Curvas S. Vía Diego Navarro http://direccion-proyectos.blogspot.com.es/
La curva de avance o curva“S”, representa en un proyecto el avance real respecto al planificado en un periodo acumulado hasta la fecha. La curva recibe el nombre de «S» por su forma: al principio del proyecto hay una tendencia de costes acumulados crecientes, mientras que estos costes acumulados decrecen hacia el final.
La primera versión de la Curva S se crea a partir del cronograma vigente y el presupuesto inicial. Posteriormente, se puede actualizar conforme se generan las nuevas versiones. El objetivo es detectar las desviaciones existentes y tomar medidas para corregirlas. Esta curva indica que porcentaje de avance físico de trabajo es más bajo al inicio y al final de la actividad. Este hecho se debe a que en el inicio del trabajo, se requiere tiempo para familiarizarse con la documentación, necesidades del cliente y suscitar el ambiente motivacional sobre el cual se desarrollará el proyecto.
Para aclarar estos conceptos, os dejo un vídeo explicativo que espero os guste.
Referencias:
PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.
By retocada por Yeza de la versión original de Alonsoquijano [Public domain], from Wikimedia Commons
El propósito de este artículo es presentar la optimización multiobjetivo como herramienta para el estudio de la sostenibilidad de los hormigones autocompactantes. Se toma como ejemplo una viga en doble T de hormigón de 15 m de luz definida por 20 variables. Una variable recoge ocho posibles dosificaciones del hormigón. Cuatro hormigones convencionales CC y cuatro hormigones autocompactantes SCC representan cuatro clases resistentes. Se utiliza el algoritmo recocido simulado multiobjetivo «Multiobjective Simulated Annealing» (MOSA) para optimizar el coste, las emisiones de CO₂ y la durabilidad. Los resultados muestran la viabilidad económica de las reducciones de las emisiones de CO₂ y de las mejoras en durabilidad. Además, las soluciones con menor coste y emisión anual emplean hormigón autocompactante. Los resultados proporcionan al proyectista estructural criterios para elegir soluciones más sostenibles.
REFERENCIA
GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2014). Optimización multiobjetivo para el estudio de la sostenibilidad del hormigón autocompactante. VI Congreso de ACHE, 3-5 de junio, Madrid. ISBN: 978-84-89670-80-8.
PALABRAS CLAVE
Sostenibilidad, autocompactante, optimización, multiobjetivo, viga en doble T.
La gestión de inventarios o de stocks no es algo nuevo. Sin embargo, a veces no sabemos muy bien cuántas piezas de repuesto deberíamos tener en nuestro almacén de obra. Pues bien, en esta entrada dejo una forma sencilla de calcularlo basada en la probabilidad prevista de fallos para un periodo de tiempo determinado. Espero que os sea útil.
Para un buen funcionamiento de una máquina es necesario mantener un stock de piezas de recambio y un utillaje adecuado. Si bien mantener estas existencias significa una fuerte suma de capital inactivo, también es cierto que la falta de recambios puede suponer pérdidas importantes en la producción.
La previsión de los repuestos necesarios de un elemento de una máquina para un periodo de tiempo determinado depende de su tasa de fallos. Cuando los fallos aparecen de forma independiente, la distribución de Poisson proporciona la probabilidad de que un suceso con una tasa de fallos constante λ ocurra r veces en un intervalo de tiempo t:
Se comprueba que para r = 1 la distribución de Poisson describe el modelo exponencial de fallo descrito anteriormente.
Para el cálculo del número de repuestos, se puede acumular la probabilidad de tener r fallos o menos en un intervalo de tiempo t:
A continuación os dejo un Polimedia donde se explica con detalle la función de distribución de Poisson. Espero que os sea útil.
Os dejo un vídeo de mi canal de Youtube donde os explico un problema resuelto.
La Naturaleza es más sabia de lo que sospechamos. Quién diría a un ingeniero estructural que una simple luciérnaga sería capaz de sonrojarle e incluso enseñarle trucos para diseñar puentes, no solo más baratos, sino también más respetuosos con el medio ambiente. Pues bien, no solo es cierto, sino que es podemos aprender del comportamiento social de las luciérnagas para optimizar estructuras. Efectivamente, las luciérnagas se comportan como colectivo de forma inteligente. Las luciérnagas basan su comportamiento social en la luminosidad que emiten (luciferina). La característica más distintiva de las luciérnagas es su cortejo nocturno. Los machos patrullan en busca de pareja con un vuelo característico mientras emiten secuencias de destellos de luz característicos de cada especie. Las hembras de la misma especie pueden responder con destellos específicos y así el apareamiento puede ocurrir. En resolución de problemas, la luminosidad de una luciérnaga depende de la calidad de la solución encontrada y la distancia desde donde las otras compañeras están buscando soluciones. Cada luciérnaga selecciona, utilizando un mecanismo probabilístico, un vecino que tiene un valor más alto de luciferina que su propio y se mueve hacia él. De esta forma, se pueden optimizar puentes.
Dentro del proyecto de investigación HORSOST, nos acaban de aceptar un artículo científico en la revista Automation in Construction, que es una revista de primer nivel en el ámbito de la tecnología de la construcción (Factor de impacto en 2013: 1,822, posición 9 de 58 en el ámbito de Construction & Building Technology, y posición 19 de 124 en el ámbito de Civil Engineering, en función del impacto de las revistas indexadas en el JCR).
En este trabajo se describe una metodología para minimizar las emisiones de CO2 y los costes de puentes de carretera de vigas de hormigón pretensado prefabricadas con sección transversal en doble U. Para ello se ha utilizado un algoritmo híbrido de optimización por enjambre de luciérnagas (glowworm swarm optimization, GSO) y el recocido simulado (simulated anneling, SA), que se ha denominado SAGSO. La estructura se define por 40 variables, que determina la geometría, los tipos de materiales y las armaduras de la viga y de la losa. Se emplea hormigón de alta resistencia autocompactante en la fabricación de las vigas. Los resultados suponen para los ingenieros proyectistas una guía útil para el predimensionamiento de puentes prefabricados de este tipo. Además, los resultados indican que, de media, la reducción de 1 euro en coste permite ahorrar hasta 1,75 kg en emisiones de CO₂. Además, el estudio paramétrico realizado muestra que las soluciones de menor coste presentan un resultado medioambiental satisfactorio, que difiere en muy poco respecto a las soluciones que provocan menores emisiones.
Resultados interesantes:
El coste C, en euros, y las emisiones de CO₂, en kg varían de forma parabólica con la luz (L) del vano, en metros:
C=48.088L2+613.99L+31139
kgCO2=63.418L2+2392.3L+13328
Si se minimiza el coste, también se reducen las emisiones de CO₂, de forma que el ahorro en 1 euro equivale a ahorrar 1,75 kg de CO₂.
La esbeltez de los puentes de mínimo coste (L/18.08) y de mínimas emisiones (L/17,57) siempre son inferiores a L/17.
El espaciamiento entre las vigas se sitúa en torno a 5,85 m, oscilando entre 5,65 y 5,95 m.
Las estructuras de coste mínimo precisan 42,35 kg/m² de armadura pasiva, mientras que si se optimizan las emisiones, se necesitarían 37,04 kg/m².
Sorprende observar que, aunque parece que el hormigón de alta resistencia sería el adecuado para el prefabricado de las vigas, las estructuras óptimas se alejan de este supuesto. De hecho, el hormigón para el coste mínimo en las vigas prefabricadas oscila entre 40 y 50 MPa, alejado de los 100 MPa que permitía la optimización.
Por último, un análisis de sensibilidad de costes en los resultados optimizados indica que un aumento del 20% en los costes del acero haría que el coste total de la estructura aumentara un 10,27%, disminuyendo el volumen de acero empleado. Sin embargo, si sube un 20% el precio del hormigón, el coste total únicamente subiría un 3,41% y no variaría apenas el volumen consumido de hormigón.
Referencia:
YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO₂ emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm.Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
El presente artículo presenta una caracterización estadística de una muestra de 87 tableros reales de pasos superiores pretensados de canto constante para carreteras. El objetivo principal es encontrar fórmulas de predimensionamiento con el mínimo número de datos posible que permita mejorar el diseño previo de estas estructuras. Para ello se ha realizado un análisis exploratorio y otro multivariante de las variables geométricas determinantes, de las cuantías de materiales y del coste, tanto para tableros macizos como aligerados. Los modelos de regresión han permitido deducir que el canto y la armadura activa quedan bien explicados por la luz, mientras que la cuantía de hormigón lo es por el canto. La variable que mejor explica (71,3%) el coste por unidad de superficie de tablero en losa maciza es el canto, mientras que en las aligeradas es la luz (51,9%). Las losas macizas son económicas en vanos inferiores a los 19,24 m. La luz principal y los voladizos, junto con la anchura del tablero para el caso de losas macizas, o el aligeramiento interior en el caso de las aligeradas, bastan para predimensionar la losa, con errores razonables en la estimación económica.
Lean Construction constituye una nueva filosofía orientada hacia la administración de la producción en construcción, cuyo objetivo fundamental es la eliminación de las actividades que no agregan valor (pérdidas). Este modelo denominado «construcción sin pérdidas», propuesto por Lauri Koskela (1992) , analiza los principios y las aplicaciones del JIT (justo a tiempo) y TQM (gestión de la calidad total). Esta filosofía introduce cambios conceptuales en la gestión de la construcción con el objeto de mejorar la productividad enfocando todos los esfuerzos en la estabilidad del flujo de trabajo.
Una herramienta de planificación y control desarrollada por Ballard y Howell para reducir las pérdidas del proceso productivo es la denominada «último planificador» (Last Planner System). El método incluye la definición de unidades de producción y el control del flujo de actividades, mediante asignaciones de trabajo. Asimismo, sirve para detectar el origen de los problemas y tomar las decisiones correspondientes para ajustar las operaciones, lo cual incide directamente en la productividad.
Os dejo unos vídeos introductorios al tema que espero os gusten.
Takt Time es un concepto relacionado con la filosofía Lean Manufacting. Takt es una palabra que deriva de la palabra alemana Taktzeit, que significa “ritmo” o “compas”; por tanto, Takt Time podría definirse como la cadencia con la que un producto debería fabricarse para satisfacer la demanda del cliente.
El Takt time se emplea habitualmente en procesos de montaje destinados a clientes externos; sin embargo, este concepto también sería aplicable a nuestras obras y procesos constructivos. Si nuestro ritmo de trabajo está por debajo del requerido, deberemos gastar más recursos, realizar horas extraordinarias e incluso aumentar los turnos para alcanzar la producción requerida. Ello, evidentemente, redundará negativamente en el balance económico y en la calidad de la obra.
Por el contrario, si el ritmo es superior al demandado, entonces incurriremos en tiempos de espera, deberemos cambiar de tajo de trabajo, tendremos más producción de la requerida. En la obra, esta situación no suele ser habitual, pero también es perniciosa.
El Takt Time es fácil de calcular si se divide el tiempo efectivo de un proceso entre la producción que el cliente demanda en dicho lapso de tiempo. Entendemos por tiempo efectivo de un proceso el tiempo disponible menos las paradas planificadas (comida, reuniones, limpieza, descansos y mantenimiento planificado, etc.). Las paradas no programadas no se contemplan en el tiempo que restamos, pues son variables que deberemos reducir al máximo.
El jefe de obra, bajo esta perspectiva, debería ser lo más parecido a un director de orquesta, que va marcando el ritmo de modo que todos los componentes se encuentren coordinados. La filosofía parece sencilla, pero la aplicación práctica requiere un esfuerzo coordinado de toda la organización.
Este artículo describe la impartición de un curso de posgrado en el diseño automatizado y optimización económica de estructuras de hormigón. El contenido forma parte de un Máster en Ingeniería de Hormigón que comenzó en octubre de 2007. El curso aplica los algoritmos heurísticos al diseño práctico de estructuras reales de hormigón, tales como muros, pórticos y marcos de pasos inferiores de carreteras, pórticos de edificación, bóvedas, pilas, estribos y tableros de puentes. Se presentan como casos prácticos dos tableros de puente de hormigón pretensado usados en la obra pública de construcción de carreteras. En primer lugar, se aplica SA a un tablero de un puente peatonal de viga artesa de hormigón prefabricado. El segundo ejemplo aplica TA a un tablero de losa continua de hormigón postesado. Los casos estudiados indican que la optimización heurística es una buena opción para diseñar estructuras de hormigón pretensado reduciendo los costes.
¿Resulta razonable el uso masivo de las vigas planas en las estructuras de edificación? Si lo que se pretende es no condicionar el compartimentado interior en una vivienda, esta solución puede ser acertada. Pero en un artículo que publicamos en la revista Hormigón y Acero en el año 2008, quisimos comprobar cómo afectaba al coste este tipo de estructuras. El artículo completo se puede descargar en abierto en la siguiente dirección: http://e-ache.com/modules/hormigonyacero/hormigonyacero.php?revista=1541.
Creo que algunas de las conclusiones a las que llegamos son realmente interesantes, como el incremento más que significativo de coste de este tipo de estructuras respecto a las vigas descolgadas.
PAYÁ, I.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2008). Influencia del empleo de vigas planas y del tipo de hormigón en el diseño óptimo de pórticos de edificación.Hormigón y Acero, 248(59):43-52.
RESUMEN
Este artículo utiliza la cristalización simulada para el diseño de pórticos de edificación de hormigón armado optimizados económicamente. Se analiza la influencia del uso de hormigones de distinta resistencia característica a compresión, del empleo de vigas planas o descolgadas y de la agrupación de variables para simplificar la ejecución de la estructura. Para ello, se optimizan pórticos de 2 vanos de 5 m de luz y de 8 plantas con una altura por planta de 3 m. El número de variables de diseño de estos problemas varía entre 101 y 153. El trabajo concluye que el empleo de un solo tipo de hormigón HA-25 para toda la estructura incrementa su coste únicamente un 3.02%. Si además se agrupan variables, para facilitar la constructibilidad, existe un incremento adicional del 0.52%, lo cual es poco significativo. Sin embargo, el empleo de vigas planas encarece el coste en un 41.69% respecto al caso de vigas descolgadas, cuando el hormigón empleado es HA-25.
SUMMARY
This paper uses the Simulated Annealing algorithm for the design of economically optimized reinforced concrete frames commonly used in building construction. The influence of the following factors is analyzed: a) the concrete compressive strength, b) the beams depth (same as the one of the floor slabs or higher) and c) the grouping of some of the design variables. The structures studied are two bays and eight floors frames, being the span length of 5 m. and the columns height of 3 m. The number of design variables of these problems varies between 101 and 153. Results show that the use of a single concrete grade (25 MPa) in the structure increases its cost only by 3.02%. If, besides some variables are grouped in order to increase the frame constructability, the optimized structure is only 0.52% more expensive. However, if, additionally, beams of the same depth as the floor slabs are used, the cost of the optimized structure increases by 41.69%.
¿Todos los actores que intervienen en la gestión y materialización de un proyecto de construcción tienen relaciones fluidas? ¿Se entienden entre ellos? En post anteriores ya hablamos de los problemas de los proyectos, de los problemas de calidad y los despilfarros, de la norma ISO 10006 como vía para mejorar dichos problemas, e incluso de los problemas que presentan los propios recursos humanos en relación con la calidad. Hoy nos vamos a centrar en los actores de este proceso tan complejo. Seguro que de la lectura de las ideas que vienen a continuación se pueden sacar más conclusiones o debate. Os animo a ello.
Entre los actores que intervienen en la construcción de una obra de edificación o de ingeniería civil (promotor, propiedad, usuario final, etc.) destacamos cuatro cuyas relaciones van a determinar la posibilidad de establecer una gestión de proyectos según el espíritu recogido en las normas ISO 10006. Éstos son los siguientes: Continue reading «¿Cuántos actores existen en el proceso proyecto-construcción?»→