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Abstract: The study uses surrogate modeling techniques to evaluate cost optimization
methodologies for post-tensioned concrete slab bridges. These structures are key compo-
nents in transportation infrastructure, where design efficiency can yield significant eco-
nomic benefits. The research focuses on a three-span slab bridge, with spans of 24, 34, and
28 m, optimized through the Kriging surrogate model combined with heuristic algorithms
such as simulated annealing. Input variables included deck depth, base geometry, and
concrete grade, with Latin Hypercube Sampling ensuring diverse design exploration. Re-
sults reveal that the optimized design achieves a 6.54% cost reduction compared to con-
ventional approaches, primarily by minimizing material usage—concrete by 14.8% and
active steel by 11.25%. Among the predictive models analyzed, the neural network
demonstrated the lowest prediction error but required multiple runs for stability, while
the Kriging model offered accurate local optimum identification. This work highlights
surrogate modeling as a practical and efficient tool for bridge design, reducing costs while
adhering to structural and serviceability criteria. The methodology facilitates better-in-
formed decision-making in structural engineering, supporting more economical bridge
designs.

Keywords: bridges; concrete structures; heuristics; kriging; neural networks;
optimization; structural design; surrogate models

1. Introduction

Both on roads and railway lines, overpasses are essential, and they are typically pre-
stressed concrete (PC) bridges. These infrastructures represent a significant cost for the
managers of such assets, ranging from 5% to 15% of the costs in these communication
projects [1]. Therefore, designing the project as economically as possible is crucial, as the
potential savings can be substantial. Optimization techniques are necessary to achieve
this.

An overpass is usually designed as a continuous PC beam for spans ranging from 10
to 45 m. The structural advantages of these slab solutions make them competitive with
precast beam bridges and construction benefits, as they adapt to complex layouts. The
formwork and concreting process are simpler than other bridge types [2]. Additional
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benefits include eliminating pavement joints, more flexible support placement, and im-
proved aesthetics. The slab bridge balances construction ease and structural performance.

Slab bridges built in situ are cost-effective when complex geometric conditions, such
as strong curvatures or varying widths, are involved or when reduced depths are required
due to low road surface height. Conventional formwork is competitive for spans starting
at 20 m. It is the standard method for slab bridges with up to four spans (below 120-140
m), as long as pile heights do not exceed 20 m. For longer spans, bridges are constructed
in phases using conventional formwork. When pile height is significant, self-supporting
and self-launching formwork is required to separate construction from the terrain.

For road overpasses, slab sections are often concreted in situ for typical spans of 30
m, reaching up to 60 m. For 40 m spans with continuous sections, the construction is com-
petitive. Decks are typically reinforced concrete for bridges with spans under 15 m. Spans
over 25 m often use variable sections or cantilevering. When the span exceeds 25 m and
the deck depth remains constant, designers often lighten sections to reduce weight.

Engineers aim to design structures that are economical and resilient to natural haz-
ards. Traditionally, these designs relied on trial and error, but optimization methods now
offer a systematic approach to identify optimal solutions under specific constraints.

The foundations of mathematical optimization trace back to the 18th and 19th centu-
ries with Lagrange and Euler, while Kantorovich and Dantzig developed mathematical
programming principles in the 1940s. The computer revolution of the 1960s introduced
heuristic optimization techniques that transformed problem-solving. However, advance-
ments in bridge optimization were still needed. Research on bridge optimization began in
the 1960s and 1970s, with Torres et al. [3] among the first to optimize concrete bridges.
Early efforts focused on steel bridges, with only four articles on concrete bridge optimiza-
tion published until the 1990s. Subsequently, research on both concrete and steel bridges
advanced to reduce costs while meeting structural limit states. The first decade of the 21st
century saw a significant increase in concrete bridge optimization publications.

Traditionally, the optimization of concrete slab bridges employed exact mathemati-
cal procedures, which were feasible only with limited design variables. Larger sets of var-
iables increased computation times exponentially, necessitating simplifications such as
limiting variables to active reinforcement [4] or section weight [5]. In these instances, pas-
sive reinforcement was excluded, and structural constraints were simplified to stresses in
the section’s extreme fibers [6,7]. Pioneering studies on slab bridge optimization used
mathematical programming. Krisch [8] was the first to optimize a continuous slab bridge
deck with four spans of varying lengths, defining the prestressing layout using linear pro-
gramming based on eccentricity at equidistant sections. Afzal et al. [9] provide an update
on concrete structure optimization.

The heuristic optimization of structures is computationally expensive [10], so meta-
models like Kriging, artificial neural networks (ANNSs), or radial basis functions (RBF) are
used. This method replaces the simulation model, providing optimal interpolation by re-
gression based on observed values [11]. Kriging has interesting applications, although its
use in engineering real-world infrastructure is still limited [12]. Recently, it has been used
to optimize aircraft structures made of composite materials [13], thin-walled structures
[14], and reinforced concrete bridges [15-17]. Researchers use ANNSs to predict structural
behavior [18] and bridge conditions and risks [19].

Comparative studies on metamodel selection have not reached definitive conclusions
about the superiority of any specific type [20,21]. Ryberg [22] notes that metamodel per-
formance significantly depends on parameter tuning, which varies by software. Jin et al.
[23] found that radial basis functions (RBFs) excel with small sample sets due to the ease
of implementation and faster creation. Kriging achieves accuracy and robustness with
larger sample sizes if well-calibrated. The authors consider RBF more reliable in most
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cases. However, these studies face limitations, including reliance on reference functions,
few variables, and fixed parameters affecting performance. Negrin et al. [24] present a
recent review of metamodel-assisted optimization in structural engineering.

A cost optimization methodology is presented in this study for a PC slab bridge using
the Kriging subrogated model. Unlike previous work focused on reducing CO2 emissions
[16] or embedded energy [17], this research aims to evaluate and compare the effective-
ness of various approximate prediction models. The accuracy of the proposed method in
complex design spaces may be affected by the quality of the sampled data. Although cost
minimization is prioritized in this study, factors like environmental impact and mainte-
nance are not explicitly considered. Furthermore, the heuristic optimization of the re-
sponse surface generated by the metamodel, while not guaranteeing the global optimum,
offers a good approximation from a practical point of view.

2. Three-Span Post-Tensioned Road Flyover Description

Engineers commonly use hyperstatic post-tensioned road flyovers for bridges be-
tween 10 m and 45 m long. However, when the main span exceeds 50 m, box girders offer
a more competitive solution. Designers maintain a depth/span ratio of 1/25 for slabs with
three or more spans. This design outperforms precast girders with higher bending stiff-
ness, excellent durability, and enhanced safety from hyperstatic behavior. Additionally,
its ability to adjust to intricate shapes simplifies formwork and concreting, improving ef-
ficiency. The design also eliminates joints and allows flexible pile placement, enhancing
the visual appearance.

The research aims to enhance the 24-34-28 m road flyover design, commonly used
over two-lane dual carriageways (Figure 1). The deck features a constant depth and a recti-
linear design. As shown in Figure 2, the platform has a width of 8.30 m, with two 3.50 m
lanes and 0.65 m of parapet on each side. The findings are directly relevant to the con-
struction of bridges in practical settings.

f 86.00 m f

f 24.00 m b 34.00m L 28.00m b

Figure 1. View of the longitudinal profile of the PC slab.

+ 8.30m 1

3.50m 3.50m

depth

cantilever
length

base width d

Figure 2. Cross-section of the lightweight PC slab bridge deck.

The flyover is located at the A-7 motorway in Cocentaina, Alicante. The design in-
cludes a 4.00 m base width, a depth of 1.35 m, and a 1.75 m lateral cantilever. The sizes are
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as follows: 2 =0.20 m, b = 0.10 m, and d = 0.40 m. The inner voids have four circular cylin-
ders, each 0.60 m in diameter. These dimensions yield an internal void volume of 0.14
m?/m?2. The external void volume is 0.51 m3/m?.

The passive steel is B-500S, consisting of longitudinal and transverse reinforcement.
Longitudinal bars comprise a base standard to the deck and supplementary bars for bend-
ing and torsion in specific zones. The layout features five types of bars: bottom nucleus,
top nucleus, top cantilever, bottom cantilever, and lateral web. Transverse bars include a
core contour bar, an upper transverse bar, a lower cantilever bar, and shear stirrups on
the webs of the sections. Reinforcement zones cover 70% of the span and 15% above the
pier sections. Prestressing is constant throughout the deck. There are seven Y-1860 S7 steel
strands with a diameter of 15.7 mm, uniformly distributed in the cross-section. There is a
relationship between the number of tendons and webs in voided sections, linking pre-
stressing to the cross-sectional geometry. The prestressing force is determined by balanc-
ing the self-weight of the structure with the required force. This force is defined by the
tension before losses and the location of the anchor plates, which are the points where the
force is transmitted to the structure. The curve friction coefficient indicates the tension loss
per unit change in angle, while the parasitic friction coefficient accounts for the tension
loss per unit length of the tendon. The wedge penetration represents the sliding of the
tendon when released from the stressing jack. The values for these parameters have been
obtained from recommended values for post-tensioning systems. Therefore, active and
passive reinforcements are calculated once the geometrical parameters and the concrete
grade are fixed, so they are not subject to optimization.

The structural constraints ensure compliance with serviceability and ultimate limit
states defined in Eurocode 2, considering the actions specified in Eurocode 1, which in-
clude dead loads of 44 kN/m and the environmental exposure class of concrete XC4. They
include bending, vertical, longitudinal, and punching shear; torsion; combined torsion
with bending and shear; compression and tension stress; cracking; and vibration. Con-
structability and geometrical constraints are also checked for this structure type.

This research utilized CSiBridge version 21.0.0 software to develop a 3D model of the
deck for analysis and dimensioning. Several alternatives were evaluated to obtain the
stresses in each section. The structural analysis for each option calculates the acting
stresses as section forces resulting from the mathematical model with the loads applied.
Additionally, the analysis determines the stress resultants that each section resists.
Stresses are calculated using a sectional approach to design each structural element. These
force calculations correspond with those provided by Yepes-Bellver et al. [16,17].

3. Surrogate Modeling

Approximate models efficiently predict target responses based on design variables
throughout the design space [25]. The process involves three stages: (a) obtaining the ini-
tial input dataset, (b) selecting the model type, and (c) selecting the fitting approach. The
aim is to create a model that accurately forecasts the target response.

There has been a notable increase in the use of metamodels in structural optimization,
particularly those based on Kriging methodologies [24]. Previously, ANNs were the most
widely used technique. These two approaches remain the most complementary strategies,
as confirmed by recent studies [16-23], which justify their selection in this work. Kriging
provides exact predictions for training points and an explicit expression for optimization,
while ANNSs yield varying predictions, requiring multiple runs to stabilize results. These
two approaches have been evaluated in this study, among other metamodels. Below is an
overview of the approaches used in this study.



Infrastructures 2025, 10, 43

5 of 18

3.1. Kriging Metamodel

The Kriging approximation model estimates the value of an attribute at a point u
based on a set of 1 values of z [26]. Here, the target response is the cost of the bridge deck.
This method forecasts outputs without the need for extensive structural analysis. These
surrogate models are deterministic, yielding consistent outputs for identical inputs lack-
ing random error. The general formulation of a Kriging metamodel is as follows:

y(x) = f(x) +Z(x) M

where Z(x) is a stochastic, zero-mean spatially correlated residual modeled using a covar-
iance function, and f(x) is the approximation function analogous to a regression model. It
consists of the deterministic trend component, often modeled as follows:

n
F0) =) Bifico) @
i=1
Here, fi(x) are the known basis functions (e.g., constant, linear, or quadratic), and i
are unknown coefficients representing trend basis or mean, typically shown as a constant
value (Ordinary Kriging), as zero (Simple Kriging), or as a polynomial model, such as a
linear or quadratic model (Universal Kriging). Kriging models can be constructed using
polynomial regressions of degrees zero, one, and two, designated in this study as Kriging
1, Kriging 2, and Kriging 3.
The above Kriging models are deterministic, meaning that the response from a model
does not exhibit random error. In other words, repeated runs with the same input param-
eters yield the same response.

3.2. Artificial Neural Network

Neurons in input, hidden, and output layers comprise an ANN. Data are processed,
and weights are adjusted iteratively using error backpropagation to improve accuracy.
Hidden layer neurons connect to input and output layers. Input variables xi are weighted
by coefficients wij, combined linearly with a bias term b;. Each hidden neuron applies a
sigmoid function, whereas the output layer uses a linear function for the final output.

The multilayer perceptron approximates functions with a single hidden layer [27],
relying on the backpropagation algorithm [28-30]. In a forward-feeding network, connec-
tions flow in a single direction from input to output, employing supervised learning with
data that have known responses. The data are separated into a training set, a validation
set, and a test set to identify any cases of overfitting. Training data adjust parameters,
validation data monitor overlearning, and test data evaluate performance. The “early
stopping” method helps avoid overfitting by evaluating the errors in both training and
validation datasets.

The neural network utilized 30 datasets: twenty-one for training, five for validation,
and four for testing, selected randomly. The model includes a hidden layer with five neu-
rons, and simulations evaluate performance using training or new prediction data. Cross-
validation compares training outputs with simulated results, evaluating accuracy and de-
tecting overfitting. Cross-validation can be utilized with training, validation, or test da-
tasets.

3.3. Radial Basis Functions

Radial basis functions (RBFs) are interpolation and approximation methods widely
used to construct surrogate models for complex systems [31]. They rely on radial sym-
metry, meaning the function’s value depends only on the distance from a point of interest
to a central point. RBFs are particularly effective for interpolating scattered data, offering
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smooth, continuous approximations even in high-dimensional spaces. A radial basis func-
tion, with input variables xi grouped in x, can be expressed as

No
G =) @i+ b(x) ©

Here, f= f(x) denotes the output response, ®: = ®i(x) are the RBFs, No is the number
of radial basis functions, a: are the weights, and b = b(x) is the bias term. The selection of
the total count of radial basis functions matches the number of input variables.

The RBF choice (e.g., linear, Gaussian, and thin plate spline) influences the smooth-
ness and flexibility of the model, with the most frequently used RBFs being as follows:

Linear: ®;(r) =7 4)

2
Multiquadratic: &;(r) = (1) +1 ®)

Inverse multiquadratic: &;(r) =

By ©

Cubic: ®;(r) =713 (7)

Here, r is the Euclidean distance, and (¢;) represents the shape parameter.

4. Methodology

This study analyzes the cost of each deck alternative and optimizes a Kriging re-
sponse surface. The methodology follows a structured sequence to optimize the design
process. It begins with selecting key design variables and determining their feasible
ranges. Latin Hypercube Sampling (LHS) generates a representative set of design points.
Each sample undergoes structural design and evaluation to ensure compliance with all
constraints, followed by the computation of its cost function. A metamodel is then con-
structed to approximate the cost function, which is optimized to identify the optimal so-
lution. Finally, the accuracy of the metamodel is assessed and, if necessary, refined itera-
tively until a satisfactory solution is achieved. The proposed methodology is summarized

in Figure 3.
. Design variables Determination of .
Begin € . . LHS sampling
selection variable ranges
— . Deck slab
Metamodel Objective function i
) R calculation and
selection evaluation R
structural design
Metamodel Optimal solution
heuristic and cost function Error assessment
optimization computation
|
Yes Excessive Metamodel
error? validation

Figure 3. Simplified flowchart of the proposed methodology.

LHS selects random numbers that are uniformly distributed, providing lower sample
mean variance than random sampling [32]. It samples intervals for each variable, running
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the model for all intervals. LHS is flexible, efficiently adjusts sample sizes, and generates
results quickly, making it widely applicable. Furthermore, LHS is one of the most com-
monly used techniques in surrogate modeling for structural applications [24].

LHS defines a set of geometric variables and concrete grades, generating different
solutions. They include concrete strength in compression, slab depth, and base geometry.
Once these variables are established, a complete structural analysis is conducted, includ-
ing the design of active and passive reinforcements and verification of ultimate and ser-
viceability limit states. This ensures that each solution complies with safety and servicea-
bility requirements. After sizing the structure, the measurements of the units are deter-
mined, allowing for cost estimation. This methodology guarantees that all sampled solu-
tions are viable and meet regulatory standards. Note that the proposed method optimizes
the response surface instead of optimizing all of the structure variables.

4.1. Cost Evaluation

Each slab deck construction involves costs analyzed through concrete grade, steel
quantity, formwork surface, and lighting. The BEDEC database [33] provides the unit
costs shown in Table 1, a widely recognized resource among national contractors, ensur-
ing a realistic cost analysis. While these market prices naturally vary depending on eco-
nomic conditions and local factors, this does not affect the general applicability of the pro-
posed methodology. The unit costs that multiply the measurements serve as the weights
of the objective function.

Table 1. Deck unit costs.

Deck Unit Cost (EUR)
kg B-500-St steel 1.16

kg Y-1860-57 steel 3.40

m3 C-30 concrete 99.81

m?3 C-35 concrete 104.57

m?3 C-40 concrete 109.33

m3 C-45 concrete 114.10

m3 C-50 concrete 118.87

m3 voids 99.81

m?2 formwork 33.81

Cost relates to measuring each material. The cost of the materials used is considered
as it differentiates the options. At this stage, the study of a conventional solution would
generally close with selecting the lowest cost deck. Nevertheless, a methodology that can
lower costs by applying optimization to a Kriging model using the set of alternatives ob-
tained from sampling is suggested.

4.2. Sampling and Data Collection

The points’ number and location determine the sampling. Sample size correlates with
variable count for similar metamodel accuracy. A sample size of approximately 30 indi-
viduals for concrete structures yields favorable results [16,17]. Random values from 0 to 1
correspond to each parameter modified after LHS. Next, values fit predefined variable
ranges and adjust within them, producing solutions. This approach generates designs that
meet optimization model inputs, undergo structural analysis, and observe with Limit
States to ensure a buildable bridge.

LHS sampling diversifies the exploration for the locally optimal solution. Variables
include concrete strength in compression, slab depth, and base geometry. Concrete
strength varies between 30 and 50 MPa, depth from 1.15 to 1.70 m, and base from 3.00 to



Infrastructures 2025, 10, 43

8 of 18

5.00 m in 5 cm increments. Minimum coating is the distance between voids or from voids
to the deck face. After determining variables, LHS sampling generates combinations for
the metamodel, ranging from 0 to 1. Edge and bottom base dimensions are multiples of 5
cm, and concrete strength values are integer multiples of five.

The maximum number of voids corresponds to the highest possible number that can
be accommodated within the section. Table 2 presents the dimensional ranges and their
constraints as the General Directorate of Public Roads of Spain [34] recommended. The
minimum coating refers to the shortest distance between a void and the deck surface or
adjacent voids.

Table 2. Dimensional ranges and their constraints as recommended by [34].

Design Variables Range Limitation
Concrete grade (fux) 30-50 MPa -
Deck depth (c) 1.15-1.70 m >0.90 m
Base width (b) 3.00-5.00 m -
Cantilever length (v) Variable <3.50 m
Distance between cantilever and nucleus (d) 0.40 m -
Cantilever starting thickness e1 (a + b) 0.35m -
Cantilever edge thickness ez (1) 0.25m >0.20 m
Minimum void coating 0.225m >0.15m

In Table 3, deck depth, base width, and concrete grade are metamodel inputs, while
cost is output.

Table 3. Design variables in the defined ranges.

Deck Deck Depth Base Width Concrete Grade Cost
(m) (m) (MPa) (EUR)
1 145 4.35 35 192,057.24
2 1.55 4.10 35 205,791.78
3 1.45 4.75 35 197,491.93
4 1.70 3.80 45 208,483.87
5 1.20 3.85 40 184,075.17
6 1.55 3.60 45 189,644.46
7 1.20 4.85 50 196,809.28
8 1.15 4.50 50 195,215.52
9 1.35 3.95 30 187,145.69
10 1.30 4.45 30 195,251.53
11 1.35 4.25 45 194,435.77
12 1.50 4.55 30 192,497.60
13 1.60 4.20 40 199,854.38
14 1.25 4.70 40 194,671.69
15 1.50 4.05 45 193,285.15
16 1.30 4.90 40 197,991.85
17 1.65 3.65 35 190,969.37
18 1.65 3.45 45 191,799.47
19 1.25 3.50 45 181,265.33
20 1.40 3.30 40 181,320.82
21 1.45 3.90 45 194,740.91
22 1.35 3.60 35 186,808.36
23 1.60 3.35 45 190,539.61
24 1.50 4.50 45 202,670.58
25 1.55 3.20 30 182,398.13
26 1.25 3.00 50 181,043.85
27 140 3.45 45 186,143.08
28 1.50 3.55 35 185,779.65
29 1.70 3.85 40 198,548.66
30 1.15 3.70 40 182,731.07
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The methodology differs from traditional analysis by using LHS sampling to fit a
Kriging model optimized with a heuristic algorithm. Heuristic algorithms apply Al tech-
niques to select designs, analyze structures, check constraints, and modify variables iter-
atively to optimize the objective function. While they do not guarantee a global optimum,
they deliver near-optimal solutions in a reasonable time. Structural complexity often re-
quires heuristic optimization, though it can be time-consuming. Surrogate models like
polynomial regression, neural networks, or Kriging provide faster approximate responses
than the actual model to reduce computational cost. Figure 4 shows the cost response sur-
face depending on the concrete grade and the depth of the deck, with a steep surface fea-
turing peaks and valleys due to the nonlinearities and interactions among design param-
eters. LHS chooses random numbers that are uniformly distributed to evaluate cost alter-
natives. Subsequently, an approximate Kriging model generates and optimizes a response
surface created with the input data.

210,000
200,000
Cost (EUR)
190,000
1.65
1.50
180,000
135  peck depth (m)
30 1.20
40
50
Concrete grade (MPa)

Figure 4. Response surface of cost depending on concrete grade and deck depth (Tables 3 and 4).

4.3. Response Surface Optimization Approach

The MATLAB Kriging Toolbox (DACE) constructed a surrogate model from com-
puter experiment data, approximating the original model. A computer experiment in-
volves input-response pairs from model simulations to derive a response surface for op-
timization. The DACE documentation outlines the mathematical framework for the Ver-
sion 2.0 toolbox [35].

This study used simulated annealing as a heuristic algorithm [36], miming how crys-
tal molecules reach minimum energy. Solutions are accepted based on exp(-AE/T). Here,
AE indicates the growth of the objective function, and T is a parameter. This allows ac-
cepting worse solutions to escape local optima, allowing for an extensive search for the
global optimal solution. The initial temperature To is set using Medina’s method [37] and
adjusted by the acceptance ratio. Temperatures reduce geometrically every 1000 Markov
chains with a cooling factor k = 0.8, lowering the likelihood of accepting worse solutions.

A conventional study would select deck #30 (Table 2) as it has the lowest cost. How-
ever, optimizing a Kriging model aims to identify a lower-cost solution than the sample.
After optimizing the metamodel using simulated annealing, the optimized deck has a
depth of 1.30 m and a base width of 3.15 m. After optimization, the cost for the bridge
deck is EUR 180,071.26.

The optimized deck features a volume of 434.91 m?3 of C-35 concrete, 52,468.53 kg of
B-500-S steel, 10,538.13 kg of Y-1860-5 steel, 865.69 m? of slab formwork, and 86.25 m? of
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voids. These measurements cost EUR 2093.85 per meter of bridge length and EUR 252.27
per square meter of bridge deck. The original deck, with a base width of 4.00 m, a depth
of 1.35 m, and a C-35 concrete grade, costs EUR 192,665.98. The optimized bridge is 6.54%
more cost-effective than the original bridge. The optimized bridge uses 14.80% less con-
crete and 11.25% less active steel, with the remaining measurements similar to the original
design.

Figure 5 presents the normalized measurements and costs of the optimized structure
relative to the reference slab. A significant reduction can be observed in the quantities of
concrete, prestressed reinforcement, and overall cost. However, the amounts of passive
steel, voids, and formwork have no significant variations.

C-35 (kg)
1
0.95
Cost (EUR) B-500-S (kg)
0.9
- Reference
0.85
Optimized
Voids (m3) L Y-1860-5 (kg)

Formwork (m2)

Figure 5. Normalized measurements and costs of the optimized structure relative to the reference
slab.

Although this cost reduction is moderately lower than achieved with the complete
heuristic optimization of all structural variables, the proposed methodology offers a sim-
pler alternative by optimizing the response surface rather than the entire structure. For
instance, Marti et al. [38] reported cost savings of approximately 8% in precast PC road
bridges using simulated annealing. However, our approach requires less computational
effort while significantly reducing material consumption.

5. Results and Discussion

This section compares the performance of several prediction models by examining
discrepancies between the known values of new solutions and the predictions. The mod-
els were fitted using the first 30 data points from Table 3. Real decks #31 to #38 were then
used for a mean square error (MSE) analysis (Table 4). These new decks are unknown to
the models, making them helpful in assessing prediction errors. Solution #38, which rep-
resents the optimal result from the Kriging-generated surface, is also highlighted.

After fitting a metamodel, the RMSE (root mean square error) can assess the predic-
tion error.

RMSE = (8)
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where y, are the predicted values, yi are the known values, and 7 is the number of obser-

vations.

Table 4. Additional design variable values obtained within the defined ranges.

Deck Deck Depth Base Width Concrete Grade Cost

(m) (m) (MPa) (EUR)
31 1.15 3.40 35 189,650.53
32 1.25 3.35 35 181,823.43
33 1.15 3.65 45 187,493.16
34 1.15 3.35 40 180,205.16
35 1.15 3.25 40 180,886.29
36 1.15 3.55 40 190,063.83
37 1.10 3.40 35 181,530.72
38 1.30 3.15 35 180,071.26

5.1. Visualization of Observed Data

A response surface can be plotted with observed data using Minitab v17 before using
the metamodels. Figures 6 and 7 display the 38 observed data points (Tables 3 and 4), with
cost as output. Figure 7 presents the contour plot of the observed data, showing several
peaks and valleys. The response surface is abrupt, and evaluating which types of surro-
gate models are most suitable for predicting and optimizing the solution within this space
is necessary.

210,000 ‘
200,000 -
Cost (EUR)
190,000 ‘
«
180,000 |
“—— 7 1.35 peck depth (m)
3 T - 1.20
4 —
Base width (m) 2

Figure 6. Response surface for the 38 observed deck data points (Tables 3 and 4).

Cost (EUR)
< 185,000
I 185,000 - 190,000
I 190,000 - 195,000
M 195,000 - 200,000
I 200,000 - 205,000
|} > 205,000

Deck depth (m)

32 34 3.6 38 4.0 42 4.4 4.6 48
Base width (m)

Figure 7. Contour plot for the 38 observed deck data points (Tables 3 and 4).
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Surrogate models do not always capture the nuances of local optima in response sur-
faces with abrupt features, like those shown in Figures 6 and 7. Figure 8 displays the quad-
ratic polynomial model fitted to the 30 data points from Table 3. While this model predicts
a minimum close to that of the response surface, it has significantly smoothed the re-
sponse. However, these simple polynomial models allow for studying trends in some
problems.

H2.05

1.95

Cost (EUR)

1.85

18

5 1.6

4
45 4 1

1.2
Base width (m) > 2 Deck depth (m)

Figure 8. Polynomial quadratic model fitted at 30 observed slab bridge deck data points (Table 2).

The linear and quadratic polynomial models fitted to the 30 points in Table 3 are
shown in Equation (9) and Equation (10), respectively. In these expressions, the response
variable y represents the cost (EUR), x1 is the deck depth (m), x2 is the base width (m), and
x3 is the concrete grade (MPa).

y = 93242.77 + 28831.54x, + 11271.66x, + 322.77x, )

y = 389214.11 — 224420.62x; — 5097.12x, — 3969.32x; + 51646.58x?
— 1158.79x3 + 23.45x2 + 13971.64x,x, + 1252.19x, x5 (10)
+161.92x,x3

5.2. Prediction Models Comparison

Table 5 presents the observed values, the polynomial fitting, Kriging, RBF, and the
average results from 16 ANN runs for deck #38 in the response surface optimization. Note
that neural networks are not deterministic, as the data for learning and validation is ran-
domly selected each time. Consequently, the ANN was run several times to stabilize the
standard deviation of the means.

Table 5. Absolute and relative errors for local optima (#38).

#38 Absolute Error Relative Error
Observed 180,071.26 0.00 0.00%
Linear 177,526.45 -2544.81 -1.41%
Quadratic 179,036.24 179,036.24 -0.57%
Kriging 1 182,928.86 2857.60 1.59%
Kriging 2 177,218.88 -2852.38 -1.58%
Kriging 3 179,032.11 -1039.15 -0.58%
Linear RBF 183,589.60 3518.34 1.95%

Multiquadratic RBF 170,870.73 -9200.53 -5.11%
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Inverse Multiquadratic RBF 163,652.53 -16,418.73 -9.12%
Cubic RBF 169,577.93 -10,493.33 -5.83%
ANN average 180,010.27 -60.99 -0.03%

The average values predicted by ANN provide the lowest error. In addition, the
Kriging 3, which employs an order 2 regression polynomial, gives an error close to that of
the quadratic polynomial model. Nevertheless, the MSE and RMSE errors are lower for
the polynomial quadratic and Kriging 3 models than in the ANN case (Table 6). These
errors were obtained from predicting values #31 to #38.

Table 6. MSE and RMSE of the models employed.

Models MSE RMSE
Linear 53,978,296.90 7346.99
Quadratic 14,069,613.95 3750.95
Kriging 1 18,928,756.82 4350.72
Kriging 2 51,358,533.85 7166.49
Kriging 3 14,100,395.62 3755.05
Linear RBF 18,152,649.81 4260.59
Multiquadratic RBF 57,938,931.10 7611.76
Inverse multiquadratic RBF 122,086,223.32 11,049.26
Cubic RBF 56,608,633.18 7523.87
ANN average 20,824,711.27 4563.41

This analysis verifies the good performance of ANNSs in predicting the optimal value.
The next step thoroughly examines the ANN’s ability to identify optimal values. There-
fore, this model will be analyzed to assess how the response surface behaves around the
localized optimum by optimizing the response surface (deck #38). ANNs were used to
analyze the behavior of solutions around the optimal cost solution. This approach has
allowed us to verify that the optimal solution identified by optimizing the Kriging meta-
model is consistent with the behavior predicted by the ANNs in the neighborhood of the
optimum. The average prediction values, shown in Figures 8-10 below, illustrate this.

Figure 9 shows the ANN'’s accurate minimum slab depth prediction based on a 3.15
m base and 35 MPa concrete grade. A minimal value occurs at 1.20 m, closely matching
the optimum value determined by Kriging.

188,000

187,000

186,000

185,000

184,000

183,000

Cost (EUR)

182,000

181,000

—

180,000

179,000
1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70
Deck depth (m)

Figure 9. ANN cost for a 3.15 m base width and 35 MPa concrete grade as a function of deck depth.

For a slab depth of 1.30 m and a concrete strength of 35 MPa, the ANN suggests
(Figure 10) that the cost decreases as the slab width increases. This prediction aligns with
the optimum found by Kriging, whose base width value was 3.15 m.
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Figure 10. ANN cost for a 1.30 m depth and 35 MPa concrete grade as a function of deck depth
width.

Considering a 1.30 m deck depth and a base of 3.15 m, Figure 11 shows that the ANN
suggests that the characteristic resistance value that minimizes the cost is just above 35
MPa, similar to the value obtained in the optimization.

182,000
181,800

181,600 /
181,400 /
181,200

181,000 /

180,800

Cost (EUR)

180,600

180,400

180,200

180,000
30 35 40 45 50
Concrete grade (MPa)

Figure 11. ANN cost for a 1.30 m depth and 3.15 m base width as a function of the concrete grade.

The ANN local optimum is very similar to the Kriging local optimum. All metamod-
els should accurately predict costs, and optimizing the response surface to identify a local
minimum is essential. This approach benefits structural engineers, who typically avoid
heuristic optimization algorithms and miss opportunities to reduce costs. It supports
achieving more efficient, cost-effective designs.

The surrogate model methodology applies to all parameterized structures, enabling
more efficient designs by adjusting key cost-influencing parameters.

Though it may seem like excessive work for deck cost reduction, working with pa-
rameterized structures allows for programming data inputs into calculation software, sav-
ing time on structure verification for each individual in the analyzed population.

Additionally, this methodology can precisely estimate future deck costs before cal-
culating road overpasses with narrow load and dimension ranges, offering a significant
advantage during the solution study phase.
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5.3. Recommendations for Practical Use

The General Directorate of Public Roads of Spain (DGC) [34] recommends an opti-
mum ratio of deck depth to main span between 1/22 and 1/30. In contrast, the SETRA [39]
suggests a ratio of 1/28 specifically for three-span concrete decks with lateral cantilevers.
These guidelines provide slenderness near 1/28, a concrete content between 0.55 m?/m?
and 0.60 m3/m? for the deck, and a passive steel ranging from 100 kg/m? to 130 kg/m3. The
active steel should be approximately 17 kg/m? of the deck. The concrete grade should be
at least 40 MPa.

In the context of cost optimization, it is noted that for a PC slab bridge with a 34 m
main span, the concrete grade can be lowered to 35 MPa. The slenderness ratio found for
the optimum cost, 1/26.15, also falls within the recommended ranges outlined earlier. This
result demonstrates that the selected design minimizes costs while adhering to established
guidelines, ensuring structural efficiency and compliance with best practices.

Yepes et al. [1] compare the optimal bridge to the statistical study on 61 real post-
tensioned slab bridges. Table 7 presents basic statistics for lightweight slab decks, includ-
ing the mean, coefficient of variation, minimum, maximum, 25th, 50th, and 75th percen-
tiles. The average span-to-depth ratio is 23.93. For the optimized deck, with spans of 24,
34, and 28 m, ratios range from 18.46 to 26.15, within the 25th to 75th percentile range for
PC slab decks. Considering the concrete volume per square meter (m3/m?), the ratio is 0.61,
6.56% lower than the mean (0.65). The passive reinforcement ratio is 73.53, 13.26% higher
than the mean. The ratio for active reinforcement (kg/m?) is 14.76, slightly below the first
quartile. The optimized deck cost is 252.27 EUR/m?, below the 25th percentile. This com-
parison shows the bridge deck falls within the range of PC slab decks in Spain. Therefore,
the cost-optimal solution has a lower concrete volume and active reinforcement, compen-
sated by a higher passive reinforcement ratio. Additionally, its cost below the 25th per-
centile highlights designers’ limited use of optimization techniques.

Table 7. Slab deck variables from a sample of 61 individuals [1].

Mean C.V. Min Max P25 P50 P75
Total length (m) 91.87 60.7% 22.18 300.20 60.50 72.00 92.40
Width deck (m) 11.42 24.5% 7.60 23.00 9.90 11.00 12.45
Main span (m) 29.97 20.6% 18.00 45.00 25.00 31.00 35.48
Depth deck (m) 1.25 14.2% 0.85 1.75 1.13 1.25 1.32
Main span/depth deck 23.93 12.0% 18.46 30.40 21.74 23.33 26.39
Concrete (m3/m?2) 0.65 17.3% 0.44 0.97 0.56 0.66 0.71
Steel prestressed (kg/m?) 22.64 28.9% 11.17 38.16 17.99 21.99 26.85
Steel reinforcement (kg/m?) 64.92 14.9% 42.80 9291 57.76 65.27 69.91
External voids (m3/m?) 0.40 30.8% 0.12 0.74 0.31 0.39 0.47
Internal voids (m3/m?) 0.20 24.2% 0.11 0.33 0.16 0.20 0.24
Formwork (m?/m?2) 1.12 3.9% 1.01 1.23 1.09 1.12 1.15
Desk cost (€/m?) 314.10 15.2% 228.72 436.36 276.67 317.27 346.73

6. Conclusions

This paper validates a Kriging-based model for cost optimization in designing post-
tensioned concrete slab bridges. By combining Kriging models with Latin Hypercube
Sampling (LHS) and simulated annealing algorithms, the optimization process achieved
a 6.54% reduction in total bridge deck cost compared to traditional methods. This result
stems from a 14.8% decrease in concrete volume and an 11.25% reduction in active steel,
highlighting the methodology’s efficiency in conserving materials without compromising
structural performance.

The comparative analysis of predictive models shows that Kriging with second-order
polynomials provides a robust framework for identifying local optima in complex design
spaces. At the same time, artificial neural networks (ANNSs) offer high predictive accuracy
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at the cost of computational intensity due to iterative convergence. Although computa-
tionally efficient, radial basis functions (RBFs) struggle with the steep, multi-dimensional
response surfaces characteristic of this study.

The optimized design meets practical engineering standards, including recom-
mended slenderness ratios and material configurations, ensuring compliance with ser-
viceability and ultimate limit states. The findings also indicate that surrogate models are
tools for predicting optimal solutions and facilitate the systematic exploration of design
parameters, providing insights into trade-offs that inform decision-making.

From a practical perspective, integrating surrogate-assisted optimization into routine
bridge design workflows can significantly reduce costs. This methodology enables early-
stage cost prediction and tailored solutions for complex geometric or material constraints.
Expanding this framework to other structural types promises similar benefits, especially
in high-stakes infrastructure projects.

Despite its effectiveness, the methodology relies on sampled data quality, which af-
fects accuracy in complex design spaces. While cost minimization is prioritized, environ-
mental impact and maintenance are not explicitly considered. Heuristic optimization does
not ensure a global optimum but provides a practical approximation.

Future research should explore alternative concrete types, such as high-strength con-
crete and fiber-reinforced concrete, to enhance structural performance and cost efficiency,
as well as other types of bridges used as motorway overpasses. Additionally, multicriteria
decision-making techniques using metamodels and response surfaces with multiple out-
puts could incorporate other relevant criteria, such as minimizing greenhouse gas emis-
sions, durability, and maintenance.
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