY) en el coste de construcción del puente. Este ahorro económico refuerza la viabilidad de la optimización topológica como un método eficiente y rentable para proyectos de infraestructura de gran escala.

Discusión: implicaciones para el diseño y construcción de puentes

El análisis de optimización topológica aplicado al puente NADB subraya la importancia de integrar técnicas avanzadas de modelado en la ingeniería de grandes infraestructuras. Además de mejorar la eficiencia estructural, esta metodología ofrece una solución viable para alcanzar la sostenibilidad en la construcción, ya que reduce los costes y el impacto ambiental de los proyectos.

  1. Aplicaciones potenciales en otros proyectos: Los principios y métodos empleados en este estudio pueden aplicarse a otros tipos de estructuras hiperestáticas, como viaductos y puentes multipórtico. Esta flexibilidad demuestra la versatilidad del modelo y su capacidad para adaptarse a diversos contextos estructurales.
  2. Retos en la implementación práctica: Sin embargo, el artículo también reconoce importantes desafíos, especialmente en la modelación de estructuras bajo condiciones de carga combinada. Los autores sugieren que futuras investigaciones deberían explorar la integración de técnicas de inteligencia artificial y algoritmos de optimización avanzada para gestionar de forma más precisa las variables aleatorias y optimizar aún más la distribución de materiales.

Conclusiones

La investigación ofrece un enfoque completo para la optimización acoplada de puentes hiperestáticos en tres dimensiones. Los resultados de este estudio tienen importantes implicaciones para el desarrollo sostenible de la infraestructura y la construcción de grandes puentes, ya que demuestran que es posible reducir el uso de materiales y el impacto ambiental sin comprometer la estabilidad estructural. Las contribuciones clave del artículo son las siguientes:

  1. Un marco teórico sólido para la optimización acoplada en 3D, que permite mejorar la sostenibilidad de grandes infraestructuras.
  2. Un enfoque práctico  para reducir emisiones y ahorrar materiales mediante la optimización de elementos finitos y técnicas de modelado avanzadas..
  3. Un modelo aplicable a futuros proyectos de infraestructura que proporciona una base para el diseño de puentes de gran escala más eficientes y respetuosos con el medio ambiente.

El artículo sugiere que la investigación futura debería centrarse en desarrollar métodos de optimización inteligentes para el mantenimiento y la operación de estructuras complejas. La combinación de técnicas de inteligencia artificial y modelado predictivo podría revolucionar la construcción y el diseño de puentes, al tiempo que promovería prácticas de ingeniería sostenibles y rentables.

Referencia:

ZHOU, Z.; LIANG, Z.; ALCALÁ, J.; YEPES, V. (2024). Three-dimensional finite element coupled optimization assessment of extra-large bridgesStructures, 70:107743. DOI:10.1016/j.istruc.2024.107743

Este artículo se puede descargar gratuitamente hasta el próximo 2 de enero de 2025 accediendo directamente al siguiente enlace: https://authors.elsevier.com/c/1k5YY8MoIH2dmK

También dejo un vídeo sobre el puente al que se hace mención en el artículo.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Predimensionamiento óptimo de tableros de puentes losa pretensados aligerados

Figura 1. Vista aérea de paso superior. Google Maps.

El artículo de investigación presentado en el 28th International Congress on Project Management and Engineering por los autores Yepes-Bellver, Martínez-Pagán, Alcalá, y Yepes es un análisis integral del predimensionamiento de los tableros de puentes losa pretensados aligerados.

Este informe detalla su importancia y sugiere mejoras en el diseño estructural mediante la optimización con métodos avanzados como el modelo Kriging y algoritmos de optimización heurística.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

1. Contexto del empleo de los puentes losa pretensados aligerados

Los puentes de losa pretensada son fundamentales en las infraestructuras de carreteras y vías ferroviarias debido a su capacidad para cubrir luces de entre 10 y 45 metros, lo que los hace más resistentes, duraderos y adaptables a distintos diseños geométricos. El coste de estos puentes suele representar entre un 5 % y un 15 % de los gastos totales de una infraestructura de transporte. Además, los puentes losa ofrecen una mayor flexibilidad y una apariencia estética superior, ya que eliminan las juntas de calzada, lo que mejora la comodidad y reduce el desgaste del tablero al tráfico.

Principales ventajas de los puentes losa pretensados:

  • Resistencia y durabilidad: estos puentes ofrecen una alta resistencia a la torsión y la flexión, por lo que son ideales para soportar cargas variables y condiciones climáticas adversas.
  • Versatilidad en el diseño: gracias a su construcción in situ, es posible adaptarlos a terrenos irregulares o a condiciones complejas, como curvas pronunciadas y anchos variados, lo que permite construirlos con rasantes bajas.
  • Ahorro de materiales y costes: Al diseñarse sin juntas y con posibilidades de aligeramiento, su mantenimiento resulta menos costoso en comparación con otras tipologías.

2. Predimensionamiento y limitaciones en los métodos actuales

El predimensionamiento es esencial en la fase preliminar del diseño de puentes con losas pretensadas. Tradicionalmente, los ingenieros utilizan reglas empíricas basadas en la experiencia para definir parámetros geométricos iniciales, como el espesor de la losa, la relación entre el canto y la luz y la cantidad de armadura activa y pasiva. Sin embargo, estos métodos tradicionales tienen limitaciones en cuanto a eficiencia y sostenibilidad, ya que no optimizan el uso de materiales ni reducen el impacto ambiental.

Desventajas de los métodos convencionales de predimensionamiento:

  • Rigidez en el diseño: los métodos empíricos pueden ser inflexibles, lo que limita las opciones de diseño y hace que la estructura no se adapte eficientemente a los criterios de optimización moderna.
  • Ineficiencia económica y ambiental: al no tener en cuenta factores de sostenibilidad y costes, estos métodos pueden provocar un uso excesivo de materiales, lo que aumenta la huella de carbono y el consumo energético.

3. Propuesta de optimización con modelos Kriging y metaheurísticas

La propuesta de los investigadores consiste en aplicar una optimización bifase mediante modelos Kriging combinados con el recocido simulado, un algoritmo heurístico. Esta técnica permite reducir el tiempo de cómputo en comparación con los métodos de optimización tradicionales sin perder precisión. La optimización se centra en tres objetivos clave:

  • Minimización del coste
  • Reducción de emisiones de CO₂
  • Disminución del consumo energético

El Kriging, un tipo de metamodelo, facilita la interpolación de datos en una muestra determinada, lo que permite que los valores estimados sean predictivos y evite el alto coste computacional que conllevan las simulaciones estructurales completas. Para implementar esta técnica, se usa un muestreo de hipercubo latino (LHS), que permite generar variaciones en el diseño inicial de los puentes y proporciona una base sobre la que se aplica el modelo Kriging para ajustar las alternativas optimizadas de diseño.

4. Resultados y comparación con diseños convencionales

A continuación, se exponen los principales hallazgos del estudio, basados en la optimización de puentes reales y en la comparación con métodos empíricos:

  • Esbeltez y espesor de la losa: la investigación recomienda que aumentar la relación entre el canto y la luz mejora la sostenibilidad del diseño. Los puentes optimizados presentan relaciones de hasta 1/30, en comparación con el rango usual de 1/22 a 1/25.
  • Volumen de hormigón y armaduras: los resultados muestran una disminución del volumen de hormigón y del número de armaduras activas necesarias, mientras que aumenta el número de armaduras pasivas. Este ajuste permite reducir tanto el coste como las emisiones.
  • Uso de materiales de construcción: se recomienda el uso de hormigón de resistencia entre 35 y 40 MPa para obtener una combinación óptima entre coste y sostenibilidad. La cantidad de aligeramientos interiores y exteriores también contribuye significativamente a la reducción del peso total sin comprometer la resistencia.

Comparativa de materiales:

  • Cuantía de hormigón: entre 0,55 y 0,70 m³ por m² de losa. La optimización reduce el consumo a 0,60 m³ para puentes económicos y a 0,55 m³ para priorizar la reducción de emisiones.
  • Armadura activa: la cantidad recomendada es inferior a 17 kg/m² de tablero. Esto representa una reducción significativa en comparación con los diseños tradicionales, que promedian alrededor de 22,64 kg/m².
  • Armadura pasiva: se debe aumentar la cuantía hasta 125 kg/m³ para proyectos de alta sostenibilidad, en contraste con los valores convencionales.

5. Herramientas prácticas para los proyectistas: nomogramas para el predimensionamiento

Uno de los aportes más valiosos del estudio es la creación de nomogramas que permiten a los ingenieros realizar predimensionamientos precisos con un mínimo de datos. Los nomogramas se desarrollaron mediante modelos de regresión múltiple y ofrecen una forma rápida de estimar:

  • La cantidad de hormigón necesaria.
  • El espesor de la losa.
  • La armadura activa en función de la luz del puente y los aligeramientos aplicados.

Estos nomogramas son útiles en las primeras fases de diseño, ya que permiten obtener valores cercanos a los óptimos de manera rápida y eficiente. Los gráficos incluyen secuencias de cálculo específicas con ejemplos de puentes con luces de 34 m y aligeramientos medios (interior de 0,20 m³/m² y exterior de 0,40 m³/m²), lo que facilita un proceso de diseño preliminar que cumple con criterios de sostenibilidad.

Figura 2. Nomograma para estimar el canto del tablero (m). Fuente: Yepes-Bellver et al. (2024)

6. Recomendaciones para el diseño sostenible de puentes losa pretensados aligerados

Basándose en los resultados de optimización, el estudio recomienda ajustar ciertos parámetros de diseño para mejorar la sostenibilidad y reducir los costes:

  • Aumento de la relación canto/luz: se debe aumentar la relación a 1/26 o incluso 1/30 para conseguir diseños sostenibles.
  • Reducción del hormigón utilizado: limitar el uso de hormigón a 0,60 m³/m², o menos si la prioridad es reducir las emisiones.
    Cuantía de armaduras: para la armadura pasiva, se recomienda un mínimo de 125 kg/m³, mientras que la armadura activa debe reducirse a 15 kg/m² de losa.
    Aligeramientos amplios: utilizar aligeramientos significativos (interior de 0,20 m³/m² y exterior de 0,50 m³/m²) para reducir el peso estructural y minimizar el material empleado.

7. Conclusión: innovación en el diseño de infraestructuras sostenibles

El uso de modelos predictivos, como el Kriging, y de técnicas de optimización avanzada en el diseño de puentes supone un gran avance hacia la construcción de infraestructuras sostenibles y eficientes. Estos métodos permiten reducir costes y minimizar el impacto ambiental, dos factores críticos en la ingeniería moderna. Al promover estos enfoques, la investigación allana el camino hacia políticas de infraestructura más responsables y sostenibles, un objetivo alineado con los Objetivos de Desarrollo Sostenible (ODS).

8. Perspectivas futuras: expansión de la metodología de optimización

Los autores proponen continuar esta línea de investigación aplicando el modelo Kriging y otros metamodelos a diversas estructuras de ingeniería civil, como marcos de carretera, muros de contención y otros tipos de puentes. Esta expansión podría sentar las bases para nuevos estándares en el diseño de infraestructuras sostenibles.

Este estudio se presenta como una herramienta esencial para ingenieros y proyectistas interesados en mejorar el diseño estructural mediante métodos modernos de optimización, ya que ofrece un enfoque práctico y avanzado para lograr una ingeniería civil más sostenible.

Os dejo la presentación que se hizo en el congreso:

Como está publicado en abierto, os dejo la comunicación completa a continuación:

Descargar (PDF, 1.98MB)

Referencia:

YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P.; ALCALÁ, J.; YEPES, V. (2024). Análisis del predimensionamiento de tableros óptimos de puentes losa pretensados aligerados y su incidencia en el proyecto estructural. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain), pp. 407-419. DOI:10.61547/2402010

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Vigas híbridas de acero: la apuesta sostenible que transforma costos y rendimiento en la construcción

Un artículo reciente publicado en el Journal of Constructional Steel Research, liderado por los investigadores Agustín Terreros-Bedoya, Iván Negrín, Ignacio Payá-Zaforteza y Víctor Yepes de la Universitat Politècnica de València, explora en profundidad el uso de vigas híbridas de acero como una alternativa innovadora y sostenible a las vigas tradicionales de acero homogéneo.

Estas vigas híbridas, que combinan diferentes tipos de acero de distintas resistencias en sus componentes (alas y alma), han demostrado tener un gran potencial para optimizar el uso de materiales en la construcción, mejorar la eficiencia estructural y reducir costes y el impacto ambiental.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Vigas híbridas: concepto y ventajas

El estudio parte de la necesidad de encontrar soluciones estructurales que no solo cumplan con altos estándares de rendimiento, sino que también sean sostenibles. En una viga híbrida, el acero de alta resistencia se utiliza en las alas, donde se requiere mayor capacidad de resistencia a esfuerzos, mientras que el alma se construye con un acero de resistencia media, lo que reduce el peso y el coste del material sin comprometer su resistencia general. Este diseño permite que la viga absorba cargas significativas y redistribuya los esfuerzos de forma más eficiente que una viga homogénea, con lo que se logra una estructura más liviana y económica.

Metodología y análisis

La investigación analiza 128 publicaciones previas sobre el tema, utilizando un análisis de correspondencia simple para identificar patrones y relaciones entre variables de diseño, como la resistencia de las alas y el alma, las condiciones de carga y los métodos de cálculo. Mediante esta metodología, los autores logran sistematizar el conocimiento existente sobre el tema y destacan los enfoques de diseño más eficaces. Este análisis también identificó los «ratios híbridos» ideales, es decir, la proporción óptima entre la resistencia del acero en el alma y en las alas para maximizar el rendimiento de la viga. Un hallazgo clave es que los ratios híbridos entre 1,3 y 1,6 suelen proporcionar un equilibrio óptimo entre resistencia y economía de material.

Sostenibilidad y beneficios económicos

Además del rendimiento estructural, el estudio subraya las ventajas ambientales de las vigas híbridas. Al reducir el peso de las estructuras, disminuyen los costes de transporte, instalación y consumo de materiales, lo cual se traduce en una reducción significativa de las emisiones de CO₂. Los investigadores destacan que esta estrategia de construcción está en consonancia con los objetivos de la Unión Europea de reducir la huella de carbono de la industria de la construcción y lograr la neutralidad climática para 2050. Desde el punto de vista económico, la reducción de peso y material también representa unos costes de fabricación y montaje menores, lo que incrementa la viabilidad de estas soluciones en proyectos a gran escala.

Desafíos y áreas futuras de investigación

El estudio identifica varios desafíos que deben abordarse para implementar las vigas híbridas de manera efectiva en proyectos reales. Uno de los retos más importantes es la limitada cantidad de estudios experimentales en condiciones de carga combinada (flexión y cortante) y de pandeo, que son comunes en estructuras complejas como puentes y edificios de gran altura. Los autores recomiendan llevar a cabo investigaciones adicionales para desarrollar métodos de diseño que integren estas variables y permitan un mejor rendimiento bajo cargas extremas.

Otra área prometedora es la implementación de algoritmos de optimización y técnicas de inteligencia artificial para mejorar el diseño y el análisis de estas vigas. Estos métodos pueden ayudar a identificar configuraciones de material y geometría que maximicen la eficiencia estructural y minimicen el impacto ambiental. También sugieren explorar la combinación de acero de alta resistencia con otros materiales, como el hormigón, para crear estructuras híbridas aún más optimizadas.

Implicaciones para la industria de la construcción

Este estudio contribuye significativamente al conocimiento de las vigas híbridas de acero, ya que propone un marco de referencia que puede transformar la forma en que se diseñan y construyen las infraestructuras. A medida que se intensifica la presión para construir de forma más eficiente y respetuosa con el medioambiente, las vigas híbridas se perfilan como una solución viable que permite aprovechar al máximo las propiedades de los materiales, a la vez que se reducen los costes y la huella de carbono de las construcciones. Por tanto, la investigación de Terreros-Bedoya y su equipo proporciona una base sólida para que ingenieros y constructores consideren esta tecnología en futuros proyectos, impulsando un desarrollo urbano más sostenible y económico.

Referencia:

TERREROS-BEDOYA, A.; NEGRÍN, I.; PAYÁ-ZAFORTEZA, I.; YEPES, V. (2023). Hybrid steel girders: review, advantages and new horizons in research and applications. Journal of Constructional Steel Research, 207:107976. DOI:10.1016/j.jcsr.2023.107976.

Dejo a continuación el artículo completo, pues está publicado en abierto.

Descargar (PDF, 4.42MB)

Innovador método para planificar el mantenimiento de infraestructuras públicas optimiza los beneficios sociales y el desarrollo urbano

Un estudio reciente de Jorge Salas y Víctor Yepes, publicado en la prestigiosa revista Structure and Infrastructure Engineering, ha propuesto un enfoque innovador para la planificación del mantenimiento de infraestructuras públicas con el objetivo de mejorar la entrega de beneficios sociales en el contexto urbano. Esta investigación parte de la premisa de que el estado de conservación de las infraestructuras críticas (hidráulicas, energéticas, de comunicaciones) y las instalaciones públicas, como escuelas, hospitales, parques y viviendas sociales, influye directamente en la calidad de vida de las comunidades y, en consecuencia, en el desarrollo urbano sostenible (SUD, por sus siglas en inglés). Sin embargo, el mantenimiento de estas infraestructuras plantea retos significativos, dado que las autoridades locales se enfrentan a restricciones presupuestarias que les impiden acometer todas las reparaciones necesarias de manera simultánea.

El problema de la priorización en el mantenimiento público

En su trabajo, Salas y Yepes destacan la dificultad que enfrentan los municipios al tener que decidir qué instalaciones deben recibir mantenimiento de forma prioritaria. La falta de una planificación eficiente puede llevar a que muchas infraestructuras públicas entren en un estado de deterioro que reduce su capacidad para ofrecer beneficios sociales, como el acceso a la educación, la salud o espacios recreativos. Así, los autores plantean un marco de decisión para planificar y programar el mantenimiento correctivo, que combina un análisis multicriterio con una evaluación económica, con el objetivo de maximizar los beneficios sociales y minimizar los costes.

La metodología CRISDUSEC

La metodología propuesta, implementada en un software llamado CRISDUSEC, se basa en la evaluación de diferentes criterios para priorizar las acciones de mantenimiento. Estos criterios incluyen el tipo de infraestructura social, su estado de conservación y el coste de restaurarla. Además, se tiene en cuenta el impacto que cada instalación tiene en el desarrollo sostenible de la comunidad a la que pertenece. La innovación de este enfoque radica en la integración de diferentes variables en un marco analítico que permite a los planificadores urbanos tomar decisiones más informadas y eficientes.

El software CRISDUSEC, utilizado en el caso de estudio de la región de Valencia, permite a los expertos evaluar el impacto de la infraestructura pública en el desarrollo sostenible en función de su estado de mantenimiento y su tipo. Una de las principales conclusiones del estudio es que las infraestructuras como los hospitales y los mercados públicos, así como las infraestructuras críticas, debido a su mayor sensibilidad a su estado de conservación, generan un impacto social más negativo cuando no están en condiciones óptimas, en comparación con los parques o las áreas recreativas, que son más tolerantes al deterioro. Esto implica que el mantenimiento de ciertos tipos de infraestructuras debe ser priorizado por su importancia crítica en la vida diaria de los ciudadanos.

Resultados y recomendaciones

Los resultados del estudio destacan que, mediante una planificación adecuada basada en esta metodología, es posible maximizar los beneficios sociales derivados del mantenimiento de las infraestructuras públicas, especialmente en las zonas urbanas que requieren una regeneración urgente. Por ejemplo, en el caso de Valencia, los hospitales y los centros educativos fueron identificados como infraestructuras clave cuya restauración genera el mayor retorno social. En cambio, otras infraestructuras, como parques y áreas deportivas, aunque importantes, presentan un impacto menor en el desarrollo urbano sostenible cuando se encuentran en un estado de mantenimiento deficiente.

Otra conclusión relevante es que la metodología permite diseñar planes estratégicos a medio y largo plazo que ayudan a los gobiernos locales a programar las acciones correctivas de manera más eficiente, optimizando la distribución de recursos y minimizando los retrasos en la entrega de prestaciones sociales a la ciudadanía. Este enfoque también se alinea con los Objetivos de Desarrollo Sostenible (ODS) de las Naciones Unidas, que promueven la inversión en infraestructuras sociales como un pilar para mejorar la calidad de vida en las ciudades.

Implicaciones y aplicaciones futuras

Este trabajo representa una herramienta valiosa para los gestores públicos y los planificadores urbanos que buscan equilibrar las demandas sociales con las restricciones presupuestarias. Además, el estudio sienta las bases para futuras investigaciones que exploren la adaptación de este marco a otros contextos regionales o nacionales, así como la inclusión de nuevas variables, como el impacto ambiental, que podrían enriquecer aún más el análisis.

 

En conclusión, la investigación de Salas y Yepes ofrece una solución práctica para los desafíos actuales en materia de mantenimiento de infraestructuras públicas, ya que proporciona un enfoque claro y bien fundamentado para maximizar el retorno social de las inversiones en mantenimiento, garantizando así un desarrollo urbano más justo y sostenible.

Referencia:

SALAS, J.; YEPES, V. (2024). Improved delivery of social benefits through the maintenance planning of public assets. Structure and Infrastructure Engineering, 20(5):699-714. DOI:10.1080/15732479.2022.2121844

Métodos multicriterio: la clave para rehabilitar edificios vulnerables en zonas sísmicas

Un equipo de investigadores de la Universitat Politècnica de València y la Universidad Central del Ecuador ha llevado a cabo un análisis exhaustivo sobre los métodos de toma de decisiones multicriterio (MCDM) aplicados a la evaluación, selección y rehabilitación de edificios. Publicado en la prestigiosa revista Journal of Civil Engineering and Management, este artículo aborda una problemática clave en la ingeniería civil actual: cómo hacer frente al envejecimiento del parque de edificios, muchos de los cuales se construyeron siguiendo normativas de seguridad y sostenibilidad ya obsoletas.

La necesidad de abordar esta cuestión es urgente, dado que muchos edificios existentes no cumplen con los estándares actuales de seguridad, en particular respecto a su vulnerabilidad sísmica. Este factor es especialmente relevante en países con un alto riesgo, donde recientes terremotos han demostrado la fragilidad de las infraestructuras más antiguas. Además de las posibles pérdidas humanas, el impacto económico y social de estos eventos puede ser devastador.

Esta investigación es el resultado de una colaboración internacional realizada en el marco de los proyectos HYDELIFE y RESILIFE, cuyo investigador principal es Víctor Yepes, y es fruto de una colaboración internacional entre investigadores de Ecuador y España.

Contexto de la investigación

El envejecimiento del parque de edificios es un problema global que afecta tanto a países desarrollados como en vías de desarrollo. Muchos edificios antiguos se construyeron siguiendo normativas obsoletas que no tenían en cuenta los estándares de seguridad modernos, especialmente en lo que respecta al riesgo sísmico. A esto se suma la necesidad de hacer frente a desafíos medioambientales, como el impacto de la construcción en el consumo energético y las emisiones de CO₂. Ante esta situación, surge la necesidad de adoptar estrategias de rehabilitación que combinen la seguridad estructural con la sostenibilidad. La integración de factores sociales, económicos y ambientales en la toma de decisiones sobre la rehabilitación de edificios es fundamental para avanzar hacia un entorno construido más seguro y sostenible.

Metodología

La investigación se basa en una revisión bibliométrica de la literatura sobre los métodos MCDM aplicados a la evaluación y rehabilitación de edificios. Se analizaron 91 artículos publicados entre 2008 y 2023, utilizando bases de datos especializadas como Web of Science y SCOPUS. Los estudios seleccionados abordan tanto la evaluación de la vulnerabilidad de los edificios como la selección de estrategias de rehabilitación, con un enfoque particular en edificios escolares y patrimoniales, que suelen estar más expuestos a riesgos debido a su antigüedad o importancia cultural.

Se evaluaron las tendencias en el uso de los métodos MCDM y se identificaron investigaciones clave que han logrado evaluar de manera conjunta el consumo energético y la vulnerabilidad sísmica. Estas investigaciones destacan la necesidad de contar con metodologías que permitan evaluar múltiples factores de manera simultánea y en contextos de incertidumbre, especialmente cuando se trata de estructuras vulnerables, como las escuelas y los edificios patrimoniales, que requieren un enfoque especializado tanto por su valor cultural como por su complejidad estructural. Los investigadores clasificaron los diferentes métodos MCDM más utilizados, como el Proceso de Análisis Jerárquico (AHP), el Simple Additive Weighting (SAW) y el TOPSIS. Cada método se evaluó en función de su capacidad para integrar criterios contradictorios, como la seguridad estructural, el impacto económico, social y ambiental.

Resultados

El estudio revela la prevalencia de ciertos métodos clásicos en la investigación científica, como el ya mencionado AHP, que se ha combinado en muchos estudios con TOPSIS, un enfoque que permite identificar soluciones óptimas al considerar tanto la distancia a una solución ideal como a una no ideal. Este enfoque se ha aplicado tanto a la selección de edificios que requieren intervenciones urgentes como a la identificación de estrategias de rehabilitación más eficaces. Estos métodos permiten ponderar diversos criterios y encontrar soluciones que maximicen la seguridad y la sostenibilidad. Entre los principales hallazgos destacan:

  • Evaluación de la vulnerabilidad: Se ha aplicado MCDM para evaluar la vulnerabilidad de los edificios en zonas urbanas, con un enfoque particular en las escuelas y los edificios patrimoniales. En muchos casos, los estudios integraron criterios de vulnerabilidad sísmica con aspectos socioeconómicos y ambientales.
  • Selección de estrategias de rehabilitación: El estudio identificó tres enfoques principales en la rehabilitación de edificios: la intervención en componentes individuales, la adición de elementos de resistencia y la reducción de demandas estructurales mediante dispositivos suplementarios. La combinación de sostenibilidad y seguridad ha sido un aspecto clave en estos estudios.
  • Sostenibilidad: Si bien muchos estudios ya integran criterios de sostenibilidad, solo un porcentaje menor (15 %) incorpora análisis del ciclo de vida (LCA), una herramienta crucial para medir el impacto ambiental de las intervenciones a largo plazo.

Implicaciones

Las conclusiones de este trabajo tiene importantes implicaciones tanto para la práctica de la ingeniería civil como para las políticas públicas. La aplicación de métodos MCDM permite a los ingenieros y a los responsables de la toma de decisiones considerar una variedad de factores antes de seleccionar una estrategia de rehabilitación para un edificio. Esto es particularmente relevante en áreas con alto riesgo sísmico, donde la rehabilitación de edificios vulnerables puede salvar vidas y reducir las pérdidas económicas.

Además, la integración de criterios de sostenibilidad subraya la importancia de las políticas que promuevan rehabilitaciones que no solo refuercen la seguridad, sino que también reduzcan el impacto ambiental. Los resultados del estudio sugieren que las futuras investigaciones deberían centrarse en la creación de metodologías más avanzadas que manejen mejor la incertidumbre y que logren una verdadera integración de los pilares de sostenibilidad (económico, social y ambiental) con los criterios de seguridad estructural.

En resumen, este estudio ofrece una perspectiva innovadora sobre la forma en que los métodos MCDM pueden ayudar a afrontar los retos actuales en la rehabilitación de edificios. Su aplicación no solo mejora la seguridad de las infraestructuras, sino que también permite avanzar hacia un modelo de construcción más sostenible y eficiente. Sus recomendaciones son claras: es necesario seguir investigando para mejorar las soluciones de toma de decisiones que integren de manera efectiva la seguridad estructural y la sostenibilidad. Esto es fundamental no solo para garantizar la seguridad de los edificios, sino también para asegurar que las futuras generaciones puedan disfrutar de un entorno construido que sea resiliente, seguro y sostenible.

Referencia:

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2024). A review of multi-criteria decision-making methods for building assessment, selection, and retrofit. Journal of Civil Engineering and Management, 30(5):465-480. DOI:10.3846/jcem.2024.21621

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 1.66MB)

Técnica innovadora optimiza estructuras de hormigón y reduce emisiones de CO₂ al considerar la interacción suelo-estructura

El artículo científico, titulado «Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction» y publicado recientemente en Engineering Structures, una de las revistas de mayor impacto en ingeniería civil, aborda un desafío clave en la ingeniería estructural: cómo optimizar el diseño de estructuras de hormigón armado para minimizar su impacto ambiental, con especial atención a la reducción de las emisiones de CO₂.

Esta investigación es el resultado de una colaboración internacional realizada en el marco de los proyectos HYDELIFE y RESILIFE, cuyo investigador principal es Víctor Yepes, y es fruto de una colaboración internacional entre investigadores de Cuba, Brasil y España.

Contexto de la investigación

La optimización estructural ha sido ampliamente explorada en las últimas décadas debido a la creciente necesidad de reducir los costes de construcción y el uso de materiales, todo ello mientras se minimiza el impacto ambiental. En el caso de las estructuras de hormigón armado, que son esenciales en la construcción de edificios y obras de infraestructura, optimizar su diseño conlleva implicaciones significativas en cuanto al ahorro de recursos y la reducción de las emisiones de CO₂.

Los problemas de optimización estructural pueden resolverse mediante métodos exactos, como la programación matemática, o mediante métodos heurísticos que imitan procesos naturales (como la evolución genética o el comportamiento de enjambres). Aunque los métodos heurísticos son más eficientes para problemas complejos y no lineales, como los que involucran grandes estructuras tridimensionales, requieren un alto coste computacional. Para abordar este problema, los autores proponen el uso de metamodelos, que son modelos simplificados que permiten realizar simulaciones con un consumo computacional mucho menor sin sacrificar demasiada precisión. En este estudio, se utiliza un metamodelo basado en Kriging, una técnica que permite aproximar el comportamiento de estructuras complejas.

Además, el estudio introduce una novedad crucial: la inclusión de la interacción suelo-estructura (SSI, por sus siglas en inglés) durante el modelado. Esta interacción, que muchas veces se ignora en los modelos tradicionales, afecta significativamente al comportamiento de la superestructura (el marco de hormigón). Ignorarla puede dar lugar a diseños menos precisos que no tienen en cuenta los asentamientos diferenciales del suelo, lo que puede provocar tensiones adicionales y un mayor deterioro de las estructuras con el tiempo.

Metodología

La investigación emplea un enfoque combinado de optimización heurística convencional y una estrategia basada en Kriging para optimizar marcos espaciales de hormigón armado. El objetivo es reducir las emisiones de CO₂ de las estructuras optimizadas, en línea con los esfuerzos para disminuir el impacto ambiental del sector de la construcción. El estudio incluye tres estudios de caso, cada uno con diferentes configuraciones estructurales (variando la longitud de los vanos y el número de niveles de las estructuras) para generalizar los resultados.

El elemento clave en esta investigación es la inclusión de la interacción suelo-estructura, que afecta al comportamiento global del sistema. Los autores utilizan un modelo de Winkler, que representa el suelo como un conjunto de resortes con rigidez variable en función de las características del suelo, y lo implementan en dos tipos de suelos: uno cohesivo y otro granular. Esta diferenciación es importante porque cada tipo de suelo responde de manera distinta a las cargas, lo que provoca asentamientos que, en última instancia, influyen en las tensiones de la superestructura. La plataforma CSi-SAP2000 se utilizó como motor de cálculo, mientras que el análisis geotécnico y estructural se integró mediante MATLAB.

Resultados

Uno de los hallazgos más destacados del estudio es que la inclusión de la interacción suelo-estructura modifica significativamente los diseños estructurales. En general, las estructuras diseñadas teniendo en cuenta la interacción suelo-estructura requieren más material (mayores cantidades de hormigón y acero), lo que refleja el aumento de tensiones debido a los asentamientos diferenciales. Por ejemplo, en comparación con un modelo con soportes rígidos ideales, las estructuras que consideran la inclusión de la interacción suelo-estructura muestran un aumento del 12,03 % en las emisiones de CO₂ en suelos cohesivos y hasta un 18,81 % en suelos friccionales.

Los elementos estructurales más afectados por la interacción suelo-estructura son las columnas. Esto se debe a que los asentamientos diferenciales incrementan los momentos flectores en las columnas, lo que requiere un refuerzo adicional y secciones más grandes para resistir las nuevas tensiones. En algunos casos, las emisiones de CO₂ asociadas a las columnas aumentaron más del 60 % al considerar la interacción con el suelo. Los resultados son especialmente marcados en suelos granulares, donde los asentamientos diferenciales son más pronunciados.

Además, la metodología basada en metamodelos, asistida por la técnica de Kriging, demostró ser eficaz para lograr optimizaciones con un alto grado de precisión (hasta un 98,24 % en suelos cohesivos y un 98,10 % en suelos granulares), todo ello reduciendo el tiempo de cálculo en aproximadamente un 90 % en comparación con los métodos heurísticos convencionales.

Implicaciones

Este estudio tiene importantes implicaciones prácticas para el diseño de estructuras de hormigón armado. La inclusión de la interacción suelo-estructura permite obtener diseños más robustos y precisos, lo que reduce el riesgo de fallos prematuros y la necesidad de costosos trabajos de mantenimiento a largo plazo. Los modelos que no tienen en cuenta la interacción suelo-estructura pueden dar como resultado estructuras que inicialmente parecen eficientes, pero que con el tiempo se deterioran más rápidamente debido a las tensiones adicionales no previstas. Por tanto, incluir esta interacción desde el inicio del diseño mejora significativamente la durabilidad y la fiabilidad de las estructuras.

Desde el punto de vista ambiental, el uso de metamodelos para optimizar estructuras de hormigón supone un importante avance. Al reducir el material necesario y mejorar la eficiencia estructural, se contribuye a la reducción de las emisiones de CO₂, un objetivo clave en la lucha contra el cambio climático. Además, la metodología propuesta ofrece un enfoque más sostenible al disminuir los recursos computacionales necesarios para realizar simulaciones complejas.

En conclusión, la inclusión de la interacción suelo-estructura y el uso de metamodelos basados en Kriging suponen una contribución innovadora al campo de la ingeniería estructural. Esta investigación no solo proporciona mejores resultados de diseño, sino que también tiene el potencial de reducir el impacto ambiental de las estructuras de hormigón armado, lo que hace que el sector de la construcción sea más sostenible y eficiente.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 8.18MB)