El demoledor informe ASCE respecto a las redes de abastecimiento de agua potable

Rotura de la tubería de agua en Boston, 1925. Leslie Jones, Boston Public Library
Rotura de la tubería de agua en Boston, 1925. Leslie Jones, Boston Public Library

Llevamos varios posts reflexionando sobre la necesidad en la durabilidad y el mantenimiento de las infraestructuras. Ya se ha comentado varias veces que la crisis silenciosa, profunda y demoledora es la actual “crisis de las infraestructuras“, con un efecto que, con la política actual de inversiones en mantenimiento, va a provocar en poco tiempo un gran impacto en la calidad de vida de los ciudadanos.

A este respecto, voy a hacerme eco del 2013 Repord Card for America’s Infrastructure del ASCE. Se trata de un informe que califica el estado de las infraestructuras de todo tipo en Estados Unidos. En particular, vamos a fijarnos en las infraestructuras de abastecimiento de agua potable, cuya calificación actual es D, por debajo de lo admisible. Los datos que a continuación se citan suponen una auténtica bola de cristal que permite vislumbrar claramente lo que puede ocurrir en España con este tipo de infraestructuras. El documento completo lo podéis descargar en pdf aquí: http://www.infrastructurereportcard.org/a/documents/Drinking-Water.pdf

Existen casi 170.000 redes de abastecimiento de agua potable en Estados Unidos, de los cuales 54.000 son sistemas públicos que suministran agua a más de 264 millones de personas. Sin embargo, gran parte de la infraestructura de agua potable de Estados Unidos está llegando al final de su vida útil, presentando muchas de ellas más de 100 años de antigüedad. Se estima en 240.00 roturas de tuberías de agua al año, lo cual significa que su reemplazamiento puede costar más de 1 billón (1012) de dólares, según datos de la American Water Works Association (AWWA). [No confundir los billones y trillones americanos con los europeos]

ASCE 1

Si bien es cierto que se están ampliado continuamente estas redes de suministro, estos sistemas presentan componentes cuya vida útil puede oscilar entre 15 y 95 años. Este dato indica que gran parte de la infraestructura de las ciudades más antiguas del país debería reemplazarse de forma inmediata. Las roturas y fallos provocan daños en carreteras, problemas en el caso de incendios, interrupciones en el transporte, comercio, etc. Se estima que en Estados Unidos existen más de un millón y medio de kilómetros de tuberías enterradas en condiciones desconocidas. Algunas de ellas datan de la Guerra de Secesión, y no se inspeccionan hasta que existe un problema o rotura. Las roturas son cada vez más comunes, estimándose en más de 240.000 cada año.

La determinación del estado real de las redes es rentable, pues permitiría abordar su mantenimiento antes de que los fallos ocurriesen, con un ahorro muy notable de los costes. Además, se podrían evitar sustituciones de tramos que estuviesen en buenas condiciones. La Environmental Protection Agency (EPA) estima que aproximadamente entre 6.500 y 8.000 kilómetros de tuberías se reemplazan anualmente. Sin embargo, para el año 2035 el pico de reposición anual podría oscilar entre 25.500 a 32.000 km. Además, un aparte de las tuberías instaladas a mediados del siglo XX empezará a fallar masivamente.

En 2012, la AWWA estimó que el valor de reposición total de los más de millón y medio de kilómetros de tuberías es de aproximadamente 2,1 billones de dólares (2,1×1012) si se reemplazaran todas las tuberías simultáneamente. Si sólo se actuara en los tramos en peor estado en los próximos 25 años, el coste sería de un billón de dólares aproximadamente.

El presupuesto de reposición se duplicará de los aproximadamente 13.000 millones de dólares anuales a los casi 30.000 millones (en dólares de 2010) en la década del 2040, lo cual supondrá un encarecimiento muy importante de la facturación del agua y los impuestos locales. El retraso en la inversión puede degradar el servicio de abastecimiento de agua potable, aumentando las interrupciones del servicio y aumentando los gastos en reparaciones de emergencia.

En el horizonte de 2050, se necesitarán más de 1,7 billones de dólares, según el AWWA. Las previsiones de la EPA son más conservadoras, pues no tienen en cuenta el crecimiento de la población. En el año 2007 hicieron una previsión a 20 años de 334,8 mil millones de dólares para 53.000 redes públicas y 21.400 redes de entidades sin ánimo de lucro. Se necesitarían 199 mil millones de dólares para los sistemas de distribución, 67 mil millones para los sistemas de tratamiento de aguas, y 39 mil millones para el almacenamiento del agua.

Estas necesidades se traducen en más de 1000 dólares por persona en gran parte de los Estados Unidos. Estas necesidades no se están cubriendo al ritmo necesario. En el año 2008 los gobiernos estatales y locales estimaron un total de 93 mil millones de dólares de gasto anual para las aguas residuales y la infraestructura de agua potable. Las asignaciones del Congreso han disminuido durante el periodo 2008-2012, con una asignación de sólo 6,9 mil millones de dólares, con un promedio de 1,38 mil millones anuales, o lo que es lo mismo, 27,6 mil millones en 20 años. Esto es sólo el 8% de las necesidades identificadas por la EPA.

ASCE 2

El desastre del embalse del Vajont (Italia)

El valle de Vajont tras el derrumbe del monte Toc que causó el desastre. Wikipedia

La presa de Vajont fue construida el año 1961 en los Pre-Alpes italianos a unos 100 kms al norte de Venecia, Italia. Era una de las presas más altas del mundo, con 262 m de altura, 27 m de grosor en la base y 3,4 m en la cima. Desde el principio, los técnicos ya detectaron problemas por corrimientos de tierras, por lo que recomendaban no llenar el embalse por encima de cierto nivel de agua. A las 22.39 h del día 9 de octubre de 1963, la combinación del tercer rellenado del depósito produjo un gigantesco deslizamiento de unos 260 millones de m3 de tierra y roca, que cayeron en el embalse, prácticamente lleno, a unos 110 km/h. El agua desplazada resultante produjo que 50 millones de m3 de agua sobrepasasen la presa en una ola de 90 m de altura. A pesar de eso, la estructura de la presa no recibió daños importantes. La tragedia podría haber sido aún mayor si la presa se hubiera derrumbado, vertiendo otros 50 millones de m3 que a pesar de todo permanecieron embalsados. El formidable tsunami consecuencia del deslizamiento destruyó totalmente el pueblo de Longarone y las pequeñas villas de Pirago, Rivalta, Villanova y Faè. Varios pueblos del territorio de Erto y Casso y el pueblo de Codissago, cerca de Castellavazzo, sufrieron daños de importancia. Unas 2.000 personas fallecieron. Los destrozos fueron producidos exclusivamente por el desplazamiento de aire al explotar la ola en los pueblos colindantes.

Animación del deslizamiento. Fuente: http://ireneu.blogspot.com.es

¿Cómo pudo suceder un desastre de tales proporciones? ¿Se pudo evitar? Es mucha la información en distintas webs sobre la tragedia de Vajont. Nos pone en guardia sobre los límites de la técnica y del sentido común. Desgraciadamente, se ha convertido en un ejemplo en el que el hombre decidió retar a la naturaleza y esta le avisó de lo que podía suceder, pero cuando los responsables decidieron mirar hacia otro lado, el desastre llegó con sus mayores consecuencias. Este es un buen ejemplo de estudio de caso, tanto desde el punto de vista técnico como ético.

En el siguiente enlace podéis descargaros un artículo del año 1964 de José Mª Valdés sobre algunas meditaciones de esta catástrofe. Se trata de una conferencia pronunciada el 24 de abril de ese año en el Centro de Estudios Hidrográficos de la Dirección General de Obras Públicas: http://ropdigital.ciccp.es/pdf/publico/1964/1964_tomoI_2991_01.pdf

En un documental emitido por el canal Historia, una de las víctimas relata que un ingeniero dijo a su abuela: “Recuerde que la presa no se caerá porque está muy bien hecha, pero la montaña cederá, y acabarán atrapados como ratas”. A continuación os dejo varios de estos vídeos al respecto para la reflexión.

Sustitución de tuberías con torpedo rompedor (pipe bursting)

https://sewerex.com/services/trenchless-pipe-bursting/

La fractura de tubería por tiro con barras, reventamiento de tuberías (pipe bursting) consiste en la instalación de una tubería nueva en el espacio ocupado por el tubo antiguo, el cual es destruido previamente e incorporado al suelo circundante. Es una tecnología sin zanja (trenchless) recomendada para la sustitución de líneas de agua potable y gas en suelos sensibles, donde otras canalizaciones subterráneas o edificios se encuentran cercanos (dimensiones posibles entre 50 y 1200 mm). Es capaz de sustituir tuberías de hormigón, acero o fundición dúctil sin disminución de sección, permitiéndose incluso ciertos incrementos de sección.

Las barras articuladas de tiro son empujadas desde el pozo de tiro a través de la vieja tubería hacia el pozo de inserción de la nueva tubería. Una vez llegan las barras a este pozo, se acopla una cuchilla de corte, un cono expansor y la nueva tubería, normalmente de polietileno. Los equipos presentan entre 40 y 400 toneladas de capacidad de tiro.

torpedo rompedor

La tubería a reemplazar se rompe con una cabeza de ruptura o se corta con un rodillo de corte. Los fragmentos ocasionados se desplazan contra el terreno circundante y la cavidad se amplía, de forma que un nuevo tubo pueda introducirse en ella. La tubería de substitución puede tener el mismo diámetro que la antigua o incluso mayor. En el caso de que pueda tener un diámetro menor, la técnica de relining sería una alternativa a tener en cuenta.

El equipo de trabajo consiste en un cabezal rompedor en forma de cuchilla capaz de seccionar la tubería existente e instalar la nueva. Una estación hidráulica de unas 40 toneladas de tiro situada en el pozo de llegada es la artífice del proceso. Si los pozos de registro tienen dimensión suficiente puede realizarse la sustitución desde ellos, sin necesidad de excavaciones.

Para realizar la sustitución se procede a la excavación de las catas de tiro e inserción. Los trabajos de instalación de maquinaria, sustitución y retirada tienen una duración aproximada de 3 horas, por lo que la sustitución completa de un tramo de 150-200 m puede llevarse a cabo en una jornada de trabajo.
Bursting

Procedimiento

  • Excavaciones para: máquina, entrada de tubería y acometidas
  • Corte y retiro de las secciones del tubo para instalación de la máquina y entrada de tubería
  • Colocación de equipo en la zanja
  • Introducción de barras en la tubería antigua
  • Instalación de accesorios de corte y expansión
  • Halado e instalación de la tubería
  • Retiro de equipo y herramientas
  • Ejecución de empates y acometidas
A continuación os dejo un mapa conceptual del procedimiento de sustitución de tuberías:
Pipe bursting
Os paso algunos vídeos donde queda descrito este método constructivo.
Referencias:
UNE-EN ISO 11295:2011. Clasificación e información sobre el diseño de sistemas de canalización en materiales plásticos utilizados en la renovación. (ISO 11295:2010)

¿Qué es una central hidroeléctrica?

Corte transversal de una represa hidroeléctrica

En una central hidroeléctrica se utiliza energía hidráulica para la generación de energía eléctrica. Estas centrales aprovechan la energía potencial gravitatoria que posee la masa de agua de un cauce natural en virtud de un desnivel, también conocido como salto geodésico. El agua en su caída entre dos niveles del cauce se hace pasar por una turbina hidráulica, la cual transmite la energía a un generador donde se transforma en energía eléctrica.

Podemos clasificar las centrales hidroeléctricas en tres tipos: de embalse, fluyentes o de pasada, y de bombeo:

  • En las centrales de embalse, el esquema funcional incluye una presa, que intercepta la corriente de agua y permite que se acumule el agua alcanzando la misma una determinada cota o altura. El agua fluye del embalse, por acción de la gravedad, viaja a través de una tubería de descarga hasta las máquinas de la central, donde mediante turbinas hidráulicas se produce la electricidad en alternadores.
  • Las centrales fluyentes o de pasada. Estas funcionan igual que las centrales hidroeléctricas de embalse, pero no tienen capacidad de almacenamiento del agua.
  • Las centrales reversibles o de bombeo, constan de dos embalses situados a distintas cotas y sus máquinas tienen la peculiaridad de poder funcionar indistintamente como turbinas y como bombas.  En los momentos en que el sistema eléctrico demanda más electricidad, el agua del embalse superior se turbina al embalse inferior generando electricidad. Cuando la demanda de energía eléctrica es baja, el agua es bombeada al embalse superior.

Pero quizás sea mejor ver unos vídeos explicativos sobre el tema. Espero que os gusten.

http://externo.canalendesa.tv/index_acc.php?idioma=esp&MetaDataID=16506

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Construcción de la presa de Aldeadávila (Salamanca)

Hoy, 17 de octubre de 2014, se cumplen 50 años de la inauguración oficial de la presa de Aldeadávila. Un hito de la ingeniería civil española. No podíamos dejar pasar la ocasión para recordar esta obra en nuestro blog.

El embalse, la central y la presa de Aldeadávila (también conocida como salto de Aldeadávila) son una obra de ingeniería hidroeléctrica construida en el curso medio del río Duero, a 7 km de la localidad de Aldeadávila de la Ribera (Salamanca). La presa es un arco de gravedad de hormigón de 139,50 m de altura. Constituye la central hidroeléctrica más importante de España en cuanto a potencia instalada y de producción. El conjunto de los trabajos realizados para llevar a cabo esta infraestructura tuvieron lugar entre 1956 y 1963. Dispone de un aliviadero de superficie con ocho compuertas de segmento de 14,00 m por 8,30 m. Además, posee un túnel aliviadero con dos compuertas tipo segmento de 12,50 m x 9,70 m.

Construida entre los años 1958 y 1965 -justo tras el periodo de autarquía y al comienzo de la apertura española al exterior-, se trata de una de las presas más emblemáticas de la Ingeniería de Presas tanto a nivel español como a nivel mundial. Es conocido el rodaje de las tomas iniciales y finales de la película Doctor Zhivago, en julio de 1965 en la presa.

 

Os dejo el siguiente enlace para que tengáis más detalles de la obra: http://ropdigital.ciccp.es/pdf/publico/1964/1964_tomoI_2988_21.pdf. Además, aunque los vídeos son antiguos, os los paso para ver los procesos constructivos de la época. Espero que os gusten.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El Canal de Suez

Grabado realizado en 1881 del canal de Suez. Wikipedia

El canal de Suez es una vía artificial de navegación situada en Egipto que une el mar Mediterráneo con el mar Rojo. Su longitud es de 163 km entre Puerto Saíd (en la ribera mediterránea) y Suez (en la costa del mar Rojo). Esto hizo posible permitir un tránsito marítimo directo entre Europa y Asia, eliminando la necesidad de rodear toda África como venía siendo habitual hasta entonces, lo que impulsó un gran crecimiento en el comercio entre los dos continentes.

Las obras de excavación del canal se iniciaron oficialmente el 10 de abril de 1859 promovidas por el francés Ferdinand de Lesseps, autorizado por las autoridades egipcias de la época. Fue inaugurado en 1869. En el momento fue realizada una de las más grandes obras de la ingeniería del mundo por decenas de miles de nativos (fellahs) llevados por la fuerza desde todas las regiones de Egipto. Al principio no se disponía de maquinaria y todo tenía que hacerse a mano. Mueren miles de personas por fatiga, ritmo de trabajo, clima tórrido, cólera, zona sin agua, etc. El trabajo se aceleró después de la introducción de las dragas de cangilones. Al final de 1865 se contabilizan, entre Puerto Saíd y Suez 50 dragas, 20 grúas de vapor, 129 barcazas, 30 aparatos elevadores y 20 locomotoras. El 17 de febrero de 1867 un primer barco atravesó el canal, aunque la inauguración oficial se realizó el 17 de noviembre de 1869 con la presencia de la emperatriz Eugenia de Montijo.

La construcción del canal de Suez marcó un hito en la historia de la tecnología ya que, por primera vez, se emplearon máquinas de excavación especialmente diseñadas para estas obras, con rendimientos desconocidos hasta esa época. En algo más de dos años se excavaron más de 50 millones de metros cúbicos, de los 75 millones del total de la obra.

Vista del Canal de Suez. http://olinalzin18.wordpress.com/

La ingeniería española también estuvo implicada en la construcción del canal con Cipriano Segundo Montesino, Eduardo Saavedra y Nemesio Artola. En este enlace podéis leer un poco más al respecto. Para conocer más detalles sobre el Canal de Suez, puedes visitar la web oficial de Suez Canal Authority (en inglés, pero altamente recomendable).

Algunos datos desde su inauguración:

  • 1869, inauguración
  • 1875, gobierno británico compra las acciones egipcias
  • 1888, por convenio internacional canal abierto a todas las naciones
  • 1936, Británicos reciben los derechos de mantener fuerzas militares en el canal
  • 1948, egipcios regulan uso de canal por barcos que sirven a puertos israelitas
  • 1954, acuerdo para retirada británica a los 7 años
  • 1956, junio, retirada británica
  • 1956, 26 de julio, Egipto nacionaliza el canal
  • 1956, 31 de octubre, ataques de Francia y Gran Bretaña para abrir el canal a todos los barcos. Egipto amenaza con hundir 40 barcos que había en el canal
  • 1957, marzo, reapertura del canal, O.N.U. interviene
  • 1967, junio, guerra de los seis días, cierre del canal
  • 1975, 5 de junio, reapertura del canal
  • 1979, uso sin restricciones para Israel tras acuerdo de paz

Pero lo mejor será ver el vídeo que nos presenta la serie Megaestructuras, del Canal Historia. Espero que os guste.

También os dejo un “timelapse” sobre el recorrido del canal.

 

Montaje de tubos prefabricados de hormigón

Colocación de tubería. Gadea Hermanos.

Una de las unidades de obra más habituales en obras de ingeniería civil es la instalación de tubos prefabricados de hormigón. Para ello se realizan zanjas de una profundidad mínima que permita la protección de las tuberías de los efectos del tránsito y de las cargas exteriores, así como de las variaciones térmicas. La anchura de la zanja será la necesaria para que los operarios trabajen en buenas condiciones. Como norma general, se dejará un espacio mínimo de 0.30 m. a cada lado del tubo, medido entre la intersección del talud con la solera y la proyección sobre ésta del riñón del tubo. El talud de las paredes de la zanja depende del tipo de terreno. El valor mínimo, propio de terreno rocoso, será el talud 1/10, y se recomienda para terrenos normales, el talud 1/5. Los tubos no se apoyarán directamente sobre la rasante de la zanja, sino sobre camas. Para la ejecución de la cama de hormigón de extenderá una solera de hormigón pobre, de 0.10 a 0.15 m de espesor, según los diámetros de los tubos, sobre el fondo de la zanja, y sobre esta solera se situarán los tubos,  convenientemente calzados. Posteriormente los tubos se bajan al fondo de la zanja.

Podéis leer con detalle cómo se pueden montar dichas tuberías en el siguiente enlace de Prefabricados Alberdi  o bien en este otro de Prefabricados Delta. Algunos manuales técnicos de cómo montar este tipo de tubos los podéis descargar de las siguientes empresas: Borondo,Prefabricados Alberdi o ANDECE.

En este vídeo se pueden observar los pasos fundamentales a la hora de montar los elementos de los que consta un pozo de hormigón amado prefabricado.

Instalación de tuberías mediante la técnica Rocket Plough

https://www.pe100plus.com/PE-Pipes/Technical-guidance/Trenchless/Methods/Installation/Mole-Ploughing-i1303.html

La técnica Rocket Plough es un procedimiento de instalación de tuberías que utiliza un arado preparado como máquina de tracción. De este modo, se abre un surco en la tierra a través del que se tracciona una tubería premontada en el exterior. El uso habitual es la instalación de tuberías a presión, normalmente de fundición, de hasta 300 mm de diámetro nominal.

Este procedimiento constructivo tiene gran interés cuando existe una gran longitud de tubería a instalar y muy pocas conexiones. Sería el caso de una zona poco poblada donde existan pocas infraestructuras y obstáculos a sortear.

Lo más impresionante es la rapidez con la que se extraen los tubos, con sólo una grieta el 5-10 cm de ancho en la tierra se pueden instalar más de 400 m de tubería en sólo tres horas.

En la figura siguiente se puede observar cómo se realiza la instalación de la tubería. Los componentes del proceso son básicamente el vehículo de tracción, cabestrante del cable y un arado. Se conecta al vehículo de tracción mediante un cable de acero. La brecha inicial, que se inclina descendentemente, conduce el tubo hasta la profundidad de instalación apropiada y una vez la alcanza se conecta a la paleta del arado. Durante este proceso la paleta desplaza el material de excavación al terreno circundante gracias a la fuerza de arrastre del cabestrante del cable, creando una cavidad que se rellena de inmediato con el tubo a instalar.

https://www.pe100plus.com/PE-Pipes/Technical-guidance/Trenchless/Methods/Installation/Mole-Ploughing-i1303.html

 

En esta técnica, es especialmente importante considerar la protección exterior de las tuberías debido a que  éstas habitualmente se entierran sin ningún tipo de lubricantes (bentonita o similares). El desconocimiento de las condiciones exactas del suelo aconsejan que esta protección exterior sea capaz de soportar las cargas e impactos exteriores.

Os dejo algunos vídeos para que veáis este procedimiento de instalación de tuberías.

Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.

La bomba en la estación de bombeo

Las estaciones de bombeo son estructuras destinadas a elevar un fluido desde un nivel energético inicial a un nivel energético mayor. Su uso es muy extendido en los varios campos de la ingeniería, así, se utilizan en:

  • Redes de abastecimiento de agua potable, donde su uso es casi obligatorio, salvo en situaciones de centros poblados próximos de cadenas montañosas, con manantiales situados a una cota mayor;
  • Red de alcantarillado, cuando los centros poblados se sitúan en zonas muy planas, para evitar que las alcantarillas estén a profundidades mayores a los 4 – 5 m;
  • Sistema de riego, en este caso son imprescindibles si el riego es con agua de pozos no artesianos;
  • Sistema de drenaje, cuando el terreno a drenar tiene una cota inferior al recipiente de las aguas drenadas;
  • En muchas plantas de tratamiento tanto de agua potable como de aguas servidas, cuando no puede disponerse de desniveles suficientes en el terreno;
  • Un gran número de plantas industriales.

Las estaciones de bombeo tienen por elemento principal a los grupos de bombas. El papel que juegan las mismas es el de proporcionar caudal y presión al conjunto del sistema y es muy importante conocer cómo van a comportarse en el mismo en base a sus curvas motrices. A continuación os dejo un Polimedia de la profesora Petra Amparo López Jimenez donde se describe cómo se llega a las curvas motrices de las bombas desde sus características geométricas y se introduce la teoría que explica el comportamiento de las mismas a partir del conocimiento de sus datos básicos de geometría y velocidad.

Las bombas hidráulicas tienen unas curvas motrices características que representan el caudal y presión que pueden proporcionar en una instalación. La instalación de dichas bombas en unas condiciones u otras, su asociación en serie o paralelo, su arranque o condiciones de cebado, determinarán el caudal, presión, potencia absorbida y posibles aplicaciones en las instalaciones concretas. En el siguiente vídeo se describen estos aspectos de las estaciones de bombeo.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

El complejo hidroeléctrico Cortes-La Muela

Imagen aérea del complejo hidroeléctrico de La Muela Cortes de Pallás / IBERDROLA

El complejo Cortes-La Muela se ubica en el margen derecho del Júcar, en el término municipal de Cortes de Pallás, en Valencia. La Compañía IBERDROLA ha invertido en esta obra más de 1.500 millones de euros, 165 millones al área de Generación, cuyo principal proyecto es la construcción de La Muela II. El sistema de bombeo permite “subir” agua desde el embalse situado en la parte inferior al superior cuando la demanda de electricidad es baja y hay producción excedente en el sistema. Por ejemplo, en noches de mucho viento. Gracias a la puesta en marcha de los cuatro grupos reversibles que se van a instalar en la central de La Muela II, de cara a aprovechar el desnivel de 500 metros existente entre el depósito artificial de La Muela y el embalse de Cortes de Pallás.

La caverna central tiene una bóveda de 117 metros de longitud, 19,85 metros de anchura  y 50 metros de alto construida con hormigón armado que se organiza en tres plantas principales: la planta de acceso, la planta de alternadores y la planta de turbinas. Esta caverna alberga cuatro grupos reversibles que suman 850 MW de potencia total en turbinación y 740 MW en bombeo. De este modo se amplia la potencia del aprovechamiento de los 630 MW actuales en turbinación a 1720, y los 555 MW de bombeo a 1280 MW.

http://www.ciudadfcc.com

Os dejo un vídeo sobre la construcción de esta central hidráulica de bombeo. Espero que os guste.

En este vídeo se muestra la inauguración del complejo hidroeléctrico, el 14 de octubre del 2013.