Vivienda social sostenible: un enfoque integrador de ciclo de vida y evaluación multicriterio

Acaban de publicar un artículo nuestro en Sustainable Cities and Society, una de las revistas de mayor impacto científico, ubicada en el primer decil del JCR. En este trabajo se propone un enfoque integrador basado en el ciclo de vida y en métodos de evaluación multicriterio para analizar la vivienda social sostenible. La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo.

Los principales resultados revelan que el sistema Light Steel Frame (LSF) es la alternativa más sostenible, ya que logra un equilibrio superior entre la eficiencia en el uso de los recursos, la durabilidad y la reducción del mantenimiento. Un descubrimiento crucial es el papel de la dimensión social, que representó casi el 40 % del peso total en la evaluación, por encima de las dimensiones económica y medioambiental. El análisis causal identifica el coste de construcción, la funcionalidad y los agentes de la cadena de valor como los principales factores que condicionan el rendimiento sostenible del resto del sistema.

El artículo presenta un marco metodológico integrador que combina evaluaciones basadas en el ciclo de vida —análisis de ciclo de vida (LCA), análisis de coste del ciclo de vida (LCC) y análisis de ciclo de vida estocástico (S-LCA)— con técnicas avanzadas de decisión multicriterio: método mejor-peor (BWM), análisis DEMATEL difuso y análisis MARCOS. Esta integración permite incorporar ponderaciones de expertos, modelar relaciones causales entre criterios y sintetizar resultados frente a soluciones ideales o anti-ideales, lo que aumenta la transparencia en la priorización de alternativas constructivas. Este enfoque se ha aplicado a un caso real de vivienda social en Perú, en el que se han comparado cinco sistemas estructurales representativos: LSF, LBSPS, RCW, RCF-M y RCF-CP. El estudio ha proporcionado pruebas empíricas sobre los costes del ciclo de vida, los impactos ambientales y las prestaciones sociales que respaldan las decisiones de diseño y las políticas.

El estudio analiza cinco sistemas constructivos adaptados a contextos de urbanización rápida (específicamente en Lima, Perú), que van desde métodos convencionales hasta industrializados:

Entre las aportaciones metodológicas, la combinación de BWM con una agregación basada en credenciales profesionales reduce la carga de comparación y atenúa los sesgos en la agregación de juicios, mientras que la extensión difusa de DEMATEL permite identificar los criterios que funcionan como impulsores del sistema y los que actúan como receptores. Esta capacidad para distinguir entre causas y efectos permite aclarar qué palancas hay que modificar para lograr efectos amplificados en la sostenibilidad. Por último, la validación cruzada con otros métodos de MCDM y los ensayos de sensibilidad aumentan la confianza en la estabilidad de los resultados.

Discusión de resultados

Los análisis económicos muestran que, en un horizonte de 50 años y por metro cuadrado, los sistemas basados en acero ligero (LSF) tienen los menores costes totales de ciclo de vida, mientras que algunas alternativas prefabricadas, como el LBSPS, tienen los mayores costes de construcción. Estos datos implican que si solo se tiene en cuenta la inversión inicial, se pueden tomar decisiones subóptimas, ya que no se consideran el mantenimiento y el fin de vida.

En términos ambientales, la evaluación con ReCiPe (endpoint) sitúa al LSF como el sistema con el menor impacto agregado, principalmente debido a su menor intensidad material. Por el contrario, las soluciones con mayor presencia de hormigón y ladrillo presentan una carga superior, especialmente en la dimensión de recursos. Esta diferenciación pone de manifiesto la influencia del perfil material y del proceso de fabricación en la huella medioambiental de la vivienda y sugiere que, en la práctica profesional, se deben priorizar medidas que reduzcan la demanda de materiales energéticamente intensivos en la fase de fabricación.

La S-LCA revela una tensión entre la industrialización y la exposición social: las alternativas más industrializadas, como el LSF y el LBSPS, presentan mayores valores de exposición laboral y de funcionalidad exigente, mientras que las tipologías convencionales de hormigón muestran menores riesgos sociales, medidos en Medium Risk Hours. Este resultado indica que la adopción de sistemas industrializados exige prestar atención explícita a la gestión del trabajo, la formación y la coordinación de la cadena de suministro para evitar que los impactos negativos se transfieran al personal y a la comunidad.

La síntesis mediante MARCOS ubica a LSF como la alternativa mejor valorada en el escenario analizado, seguida de RCW y RCF-M. Los sistemas LBSPS y RCF-CP quedan en posiciones inferiores. Las pruebas de sensibilidad (variación de los pesos de ±15 %, escenarios de distancia de transporte y estratificación de expertos) muestran que el orden general se mantiene, lo que indica cierta robustez frente a perturbaciones razonables en los supuestos. Estos resultados permiten extraer una conclusión práctica: en contextos con características similares a las del caso estudiado, las soluciones ligeras industrializadas pueden mejorar la relación entre coste, impacto ambiental y rendimiento técnico, siempre que se gestionen adecuadamente los aspectos sociales y de ejecución.

Un aspecto metodológico de interés es la identificación de los criterios causales. La técnica DEMATEL identifica el coste de construcción, la funcionalidad y las interacciones con la cadena de valor como criterios que inciden en el resto del sistema, mientras que los indicadores ambientales, como la salud humana y la conservación de los ecosistemas, se presentan principalmente como efectos. Esto sugiere que las intervenciones en los costes de construcción y en la organización funcional pueden provocar mejoras indirectas en la sostenibilidad ambiental y social, lo cual resulta relevante al diseñar políticas y contratos que incentiven las prácticas integradas.

Futuras líneas de investigación

Una línea de trabajo inmediata consiste en ampliar la diversidad y el tamaño del panel de agentes consultados para captar las variaciones en las prioridades y las competencias profesionales. Esto permitiría evaluar la sensibilidad de las ponderaciones y mejorar la representatividad social del proceso. Otra opción es trasladar y recalibrar el marco a otros contextos geográficos y tipologías constructivas, como viviendas de mayor altura o equipamientos públicos, para evaluar la transferibilidad de la clasificación y de la estructura causal identificada en este estudio.

En el ámbito técnico, utilizar datos primarios de obras reales en lugar de bases de datos secundarias aumentará la fiabilidad de la evaluación del ciclo de vida (LCA) y del análisis del ciclo de vida (S-LCA) y mejorará la precisión de los modelos de coste del ciclo de vida (LCC). La incorporación de enfoques dinámicos, como la LCA dinámica o las simulaciones acopladas a plataformas BIM, puede facilitar las evaluaciones en etapas iniciales y permitir análisis de sensibilidad más detallados relacionados con la sustitución de componentes, las reparaciones y las evoluciones tecnológicas. Asimismo, explorar técnicas de optimización multiobjetivo que vinculen explícitamente las restricciones económicas con las metas ambientales y sociales podría proporcionar soluciones de diseño más operativas para promotores y organismos públicos.

Desde la perspectiva social, investigar intervenciones concretas de capacitación, reorganización de procesos y de contratos que reduzcan la exposición de los trabajadores a los sistemas industrializados aportará pruebas sobre cómo mantener los beneficios ambientales y económicos sin incrementar los impactos sociales. Por último, el estudio de la interacción entre políticas públicas, incentivos financieros y la adopción tecnológica ofrecerá información útil para diseñar instrumentos que favorezcan soluciones constructivas más equilibradas en el marco de los programas de vivienda social.

Conclusión

El estudio proporciona un marco metodológico replicable y sólido que combina la evaluación del ciclo de vida con técnicas multicriterio capaces de representar las interdependencias y la incertidumbre. Los resultados empíricos indican que, en el caso analizado, las soluciones ligeras industrializadas presentan ventajas en términos de coste y de huella ambiental, aunque se requieren medidas específicas para reducir los riesgos sociales derivados de su ejecución. La metodología y los resultados obtenidos sientan las bases para orientar las políticas y las decisiones de los proyectos y ponen de manifiesto la necesidad de ampliar los datos primarios, diversificar la muestra de expertos y conectar el análisis con herramientas digitales de diseño y gestión.

Referencia:

LUQUE CASTILLO, X.; YEPES-BELLVER, L.; YEPES, V. (2026). Towards Sustainable Social Housing: An Integrative Life Cycle and Multi-Criteria ApproachSustainable Cities and Society, 137, 107164. DOI:10.1016/j.scs.2026.107164

Dejo a continuación el artículo completo, ya que está publicado en abierto.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Trabajo en altura: 5 lecciones que podrían salvarte la vida

Introducción: El vértigo no es el único peligro.

Cuando pensamos en los peligros de trabajar en altura, la primera imagen que nos viene a la mente es la caída en sí misma, el vértigo y el miedo instintivo al vacío. Sin embargo, la seguridad laboral ha demostrado que esta percepción, aunque natural, es incompleta. La prevención de caídas es una ciencia con principios técnicos, físicos y fisiológicos que a menudo resultan sorprendentes y van mucho más allá de simplemente «no caerse».

Para comprender el contexto, es fundamental definir qué la normativa considera trabajo en altura. Técnicamente, se define como cualquier trabajo con riesgo de caída desde una altura superior a dos metros. Este umbral establece la seriedad del asunto y activa una serie de protocolos y conocimientos que no son de dominio público, pero resultan vitales para la supervivencia en el entorno profesional.

1. La red antes que el arnés: por qué la protección colectiva siempre es la primera opción.

Cuando se habla de seguridad en altura, el arnés es el equipo icónico que todos reconocen. Sin embargo, uno de los principios fundamentales y menos conocidos de la seguridad laboral es la primacía de la protección colectiva sobre la individual.

La protección colectiva se refiere a sistemas que protegen a todos los trabajadores de una zona de riesgo sin que estos deban realizar ninguna acción, como barandillas, redes de seguridad o protección de los huecos. En cambio, la protección individual, como el arnés, depende de que el trabajador la utilice correctamente y solo actúa una vez que el accidente ya ha ocurrido.

La lógica es sencilla, pero crucial: la protección colectiva está diseñada para evitar que se produzca el accidente, mientras que la protección individual solo sirve para minimizar las lesiones una vez que la caída es inevitable. Esta jerarquía no es una mera recomendación, sino una obligación legal. La Ley 31/1995 de Prevención de Riesgos Laborales es explícita al respecto:

«El empresario adoptará las medidas que antepongan la protección colectiva a la individual».

Este principio no resulta evidente, ya que nuestra atención se centra en el drama de la caída y en la imagen del trabajador suspendido en el aire. Sin embargo, la seguridad más efectiva es la que pasa desapercibida, como una barandilla sólida o una red bien instalada que impide que la caída llegue a producirse.

2. El peligro oculto después de la caída: el síndrome de compresión.

Sobrevivir a una caída gracias a un arnés parece el final de la historia, pero puede ser el comienzo de una emergencia médica silenciosa y mortal: el síndrome de compresión, también conocido como síndrome ortoestático.

Este síndrome se produce cuando un trabajador permanece suspendido e inmóvil en su arnés durante un tiempo prolongado. Las cintas del arnés, especialmente las que rodean los muslos, actúan como un torniquete, comprimiendo las venas y restringiendo el flujo sanguíneo desde las piernas hacia el resto del cuerpo.

El mecanismo fisiológico es devastador: la sangre estancada en las extremidades se queda sin oxígeno y acumula toxinas. Si el trabajador es rescatado y puesto en posición horizontal bruscamente, esta sangre tóxica regresa masivamente al torrente sanguíneo, lo que puede provocar un fallo renal agudo e incluso un paro cardíaco.

En resumen, un trabajador puede sobrevivir a la caída sin un solo rasguño, pero estar en peligro mortal si no es rescatado de forma rápida y adecuada. Por esta razón, el plan de rescate no es un apéndice opcional en la planificación de trabajos en altura, sino una parte tan crítica y vital como el propio arnés.

3. No es la altura, es la física: entendiendo el «factor de caída».

No todas las caídas son iguales, incluso si la distancia es la misma. La gravedad de una caída y la fuerza de impacto que recibe el cuerpo del trabajador se miden mediante un concepto técnico fundamental: el factor de caída (F).

Este factor expresa la relación entre la altura de la caída y la longitud del sistema de conexión (la cuerda o eslinga) que la detiene. La fórmula es sencilla:

F = Altura de la caída (H) / Longitud de la cuerda (L)

Para entenderlo de forma visual y sencilla:

  • Anclaje por encima de la cabeza (Factor < 1): Si te anclas a un punto por encima de tu cabeza, la distancia de caída será muy corta, siempre menor que la longitud de tu cuerda. El impacto será mínimo. Esta es la situación más segura.
  • Anclaje a la altura de los pies (Factor 2): Si te anclas a un punto a la altura de tus pies y caes, recorrerás una distancia igual al doble de la longitud de tu cuerda antes de que esta se tense. Este es el escenario más peligroso, que genera una fuerza de choque altísima sobre el cuerpo y el equipo.

El factor de caída demuestra que la seguridad en altura no solo consiste en «estar atado», sino también en comprender la física que hay detrás. La posición del punto de anclaje es tan importante como el propio equipo y un anclaje mal ubicado puede convertir un sistema de seguridad en una fuente de lesiones graves.

4. La escalera de mano: tu último recurso, no el primero.

La escalera de mano es una herramienta muy común en nuestros hogares, por lo que tendemos a subestimar su peligrosidad en el ámbito profesional. La normativa es sorprendentemente estricta y establece su uso como último recurso, no como primera opción. Debe utilizarse solo en situaciones de bajo riesgo o de corta duración, en las que no esté justificado el uso de equipos más seguros, como andamios o plataformas elevadoras.

Muchas de las prácticas habituales son, en realidad, graves infracciones de seguridad. A continuación, se muestran algunas de las reglas más importantes y comúnmente ignoradas:

  • Prohibido trabajar en los últimos peldaños: Esta es una regla general para cualquier tipo de escalera de mano. Es una de las causas más frecuentes de pérdida de equilibrio, ya que el trabajador no puede mantener una postura estable y segura.
  • Prohibido el trabajo “a caballo” en escaleras de tijera: Específicamente, en escaleras de tijera, está prohibido pasar de un lado a otro por su parte superior o sentarse a horcajadas sobre ellas para trabajar.
  • La regla del ángulo de 75°: Para una estabilidad óptima, la base de una escalera de apoyo debe separarse de la pared una distancia equivalente a una cuarta parte de su longitud. Esto crea un ángulo de aproximadamente 75 grados.
  • Subir y bajar siempre de frente y con las manos libres: El ascenso y el descenso deben hacerse de cara a la escalera, usando ambas manos para agarrarse a los peldaños. Las herramientas deben transportarse en cinturones o bolsas portaherramientas, nunca en las manos.

Estas normas demuestran que un equipo aparentemente simple se rige por principios de estabilidad y seguridad muy estrictos en un entorno profesional.

5. El ABCD de la seguridad personal: un sistema, no un simple equipo.

Un sistema de protección individual contra caídas no se reduce a un arnés. Se trata de un conjunto de cuatro componentes críticos que deben funcionar en perfecta armonía. La falla de uno solo de ellos invalida por completo la seguridad del sistema. A este concepto se le conoce como «ABCD del trabajo en altura».

  • A: Dispositivo de anclaje: Es el punto de conexión seguro con la estructura (una viga, una línea de vida, etc.). Debe ser capaz de resistir las fuerzas generadas durante una caída. Sin un anclaje fiable, el resto del equipo resulta inútil.
  • B: Sistema de unión: Es el elemento que conecta el arnés al anclaje. Puede ser una cuerda, una eslinga con absorbedor de energía o un dispositivo retráctil. Su diseño y su longitud son clave para gestionar el Factor de Caída.
  • C: Arnés de cuerpo entero: Es el dispositivo que sujeta el cuerpo. Su función es distribuir las fuerzas de impacto de la caída sobre las partes del cuerpo capaces de soportarlas (pelvis, hombros, pecho) y mantener al trabajador en posición vertical tras la caída.
  • D: Plan de Rescate: Es el procedimiento planificado para rescatar a un trabajador que ha quedado suspendido tras una caída. Como vimos con el síndrome de compresión, un rescate rápido y seguro es tan vital como detener la caída.

Pensar en términos de “ABCD” nos obliga a ver la seguridad personal no como la compra de un equipo, sino como la implementación de un sistema integral en el que cada componente es interdependiente y absolutamente esencial.

Conclusión: mirar hacia abajo con más sabiduría.

La seguridad en altura es un campo mucho más profundo y técnico de lo que parece a simple vista. No se basa en la ausencia de miedo, sino en el conocimiento de los principios de la física, la fisiología y la normativa. Desde la jerarquía que antepone una barandilla a un arnés hasta la física de una caída o la fisiología de un rescate, comprender estos principios transforma nuestra percepción del riesgo.

La próxima vez que veas a alguien trabajando en altura, sabrás que su seguridad depende de un sistema complejo y bien ejecutado. Esto nos lleva a una pregunta inevitable: ¿qué otras suposiciones sobre la seguridad en nuestro día a día deberíamos empezar a cuestionar?

En esta conversación, aprenderás sobre conceptos que seguramente te resultarán interesantes.

Este vídeo resume muy bien las ideas más importantes sobre este tema.

Aquí tenéis un breve manual de formación sobre trabajos en altura y verticales.

Pincha aquí para descargar

Curso:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

4 verdades incómodas sobre la innovación en empresas constructoras tradicionales

Introducción: el dilema de la innovación.

Existe una creencia muy extendida en el mundo empresarial: para innovar, se necesita un líder transformador. Alguien carismático, visionario y capaz de inspirar a sus equipos para alcanzar nuevas metas. Y, en muchos casos, es cierto. Sin embargo, ¿qué sucede cuando intentamos aplicar esta fórmula a sectores más tradicionales, conservadores y reacios al cambio, como el de la construcción?

La realidad, como suele suceder, es mucho más compleja y sorprendente. Un estudio reciente, realizado en 60 empresas de construcción y consultoría en España, ha puesto de relieve algunas verdades incómodas sobre lo que realmente impulsa la innovación. Los resultados desafían las ideas preconcebidas y nos obligan a replantearnos el papel del liderazgo en sectores altamente regulados.

Este artículo desglosa los cuatro hallazgos más impactantes y prácticos de esta investigación. Descubre por qué el carisma no siempre es la solución y por qué, a veces, un buen sistema es más efectivo que un gran discurso.

Primer hallazgo: el liderazgo inspira productos, pero no mejora los procesos.

Este es, quizás, el descubrimiento más sorprendente. El estudio ha descubierto que el liderazgo transformacional tiene un impacto directo, fuerte y positivo en la innovación de productos. En otras palabras, los líderes inspiradores son excelentes motivadores de sus equipos para que estos desarrollen nuevos materiales, diseños o servicios.

Los datos son claros: el efecto del liderazgo sobre la innovación de productos fue muy alto (β = 0,548, p < 0,001). Sin embargo, y aquí viene la sorpresa, ese mismo estilo de liderazgo no mostró un efecto significativo en la innovación de procesos, es decir, en la mejora de la eficiencia de las operaciones internas (β = 0,102).

Esto no implica un fracaso del liderazgo, sino una colisión entre la visión inspiradora y la realidad inamovible de un sector atado por contratos, regulaciones e infraestructuras físicas. La innovación de procesos en industrias como la construcción es de naturaleza operativa y rutinaria. Su mejora depende menos de la motivación y más de la inversión tecnológica, la estandarización y la superación de las barreras burocráticas. Como señala el estudio, los equipos de proyecto suelen ser temporales y tienen una autonomía limitada para modificar los procesos definidos en el contrato.

En sectores altamente regulados, como el de la construcción, la capacidad de un líder para alterar procesos establecidos está limitada por la burocracia, las infraestructuras existentes y la naturaleza temporal de los equipos de proyecto, que tienen poca autonomía para modificar los procesos definidos por contrato.

En resumen, puedes ser el líder más inspirador del mundo, pero eso no te servirá de mucho para cambiar un procedimiento operativo anclado en la rutina y la regulación.

Segundo hallazgo: el héroe anónimo de la eficiencia es el sistema, no el carisma.

Si el liderazgo carismático no es la clave para mejorar los procesos, ¿qué lo es? La respuesta del estudio es contundente: los sistemas.

El concepto clave aquí es la gobernanza del conocimiento (Knowledge Governance). Se trata de los mecanismos y estructuras formales que una organización utiliza para capturar, organizar y aplicar el conocimiento. Piensa en repositorios de lecciones aprendidas, manuales de buenas prácticas o puestos dedicados a la gestión de la información.

El hallazgo fue revelador: la gobernanza del conocimiento es el factor que más influye, con diferencia, en la innovación de procesos. Su impacto fue muy potente (β = 0,508, p < 0,001), mucho mayor que el efecto sobre la innovación de productos (β = 0,241, p < 0,05).

La implicación práctica es directa: si tu objetivo es mejorar la eficiencia, optimizar las operaciones y hacer las cosas mejor, más rápido o con menos coste, debes centrarte menos en el carisma y más en ser un arquitecto de sistemas. Construir estructuras robustas para gestionar el conocimiento es la verdadera palanca del cambio operativo en las industrias tradicionales.

Tercer hallazgo: el clima de innovación es un amplificador, no un motor.

Muchas empresas invierten grandes sumas de dinero en crear un «clima de innovación»: oficinas abiertas, post-its de colores, sesiones de lluvia de ideas… La idea es que un entorno que fomenta la creatividad impulsará la innovación por sí solo. Sin embargo, el estudio demuestra que esto es solo medio cierto.

Por sí solo, un clima de innovación positivo no tuvo un efecto directo significativo sobre el intercambio de conocimientos ni sobre la innovación. Es decir, tener un ambiente «guay» no garantiza que la gente colabore más ni que surjan mejores ideas.

La clave está en que el clima de innovación actúa como un amplificador. Cuando se combina con un liderazgo transformacional activo, potencia significativamente la capacidad del líder para que la gente comparta conocimientos (el estudio detectó un efecto de interacción β = 0,141, p < 0,1).

La conclusión es clara: crear un clima innovador no sirve de nada si no va acompañado de un liderazgo que sepa aprovecharlo. Es como tener un coche de carreras (el clima), pero sin un piloto que sepa conducirlo (el líder). La combinación de un buen entorno y un buen líder es lo que realmente desbloquea el potencial colaborativo de un equipo.

Cuarto hallazgo: ¿colaboración o estructura? Depende de lo que quieras innovar.

Dado que el impacto de un líder se ve amplificado por el entorno, es crucial saber qué entorno construir. El estudio revela dos planos distintos: uno para crear nuevos productos y otro para perfeccionar los procesos existentes. No existe una única «receta para innovar».

La vía hacia la innovación de productos se logra principalmente mediante el intercambio de conocimientos. Para desarrollar nuevos productos, servicios o soluciones, es fundamental que las personas hablen, colaboren e intercambien ideas con fluidez. El estudio demuestra que el liderazgo transformacional impulsa la innovación de productos de forma indirecta a través de este intercambio (efecto indirecto: β = 0,089, p < 0,001).

La innovación de procesos se logra mediante la gobernanza del conocimiento. Para optimizar las operaciones, estandarizar las buenas prácticas y mejorar la eficiencia, son necesarios sistemas y estructuras formales. La investigación muestra que el liderazgo transformacional influye en la innovación de procesos de manera indirecta a través de estos sistemas de gobernanza (efecto indirecto: β = 0,136, p < 0,001).

En resumen, la innovación de productos surge de las conversaciones informales; la innovación de procesos se plasma en los manuales de la empresa. Una es social y la otra, estructural.

Si quieres desarrollar nuevos productos, fomenta una cultura de colaboración y comunicación abierta. Si quieres mejorar tus procesos internos, invierte en sistemas y estructuras que organicen el conocimiento de la empresa.

Conclusión: liderar la innovación es más que inspirar.

En sectores tradicionales como la construcción, la innovación no es un concepto monolítico. Pensar que un liderazgo inspirador lo soluciona todo es un error que puede salir muy caro. Este estudio nos demuestra que la estrategia debe ser dual: se requieren palancas distintas para la innovación de productos y de procesos.

El liderazgo transformacional no es una solución universal. Su efectividad depende del contexto y de si se apoya en sistemas robustos y en un clima adecuado que lo potencie.

La inspiración sin sistemas da lugar a productos nuevos y emocionantes, pero construidos sobre procesos ineficientes y frágiles. Los sistemas sin inspiración conducen a mejoras incrementales que no logran crear los productos disruptivos necesarios para capturar nuevos mercados. Un camino crea valor y el otro lo protege. El verdadero liderazgo industrial requiere dominar ambos.

La pregunta final es para ti. Como líder en tu sector, ¿en qué estás invirtiendo tu energía: en ser una fuente de inspiración o en ser un arquitecto de sistemas? Este estudio sugiere que necesitas ser ambas cosas.

En esta conversación se profundiza en las ideas del trabajo. Espero que te resulte interesante.

Aquí tienes un vídeo en el que se sintetizan las ideas comentadas en este artículo.

En este documento se explican las ideas más importantes.

Pincha aquí para descargar

Referencia:

LOPEZ, S.; YEPES, V. (2026). Innovation in construction: Assessing the role of transformational leadership and knowledge governance. Journal of Civil Engineering and Management, (accepted, in press)

 

Entrevista en Construnews — Monográfico infraestructuras en España

A continuación, os paso una entrevista que me hicieron recientemente en Construnews sobre las infraestructuras en España. Forma parte de una serie de entrevistas a personas relacionadas directamente con el sector de la construcción. Espero que os resulte interesante.

“Hay que reingenierizar el modelo de financiación, ejecutar estratégicamente los corredores ferroviarios y desbloquear el suelo para vivienda asequible”

¿Cómo valora el estado actual de las infraestructuras en España (transporte, energía, digitalización, logística)? ¿Cuáles son, a su juicio, los principales retos de país en los próximos 5‑10 años?

La valoración del estado actual de las infraestructuras españolas indica que el notable patrimonio de ingeniería civil presenta síntomas claros de desequilibrio, ya que el modelo se ha centrado excesivamente en la construcción de nuevas infraestructuras de muy alta capacidad, dejando en un segundo plano la conservación preventiva y correctiva de la red existente. En el ámbito viario, los firmes están deteriorados y los sistemas de contención y señalización están obsoletos. En el sector ferroviario, el éxito de la alta velocidad contrasta con la situación de la red convencional y de cercanías, que necesita atención debido a la falta de renovación de los sistemas de seguridad y de las catenarias, lo que provoca incidencias. Además, el hecho de que el ancho de vía sea diferente al de Europa sigue suponiendo un desafío para el transporte de mercancías. El reto más significativo es, por un lado, abordar la vivienda como un problema social y estructural prioritario a nivel nacional, dado el creciente difícil acceso de la población joven y de rentas medias. Por otro lado, la vulnerabilidad ante la emergencia climática, especialmente en lo referente a la gestión del agua, es crítica, por lo que existe una urgencia en materia de defensa contra inundaciones. Gran parte de los sistemas de drenaje se diseñaron basándose en series estadísticas que han quedado obsoletas, y no se está invirtiendo lo suficiente en modernizar las infraestructuras hidráulicas para soportar nuevos caudales punta.

¿Qué segmentos infraestructurales ofrecen mayor potencial de crecimiento para el sector de la construcción y la ingeniería? ¿Y cuáles están quedando fuera del foco?

La inversión se centra en una transición estructural que se está desplazando de la expansión territorial a la intensificación, la digitalización y la resiliencia. El principal motor de crecimiento es la transición energética, ya que la integración masiva de las energías renovables exige un ambicioso programa de refuerzo, digitalización y almacenamiento de la red eléctrica a gran escala. La necesidad de dotar al sistema de baterías industriales y de sistemas de bombeo reversible supone la aparición de un nuevo y gran nicho de mercado. El desarrollo urgente de vivienda asequible y social también se perfila como un segmento clave para el crecimiento del sector. La crisis hídrica convierte la reingeniería hidráulica en un sector estratégico, ya que la oportunidad radica en crear una nueva oferta hídrica mediante desaladoras y sistemas de tratamiento avanzado para la reutilización de aguas residuales, junto con la renovación de las redes de distribución para reducir las pérdidas por fugas. La ingeniería logística crecerá en la dotación de terminales intermodales y en la adaptación de las líneas de transporte al ancho de vía estándar europeo. No obstante, la priorización de grandes proyectos deja en un segundo plano segmentos cruciales para la cohesión. El mantenimiento de las carreteras de titularidad autonómica y provincial es un problema pendiente, al igual que la renovación de los sistemas de señalización del ferrocarril de cercanías. La falta de atención a las pequeñas obras de defensa hidráulica a nivel local (drenajes, encauzamientos) también es crítica.

El déficit de conservación lastra la red existente: señales obsoletas, firmes deteriorados y falta de mantenimiento.

¿Cómo evalúa la coordinación entre administraciones, sector privado y financiación (incluyendo fondos europeos)? ¿Qué mecanismos están funcionando y cuáles habría que reforzar?

La coordinación administrativa presenta una diferencia entre la solidez de la planificación de alto nivel y la lentitud de la fase de materialización. Aunque existe un consenso técnico adecuado y el sector privado ha demostrado su capacidad de ejecución, la principal fricción se debe a la fragmentación administrativa a nivel local y a la superposición de competencias en la financiación del mantenimiento de las redes. Esta situación provoca cuellos de botella en los trámites de expropiación y licencias. La llegada de los fondos europeos de recuperación ha supuesto una inyección de capital necesaria y ha dotado a la inversión de una clara orientación hacia la descarbonización. No obstante, ha puesto de manifiesto la necesidad de reforzar la capacidad administrativa para absorber y licitar el volumen de capital. El mayor riesgo económico es que esta financiación sustituya a la inversión ordinaria en conservación en lugar de complementarla. Para garantizar la sostenibilidad, es necesario establecer mecanismos que separen la gestión técnica del ciclo político. La propuesta más proactiva consiste en crear una Agencia Técnica de Proyectos Estratégicos que tenga autonomía para ejecutar obras de impacto nacional de forma ágil. En cuanto a la financiación, es fundamental sustituir el modelo presupuestario anual por contratos-programa plurianuales y de carácter finalista para la conservación.

Más allá de los discursos, ¿cómo se está incorporando la sostenibilidad en el diseño, ejecución y explotación de infraestructuras? ¿Podría compartir un caso inspirador o representativo?

La sostenibilidad ha dejado de ser un mero postulado ético para convertirse en un requisito técnico y normativo que rediseña el ciclo de vida de las infraestructuras. La ingeniería actual integra este concepto desde la fase de planificación, exigiendo el análisis del ciclo de vida de los activos para cuantificar y minimizar la huella de carbono de los materiales. Esto se traduce en una preferencia técnica por el uso de hormigones y asfaltos con un alto porcentaje de material reciclado y por la implementación de soluciones basadas en la naturaleza. Durante la ejecución, la sostenibilidad se centra en la economía circular mediante la obligación contractual de reutilizar y reciclar in situ los materiales de demolición. Durante la fase de explotación, la sostenibilidad se vincula a la eficiencia: la digitalización mediante sensores permite un mantenimiento predictivo que alarga la vida útil de los activos. Un ejemplo representativo de esta integración es la reingeniería hídrica en zonas con estrés hídrico. Se han desarrollado sistemas de regeneración de aguas residuales con tratamientos terciarios avanzados que permiten cerrar el ciclo del agua y producir un recurso predecible. Este proceso, que requiere mucha energía, se gestiona de forma sostenible al generarse energía a partir de biogás o energía solar.

La transición energética y la ingeniería del agua abren nuevos nichos clave para el sector.

Las infraestructuras ya no son solo estructuras físicas: mantenimiento predictivo, digital twins, infraestructura como servicio… ¿Cuál es su visión sobre esta transformación? ¿Qué proyectos le parecen referentes?

La ingeniería de infraestructuras ha superado la fase de la mera estructura física para transformarse en un sistema dinámico de información y servicio. El enfoque ha cambiado del coste de construcción a la eficiencia operativa a largo plazo. Esta revolución se basa en tres pilares: la monitorización masiva de activos para el mantenimiento predictivo, la creación del gemelo digital, que simula el comportamiento de la infraestructura ante escenarios de estrés, y la adopción del concepto de infraestructura como servicio, que fomenta la colaboración público-privada para construir sistemas duraderos. El gemelo digital es la herramienta clave, ya que permite realizar ensayos virtuales de resiliencia y ampliación sin afectar al activo físico. España está a la vanguardia en la aplicación práctica de esta tecnología. Un ejemplo destacado es la gestión de los túneles de la red de carreteras de alta capacidad, donde la iluminación y la ventilación se ajustan dinámicamente en tiempo real. Otro caso inspirador es el del sector ferroviario, donde el modelado virtual se utiliza para gestionar activos críticos, como la catenaria y los puentes, y simular el impacto físico para anticiparse a la probabilidad de fallo.

En un entorno de alta inversión pública y necesidad de eficiencia, ¿cómo se está calculando y midiendo el ROI en infraestructuras? ¿Podría compartir ejemplos reales o estimaciones? ¿Qué factores lo están condicionando más?

La medición de la rentabilidad de la inversión pública se centra en el retorno social de la inversión, desvinculándose del retorno financiero privado. El cálculo se realiza mediante el análisis coste-beneficio socioeconómico, cuyo principal indicador es el valor actual neto social (VAN social). El mantenimiento preventivo es el segmento con mayor y más estable rentabilidad social; los informes técnicos demuestran que por cada euro invertido en conservación oportuna se evitan entre cuatro y cinco euros en costes de reparación o reconstrucción futura. En contraste, la alta velocidad ferroviaria genera una Tasa Interna de Retorno Social significativa (a menudo superior al 8 %), pero su rentabilidad financiera es insuficiente. La precisión del cálculo se ve comprometida por la sobreestimación recurrente de las previsiones de demanda en las fases iniciales de muchos proyectos. Otros factores críticos son la dificultad para valorar monetariamente las externalidades blandas y los retrasos en la ejecución de la obra, ya que estos elevan el coste final y reducen la rentabilidad esperada.

A raíz de las últimas iniciativas de Bruselas (como el plan para conectar capitales europeas por alta velocidad), ¿qué papel debería jugar España en el nuevo mapa europeo? ¿Estamos preparados o en riesgo de quedar fuera?

El impulso de Bruselas para consolidar la Red Transeuropea de Transporte otorga a España un doble papel estratégico: eje principal de conexión de alta velocidad para viajeros y plataforma logística clave para canalizar el tráfico de mercancías. Sin embargo, a pesar de tener una de las redes de alta velocidad más extensas, España corre el riesgo de quedar menos integrada en el mapa logístico por una barrera técnica: el uso mayoritario del ancho de vía ibérico. Esta diferencia limita la competitividad del transporte de mercancías por ferrocarril. Si no se completa la adecuación al ancho de vía internacional de los corredores Mediterráneo y Atlántico antes de las fechas límite, existe el riesgo de que las mercancías elijan rutas alternativas. Para evitar una menor integración, es necesario reingenierizar los procesos de licitación pública para agilizar la ejecución de la inversión y centrarla en finalizar estos corredores clave y crear los nodos logísticos interiores.

Pensando en todos los modos —carretera, ferrocarril, puertos, aeropuertos, redes logísticas y digitales—, ¿qué ejes o áreas infraestructurales deberían ser prioritarios para mejorar la competitividad y cohesión territorial en España?

La inversión estratégica para mejorar la competitividad y la cohesión territorial debe resolver los cuellos de botella y priorizar la seguridad. El primer eje ineludible se centra en la intermodalidad y la logística de mercancías. Es de máxima prioridad estratégica completar la adaptación de los corredores mediterráneo y atlántico al ancho de vía internacional. El segundo gran eje es la vivienda, cuya provisión masiva y asequible es crucial para la cohesión social y para facilitar la movilidad laboral en zonas de alta demanda. El tercer eje fundamental es la seguridad y el abastecimiento hídrico. La respuesta a la sequía estructural pasa por invertir en infraestructuras que no dependan de las precipitaciones, como la regeneración de aguas residuales mediante un tratamiento avanzado y la ampliación de las plantas desaladoras. También es crucial invertir en obras de defensa y drenaje en cuencas fluviales para proteger a las poblaciones de las avenidas extremas. El cuarto eje se centra en la cohesión a través de la calidad del servicio. Es fundamental saldar el grave déficit de conservación acumulado en la red de carreteras de titularidad autonómica y provincial, que son vitales para la vertebración de la España rural. En cuanto a la prioridad digital, el objetivo es cerrar la brecha y garantizar la cobertura universal de banda ancha ultrarrápida en todos los municipios.

La sostenibilidad ya no es discurso: se mide, se diseña y se exige en todas las fases del ciclo de vida.

El aumento de costes de materiales, la tramitación lenta o la falta de personal cualificado afectan a las infraestructuras. ¿Qué medidas urgentes propondría para desbloquear estos frenos?

La alta inversión pública se ve obstaculizada por tres frenos principales: la volatilidad de los costes, la complejidad administrativa y la necesidad de reforzar el talento. La medida más urgente para hacer frente a la volatilidad de los precios es implementar un sistema de revisión contractual objetivo, automático y no discrecional. Esta medida debe complementarse con la posibilidad de que la Administración adquiera con antelación materiales estratégicos para proyectos clave. Para combatir la lentitud en la tramitación, es imperativo crear Unidades de Gestión de Proyectos Estratégicos que actúen como ventanilla única y coordinen los plazos de licencias y expropiaciones entre las distintas administraciones. Por último, para abordar la falta de personal cualificado, la Administración debe ofrecer condiciones salariales y de progresión profesional más competitivas. Es crucial que la normativa de contratación pública flexibilice la valoración y permita que la calidad técnica y la experiencia del equipo pesen más que el precio en los concursos de servicios de ingeniería.

Si pudiera proponer tres decisiones inmediatas que mejoren las infraestructuras españolas a corto y medio plazo, ¿cuáles serían y por qué?

La mejora de las infraestructuras españolas a corto y medio plazo requiere tomar cuatro decisiones de alto impacto ineludibles. La primera es la reingeniería del modelo de financiación del mantenimiento. Hay que establecer un sistema de contratos programa plurianuales para la conservación de la red de carreteras de alta capacidad y de ferrocarril. La segunda decisión ineludible se centra en la ejecución estratégica y la interoperabilidad. Es urgente crear una unidad ejecutora especializada y con autonomía técnica que se encargue de gestionar de manera integral y acelerada los corredores ferroviarios Mediterráneo y Atlántico. Esta medida resolvería el cuello de botella técnico del ancho de vía y garantizaría el cumplimiento de los plazos exigidos por la Unión Europea para 2030. La tercera decisión debe abordar la gestión eficiente del suelo y la construcción de viviendas asequibles, simplificando los trámites urbanísticos y movilizando suelo público de manera inmediata para aumentar el parque de viviendas sociales. Por último, la cuarta decisión debe resolver los frenos de la gestión: la volatilidad de los costes y la falta de talento. Es imprescindible revisar automáticamente los precios de los contratos de obra pública. De forma complementaria, es necesario modificar la normativa de contratación pública para que, en los servicios de ingeniería, la calidad técnica y la experiencia del equipo humano pesen más que el precio ofertado.

Digital twins, mantenimiento predictivo e infraestructuras como servicio: el futuro ya está en marcha.

Os dejo una conversación donde se habla de estos temas.

En este vídeo se resumen algunas de las ideas principales sobre las infraestructuras en España.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cómo construían en Pompeya: la mezcla en caliente y la química oculta de los morteros romanos

En esta ocasión comparto con los lectores una entrevista que me han realizado a propósito de un reciente estudio publicado en Nature CommunicationsVaserman, E., Weaver, J.C., Hayhow, C. et al. (2025), An unfinished Pompeian construction site reveals ancient Roman building technology— que ha generado un notable interés tanto en la comunidad científica como en los medios. El trabajo ha sido también objeto de un artículo en El País (“Así construían los albañiles de la Antigua Roma”, disponible en: https://elpais.com/ciencia/2025-12-09/asi-construian-los-albaniles-de-la-antigua-roma.html), en el que se recoge mi valoración sobre sus implicaciones para la ingeniería civil y la comprensión de las técnicas constructivas romanas. Presento aquí la entrevista completa, con el fin de profundizar en los aspectos técnicos y arqueológicos que hacen de este estudio un caso excepcional para el análisis de los materiales históricos.

  1. El artículo sostiene que en Pompeya se empleaba con cierta frecuencia la mezcla en caliente con cal viva, ¿cómo interpreta esta afirmación?

El trabajo presenta una serie de análisis microestructurales y químicos que indican claramente que en la Domus IX 10,1 se utilizó un procedimiento basado en la mezcla de cal viva con materiales puzolánicos en estado seco. Los resultados son coherentes con esta hipótesis y están bien fundamentados en este contexto arqueológico, especialmente debido al hallazgo de montones de material premezclado seco que contenían gránulos de cal viva. No obstante, desde la perspectiva de la ingeniería civil, conviene subrayar que se trata de una evidencia localizada en un momento de reconstrucción posterior al terremoto del año 62 d. C., por lo que no es posible extrapolarla automáticamente a todo el ámbito del Imperio romano. La diversidad de materiales y prácticas constructivas descrita por autores como Vitruvio, quien abogaba por el apagado previo de la cal, hace recomendable interpretar este estudio como una muestra de la coexistencia de métodos alternativos al canon clásico, pero no como una descripción universal.

  1. El estudio plantea que los morteros podrían haber experimentado procesos de autorreparación a muy largo plazo. ¿Cómo valora usted esta idea?

Los datos indican que ciertos clastos de calcita pudieron seguir reaccionando durante un periodo prolongado, actuando como fuente de calcio reactivo. Esto habría favorecido el relleno de microfisuras mediante la recristalización de carbonato cálcico en sus polimorfos de calcita y aragonito. Este comportamiento es interesante desde el punto de vista científico, ya que permite comprender mejor la evolución mineralógica en la interfaz entre los áridos volcánicos y la matriz cementante. No obstante, desde el punto de vista de la ingeniería estructural moderna, es importante tener en cuenta su contexto, ya que se trata de un proceso geoquímico lento, con efectos localizados y condicionado por los ciclos de humedad ambiental. Esta característica ayuda a explicar la durabilidad observada, pero no tiene una equivalencia directa con los mecanismos de reparación activa inmediata que se investigan actualmente en la obra civil.

  1. ¿Podría interpretarse la presencia de clastos de cal como un indicio de una mezcla defectuosa?

En determinadas obras históricas, la presencia de grumos de cal puede deberse a procesos de mezcla incompletos o a un apagado insuficiente. Sin embargo, en este caso particular, los análisis de espectroscopía infrarroja y de isótopos estables de carbono y oxígeno indican que estos grumos se formaron durante un proceso térmico y químico compatible con la utilización deliberada de cal viva. Los investigadores documentan, además, la segregación intencionada de materiales: montones de premezcla con cal viva para muros estructurales frente a ánforas con cal apagada para acabados. Por tanto, las pruebas apuntan a una técnica constructiva específica (hot mixing) y no a una ejecución negligente.

  1. ¿Cree que estos resultados pueden considerarse representativos del conjunto de la construcción romana?

Los datos corresponden a un escenario muy concreto, que se conserva excepcionalmente bien gracias a la ceniza volcánica de la erupción del 79 d. C., lo que permite analizar materiales «congelados» en plena fase de obra. Precisamente por su carácter singular, lo más prudente es entender que este estudio aporta información específica sobre la logística de una obra doméstica en Pompeya del siglo I, sin que ello implique que todos los constructores romanos actuaran de la misma manera en obras de infraestructura pública o en otras provincias. Para avanzar en esta cuestión, será necesario realizar estudios comparativos con metodologías similares en otros yacimientos u enclaves imperiales.

  1. El artículo distingue entre morteros estructurales y de acabado. ¿Considera acertada esa diferenciación?

Esta diferenciación es coherente con lo que cabría esperar en cualquier tradición constructiva con un mínimo grado de especialización. El estudio documenta el uso de cal apagada almacenada en ánforas recicladas, presumiblemente destinada a morteros de reparación o revestimientos pictóricos, mientras que la cal viva se reservaba para la mampostería estructural. Las propiedades requeridas para un muro de carga no son idénticas a las necesarias para un acabado fino y el análisis químico (ratios Ca/Si) del artículo parece respaldar que se ajustaban las formulaciones según la función. La propuesta es razonable y encaja con el análisis logístico del flujo de trabajo en la obra.

  1. ¿Qué aspectos de este trabajo pueden interesar a la ingeniería civil actual, especialmente en relación con los hormigones modernos?

Este estudio contribuye a una comprensión más completa de la evolución de ciertos morteros históricos a lo largo del tiempo, lo que puede resultar inspirador para el desarrollo de nuevos materiales de restauración compatibles y con menor huella de carbono. El uso de la reactividad residual de los clastos de cal para sellar fisuras es un principio valioso para la sostenibilidad. No obstante, los materiales actuales ofrecen prestaciones y un nivel de control muy superiores. Disponemos de cementos compuestos y de normativas de seguridad que permiten diseñar con una fiabilidad estandarizada que no existía en la antigüedad. Por tanto, los morteros romanos son un referente histórico y una fuente de inspiración, pero no un modelo que pueda utilizarse directamente en las grandes infraestructuras contemporáneas.

  1. Algunos autores han sugerido que parte de los carbonatos observados podría ser producto de procesos posteriores a la construcción. ¿Cómo valora la argumentación del estudio?

El artículo describe una serie de observaciones que indican que parte de los carbonatos se formaron durante la vida útil inicial del material. Concretamente, el análisis de isótopos permite distinguir entre la carbonatación rápida en condiciones de mezcla en caliente (fraccionamiento cinético) y la carbonatación lenta en equilibrio. Esto permite a los autores argumentar que los clastos no son únicamente producto de la degradación postdeposicional. No obstante, en materiales con tantos siglos de antigüedad, es razonable tener en cuenta también la influencia del entorno. El estudio aborda este aspecto mediante el análisis de los bordes de reacción de los áridos volcánicos, donde se observa una remineralización continua. Desde un enfoque técnico, el estudio aporta pruebas sólidas para distinguir ambas fases.

  1. Desde su perspectiva como catedrático de ingeniería de la construcción, ¿qué aportación considera más destacable y qué limitaciones observa?

El estudio destaca por ofrecer una visión muy detallada de un proceso constructivo interrumpido, lo que supone una oportunidad excepcional. La identificación de herramientas in situ (plomadas, azadas, pesas) junto con los materiales permite reconstruir el flujo de trabajo real, algo que rara vez se conserva. La principal limitación es su naturaleza localizada, ya que describe un caso concreto de una domus privada en reparación, lo que no permite, por sí solo, establecer conclusiones de alcance general sobre la gran ingeniería pública romana. También sería interesante complementar estas investigaciones en el futuro con datos de resistencia mecánica comparada para realizar una valoración más completa desde el punto de vista de la ingeniería estructural.

En este audio se puede escuchar una conversación que trata sobre este artículo recientemente publicado

Las ideas más interesantes del artículo se puede ver en este vídeo.

En esta presentación se resumen las ideas más importantes.

Pincha aquí para descargar

Referencia:

Vaserman, E., Weaver, J.C., Hayhow, C. et al. An unfinished Pompeian construction site reveals ancient Roman building technologyNat Commun 16, 10847 (2025). https://doi.org/10.1038/s41467-025-66634-7

El artículo está publicado en abierto, y se puede leer aquí:

Pincha aquí para descargar

Descifrando la construcción moderna: una guía clave para entender la jerga de la industria

1. Introducción: ¿Por qué hay tanta confusión?

El campo de la innovación en la construcción está lleno de siglas y términos que pueden resultar abrumadores para cualquiera que se inicie en este mundo. Acrónimos como MMC, IC, OSC y conceptos como prefabricación o construcción modular se utilizan a menudo de manera inconsistente, lo que crea una barrera de confusión para quienes se inician en este campo.

El propósito de este artículo es actuar como un decodificador, no solo por rigor académico, sino porque la capacidad de la industria para resolver desafíos urgentes, como la crisis de la vivienda, la productividad estancada y la descarbonización del entorno construido, depende de una comprensión común y una estrategia coherente.

La situación actual es como si hubiera un conjunto de etiquetas superpuestas para describir un mismo ecosistema: unas describen el clima (el enfoque general), otras las especies de árboles (los sistemas técnicos) y otras el suelo en el que crecen (las tecnologías habilitadoras). Sin un mapa que las organice, es fácil perderse.

En esta guía, basada en el trabajo de Paul D. Kremer, desglosaremos esta jerga compleja, empezando por los tres términos más amplios y confusos, que actúan como grandes «paraguas» conceptuales.

2. Los grandes «paraguas»: aclarando MMC, IC y OSC/OSM.

Los términos más confusos son aquellos que buscan describir enfoques generales para modernizar la construcción. Aunque a menudo se usan como sinónimos, representan ideas fundamentalmente distintas.

  • Métodos Modernos de Construcción (MMC): es un «término paraguas» amplio, principalmente impulsado por políticas gubernamentales, que carece de una definición técnica estable y coherente. La investigación es clara al respecto y señala que el MMC funciona «en gran medida como un paraguas impulsado por políticas con poca o ninguna frontera técnica coherente». En la práctica, su significado varía según el contexto. En algunos documentos, MMC puede referirse a sistemas modulares volumétricos, a herramientas digitales de gestión o a un conjunto de estrategias para mejorar la productividad. Es un término retórico útil para las políticas públicas, pero analíticamente débil por su ambigüedad.

 

  • Construcción industrializada (CI): es el paradigma más coherente y estable de los tres. Consiste en aplicar la lógica de la fabricación al proceso constructivo. No se trata simplemente de construir en una fábrica, sino de reconfigurar todo el sistema de producción. Sus características principales son:
    • Repetibilidad y normalización: trata la construcción como un sistema de producción orquestado, con componentes y procesos estandarizados, en lugar de una serie de prototipos únicos.
    • Logística coordinada: enfatiza la planificación de la producción y las operaciones de la cadena de suministro totalmente integradas, similar a la de una línea de ensamblaje de automóviles.
    • Enfoque en el proceso: se centra en cómo se organiza la construcción (el flujo de trabajo, la estandarización, la eficiencia) y no solo en dónde ocurre (en la obra o en una fábrica).

 

  • Construcción/fabricación en taller (OSC/OSM): (del inglés, Off-Site Construction/Manufacturing) se refiere a la ubicación. Su función principal es indicar que una parte o la totalidad del proceso de construcción se traslada de la obra a un entorno controlado, como una fábrica. Sin embargo, el término no especifica nada sobre el sistema de producción subyacente. La investigación en este campo suele centrarse en las interfaces entre la fábrica y la obra, las restricciones de transporte y la secuencia de instalación, pero rara vez aborda los principios de fabricación o la integración digital que definen un sistema de producción completo.

Síntesis comparativa

Para visualizar mejor las diferencias, aquí tienes una tabla comparativa:

Característica Métodos modernos de construcción (MMC) Construcción industrializada (IC) Construcción en taller (OSC/OSM)
Concepto clave Un «paraguas» de políticas que agrupa diversas innovaciones. Una filosofía de producción basada en la lógica de la fabricación. Un descriptor que indica la ubicación de la producción (fábrica vs. obra).
Enfoque principal Modernización de la industria en un sentido amplio y flexible. Eficiencia del proceso, repetibilidad y cadena de suministro integrada. El traslado de actividades fuera de la obra para mejorar el control y la calidad.
Analogía simple Una etiqueta de «comida saludable» (puede significar muchas cosas). La «cocina de un chef» (un sistema organizado con procesos definidos). «Comida para llevar» (hecha en otro lugar, sin importar cómo se cocinó).

Ahora que hemos aclarado estos conceptos generales, podemos explorar los tipos de sistemas técnicos más específicos que suelen estar englobados por estos «paraguas».

3. Los «ladrillos»: tipos de sistemas técnicos.

A diferencia de los «paraguas» conceptuales, términos como prefabricado, modular y panelizado se refieren a arquetipos técnicos específicos o «subdominios». Son los verdaderos «ladrillos» con los que se construye.

  1. Sistemas modulares volumétricos: se trata de módulos tridimensionales (3D) altamente prefabricados en fábrica, como habitaciones completas, módulos de baño o de cocina. Estos «bloques» se transportan a la obra y se ensamblan rápidamente. Su principal ventaja es la rapidez de instalación, que reduce drásticamente el tiempo de construcción.
  2. Sistemas panelizados: son componentes bidimensionales (2D), como paredes, losas de piso o paneles de techo, fabricados con alta precisión en una fábrica. Estos paneles se ensamblan en la obra para conformar la estructura del edificio. Un ejemplo prominente son los sistemas de madera de ingeniería (Mass Timber), como el CLT (Cross-Laminated Timber), que demuestran un gran potencial para la construcción rápida y la reducción de emisiones de carbono. Ofrecen una gran flexibilidad de configuración y diseño, ya que los paneles pueden combinarse de múltiples maneras.
  3. Sistemas híbridos: son una mezcla inteligente de componentes prefabricados (modulares o panelizados) y de construcción tradicional in situ. Por ejemplo, se puede construir un podio de hormigón en la obra y luego montar módulos prefabricados encima. A menudo superan a los sistemas totalmente modulares o totalmente in situ en términos de coste y viabilidad, especialmente en entornos urbanos complejos con restricciones de espacio.
  4. Prefabricación (como término general): es importante señalar que el término «prefabricación» es amplio y abarca tanto los sistemas modulares como los panelizados. Simplemente significa que los componentes del edificio se fabrican en un lugar distinto de su ubicación final antes de ser instalados.

Estos sistemas técnicos no funcionan de manera aislada, sino que dependen de un conjunto de tecnologías y metodologías transversales que garantizan su eficiencia y coherencia.

4. Los «habilitadores»: las tecnologías que lo unen todo.

Independientemente del sistema constructivo utilizado (modular, panelizado o híbrido), hay dos «habilitadores» transversales fundamentales para que la construcción moderna funcione de manera integrada y eficiente: la DfMA y la digitalización.

Diseño para la fabricación y el ensamblaje (DfMA): El DfMA no es un método de construcción, sino un «sistema operativo de diseño». Se trata de una metodología que obliga a considerar la fabricación y el ensamblaje desde las primeras etapas del diseño, en lugar de resolverlos sobre la marcha. Sus funciones clave son las siguientes:

  • Alinear el diseño con la realidad: asegura que el diseño arquitectónico sea compatible con las limitaciones y capacidades de la fabricación desde el principio.
  • Considerar la logística como diseño: incorpora variables como las tolerancias de fabricación, la secuencia de transporte y la logística de ensamblaje como parte integral del proceso de diseño.
  • Actuar como núcleo conector: funciona como el nexo que conecta el concepto arquitectónico con la producción industrializada, garantizando que lo que se diseña se pueda fabricar y ensamblar eficientemente.

Digitalización: es la «infraestructura de información» que coordina todo el proceso, desde el diseño hasta el ensamblaje final. Proporciona las herramientas necesarias para gestionar la complejidad de la construcción industrializada. Entre las herramientas clave se encuentran el modelado de información para la construcción (BIM), los gemelos digitales, el modelado paramétrico, los configuradores de diseño, la simulación de procesos y la robótica. Todas ellas conforman la infraestructura de información que coordina los entornos de fábrica y de obra. Con todas estas piezas —los paraguas, los ladrillos y los habilitadores— sobre la mesa, es posible entender un nuevo marco que busca unificarlo todo de manera coherente.

5. Uniendo las piezas: el marco de la neoconstrucción.

Para resolver la fragmentación y la ambigüedad conceptual que hemos analizado, la investigación propone un nuevo término integrador: «neoconstrucción». Este marco no pretende sustituir los términos existentes, sino organizarlos en una estructura lógica.

La neoconstrucción se define como un paradigma de construcción sociotécnica, coordinado digitalmente, industrializado y circular, que integra principios de fabricación, modelos organizativos orientados a plataformas y flujos de trabajo de diseño a producción, dirigidos por DfMA, para entregar sistemas del entorno construido configurables y de alto rendimiento.

Esta densa definición se puede desglosar en cinco componentes esenciales que forman el núcleo del marco:

  1. Integración digital: coordinación basada en modelos (BIM), sistemas de configuración paramétricos y herramientas de soporte a la decisión digital, que constituyen la columna vertebral de la información que conecta el diseño, la producción y la logística.
  2. Producción industrializada: flujos de producción estructurados, estandarización y logística coordinada que conforman la lógica subyacente al paradigma de «construcción como fabricación».
  3. Gobernanza de plataforma: uso de plataformas de productos, definición de interfaces y de ecosistemas de cadena de suministro integrados para permitir la escalabilidad, la consistencia y la coordinación del ecosistema.
  4. Lógicas de diseño a producción (DfMA): integración de la «fabricabilidad», tolerancias, reglas de ensamblaje y principios de diseño circular (DfMA) para garantizar que el diseño se alinee con la realidad de la fabricación y la logística.
  5. Circularidad y rendimiento de por vida: principios de diseño para el desmontaje, la reutilización, la adaptabilidad y la recuperación de materiales para alinear el marco con los imperativos de sostenibilidad y el valor a largo plazo.

Este marco organiza de manera coherente los términos anteriores, posicionando la construcción industrializada (CI) como la «columna vertebral de la producción» y el DfMA como el «sistema operativo de diseño». Esta claridad conceptual no es solo un ejercicio académico, sino que es fundamental para el futuro de una industria que necesita innovar de manera estructurada y escalable.

6. Conclusión: de la confusión a la claridad.

Entender la jerga de la construcción moderna no es tarea imposible. Al organizar los términos en una jerarquía lógica, podemos pasar de la confusión a la claridad.

A continuación, se presenta un resumen de las distinciones clave:

  • MMC: es un término de política, amplio y retórico, no una categoría técnica.
  • IC: es una filosofía de producción centrada en la lógica de la fabricación.
  • OSC: es un descriptor de ubicación que indica dónde se realiza el trabajo.
  • Modular/panelizado: se trata de productos técnicos, los «ladrillos» del sistema.
  • DfMA y digitalización: son los habilitadores transversales, el «sistema operativo» y la «infraestructura de información» que lo unen todo.

Para cualquier estudiante o profesional del sector, dominar esta jerarquía proporciona una base sólida para navegar por la innovación en la construcción. La clave está en ir más allá de los términos de moda y centrarse en la lógica subyacente que realmente impulsa el cambio: una mentalidad de fabricación, un diseño integrado y una coordinación digital impecable. Solo con esta claridad conceptual, la industria podrá afrontar de manera sistemática sus grandes retos en materia de productividad, sostenibilidad y resiliencia.

En esta conversación podéis escuchar aspectos interesantes sobre este tema:

Aquí tenéis un vídeo que resume lo más interesante.

En este documento también os dejo las ideas principales del trabajo de Kremer (2025).

Pincha aquí para descargar

Referencia:

Kremer, P.D. (2025). Defining Modern Methods of Construction: Resolving Conceptual Ambiguity Through the Neo-Construction Framework (preprint)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mejores prácticas para el control del nivel freático en proyectos de construcción.

Figura 1. Control del nivel freático. https://www.flickr.com/photos/wsdot/4997287082/

En este artículo se analiza un documento anexo al final: una guía formal de drenaje que detalla las lecciones aprendidas durante un proyecto de ingeniería civil excepcionalmente complejo en Christchurch (Nueva Zelanda), que se llevó a cabo de 2011 a 2016 tras un terremoto. Proporciona un marco para evaluar, diseñar e implementar el drenaje en programas de reconstrucción de infraestructuras o de recuperación tras desastres naturales, con énfasis en las prácticas de construcción y la geología local.

La guía examina diversos sistemas de control del nivel freático, como sumideros, sistemas de well-points y pozos, y ofrece criterios para seleccionar los métodos según la permeabilidad del suelo y la profundidad de la excavación. Además, establece un sistema para determinar la categoría de riesgo de un proyecto de drenaje y describe las medidas necesarias para mitigar los efectos ambientales y prevenir la subsidencia del terreno.

1.0 Introducción y principios fundamentales.

1.1 La importancia crítica del control del agua subterránea.

El control del nivel freático es un factor determinante para el éxito de cualquier proyecto de construcción que implique excavaciones. Una gestión inadecuada o la ausencia de un control efectivo puede comprometer gravemente la estabilidad de las excavaciones, la integridad de las estructuras permanentes y, en última instancia, la viabilidad económica y temporal del proyecto. El agua subterránea no controlada puede generar riesgos geotécnicos significativos, como la tubificación (piping), que es la erosión interna del suelo por el flujo de agua; el levantamiento del fondo (uplift), causado por presiones ascendentes que superan el peso del suelo en la base de la excavación, y una reducción general de la estabilidad del suelo, que puede provocar fallos en los taludes. Este manual recopila las lecciones aprendidas durante el programa de reconstrucción de la infraestructura de Christchurch (SCIRT), en el que la gestión del agua subterránea en condiciones geotécnicas complejas y tras el sismo fue un desafío diario y crítico para el éxito del proyecto. Estos fenómenos no solo suponen una amenaza para la seguridad de los trabajadores, sino que también pueden ocasionar daños en infraestructuras adyacentes y provocar retrasos y sobrecostes considerables.

Figura 2. Rotura de fondo o tapozano

1.2. Propósito y alcance del manual.

El manual proporciona una guía práctica y un proceso normalizado para evaluar, seleccionar, diseñar y monitorizar los sistemas de drenaje en obras de construcción. Con base en las enseñanzas extraídas de proyectos de infraestructura complejos, este documento pretende dotar a los ingenieros y gerentes de proyecto de las herramientas necesarias para prever y gestionar los desafíos relacionados con el nivel freático. El objetivo final es reducir los costes y los retrasos asociados a problemas imprevistos mediante una planificación proactiva y un diseño técnico riguroso de las obras temporales de drenaje.

Este manual aborda el ciclo completo de la gestión del agua subterránea en la construcción e incluye:

  • El contexto geológico y su influencia directa en las estrategias de desagüe.
  • Los sistemas de control del nivel freático disponibles, sus aplicaciones y limitaciones.
  • La mitigación de los efectos ambientales y el cumplimiento de las normativas vigentes.
  • Un marco para la evaluación sistemática de riesgos y la planificación de contingencias.

El documento se centra principalmente en los métodos de control del nivel freático, que consisten en interceptar y extraer el agua subterránea mediante bombeo. También se mencionan brevemente los procedimientos de contención, como las tablestacas o los muros pantalla, que buscan bloquear el flujo de agua hacia la excavación.

Figura 3. Combinación de pantallas con (a) bombeo convencional o (b) barreras horizontales. Adaptado de Cashman y Preene (2012)

1.3. Importancia del contexto geológico.

  • Análisis de acuíferos: una comprensión fundamental de la hidrogeología del emplazamiento es el pilar de cualquier diseño de un drenaje. Es crucial identificar la naturaleza de los acuíferos presentes, ya sean confinados, no confinados o artesianos. La fuente del agua (por ejemplo, la infiltración de lluvia o la recarga de un río) y la presión a la que se encuentra determinan directamente la selección y la eficacia del sistema de drenaje. Por ejemplo, un acuífero confinado o artesiano puede ejercer una presión ascendente significativa, lo que requiere métodos de control más robustos que los de un simple acuífero no confinado. Este conocimiento también es importante para planificar y evitar impactos no deseados en el entorno, como la afectación de pozos de agua cercanos o la inducción de asentamientos en estructuras adyacentes.
  • Análisis del perfil del suelo: el comportamiento del agua subterránea está intrínsecamente ligado a las propiedades del suelo. La permeabilidad del suelo, es decir, su capacidad para permitir el paso del agua, es el factor más crítico, ya que determina la facilidad con la que se puede extraer agua mediante bombeo.
    • Gravas y arenas limpias: son altamente permeables y ceden agua con facilidad, pero pueden generar grandes caudales de entrada.
    • Limos y arcillas: presentan baja permeabilidad, ceden agua muy lentamente y son susceptibles a la consolidación y al asentamiento cuando se reduce la presión del agua.
    • Suelos estratificados: la presencia de capas alternas de alta y baja permeabilidad puede crear condiciones complejas, como acuíferos colgados, que requieren un diseño cuidadoso para su drenaje eficaz.
  • Síntesis de los desafíos geotécnicos: la interacción entre la geología local y las actividades de construcción genera una serie de desafíos específicos que deben anticiparse.

Tabla 1: Desafíos geotécnicos comunes y sus implicaciones.

Desafío geotécnico Implicaciones para las operaciones de drenaje
Presencia de turba y suelos orgánicos Estos suelos tienen un alto contenido de agua y son muy compresibles. El drenaje puede provocar asentamientos significativos y dañar la infraestructura cercana. Por ello, es necesario realizar una evaluación de riesgos muy cuidadosa y un seguimiento de los asentamientos.
Gravas superficiales  Las capas de grava poco profundas pueden complicar la instalación de sistemas como los well-points y generar volúmenes de entrada de agua muy elevados que superen la capacidad de los sistemas de bombeo estándar.
Riesgo de encontrar condiciones artesianas La intercepción de un acuífero artesiano puede provocar un flujo de agua incontrolado hacia la excavación, lo que conlleva un riesgo de inundación, levantamiento del fondo y fallo catastrófico. Por ello, es necesario realizar una investigación geotécnica exhaustiva y elaborar un plan de contingencia robusto.
Niveles freáticos variables Los niveles freáticos pueden fluctuar estacionalmente o en respuesta a eventos de lluvia. El diseño debe ser capaz de manejar el nivel freático más alto esperado, considerando que las variaciones estacionales en Christchurch pueden alcanzar hasta 3 metros.

Por lo tanto, la comprensión profunda del contexto geológico es el primer paso indispensable para realizar una evaluación sistemática de los riesgos y diseñar un sistema de control del nivel freático adecuado.

2.0 Evaluación previa a la construcción y al análisis de riesgos.

2.1 La fase crítica de planificación.

La fase previa a la construcción ofrece la oportunidad más rentable para identificar, analizar y mitigar los riesgos asociados al drenaje de aguas subterráneas. Una evaluación rigurosa en esta etapa permite diseñar adecuadamente las obras temporales, evitar fallos durante la ejecución y realizar una asignación presupuestaria precisa, lo que evita sobrecostos y retrasos imprevistos. Aunque un diseño proactivo suponga una inversión inicial, casi siempre resulta un ahorro global para el proyecto.

2.2 Pasos clave para el diseño del drenaje.

  • Desarrollo del modelo geotécnico: para diseñar un control del nivel freático eficaz, es esencial construir un modelo conceptual del subsuelo. Este proceso debe ser dirigido por un técnico competente y consta de los siguientes pasos:
    1. Revisión de estudios previos: consultar fuentes de información existentes como mapas geológicos, bases de datos geotécnicas, investigaciones previas en la zona y fotografías aéreas.
    2. Evaluación de la permeabilidad: utilizar la información disponible para estimar preliminarmente la permeabilidad de las diferentes capas del suelo.
    3. Evaluación de riesgos inicial: realizar una evaluación de alto nivel sobre la posible presencia de suelos o aguas subterráneas contaminadas, la probabilidad de encontrar grava a poca profundidad y el riesgo de que haya condiciones artesianas.
    4. Decisión sobre investigaciones adicionales: en función de la complejidad y el perfil de riesgo del proyecto, se debe determinar si la información existente es suficiente o si se requieren investigaciones de campo específicas (por ejemplo, sondeos o ensayos de permeabilidad) para definir adecuadamente el modelo del terreno.
  • Técnicas para determinar la permeabilidad: la permeabilidad es el parámetro clave que guía el diseño del control del nivel freático. La siguiente tabla resume los métodos disponibles para su determinación, ordenados aproximadamente por coste y fiabilidad.

 

Método Descripción Aplicabilidad Coste y fiabilidad relativa
1. Empírico (registros de sondeo) Se asignan valores de permeabilidad basados en las descripciones de los suelos obtenidas de los registros de perforación, que se comparan con valores típicos de referencia. Útil para evaluaciones preliminares y proyectos de bajo riesgo. Coste: el más bajo (solo horas de diseño).

Fiabilidad: baja; solo proporciona un orden de magnitud.

2. Empírico (método de Hazen) Estimación de la permeabilidad a partir de las curvas de distribución granulométrica del suelo. Aplicable solo si se cuenta con ensayos de granulometría en suelos arenosos. Coste: bajo si los datos ya existen; de lo contrario, requiere muestreo y ensayos de laboratorio.

Fiabilidad: baja a moderada.

3. Ensayo de laboratorio (carga constante) Mide el flujo de agua a través de una muestra de suelo bajo un gradiente hidráulico constante. Adecuado para suelos con permeabilidades relativamente altas (10⁻² a 10⁻⁵ m/s), como arenas y gravas. Coste: relativamente bajo, pero requiere la obtención de muestras inalteradas.

Fiabilidad: moderada, pero puede no ser representativa de la masa de suelo a gran escala.

4. Ensayo de laboratorio (consolidación/triaxial) Mide la permeabilidad como parte de ensayos de consolidación o de ensayos triaxiales. Adecuado para suelos de baja permeabilidad (≤ 10⁻⁶ m/s), como los limos y las arcillas. Coste: relativamente bajo, pero requiere muestras inalteradas.

Fiabilidad: moderada, sujeta a las mismas limitaciones que el ensayo de carga constante.

5. Ensayo de carga instantánea (slug test) Se induce un cambio rápido en el nivel del agua en un pozo o piezómetro y se mide la velocidad de recuperación del nivel. Realizado in situ en la zona saturada. Puede ser demasiado rápido para suelos muy permeables. Coste: menor que el de un ensayo de bombeo.

Fiabilidad: Proporciona una indicación de la permeabilidad local alrededor del pozo, pero no a escala de sitio.

6. Ensayo de bombeo Se bombea agua desde un pozo a un caudal constante y se mide el abatimiento del nivel freático en el pozo de bombeo y en pozos de observación cercanos. Proporciona datos a gran escala y es adecuado para proyectos de desagüe profundos o de larga duración. Coste: el más alto y el que consume más tiempo (dura de 24 horas a 7 días).

Fiabilidad: la más alta, ya que mide la respuesta del acuífero a una escala representativa de las condiciones reales del proyecto.

2.3 Metodología de evaluación de riesgos

  • Puntuación de riesgos: Para estandarizar el nivel de análisis y supervisión requerido, se propone un sistema de puntuación de riesgos, desarrollado y probado durante el programa SCIRT, que categoriza cada proyecto de control del nivel freático. Este enfoque permite asignar los recursos de diseño de manera proporcional al riesgo identificado, de modo que los proyectos de alta complejidad reciben la atención de especialistas y los de bajo riesgo pueden gestionarse mediante prácticas normalizadas.
  • Matriz de categorización de riesgos: el número de categoría de riesgo (RCN) se calcula multiplicando las puntuaciones asignadas a seis áreas de riesgo clave (RCN = A x B x C x D x E x F), tal y como se muestra en la siguiente tabla:

 

A: Profundidad de excavación Puntuación B: Agua subterránea Puntuación C: Condiciones del terreno Puntuación
< 2 m 1 No se requiere abatimiento 0 Suelos competentes sin necesidad de soporte temporal 1
2 – 3 m 2 Abatimiento < 1 m requerido 1 Limos y arcillas de baja permeabilidad 2
3 – 6 m 6 Abatimiento 1 – 3 m requerido 2 Arenas limosas 3
6 – 15 m 10 Abatimiento 3 – 6 m requerido 5 Turba y suelos orgánicos 3
> 15 m 12 Influencia en cuerpos de agua superficial 7 Intercepta gravas de moderada a alta permeabilidad 6
Abatimiento > 6 – 9 m requerido 10 Arenas fluidas 10
Intercepta acuífero artesiano 10 Suelos contaminados 10
Agua subterránea contaminada 10
D: Duración del drenaje Puntuación E: Coste de componentes del proyecto influenciados por el drenaje Puntuación F: Efectos en servicios, infraestructuras y propiedades adyacentes Puntuación
Excavación abierta por 1 – 2 días 1 < $0.1M 1 Sitio sin construcciones 1
Excavación abierta < 1 semana 2 $0.1M a $0.5M 2 Vía local 2
Excavación abierta por 1 – 4 semanas 3 $0.5M a $1M 3 Vía arterial principal o secundaria 3
Excavación abierta por 1 – 6 meses 4 $1M a $5M 4 Propiedad privada a una distancia menor que la altura de la excavación o estructuras adyacentes sobre pilotes 3
Excavación abierta > 6 meses 5 > $5M 5 Autopista 4
Vías férreas 4
Estructuras históricas con cimentaciones superficiales 4
Infraestructura crítica vulnerable a asentamientos 5

Nota: El Número de Categoría de Riesgo (RCN) se calcula como el producto de las puntuaciones de las 6 áreas (A x B x C x D x E x F).

  • Niveles de acción de diseño recomendados: una vez calculado el RCN, la siguiente tabla define las acciones mínimas de diseño que deben llevarse a cabo.

 

Número de categoría de riesgo (RCN) Consecuencia del riesgo Acciones mínimas de diseño recomendadas
0 – 10 Bajo • No se requiere un estudio de drenaje específico para el proyecto.

• Implementar el sistema de control del nivel freático basado en la experiencia local previa.

11 – 75 Medio • Realizar un estudio de escritorio de alto nivel para evaluar las condiciones del terreno y los riesgos de drenaje.

• Seleccionar métodos de control de nivel freático apropiados considerando restricciones y riesgos.

• Realizar cálculos manuales simples para verificar la idoneidad del diseño de las obras temporales.

76 – 2,500 Alto • Realizar un estudio de escritorio detallado.

• Confirmar las condiciones del terreno y la granulometría mediante al menos un sondeo.

• Realizar cálculos de diseño de drenaje (de simples a complejos según corresponda).

• Desarrollar e implementar un plan de control de asentamientos simple si es necesario.

• Controlar de cerca los sólidos en suspensión durante la descarga.

2,500 – 187,500 Muy Alto • Revisar un informe geotécnico detallado.

• Contratar a un técnico cualificado y experimentado para brindar asesoramiento profesional.

• Realizar investigaciones de campo adicionales (p. ej., ensayos de permeabilidad, ensayos de bombeo).

• Desarrollar e implementar un plan de control de asentamientos.

• Realizar inspecciones de la condición de las propiedades adyacentes antes de comenzar los trabajos.

Una vez evaluado el riesgo y definido el nivel de diseño requerido, el siguiente paso es comprender en detalle las prácticas y metodologías de drenaje disponibles para su ejecución en campo.

3.0 Métodos y prácticas de control del nivel freático

3.1 Introducción a las metodologías

Los métodos de control del nivel freático más comunes en la construcción se basan en la extracción de agua del subsuelo para reducir dicho nivel. La elección del método más adecuado es una decisión técnica que depende fundamentalmente de las condiciones del suelo, la profundidad de la excavación, el caudal de agua previsto y los objetivos específicos del proyecto. Cada método tiene sus propias ventajas y limitaciones, que deben evaluarse cuidadosamente.

3.2 Bombeo desde sumideros 

Descripción y aplicación: el bombeo desde sumideros es el método más simple y, a menudo, el más económico. Consiste en excavar zanjas o pozos (sumideros) en el punto más bajo de la excavación para que el agua subterránea fluya por gravedad hacia ellos y, desde allí, sea bombeada y evacuada. Este método es efectivo en suelos con permeabilidad alta o moderada, como las gravas y las arenas gruesas. Su principal limitación es que el agua fluye hacia la excavación antes de ser controlada, lo que puede causar inestabilidad en los taludes y en el fondo. Existe un alto riesgo de tubificación (piping) y de arrastre de finos, lo que puede provocar asentamientos y generar una descarga de agua cargada de sedimentos que requiere un tratamiento exhaustivo.

Requisitos de diseño e instalación: para que un sumidero sea eficaz, debe cumplir los siguientes requisitos:

  • Profundidad: Suficiente para drenar la excavación y permitir la acumulación de sedimentos sin afectar la toma de la bomba.
  • Tamaño: Mucho mayor que el de la bomba para facilitar la limpieza y el mantenimiento.
  • Filtro: El sumidero debe estar protegido con una tubería ranurada o perforada, rodeada de grava gruesa (20-40 mm) para evitar la succión de partículas finas del suelo.
  • Acceso: Debe permitir la retirada de las bombas para el mantenimiento y la limpieza periódica de los sedimentos acumulados.

Como mejor práctica, se recomienda sobreexcavar el fondo del sumidero y rellenarlo con material grueso para elevar la entrada de la bomba y minimizar la movilización de partículas finas.

Figura 4. Esquema de sumidero y bomba de achique para pequeñas excavaciones, basado en Powers (1992).

Análisis comparativo

Ventajas Inconvenientes
• Coste relativamente bajo. • Moviliza sedimentos del terreno, lo que requiere tratamiento de la descarga.
• Equipos móviles y fáciles de instalar y operar. • No puede utilizarse en «arenas fluidas».
• Solo opera durante los trabajos de construcción. • Tiene un alto potencial de liberar sedimentos en el medio ambiente y es el método más común para incumplir las condiciones de los permisos ambientales.

3.3 Sistemas de well-points

Descripción y aplicación: un sistema de well-points consiste en una serie de tubos de pequeño diámetro (aproximadamente 50 mm) con una sección ranurada en el extremo inferior. Estos tubos se instalan en el terreno a intervalos regulares. Estos tubos, también denominados «puntas de lanza», se conectan a un colector principal, que, a su vez, está conectado a una bomba de vacío. La bomba crea un vacío en el sistema que extrae el agua del subsuelo.

Este método es particularmente efectivo en arenas o suelos con capas de arena. Su principal limitación es la altura de succión, que en condiciones cercanas al nivel del mar es de hasta 8 metros. Para excavaciones más profundas, sería necesario utilizar sistemas escalonados en las bermas.

Consideraciones de diseño

  • Espaciamiento: el espaciamiento entre los pozos de extracción (que suele oscilar entre 0,6 y 3 m) depende de la permeabilidad del suelo, de la geometría de la excavación y del abatimiento requerido. Cuanto más permeable es el suelo, menor debe ser el espaciamiento.
  • Paquetes de filtro: en suelos finos o estratificados, es crucial instalar un paquete de filtro (generalmente, arena de textura media a gruesa) alrededor de cada pozo de extracción. Así se evita el bombeo de finos y se crea una ruta de drenaje vertical más eficiente.
Figura 5. Componentes del sistema. Cortesía de ISCHEBECK. http://www.ischebeck.es/assets/wp-content/uploads/agotamiento_agua/Cat%C3%A1logo%20Wellpoint%2016022012.pdf

Análisis comparativo

Ventajas Inconvenientes
• Descarga limpia: Una vez establecido, el sistema extrae agua limpia que requiere poco o ningún tratamiento. • El desagüe debe realizarse muy cerca del área de trabajo.
• Abatimiento localizado del nivel freático, lo que resulta en menores volúmenes de descarga. • Funciona mejor en suelos uniformes.
• La instalación puede ocupar un espacio considerable en el entorno vial.
• Requiere experiencia para una instalación y colocación efectivas.
• Potencial de rendimiento (caudal) y de abatimiento limitados por la altura de succión.

3.4 Pozos de bombeo profundo (dewatering wells)

Descripción y aplicación: los pozos de bombeo profundo son pozos perforados de mayor diámetro y profundidad que los well-points y están equipados con una bomba sumergible. Se trata de un sistema de ingeniería que debe ser diseñado por un especialista. Cada pozo incluye componentes clave, como una rejilla dimensionada para el terreno, un paquete de filtro diseñado específicamente y un sello anular en la superficie para evitar la recarga superficial.

Este método es adecuado para excavaciones grandes, profundas o de larga duración y puede manejar grandes caudales de agua.

Consideraciones de diseño: el diseño de un sistema de pozos profundos requiere un análisis detallado de los siguientes parámetros:

  • Profundidad y diámetro del pozo: el diámetro debe ser suficiente para alojar la bomba necesaria y la profundidad debe ser significativamente mayor que el abatimiento deseado.
  • Tamaño de la ranura de la rejilla: se diseña en función del tamaño de grano del suelo o del material filtrante para maximizar la entrada de agua y minimizar la entrada de partículas finas.
  • Diseño del filtro: el filtro granular que rodea la rejilla es fundamental para evitar que los materiales finos del acuífero migren hacia el pozo.
  • Distancia entre pozos: Los pozos se espacian típicamente entre 10 y 50 metros. Su diseño es complejo, ya que se basa en la interacción entre los conos de abatimiento de cada pozo.
Figura 6. Agotamiento profundo del nivel freático mediante un pozo filtrante. Elaboración propia basado en Pérez Valcárcel (2004).

Análisis comparativo

Ventajas Inconvenientes
• Ideal para excavaciones de gran envergadura y proyectos de larga duración. • Si se extrae más agua de la necesaria, puede afectar a un área mayor de la prevista, lo que puede causar problemas de asentamiento en suelos compresibles (por ejemplo, turba).
• Descarga limpia una vez que el pozo está desarrollado correctamente. • Puede requerir un tiempo de preparación más largo para lograr el abatimiento del nivel freático.
• Alta capacidad de bombeo, superando problemas de variabilidad del suelo. • Se requiere un mayor nivel de diseño, planificación y ensayos de campo, como los ensayos de bombeo.
• Puede instalarse fuera del área de trabajo directa, liberando espacio en las zonas congestionadas.
• Las bombas sumergibles son mucho más silenciosas, ideales para áreas sensibles al ruido.

Tras describir los métodos individuales, el siguiente paso lógico es proporcionar una guía clara para seleccionar el sistema más apropiado para cada situación en el campo.

4.0 Selección del método apropiado

4.1 Una decisión estratégica

La elección del sistema de control del nivel freático adecuado es una decisión estratégica que debe equilibrar la eficacia técnica, el coste de implementación y de operación y el impacto ambiental potencial. Una elección informada no se basa en la intuición, sino en la recopilación y el análisis de datos específicos del emplazamiento. Una elección incorrecta puede provocar un rendimiento deficiente, sobrecostes y retrasos significativos en el proyecto.

4.2 Datos clave para la decisión

Para tomar una decisión fundamentada sobre el método de drenaje, es imprescindible recopilar la siguiente información:

  • Perfil y tipo de suelo, incluyendo la permeabilidad de cada estrato.
  • Dimensiones de la excavación: ancho, largo y profundidad.
  • Nivel freático existente, así como el nivel al que se necesita bajar (abatimiento requerido).
  • Método de excavación y soporte propuesto: por ejemplo, taludes abiertos o tablestacas.
  • Proximidad a estructuras existentes, cursos de agua y otras infraestructuras sensibles.

4.3 Matriz de decisión

La siguiente tabla sirve de guía para seleccionar una metodología de drenaje según el tipo de suelo predominante.

Guía para la selección de métodos de drenaje según el tipo de suelo.

Tipo de suelo Tasa de flujo de agua subterránea Posibles problemas Metodología de drenaje recomendada
Gravas / cantos Alta Se requieren grandes flujos de agua que pueden provenir de pozos profundos para excavaciones profundas o de sumideros para excavaciones superficiales. Pozos de bombeo profundo y de bombeo desde sumideros.
Arena Baja a media Baja estabilidad de la zanja si se permite que la arena fluya hacia la excavación (arena fluida). Sistemas well-point.
Limo Baja Estabilidad variable y bajo rendimiento de agua, lo que puede requerir un espaciado muy reducido de las puntas de lanza y provocar perching localizado. Sistemas de puntas de lanza (well-pointing) y de bombeo desde sumideros.
Arcilla Muy baja Se han detectado problemas mínimos de estabilidad de la zanja y una posible formación de un nivel freático colgado localizado. Sistemas de puntas de lanza (well-pointing) y de bombeo desde sumideros.
Turba Variable (baja a alta) El drenaje puede provocar la compresión de las capas, lo que provoca asentamientos y daños en los terrenos y en la infraestructura circundantes. Se requiere asesoramiento especializado.
Suelos mixtos Variable (baja a alta) La metodología se basa generalmente en el tipo de suelo predominante y en la unidad geológica que presenta el mayor rendimiento hídrico. Depende de la hidrogeología y de la unidad geológica de mayor rendimiento hídrico.

4.4 Criterios de aplicación específicos

  • Condiciones que favorecen el bombeo desde sumideros (sump pumping):
    • Suelos como grava arenosa bien graduada, grava limpia o arcilla firme o rígida.
    • Acuífero no confinado.
    • Se requiere un abatimiento moderado y no hay fuentes de recarga cercanas (por ejemplo, un arroyo).
    • La excavación tiene taludes poco pronunciados o está protegida por tablestacas hincadas a gran profundidad.
    • Cargas de cimentación ligeras.
  • Condiciones que favorecen los sistemas well-point:
    • Suelos arenosos o interestratificados que incluyan arenas (permeabilidad k = 10⁻³ a 10⁻⁵ m/s).
    • Acuífero no confinado.
    • Se requiere un abatimiento de 5 metros o menos (o de hasta 10 metros si el área de excavación es grande y permite sistemas escalonados).
  • Condiciones que favorecen la instalación de pozos de bombeo profundo (wells):
    • Las condiciones del terreno son demasiado permeables como para que los well-points sean viables.
    • Suelos limosos que requieren un diseño de filtro preciso.
    • Se requiere un abatimiento de más de 8 metros o un abatimiento en un área extensa durante un período prolongado.
    • El acceso a la excavación está restringido o el lugar está congestionado (los pozos pueden ubicarse fuera de las zonas de trabajo).

Independientemente del método elegido, es imperativo gestionar los impactos ambientales asociados, un aspecto crucial que se detallará en la siguiente sección.

Figura 7. Selección del método de drenaje adecuado.

5.0 Mitigación de efectos ambientales y gestión de impactos

5.1 Responsabilidad ambiental y cumplimiento normativo

La gestión del agua subterránea no termina con su extracción, sino que conlleva la responsabilidad de cumplir con la normativa medioambiental y minimizar cualquier impacto negativo en el entorno. Una planificación cuidadosa debe abordar dos aspectos principales: la gestión de la calidad del agua de descarga para proteger los cuerpos de agua receptores y la prevención del asentamiento del terreno, que podría dañar la infraestructura y las propiedades adyacentes.

5.2 Gestión de la calidad del agua extraída

  • Sólidos en suspensión totales (TSS): el agua bombeada desde una excavación, especialmente desde sumideros, a menudo presenta una alta concentración de sedimentos. La normativa medioambiental exige que esta agua sea tratada para eliminar los sólidos antes de su vertido. Por ejemplo, muchos permisos establecen un límite de 150 g/m³ de TSS. Para el control in situ, una herramienta práctica es la evaluación visual comparativa. En un laboratorio, se pueden preparar muestras estándar con concentraciones conocidas de TSS (por ejemplo, 150 g/m³), que sirven como referencia visual para compararlas rápidamente con las muestras de descarga tomadas en el lugar, lo que permite tomar medidas correctivas inmediatas en caso de observar una turbidez excesiva.
  • Agua subterránea contaminada: existe el riesgo de encontrar contaminantes en el agua subterránea, especialmente en áreas urbanas o industriales con un historial de actividades potencialmente contaminantes. Durante la fase de planificación, es crucial identificar las zonas de riesgo. Si el proyecto se ubica en una de estas zonas o si se sospecha de contaminación, deberán realizarse muestreos específicos del agua subterránea para analizar la presencia y concentración de contaminantes. Así se puede planificar un sistema de tratamiento adecuado si fuera necesario.

5.3 Métodos de tratamiento de la descarga

Los tanques de sedimentación son el método principal y más común para tratar la descarga. Su principio de funcionamiento es sencillo: reducir la velocidad del flujo de agua para que las partículas de sedimento se asienten por gravedad. Un diseño eficaz incluye cuatro zonas funcionales:

  1. Zona de entrada: Distribuye el flujo de manera uniforme para evitar turbulencias.
  2. Zona de asentamiento: El área principal donde ocurre la sedimentación.
  3. Zona de recolección: El fondo del tanque donde se acumulan los sedimentos.
  4. Zona de salida: Recolecta el agua clarificada para su descarga.

El dimensionamiento adecuado del tanque es fundamental y debe basarse en el caudal de bombeo y el tamaño de las partículas a eliminar.

Otros métodos

  • Filtrado a través de la vegetación: El agua se descarga sobre una superficie cubierta de vegetación densa (por ejemplo, césped), que actúa como un filtro natural. Este método solo es adecuado como tratamiento secundario tras un tanque de sedimentación.
  • Bolsas de control de sedimentos: Se trata de bolsas de geotextil que se conectan a la salida de la bomba y filtran los sedimentos. Son útiles para caudales bajos y áreas pequeñas, pero pueden obstruirse rápidamente ante altas concentraciones de sedimentos.

5.4 Control del asentamiento del terreno

Causas y riesgos: El abatimiento del nivel freático puede provocar asentamientos del terreno por tres mecanismos principales:

  1. Aumento de la tensión efectiva: al descender el nivel freático, disminuye la presión del agua en los poros del suelo, lo que incrementa la carga que puede soportar el esqueleto sólido del suelo. Esto provoca su compresión y el consiguiente hundimiento de la superficie.
  2. Pérdida de finos: Un diseño de filtro inadecuado o velocidades de flujo excesivas pueden arrastrar partículas finas del suelo y generar vacíos, lo que provoca asentamientos localizados.
  3. Inestabilidad de los taludes: una reducción insuficiente de las presiones de poro o un control inadecuado de las filtraciones puede comprometer la estabilidad de los taludes de la excavación, lo que provoca fallos localizados y desprendimientos de material.

Los suelos blandos y de baja permeabilidad, como los limos, las arcillas y los suelos orgánicos (turba), son los más susceptibles a sufrir asentamientos significativos por consolidación.

Estrategias de mitigación: Para minimizar el riesgo de asentamientos perjudiciales, deben implementarse las siguientes estrategias:

  1. Diseño adecuado de los filtros: hay que asegurarse de que los filtros de pozos o well-points estén correctamente dimensionados para retener las partículas del suelo.
  2. Control de finos: controlar la cantidad de sólidos disueltos en el agua de descarga. Un aumento sostenido puede indicar una posible pérdida de material del subsuelo.
  3. Control del radio de influencia: diseñar el sistema para limitar la bajada del nivel freático más allá de los límites de la zona, utilizando, si es necesario, barreras de corte o pozos de reinyección.
  4. Control de los asentamientos en el terreno: implementar un plan de supervisión para detectar cualquier movimiento del terreno.

Control de asentamientos: Se debe establecer un plan de supervisión que incluya la instalación de marcadores topográficos en edificios y estructuras cercanos. Es fundamental contar con un punto de referencia estable ubicado fuera de la zona de influencia del drenaje. Se deben establecer umbrales de alerta y de actuación para los asentamientos medidos. Si se alcanzan estos umbrales, se deben adoptar medidas correctivas que pueden ir desde la modificación del funcionamiento de la estación de bombeo hasta la interrupción total del drenaje.

La gestión proactiva de estos riesgos operativos y medioambientales debe complementarse con la preparación ante eventos inesperados, lo que nos lleva a la planificación de contingencias.

6.0 Planificación de contingencias: intercepción accidental de acuíferos artesianos

6.1 Preparación para lo imprevisto.

A pesar de una planificación y ejecución cuidadosas, siempre existe la posibilidad de toparse con condiciones geológicas imprevistas, como la intercepción de un acuífero artesiano o la aparición de caudales de entrada mucho mayores de lo esperado. Estas situaciones pueden escalar rápidamente y provocar un colapso catastrófico de la excavación. Por lo tanto, una preparación adecuada y un plan de respuesta rápida no son opcionales, sino parte esencial de la gestión de riesgos en cualquier proyecto de drenaje.

6.2 Medidas preparatorias

Procedimientos operativos: Antes de iniciar cualquier trabajo de excavación o perforación en zonas de riesgo, se deben establecer los siguientes procedimientos:

  • Realizar investigaciones geotécnicas adecuadas para identificar la posible presencia de acuíferos artesianos.
  • Disponer de medios para cerrar rápidamente los pozos de bombeo o las puntas de lanza si se detecta un flujo incontrolado.
  • Localizar de antemano proveedores de emergencia de materiales como cemento Portland, bentonita y geotextil.
  • Comprender el procedimiento de cálculo del diseño de la mezcla de lechada para detener el flujo. Se debe medir la carga artesiana y añadir la mezcla de lechada para lograr un equilibrio de presión.
  • Establecer y distribuir una lista de contactos de emergencia que incluya al ingeniero del proyecto, al contratista de desagüe y a las autoridades ambientales pertinentes.

Equipamiento de emergencia Se debe tener disponible en el sitio el siguiente equipamiento y suministros de emergencia, según el sistema en uso:

  • Para sistemas well-point:
    • Chips de bentonita no recubiertos para el sellado del collar.
    • Válvulas para instalar en todas las tuberías de well-points en áreas con sospecha de presión artesiana.
    • Equipo de inyección de lechada de cemento y suministros.
    • Geotextil y sacos de arena.
  • Para pozos de bombeo profundo:
    • Chips de bentonita no recubiertos para el sellado del collar.
    • Obturadores, tubería ascendente, manómetros y accesorios apropiados para cortar el flujo y medir la presión.
    • Equipo de inyección de lechada de cemento y suministros.
    • Geotextil y sacos de arena.
    • Lodo de perforación polimérico para compensar y suprimir flujos artesianos bajos durante la perforación del pozo.

Además, es necesario contar con un teléfono móvil con cámara, secciones de tubería extensibles para medir la altura de la presión artesiana y el diseño de la mezcla de lechada de contingencia.

6.3 Protocolo de implantación y respuesta

Pasos inmediatos: En caso de detectar un flujo de agua incontrolado, se debe seguir el siguiente protocolo de manera inmediata y secuencial:

  1. Evaluar la situación: Determinar si el caudal y la turbidez del agua son constantes o están aumentando. Verificar si el flujo está confinado al pozo o se está extendiendo por la excavación.
  2. Notificar al ingeniero y al gerente del proyecto: Proporcionar una descripción detallada de las condiciones, el caudal estimado y los eventos que llevaron al incidente. Enviar fotografías o videos en tiempo real si es posible.
  3. Notificar a las autoridades pertinentes: Informar a las autoridades ambientales y a otras partes interesadas sobre la situación y las medidas de contención planificadas.

Acciones de emergencia: Una vez notificado el incidente, se pueden tomar una o más de las siguientes acciones de emergencia para controlar la situación:

  • Rellenar la excavación: Comenzar a rellenarla con material hasta que el peso del relleno sea suficiente para controlar el flujo y el transporte de sedimentos.
  • Medir la presión artesiana: Utilizar secciones de tubería para medir la altura a la que llega el agua y así determinar la presión del acuífero.
  • Controlar la descarga: Dirigir cualquier descarga de agua a través de las medidas de control de erosión y sedimentos establecidas en el sitio.
  • Inundar la excavación: Como medida drástica, rellenar la excavación con agua hasta el nivel freático original para equilibrar las presiones y estabilizar la situación mientras se reconsidera el diseño.

La combinación de una planificación rigurosa, una ejecución cuidadosa y una preparación exhaustiva ante contingencias es la clave para una gestión exitosa y segura del agua subterránea en cualquier proyecto de construcción.

En este audio podéis escuchar una conversación sobre este tema.

Este es un vídeo que resume bien las ideas principales.

Os dejo el documento completo; espero que os sea de interés.

Pincha aquí para descargar

REFERENCIAS:

  • CASHMAN, P.M.; and PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • HERTZ, W.; ARNDTS, E. (1973). Theorie und praxis der grundwasserabsenkung. Ernst & Sohn, Berlin.
  • JUSTO ALPAÑES, J.L.; BAUZÁ, J.D. (2010). Tema 10: Excavaciones y drenajes. Curso de doctorado: El requisito básico de seguridad estructural en la ley orgánica de la edificación. Código Técnico de la Edificación. ETS. de Arquitectura, Universidad de Sevilla.
  • MUZAS, F. (2007). Mecánica del suelo y cimentaciones, Vol. II. Universidad Nacional de Educación a Distancia, Madrid.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • SCHULZE, W.E.; SIMMER, K. (1978). Cimentaciones. Editorial Blume, Madrid, 365 pp.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Curso:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Lo que no te cuentan sobre la innovación en la construcción

La construcción, pilar de la economía mundial, tiene una merecida fama de ser un sector tradicional y reacio al cambio. Sin embargo, bajo esa apariencia de métodos probados, la feroz competencia y las nuevas exigencias de los clientes están provocando una evolución silenciosa pero crucial. El progreso está ocurriendo, pero de maneras que podrían sorprender a muchos.

Entonces, ¿cómo es realmente la innovación en un mundo de ladrillos y cemento y qué nos estamos perdiendo si solo miramos la superficie?

Este artículo revela cuatro de las conclusiones más impactantes e intuitivas sobre la verdadera naturaleza del cambio en la construcción, basadas en una exhaustiva revisión de la investigación en el campo.

1. La mayoría de las innovaciones provienen de fuera del sector.

Una de las ideas más arraigadas es que la innovación debe nacer en el seno de las propias empresas constructoras. Sin embargo, las pruebas sugieren lo contrario. Un análisis de Pries y Dorée (2005), que examinó 55 años de publicaciones en dos importantes revistas profesionales, llegó a una conclusión sorprendente: dos tercios de las innovaciones en la construcción provienen de las industrias proveedoras.

Este hallazgo es fundamental, ya que cambia por completo el enfoque para fomentar el progreso. Desafía la noción de que las constructoras deben inventarlo todo por sí mismas. En cambio, destaca que la verdadera palanca de cambio reside en la colaboración, en la gestión de la cadena de suministro y en la capacidad de integrar soluciones desarrolladas por otros. El progreso no es una tarea solitaria, sino un esfuerzo de todo el ecosistema.

2. La verdadera innovación es incremental, no radical.

La cultura popular está obsesionada con la «innovación disruptiva»: ideas revolucionarias que cambian las reglas del juego de la noche a la mañana. Sin embargo, en el sector de la construcción, la realidad es mucho más comedida. Slaughter (1998) clasificó la innovación en varias categorías según su grado de novedad, incluyendo «incremental» (pequeños cambios) y «radical» (cambios significativos).

La conclusión principal de múltiples estudios es que la innovación en la industria de la construcción es predominantemente incremental. El progreso no se basa en grandes saltos revolucionarios, sino en una base sólida de pequeñas mejoras continuas, ajustes de procesos y optimizaciones constantes. Reconocer estos pequeños pasos es fundamental para comprender cómo avanza realmente el sector de manera segura, probada y constante.

3. Para ser innovación, debe cumplir tres requisitos clave.

En un sector donde los procesos están en constante ajuste, es fácil confundir cualquier cambio con una innovación. Para evitar esta ambigüedad, el Manual de Oslo de la OCDE y Eurostat proporciona una definición de «innovación empresarial» que resulta particularmente útil y aplicable. Según este marco, para que algo se considere una verdadera innovación, debe cumplir tres condiciones:

  1. Debe ser un producto o un proceso de negocio nuevo o mejorado.
  2. Debe ser significativamente diferente de los productos o procesos anteriores de la empresa.
  3. Debe haber sido introducido en el mercado o puesto en uso por la empresa.

Tener una definición tan precisa es crucial. El tercer requisito, la implementación, actúa como un guardián que separa las ideas fugaces de la innovación empresarial genuina. No basta con tener una idea brillante; para que un cambio aporte valor real, debe ponerse a prueba en el mercado o integrarse en las operaciones de la empresa. Es este paso final el que transforma una sesión de lluvia de ideas en un verdadero motor de progreso.

4. Medir el impacto real implica descontar lo que «hubiera pasado de todos modos».

Medir el éxito de una innovación es un gran desafío, especialmente en el sector de la construcción. La complejidad inherente al sector —con su naturaleza específica para cada proyecto, la diversidad de grupos de interés, las operaciones in situ y las cadenas de suministro temporales— dificulta percibir y cuantificar el impacto. Aquí es donde entra en juego el concepto de «peso muerto»: el resultado que se habría producido de todos modos, incluso sin nuestra intervención.

Para capturar el verdadero valor, debemos aislar el efecto real de la innovación. La definición de impacto de Clark et al. (2004) lo resume a la perfección:

«La porción del resultado total que se produjo como resultado de la actividad de la empresa, por encima y más allá de lo que habría sucedido de todos modos».

Esta idea obliga a las empresas a ser mucho más críticas y honestas respecto del valor de sus innovaciones. Ya no basta con observar una mejora y atribuirla a un cambio reciente; ahora hay que demostrar que esa mejora no se habría producido de otro modo. Esa es la diferencia fundamental entre correlación y causalidad y el verdadero estándar para medir el impacto.

Conclusión: mirando al futuro de la construcción.

La innovación en este sector es más sutil, colaborativa e incremental de lo que se suele pensar. No se trata de grandes revoluciones tecnológicas, sino de una evolución constante, a menudo impulsada por socios externos y validada mediante una medición rigurosa de su impacto real.

Sabiendo que el verdadero progreso proviene de pequeños pasos y de fuentes externas, la pregunta clave es: ¿cómo podemos, como industria y sociedad, crear un entorno que identifique, mida y celebre mejor estas innovaciones a menudo ocultas que están construyendo nuestro futuro?

En este audio podéis escuchar una conversación interesante sobre este tema.

Este es un vídeo que resume bien las ideas expuestas.

Referencias:

Clark, C., Rosenzweig, W., Long, D., & Olsen, S. (2004). Double bottom line project report: Assessing social impact in double bottom line ventures.

López, S., & Yepes, V. (2026). Innovation in construction: Assessing the role of transformational leadership and knowledge governance. Journal of Civil Engineering and Management. (In press).

López, S., & Yepes, V. (2020). Impact of R&D&I on the performance of Spanish construction companies. Advances in Civil Engineering, 2020(1), 7835231.

Pellicer, E., Yepes, V., Correa, C. L., & Alarcón, L. F. (2014). Model for systematic innovation in construction companies. Journal of Construction Engineering and Management, 140(4), B4014001.

Pellicer, E., Correa, C. L., Yepes, V., & Alarcón, L. F. (2012). Organizational improvement through standardization of the innovation process in construction firms. Engineering Management Journal, 24(2), 40–53.

Pries, F., & Dorée, A. (2005). A century of innovation in the Dutch construction industry. Construction Management and Economics, 23(6), 561–564.

Slaughter, E. S. (1998). Models of construction innovation. Journal of Construction Engineering and Management, 124(3), 226–231.

Tabatabaee, S. M. E., Iordanova, I., & Poirier, E. (2025). Assessing the Impact of Innovation in Construction: A Literature Review. En P. Zangeneh et al. (Eds.), Proceedings of the Canadian Society for Civil Engineering Annual Conference 2024, Volume 3, Lecture Notes in Civil Engineering 697 (págs. 131–142). Canadian Society for Civil Engineering.

Yepes, V., Pellicer, E., Alarcón, L. F., & Correa, L. C. (2016). Creative innovation in Spanish construction firms. Journal of Professional Issues in Engineering Education and Practice, 142(1), 04015006.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cómo se construyen los puentes por voladizos sucesivos: ingeniería en el aire.

Figura 1. Construcción por voladizos sucesivos. By Störfix [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], from Wikimedia Commons

Al cruzar un gran viaducto que se alza sobre un profundo valle, es inevitable preguntarse cómo se construye una estructura de esa magnitud sin apoyos en el suelo. No hay andamios que se eleven cientos de metros hasta alcanzar el tablero. La respuesta reside en un método constructivo que, a primera vista, parece desafiar la gravedad: la construcción mediante voladizos sucesivos.

El sistema de construcción por voladizos sucesivos in situ es un método avanzado para la construcción de puentes de hormigón pretensado desarrollado en la década de 1950. Está diseñado específicamente para superar grandes luces, de entre 60 y más de 200 metros, un rango en el que las soluciones tradicionales con cimbradas o empujadas no son viables. El principio fundamental consiste en construir el tablero del puente de manera progresiva y simétrica a ambos lados de una pila. El tablero se divide en segmentos denominados «dovelas», que se hormigonan in situ y se anclan a la sección previamente construida mediante cables de pretensado.

A continuación, desvelamos cinco claves que explican cómo la ingeniería hace posible levantar estos gigantes de hormigón «en el aire».

1. El equilibrio perfecto: construir hacia el vacío.

El principio esencial de este sistema es el equilibrio. En lugar de avanzar desde el terreno hacia arriba, el puente se construye hacia los lados desde la parte superior de cada pilastra, extendiéndose en voladizo en ambas direcciones simultáneamente. Cada nuevo segmento, o dovela, se añade alternativamente en ambos sentidos, manteniendo las cargas compensadas. Así, la pila actúa como un eje de un balancín: si un lado crece, el otro debe crecer también para mantener la estabilidad.

Figura 2. Esquema del principio de la construcción por voladizos. Dibujo: V. Yepes

Cuando, por necesidades de la obra, se avanza más en un extremo que en otro, se instalan apoyos provisionales para garantizar la seguridad. Por lo general, cada ciclo constructivo permite ejecutar un par de dovelas por semana. Estas piezas se fijan a la parte ya construida mediante pretensado, tensando cables de acero internos que comprimen el hormigón y le confieren una gran resistencia.

2. Las máquinas colgantes: los carros de avance.

La construcción en voladizo es posible gracias a unas máquinas tan ingeniosas como espectaculares: los carros de avance. Estas estructuras móviles se suspenden del tablero ya construido y sirven como plataformas de trabajo desde las cuales se colocan las armaduras, el encofrado y el hormigón fresco del siguiente tramo.

Históricamente, se empleaban dos tipos: los de vigas superiores y los de vigas inferiores. Los primeros, más ligeros, tendían a deformarse bajo el peso del hormigón, lo que podía provocar fisuras en las juntas. Los segundos resolvían este problema, pero requerían tensiones de pretensado mayores. La evolución tecnológica ha llevado a los carros autoportantes, sistemas más rígidos y precisos en los que el propio encofrado actúa como estructura indeformable. En la actualidad, son auténticas fábricas colgantes que avanzan paso a paso sobre el vacío construyendo el puente del que dependen.

Figura 3. Carro de avance moderno, anclado al tablero. http://www.sten.es/encofrados/viaductos/

3. El puente no es «un» puente hasta el final.

Durante gran parte del proceso, el puente no existe como estructura continua. Cada pila soporta dos voladizos independientes que se acercan sin tocarse. Solo al final del proceso se unen mediante dos operaciones críticas. En primer lugar, se ejecuta la dovela de cierre, es decir, el segmento que une físicamente los extremos de los voladizos. Sin embargo, en ese momento, la estructura aún se comporta como dos piezas simplemente apoyadas. La verdadera transformación se produce con el tesado de continuidad: se introducen nuevos cables de acero a lo largo del eje del tablero y se tensan, de modo que el conjunto se convierte en una viga continua. Tras este paso, el puente empieza a comportarse como una unidad estructural, aunque el proceso de ajuste no termina ahí. Con el tiempo, el hormigón experimenta una redistribución lenta de esfuerzos debido a la fluencia, una deformación progresiva que lleva la estructura a su estado de equilibrio final.

4. La dovela más compleja: el punto de partida.

Aunque una pareja de dovelas estándar puede ejecutarse en una semana, la dovela 0 —la primera— requiere una atención especial. Se construye directamente sobre la pila y sirve de base para instalar los carros de avance. A diferencia del resto, no se ejecuta con el sistema en voladizo, sino mediante procedimientos convencionales en tres fases: losa inferior, almas y losa superior.

Además, incorpora riostras interiores robustas para resistir las grandes cargas iniciales. Su ejecución puede prolongarse hasta cuatro semanas, a las que hay que sumar otro mes para el montaje de los equipos auxiliares. Es un proceso lento, pero esencial para que el resto del proceso se desarrolle con rapidez y seguridad.

5. Apuntar alto para acabar recto: el arte de la contraflecha.

A medida que el tablero avanza, su propio peso hace que los voladizos tiendan a descender ligeramente. Para compensar este efecto, los ingenieros aplican una contraflecha: cada dovela se construye unos milímetros por encima de su posición final. Cuando la estructura está terminada y las cargas se equilibran, el puente alcanza la alineación horizontal perfecta.

Este ajuste requiere un control predictivo extraordinario. Hay que tener en cuenta variables como el peso de cada dovela, la posición de los carros, la magnitud del pretensado, la fluencia del hormigón, la relajación de los cables y las deformaciones diferidas. Durante toda la obra se realiza un control topográfico continuo que compara la posición real con los cálculos previstos. Si se detectan desviaciones, se corrigen en el ciclo siguiente. Gracias a esta precisión, las dos mitades del puente que avanzan desde pilas opuestas pueden encontrarse en el centro del vano perfectamente alineadas y a la cota prevista.

La ingeniería invisible que nos sostiene.

Cada gran viaducto que vemos como una estructura estática es, en realidad, el resultado de una compleja coreografía de equilibrio, maquinaria y cálculo. La construcción mediante voladizos sucesivos combina precisión geométrica, control estructural y un profundo conocimiento del comportamiento del hormigón. La próxima vez que cruces un gran puente, quizá recuerdes que, durante meses, hubo bajo tus pies una auténtica danza de ingeniería suspendida en el aire.

Os dejo esta conversación en la que se habla sobre esta técnica de construcción de puentes.

En este vídeo tenéis un resumen de las ideas básicas, explicadas de forma divulgativa.

Referencias:

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Montaje por movimientos horizontales de puentes atirantados

Los procedimientos de montaje por movimientos horizontales de puentes atirantados se aplican cuando el puente —total o parcialmente— se construye fuera de su posición definitiva y se traslada posteriormente hasta ella. Este enfoque permite reducir la interferencia con el cauce, el tráfico o las infraestructuras existentes, además de mejorar la seguridad y el control de calidad, ya que la mayor parte de los trabajos se realizan en condiciones estables sobre tierra firme.

En todos los casos, las torres y el tablero deben comportarse de forma solidaria durante el desplazamiento, apoyándose el conjunto en pilas o apoyos provisionales que garanticen la estabilidad global. La elección del método depende de las condiciones geométricas del emplazamiento, de las luces principales, de la rigidez del sistema atirantado y de la disponibilidad de medios auxiliares.

Se distinguen tres métodos fundamentales de ejecución:

a) Puentes empujados longitudinalmente

Este procedimiento es similar al empleado en los puentes de vigas lanzadas incrementalmente, pero está adaptado a la configuración atirantada. El tablero se construye por tramos en una orilla y se empuja progresivamente hacia el vano principal mediante gatos hidráulicos. Para compensar los momentos negativos en el frente de avance, se coloca una nariz de lanzamiento o una estructura auxiliar ligera.

Durante el empuje, los apoyos provisionales y las torres soportan cargas variables, por lo que es necesario controlar continuamente la tensión en los tirantes y realizar ajustes secuenciales para evitar sobreesfuerzos o deformaciones excesivas. Para ello, se utilizan dispositivos deslizantes de baja fricción, como placas de neopreno-PTFE sobre acero inoxidable o carros rodantes en combinación con gatos sincronizados. Además, se realiza una instrumentación topográfica y extensométrica en tiempo real para controlar la geometría de avance.

Un ejemplo representativo es el puente de la calle Jülicher, en Düsseldorf, donde este sistema se aplicó con éxito, combinando el control hidráulico de las tensiones en los tirantes con el uso de apoyos provisionales sobre las pilas intermedias durante el avance del tablero. El mismo procedimiento se empleó en el puente de la calle Franklin, también en Düsseldorf, siguiendo una metodología constructiva similar.

Puente de la calle Jülicher en Düsseldorf, Alemania. https://de.wikipedia.org/wiki/Br%C3%BCcke_J%C3%BClicher_Stra%C3%9Fe

b) Puentes girados

Cuando las condiciones del terreno o del cauce hacen inviable el empuje longitudinal, se puede recurrir al giro del puente completo o de sus semitableros desde una posición lateral de montaje. El conjunto se apoya temporalmente sobre una articulación o pivote reforzado bajo la torre principal, mientras el extremo libre describe un sector circular hasta alcanzar su posición definitiva.

Durante la maniobra, es fundamental mantener el equilibrio del centro de gravedad y la estabilidad frente al vuelco o la torsión, por lo que suelen emplearse lastres temporales y gatos hidráulicos sincronizados. La precisión se garantiza mediante un control topográfico y de tensiones en los tirantes antes y después del giro.

El puente sobre el canal del Danubio, en Viena, es un ejemplo clásico de dos semipuentes girados hasta su posición final. Otro caso notable es el puente de Ben-Ahin (Père Pire) sobre el río Mosa, en Bélgica, que se construyó por completo en una orilla y se giró alrededor de su pila principal en 1987. La maniobra, que desplazó decenas de miles de toneladas, supuso en su momento un récord europeo por el peso movilizado mediante una rotación controlada. Este puente, construido en 1988, fue en su momento el de mayor masa girada del mundo. La pila tiene 84 metros de altura; el tablero mide 341 metros de largo y pesa 16 000 toneladas. Lo soportan 40 cables en abanico situados en un plano.

Puente de Ben-Ahin, Bélgica. Imagen: C. Pujos. Fuente: http://www.puentemania.com/3502

c) Puentes ripados transversalmente

El ripado o traslación transversal consiste en construir el puente en su ubicación final y trasladarlo lateralmente mediante sistemas de deslizamiento controlado. Este método requiere alineamientos precisos entre la posición inicial y la definitiva, así como patines o cojinetes de deslizamiento lubricados, que a menudo se combinan con transportadores modulares autopropulsados (SPMT, por sus siglas en inglés) o con gatos de empuje y freno.

El puente de Oberkassel, en Düsseldorf, es un ejemplo representativo de este tipo de maniobra. La estructura principal se desplazó lateralmente desde su zona de ensamblaje hasta el eje del río mediante carros rodantes y guías transversales, bajo una monitorización topográfica en tiempo real que garantizó la precisión del posicionamiento final. El puente tiene una luz principal de 257,75 m y una torre central de 100 m de altura sobre el tablero. Su superestructura metálica, de 35 m de ancho, está formada por una viga cajón de tres células con losa ortótropa.

Puente sobre el Rin Düsseldorf-Oberkassel. Fuente: https://www.visitduesseldorf.de/en/attractions/oberkasseler-bruecke-bridge-b2338616ec

El ripado presenta ventajas en emplazamientos con suficiente espacio lateral, ya que reduce los trabajos en el cauce y minimiza las afecciones medioambientales o de tráfico. No obstante, exige un estudio detallado del coeficiente de fricción, de las reacciones en los apoyos provisionales y de los esfuerzos transitorios en los tirantes y en las pilas durante el movimiento.

Consideraciones generales

En los puentes atirantados, los movimientos horizontales requieren una planificación constructiva precisa y un análisis estructural temporal que contemple la evolución de las tensiones, las deformaciones y la estabilidad global en cada fase. Es fundamental modelar los estados transitorios y definir procedimientos de tensado, destensado y control geométrico con el apoyo de instrumentación avanzada (celdas de carga, inclinómetros y estaciones totales automatizadas).

En la práctica, estos métodos ofrecen varias ventajas: permiten trabajar en seco y en condiciones controladas, reducen los riesgos laborales y minimizan la interferencia con el entorno. Entre sus principales limitaciones se encuentran el coste de los equipos especializados, la complejidad de las maniobras y la necesidad de personal altamente cualificado.

En resumen, el montaje por movimientos horizontales es una técnica versátil y segura, plenamente consolidada en la ingeniería de puentes moderna, que combina la precisión geométrica con la eficiencia constructiva. Ha demostrado su viabilidad en numerosos puentes atirantados europeos, como los de Düsseldorf, Viena y Ben-Ahin.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.