En un artículo anterior explicamos cómo se podría seleccionar una máquina empleada en la construcción atendiendo a criterios económicos. Para eso explicamos los conceptos de Valor Actual Neto (VAN) y Tasa Interna de Rentabilidad (TIR). Sin embargo, la inflación influye en el cálculo de estos indicadores. Vamos a explicar ahora cómo influye la variación de los precios en la selección económica de los equipos. Pero aquellos que estéis más interesados en profundizar en aspectos de gestión de costes y producción de la maquinaria, podéis consultar en siguiente curso que he preparado: https://ingeoexpert.com/cursos/curso-de-gestion-de-costes-y-produccion-de-la-maquinaria-empleada-en-la-construccion/
Los flujos de caja de la mayor parte de las inversiones productivas, entre las que se encuentran las máquinas empleadas en la construcción, se ven afectadas por la inflación. Evidentemente, la inflación provocará que la empresa incremente el precio de sus productos y, por tanto, los flujos netos de caja. Sin embargo, no se debe olvidar que la inflación también afectará a los precios de las materias prima, mano de obra, etc.
Si denominamos ej los ingresos netos en el año j, n el número de periodos, e i la tasa de actualización o coste del capital, g a la tasa de inflación y f al tanto por uno en que cada año incrementa el valor nominal de los flujos netos de caja a consecuencia de la inflación, el valor actual neto (VAN) se puede calcular de la siguiente forma:
Por otra parte, el efecto de la inflación se puede introducir en términos de elasticidad. Así, la elasticidad de los flujos netos de caja-índice general de precios se puede expresar como:
De esta forma,
Se puede calcular la tasa interna de retorno (TIR) como el valor de i que anula el VAN.
Si Ef es mayor que uno, la inflación influye favorablemente sobre la inversión, pues eleva su valor capital y su tasa de retorno. En caso contrario, repercute negativamente. En caso de ser Ef igual a la unidad, no existe repercusión de la inflación en las decisiones de inversión.
Pero creo que será mejor que veamos algunos problemas resueltos para que tengáis claro cómo se calculan estos índices con la inflación. Espero que os sean de interés.
Para la máxima duración de un cable, interesa que las solicitaciones se aproximen al límite de fatiga, pero se alejen del límite elástico, evidentemente, para conseguir una mayor seguridad. Que se cumplan ambos requisitos a veces es complicado.
Por eso, para estimar la vida útil de un cable, Gustav Niemann proporciona la siguiente expresión (Larrodé y Miravete, 1996) que intenta aunar estos dos criterios:
Donde W es el número de flexiones sufridas por el cable hasta su rotura (plegado sobre la polea y desplegado); D es el diámetro de la polea (m); d es el diámetro del cable (m); σe es el esfuerzo de extensión (MPa). Este valor suele variar entre 30.000 flexiones para el caso de polipastos y 150.000 en el caso de grandes grúas.
El coeficiente n presenta los siguientes valores:
1 flexión en el mismo sentido
1,5 flexión en sentido contrario, cable cruzado
2 flexión en sentido contrario, cable Lang
El coeficiente b1 depende de la forma de la garganta
para radio de garganta, r = 0,54 d
b1 = 1 cable cruzado y Lang
para radio de garganta, r = ∞
b1 = 0,72 cable cruzado
b1 = 0,65 cable Lang
para garganta en V a 45º
b1 = 0,72 cable cruzado
b1 = 0,60 cable Lang
El coeficiente b2 depende de la forma del cable
b2 = 1,04 cable cruzado 6 x 37, 1600 MPa
b2 = 1,11 cable Lang 6 x 37, 1600 MPa
Os dejo un problema resuelto por si os resulta de interés.
PROBLEMA. Se quiere estimar la vida de un cable de un puente grúa que tiene que elevar una carga total de 120 kN. El diámetro de las poleas es de 1200 mm, el cable es cruzado, su resistencia es de 1770 N/mm2 y su diámetro es de 30 mm. Se supone que la flexión siempre se realiza en el mismo sentido.
Solución:
Utilizamos la fórmula de Niemann,
donde D = 1200 mm; d = 30 mm, h1 = 1 (para un radio de garganta r = 0,54d), b2 = 1,04.
Por otra parte, el esfuerzo de extensión σe (MPa) se calcula de la siguiente forma (son dos ramales):
Por tanto,
Este valor es muy superior al límite inferior de 150.000 flexiones requerido para las grandes grúas.
Referencias:
LARRODÉ, E.; MIRAVETE, A. (1996). Grúas. Servicio de Publicaciones, Centro Politécnico Superior, Universidad de Zaragoza, 554 pp.
YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.
Figura. Determinación del máximo caudal aspirable desde el punto de vista de la cavitación
Cuando una bomba se instala en seco con una tubería de aspiración, se debe verificar que no se produce cavitación. Se trata de un fenómeno termodinámico por el que el agua se vaporiza al reducirse la presión absoluta por debajo de la presión de vapor del líquido. Este fenómeno depende del líquido y puede aparecer en cualquier punto o situación de la instalación: bombas, válvulas, codos, etc.
Si la bomba trabaja con una aspiración excesiva, la presión a la entrada de la bomba puede llegar a alcanzar la presión parcial de vapor del agua. En ese momento se desprenden burbujas de vapor que, al recuperarse la presión, implosionan violentamente (la implosión puede producirse a presiones de 10000 bares) provocando graves daños en la bomba y sus instalaciones, pues deteriora las paredes y superficies. Si se produce cavitación, la eficiencia de la bomba desciende radicalmente, las vibraciones asociadas con la creación y destrucción de las burbujas destruyen las máquinas y las conducciones, y el oxígeno liberado las corroe. La cavitación produce un ruido característico parecido al de arena deslizándose por una superficie metálica. Si la bomba funciona en estas condiciones durante cierto tiempo se puede dañar.
DÍAZ DEL RÍO, M. (2007). Maquinaria de construcción. 2ª edición. McGraw-Hill/Interamericana de España, S.A., 944 pp.
IDEA (2012). Guía técnica de selección de equipos de transporte de fluidos. Asociación Técnica Española de Climatización y Refrigeración, Madrid, 108 pp.
ŁUSZCZEWSKI, A. (1999). Redes industriales de tubería. Bombas para agua, ventiladores y compresores. Diseño y construcción. Reverté Ediciones. México. 302 pp.
POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.
Hoy, 2 de octubre, pero del año 1883, nació en Praga Karl von Terzaghi, que fue un ingeniero, reconocido como el padre de la mecánica de suelos. Para celebrar esta efeméride, se ha organizado un Encuentro Profesional Geololotecnia 2022.
Mi agradecimiento a los organizadores de este evento, tanto a Germán Sánchez (@ingeodo) como a Manuel Romana (@MRGdeviaje).
En dicho encuentro tuve la ocasión de presentar una comunicación denominada «La comunicación multicanal de la geotecnia y sus procedimientos constructivos«. Se trata de una reflexión muy personal respecto a la forma que tengo de comunicar con mis estudiantes y dejar en abierto el conocimiento en las redes sociales. Os dejo el vídeo completo por si os puede resultar de interés.
En un artículo anterior definimos la distancia crítica de transporte en un movimiento de tierras como aquella distancia en la que el equipo de cargadoras y camiones está equilibrado. Es decir, ni sobran ni faltan camiones o cargadoras. O dicho de otra forma, es la distancia de transporte en la que no existen esperas en las máquinas. Esta es una distancia teórica, puesto que para calcularla debemos conocer todos los datos de antemano, y estos no son deterministas. Por otra parte, en obra ocurre lo contrario: tenemos una distancia de transporte como dato, pero en este caso se trataría de saber cuántos camiones y cargadoras serían necesarios para que no existiesen demoras. Afortunadamente en obra se puede corregir rápidamente cualquier desfase. En dicho artículo proporcionamos, incluso, una calculadora en línea para que se pudiesen visualizar los cambios.
Aquí lo que presento es un problema resuelto que, espero, os sea de interés. Este problema lo puse en su momento en un examen de Procedimientos de Construcción, en la ETS de Ingeniería de Caminos, Canales y Puertos de Valencia.
En un artículo anterior se describió cómo se puede determinar la producción de los equipos y cuáles eran los factores de producción. Estos factores eran cinco: factor de disponibilidad, disponibilidad intrínseca, factor de utilización, factor de aprovechamiento e índice de paralizaciones. Estos factores se encuentran relacionados entre sí, de forma que conociendo dos de ellos es posible deducir los otros tres. De esta forma, el número de combinaciones posibles es de 10.
El problema que he detectado en algunos de mis estudiantes es que les cuesta deducir, a partir de las definiciones, las relaciones entre los distintos factores de producción. Es por este motivo por el que he desarrollado la Tabla 1 que indica las definiciones de los factores y cómo a conociendo dos de ellos se pueden deducir los otros tres. Se trata de un ejercicio sencillo que dejo al lector curioso para que lo deduzca.
De esta forma ya sois capaces de resolver algún problema como el siguiente:
De 100 minutos de laborables, una máquina tiene 85 minutos de disponibilidad y 80 minutos de utilización. Determinar: a) los minutos correspondientes a mantenimiento y averías, b) los minutos correspondientes a paradas en el tajo, c) factor de disponibilidad, d) factor de utilización, e) factor de aprovechamiento, f) disponibilidad intrínseca y g) índice de paralizaciones.
Respuestas: a) 15 min; b) 5 min; c) 0,850; d) 0,941; e) 0,800; f) 0,842; g) 0,050
Os dejo también un par de vídeos sobre producción para recordar los conceptos básicos.
Referencias:
PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.
ROJO, J. (2010). Manual de movimiento de tierras a cielo abierto. Fueyo Editores, S.L., Madrid, 926 pp.
El pasado 9 de mayo del 2022, con motivo de la XXVIII semana de la Ingeniería Civil y el Medio Ambiente de la Universitat Politècnica de València, tuvimos la ocasión de escuchar la conferencia inaugural impartida por Isaac Moreno Gallo sobre las principales técnicas y logros de la Ingeniería Civil practicada desde la más remota antigüedad.
Para mí fue muy agradable conocer personalmente a Isaac, pues como nos conocemos por redes sociales, tuve la osadía de invitarlo a esta Conferencia y le puse en contacto con la Dirección de nuestra Escuela para que pudiese impartirla. Como siempre, la persona es infinitamente más interesante que el perfil en redes sociales o su imagen en documentales. Es lo que tiene la desvirtualización, tan necesaria para la verdadera comunicación entre las personas.
Isaac es de esos personajes especiales, ingeniero técnico de obras públicas e historiador, que es uno de los grandes especialistas en ingeniería romana de nuestro país. Burgalés, pero afincado en Zaragoza, sin duda, es una voz autorizada que pone el grito en el cielo cuando nos habla del grave deterioro que está sufriendo nuestro patrimonio. Sobre todo por la gran ignorancia que tenemos en este país. Como siempre, la necesidad de las humanidades en nuestras carreras técnicas.
Aunque ya he hecho personalmente, doy de nuevo las gracias a Isaac, ahora de forma pública, por habernos deleitado con su saber. Os recomiendo que lo sigáis en redes sociales o a través de los fabulosos documentales sobre ingeniería romana de La 2 de RTVE. Por cierto, su blog lo podéis encontrar en la siguiente dirección: https://terraeantiqvae.com/profile/IsaacMorenoGallo
Para los que aún no hayáis visto la serie documental, la podéis ver https://www.rtve.es/play/videos/ingenieria-romana/. En la primera temporada, el acueducto de Nimes, el teatro de Cartagena o los magníficos monumentos de Roma fueron algunas de las infraestructuras que permitieron comprender los desafíos a los que se enfrentaron los ingenieros romanos. En la segunda temporada, nuevos ocho capítulos: ‘Ciudades I’, ‘Acueductos I’, ‘Ciudades II’, ‘Acueductos II’, ‘Carreteras’, ‘Minería’, ‘Estructuras’ y ‘Levantando un imperio’.
Pero creo que será mejor que escuchemos directamente la charla. En esta conferencia se trató de la ingeniería que abarca desde el Calcolítico hasta justo antes de la ingeniería romana. Espero que os guste.
Es un honor que la revista Publishers Weekly, en su número de abril del 2022, haya destacado uno de mis libros: Procedimientos de construcción de cimentaciones y estructuras de contención, como uno de los cinco ejemplares imprescindibles dentro de la producción editorial de la Universitat Politècnica de València. El libro tiene 480 páginas, 439 figuras y fotografías, así como 430 cuestiones de autoevaluación resueltas.
Tal y como apunta esta revista, «la revolución incruenta es la marca de agua de quien vislumbra un nuevo mundo y lo hace posible sin efectos colaterales«. En esta revolución se encuentra la editorial de la Universitat Politècnica de València, que en 2010 dio un giro a su producción, dirigida hasta entonces a la formación interna del alumnado, para adentrarse con éxito en la proyección internacional.
Es por este motivo la importancia de destacar uno de mis libros, dentro del gran volumen de libros y revistas editados por esta editorial, que asciende a 1.119, tal y como se recoge en esta publicación.
Os paso la entrevista realizada a la directora de la editorial, Reme Pérez García.
La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Gestión de costes y producción de la maquinaria empleada en la construcción”.
El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Hay plazas limitadas.
Os paso un vídeo explicativo y os doy algo de información tras el vídeo.
Este es un curso básico sobre la gestión de los costes y la producción de los equipos y maquinaria empleada en la construcción, tanto en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado para que el estudiante pueda profundizar en aquellos aspectos que les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.
En este curso aprenderás los conceptos básicos sobre la gestión de la producción, la selección económica de los bienes de equipo, los costes de propiedad y operación de la maquinaria, su amortización, la disponibilidad y fiabilidad de los equipos, el mantenimiento y reparación, los parques de maquinaria y la gestión de instalaciones, almacenes e inventarios, el estudio del trabajo y la productividad, las políticas de incentivos, métodos de medición del trabajo y la producción de equipos de máquinas. El curso se centra especialmente en la comprensión de los fundamentos básicos que gobiernan la gestión de los costes y la producción de los equipos, mostrando especial atención a la maquinaria pesada de movimientos de tierras y compactación. Es un curso de espectro amplio que incide en el conocimiento de los fundamentos de la ingeniería de la producción. Resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de los métodos y técnicas empleadas en la gestión de los costes y el rendimiento de la maquinaria en casos concretos. El curso trata llenar el hueco que deja la bibliografía habitual, donde no se profundiza en el coste y la producción de conjuntos de equipos. Además, el curso está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.
El contenido del curso se organiza en 30 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. Además, se entregan 75 problemas resueltos que complementan la teoría estudiada en cada lección. La dedicación aproximada para cada lección se estima en 2-3 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos del tema abordado. Al final se han diseñado tres unidades adicionales para afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y su capacidad para resolver problemas reales. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.
El curso está programado para 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.
Objetivos
Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:
Comprender la utilidad y las limitaciones de las técnicas actuales para la gestión de costes y producción de los equipos de máquinas empleados para la construcción
Evaluar y seleccionar la maquinaria atendiendo a criterios económicos y técnicos
Conocer la gestión de los sistemas de almacenamiento de materiales en obra y los parques de maquinaria
Aplicar las técnicas de estudios de métodos y medición del trabajo para mejorar la eficiencia de los equipos
Aplicar técnicas de aprendizaje e incentivos a la producción para mejorar la productividad
Programa
– Lección 1. Mecanización de las obras
– Lección 2. Adquisición y renovación de la maquinaria
– Lección 3. La depreciación de los equipos y su vida económica
– Lección 4. Selección de máquinas y equipos
– Lección 5. La estructura del coste
– Lección 6. Costes de propiedad de las máquinas
– Lección 7. Costes de operación de las máquinas
– Lección 8. Fondo horario y disponibilidad de los equipos
– Lección 9. Fiabilidad de los equipos
– Lección 10. Mantenimiento y reparación de los equipos
– Lección 11. Instalación y organización interna de la obra
– Lección 12. Parques de maquinaria y gestión de inventarios
– Lección 13. Constructividad y constructibilidad
– Lección 14. Estudio del trabajo y productividad
– Lección 15. Los incentivos a la productividad en la construcción
– Lección 16. Estudio de métodos
– Lección 17. Medición del trabajo
– Lección 18. La curva de aprendizaje en la construcción
– Lección 19. Ciclo de trabajo y factor de acoplamiento
– Lección 20. Producción de los equipos
– Lección 21. Composición y clasificación de suelos
– Lección 22. Movimiento de tierras y factor de esponjamiento
– Lección 23. Producción de los buldóceres
– Lección 24. Producción de las cargadoras
– Lección 25. Producción de las motoniveladoras
– Lección 26. Producción de las mototraíllas
– Lección 27. Producción de las retroexcavadoras
– Lección 28. Producción de las dragalinas
– Lección 29. Producción de los equipos de acarreo
– Lección 30. Producción de los compactadores
– Supuesto práctico 1.
– Supuesto práctico 2.
– Supuesto práctico 3.
– Batería de preguntas final
Profesorado
Víctor Yepes Piqueras
Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València
Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente «cum laude». Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 160 artículos en revistas indexadas en el JCR. Autor de 10 libros, 22 apuntes docentes y más de 350 comunicaciones a congresos. Ha dirigido 16 tesis doctorales, con 10 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social, así como el Premio a la Trayectoria Excelente en Investigación y el Premio al Impacto Excelente en Investigación, ambos otorgados por la Universitat Politècnica de València.
Lorena Yepes Bellver
Ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Universitat Politècnica de València.
Profesora Asociada en el Departamento de Mecánica de los Medios Continuos y Teoría de las Estructuras de la Universitat Politècnica de València. Es ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Ha trabajado en los últimos años en empresas constructoras y consultoras de ámbito internacional. Aparte de su dedicación docente e investigadora, actualmente se dedica a la consultoría en materia de ingeniería y formación.
Figura 1. Método ABC para gestionar los inventarios
Ya hemos hablado de los almacenes de obra y su gestión en un artículo anterior. Ahora vamos a explicar brevemente cómo se pueden gestionar de forma eficiente a través del conocido método ABC.
Todos los sistemas de inventarios presentan un sistema de control cuya función es mantener un registro actualizado de los elementos almacenados, informar sobre el nivel de existencias, notificar las situaciones anormales y elaborar informes (Pérez Gorostegui, 2021). Sin embargo, un control minucioso solo sería necesario en unos pocos artículos, atendiendo al Principio de Pareto, según el cual, unos pocos artículos tienen mucha importancia, y muchos de ellos, poca. Este principio también suele llamarse como regla 80/20, que aplicado a un inventario significa que el 20 % de los elementos supone el 80 % de la inversión total, mientras que el 80 % de todos ellos, apenas supone el 20% de toda la inversión en stocks.
Se puede aplicar el Método ABC para controlar los elementos almacenados. Para ello se clasifican según su valor de uso anual (podría ser cualquier otro periodo), agrupándolos de acuerdo con el coste de su gasto anual: cantidad utilizada (consumida, vendida, empleada, etc.) coste unitario (o precio unitario). Para ello se dividen los elementos en tres grupos:
Grupo A: Suponen un porcentaje alto de la inversión total, de forma que, controlando este grupo, se tiene controlado casi todo el almacén. Representa generalmente el 10 % de los artículos, estando su valor de uso entre el 60 % y el 80 % del total.
Grupo C: Son aquellos cuyo control es poco interesante, pues siendo muy numeroso, su valor es pequeño. Suele ser el 50-70 % del total de artículos, significando solo entre el 5-10 % del valor total de uso
Grupo B: Tienen una importancia en relación al número de unidades del almacén parecida a la que tienen con referencia al valor total de la inversión del inventario. Abarca generalmente al 25 % de los artículos, y representa entre el 15-30 % del valor total de uso.
Lo sorprendente en este tipo de análisis es la similitud de la forma de las curvas ABC. En efecto, si el número de variedades es lo suficientemente grande, es similar con independencia del tipo de elementos almacenados.
Os dejo un vídeo explicativo al respecto.
Referencias:
PÉREZ GOROSTEGUI, E. (2021). Dirección de empresas. Editorial Universitaria Ramón Areces, 754 pp.
YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.