Impermeabilización de puentes: técnicas, materiales y procedimientos

https://www.cantitec.es/project/impermeabilizacion-puente-ave/

La durabilidad de los puentes está relacionada con una impermeabilización adecuada, ya que el hormigón vibrado no es totalmente estanco. Las segregaciones locales permiten la entrada de agua hasta las armaduras, lo que provoca la carbonatación, disgregación y corrosión de estas. Este efecto se intensifica en regiones donde se usan sales de deshielo para evitar la formación de hielo. Muchos problemas de durabilidad se deben a una impermeabilización y drenaje inadecuados.

La eficacia de la impermeabilización depende de factores como las condiciones climáticas, que pueden afectar a la integridad de los materiales. También es crucial el diseño estructural, que debe facilitar el drenaje y evitar la acumulación de agua. Para prevenir defectos en la impermeabilización, es esencial seleccionar materiales duraderos y compatibles con el entorno, y aplicarlos correctamente.

La selección del sistema de impermeabilización para un puente debe tener en cuenta factores como las características específicas de la estructura, incluidos los materiales, la geometría, el uso y las condiciones de carga; las condiciones climáticas y ambientales locales, como temperaturas extremas, humedad y exposición a agentes corrosivos; y los requisitos de mantenimiento y la vida útil esperada, ya que algunos sistemas requieren menos mantenimiento y ofrecen una mayor durabilidad. Es esencial consultar las normativas vigentes y, en caso de duda, recurrir a expertos en la materia para determinar la solución más adecuada.

Los sistemas de impermeabilización se clasifican en tratamientos in situ y el uso de láminas prefabricadas. Dentro de los tratamientos in situ, destacan varias técnicas según el tipo de material y el método de aplicación.

Tratamientos in situ:

  • Másticos bituminosos aplicados en caliente: Se colocan en una o dos capas con espesores de 5 a 20 mm. Para evitar la formación de ampollas por la mezcla caliente sobre un tablero húmedo, se aplica una capa de imprimación y otra de descompresión, generalmente un filtro de fibra de vidrio que comunica con la atmósfera.
  • Másticos bituminosos aplicados en frío: Formados por un agregado mineral fino, fibras minerales y una emulsión bituminosa aniónica de rotura lenta, y se aplican sobre un tablero limpio tras un riego de adherencia. La cantidad aplicada varía entre 3 y 6 kg/m² en función de la rugosidad de la superficie. Son fáciles de instalar, resistentes al tráfico de obra y poseen una excelente adherencia al firme.
  • Capas finas con materiales no bituminosos (resinas): Incluyen resinas epoxi, poliuretanos y poliésteres, que se aplican en espesores de 1,5 a 3 mm. Ofrecen alta resistencia química y gran adherencia al hormigón, aunque requieren una textura fina y ausencia de humedad en el tablero. Normalmente, se aplican dos capas de resina: la segunda se extiende una vez polimerizada la primera y, antes de que se seque por completo, se esparce arena para mejorar la adherencia con el pavimento. La imprimación del tablero no es indispensable, pero, si se realiza, se utiliza la misma resina diluida.
  • Capas finas con brea-epoxi: Este material mixto combina la flexibilidad de la brea y la adherencia del epoxi, y ofrece resistencia a bajas temperaturas y un coste moderado. Su espesor promedio es de 2 mm y se usa principalmente en estructuras flexibles como puentes metálicos. La técnica de aplicación es similar a la de las resinas sintéticas, con la diferencia de que en este caso es imprescindible utilizar la imprimación correspondiente, que es la misma mezcla fluidificada.

Láminas prefabricadas:

Dentro de las láminas prefabricadas de pequeño espesor (entre 1 y 2 mm) se incluyen:

  • Láminas bituminosas autoprotegidas: La cara superior está formada por una hoja de aluminio y la cara inferior está recubierta de una masilla bituminosa reforzada con fibras de vidrio. El espesor total varía entre 3 y 4 mm.
  • Láminas elastoméricas: Las más comunes están fabricadas con caucho butilo, caucho de cloropreno y etileno-propileno. Estas láminas destacan por su gran flexibilidad, aunque presentan el inconveniente de una adherencia deficiente con los materiales bituminosos. Por ello, en la instalación de pavimentos de este tipo es habitual aplicar una imprimación bituminosa sobre la lámina una vez colocada.
  • Láminas plásticas: Son de PVC reforzado con fibras sintéticas a lo largo de todo su espesor. Estas láminas no presentan adherencia.
  • Láminas de betún altamente modificado con polímeros: Estas láminas ofrecen una excelente flexibilidad, baja susceptibilidad térmica y elevada tenacidad y ductilidad.

Las láminas prefabricadas más delgadas suelen deteriorarse con facilidad por punzonamiento. Anteriormente, solía colocarse una capa de protección, generalmente una mezcla de arena y betún, entre la lámina y el pavimento. Hoy en día, salvo en el caso de las láminas con hoja superior de aluminio, es común que las láminas incorporen gravillas incrustadas en su cara superior, lo que no solo las protege frente al punzonamiento, sino que también mejora la adherencia con el pavimento. El objetivo principal de estas membranas es garantizar la estanqueidad en todas las zonas del tablero y evitar especialmente el paso de agua en las uniones con elementos como bordillos, sumideros, barreras y juntas de dilatación.

En los últimos años, se han desarrollado y aplicado técnicas y productos innovadores en este campo. A continuación, se presentan algunas de las novedades más destacadas:

  • Membranas líquidas de poliuretano: La aplicación de membranas líquidas de poliuretano ha surgido como una solución eficaz para impermeabilizar tableros de puentes. Estas membranas destacan por su alta elasticidad, resistencia química y larga vida útil. Además, su capacidad para adaptarse a geometrías diversas facilita su aplicación en estructuras complejas. La certificación ETE (Documento de Evaluación Técnica Europeo) garantiza la calidad y eficacia de estos productos.
  • Membranas asfálticas prefabricadas: Los sistemas de impermeabilización asfáltica, especialmente los que utilizan membranas prefabricadas SBS, han demostrado su eficacia en puentes y estacionamientos. Estos sistemas se aplican mediante termofusión, lo que garantiza una adherencia sólida y una protección duradera contra filtraciones.
  • Resinas de poliuretano bicomponente: La utilización de resinas de poliuretano bicomponente, libres de brea y alquitrán, ha ganado popularidad en la impermeabilización de tableros de puentes. Estas resinas se aplican sobre el hormigón del soporte, formando una capa impermeable que protege la estructura de las inclemencias meteorológicas y de la acción de agentes corrosivos.
  • Membranas de poliurea: La aplicación de poliurea ha demostrado su eficacia en la protección contra filtraciones en la impermeabilización de puentes ferroviarios. Para lograr una impermeabilización completa y duradera, es fundamental realizar un tratamiento previo de la superficie y aplicar imprimaciones adecuadas.

En las impermeabilizaciones no completamente adheridas al tablero del puente, el agua que pueda filtrarse a través de la capa impermeabilizante o condensarse debajo de ella se evacúa mediante respiraderos o tubos de ventilación. Estos dispositivos evitan la acumulación de presión de vapor que podría provocar ampollas en la impermeabilización. Los tubos se colocan en los puntos más bajos o se distribuyen a lo largo de toda la superficie, partiendo de la cara inferior de la impermeabilización y atravesando el tablero del puente.

La impermeabilización de puentes requiere un mantenimiento periódico para garantizar su eficacia a largo plazo. Es fundamental realizar inspecciones regulares para detectar posibles daños o deterioros y llevar a cabo las reparaciones pertinentes. Si hay fallos en la impermeabilización, es posible que sea necesario rehabilitar la membrana, lo que puede implicar eliminar la capa existente y aplicar un nuevo sistema de impermeabilización.

La impermeabilización de puentes requiere cumplir diversas normativas y estándares internacionales para garantizar la eficacia y durabilidad de las soluciones implementadas. A continuación, se presenta una relación exhaustiva de las normativas y estándares más importantes en este campo:

Normativas Europeas:

  • UNE-EN 13375:2020: Establece los requisitos para las láminas flexibles utilizadas en la impermeabilización de tableros de puentes de hormigón y otras superficies de hormigón expuestas al tráfico vehicular.
  • UNE-EN 14692:2017: Define las características de las láminas flexibles para la impermeabilización de tableros de puentes de hormigón y otras superficies de hormigón para tráfico de vehículos, incluyendo la determinación de la resistencia a la compactación de una capa asfáltica.
  • UNE-EN 14694:2017: Especifica los requisitos para las láminas flexibles en la impermeabilización de tableros de puentes de hormigón y otras superficies de hormigón para tráfico de vehículos, enfocándose en la resistencia a la presión dinámica de agua tras degradación por pretratamiento.
  • UNE-EN 14223:2017: Detalla las propiedades de las láminas flexibles para la impermeabilización de tableros de puentes de hormigón y otras zonas de hormigón para tráfico de vehículos, incluyendo la determinación de la absorción de agua.
  • UNE-EN 14691:2017: Establece los criterios para las láminas flexibles en la impermeabilización de tableros de puentes de hormigón y otras zonas de hormigón para tráfico de vehículos, enfocándose en la compatibilidad por acondicionamiento térmico.
  • UNE-EN 13653:2017: Define los requisitos para las láminas flexibles en la impermeabilización de tableros de puentes de hormigón y otras zonas de hormigón para tráfico de vehículos, incluyendo la determinación de la resistencia al pelado.
  • UNE-EN 12039:2017: Especifica las características de las láminas bituminosas para la impermeabilización de cubiertas, incluyendo la determinación de la adherencia de gránulos.
  • UNE-EN 12691:2018: Establece los requisitos para las láminas bituminosas, plásticas y de caucho en la impermeabilización de cubiertas, incluyendo la determinación de la resistencia al impacto.
  • UNE-EN 13583:2013: Define las características de las láminas bituminosas, plásticas y de caucho para la impermeabilización de cubiertas, incluyendo la determinación de la resistencia al granizo.
  • UNE-EN 17686:2023: Establece los requisitos para las láminas flexibles en la impermeabilización de cubiertas, incluyendo la determinación de la resistencia a la carga de viento del sistema constructivo de cubiertas con sistemas de impermeabilización adheridos.

Normativas Internacionales:

  • ASTM D6083: Estándar de la ASTM que especifica los requisitos para las membranas líquidas de poliuretano utilizadas en la impermeabilización de puentes.
  • ASTM D1970: Estándar de la ASTM que define los requisitos para las membranas autoadhesivas de asfalto utilizadas en la impermeabilización de puentes.
  • AASHTO M 323: Especificación de la American Association of State Highway and Transportation Officials que establece los requisitos para las membranas de impermeabilización de puentes.

Es fundamental consultar las normativas vigentes y, en caso de duda, recurrir a expertos en la materia para determinar la solución más adecuada. Además, es recomendable revisar las especificaciones técnicas de los fabricantes y las guías de buenas prácticas para asegurar una correcta aplicación de los sistemas de impermeabilización.

Os dejo un par de vídeos sobre impermeabilización de tableros de puentes. Espero que os sean de interés.

También os dejo este catálogo de Sika sobre la impermeabilización de puentes.

Descargar (PDF, 342KB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Activación de la fuerza de pretensado e inyección en construcciones de hormigón

La construcción de estructuras de hormigón conlleva procesos técnicos complejos que requieren una planificación rigurosa y una ejecución meticulosa. Entre estos procesos, destacan la activación de la fuerza de pretensado y la inyección de armaduras, que son esenciales para mejorar el rendimiento estructural y la durabilidad. Este artículo aborda estos procedimientos, detallando principios teóricos, parámetros técnicos y normativas aplicables.

Tesado de armaduras activas

Armadura pasiva y vainas para el acero de postesado durante la construcción de un puente de sección cajón. De Störfix – Fotografía propia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=297005

El tesado de armaduras activas es el proceso mediante el cual se aplica una fuerza de pretensado al acero de refuerzo dentro del hormigón. Esto aumenta la capacidad de carga, reduce las deformaciones y mejora la durabilidad de la estructura.

El proceso de tesado se basa en el principio de crear fuerzas internas en el acero que compensen las tensiones externas esperadas durante la vida útil de la estructura. Al aplicar una fuerza controlada, el acero se somete a tracción y el hormigón queda en compresión, lo que mejora el comportamiento global del elemento estructural.

La operación de tesado deberá realizarse según un plan previamente establecido, teniendo en cuenta las recomendaciones del fabricante del sistema utilizado. Se deberá asegurar que el gato esté perpendicular y centrado sobre el anclaje y que la operación la lleve a cabo personal cualificado. El tesado debe realizarse de manera lenta y progresiva. Si se lleva a cabo en condiciones de bajas temperaturas, deberán tomarse precauciones especiales.

Si se rompe un elemento de la armadura, se podrá alcanzar la fuerza total de pretensado necesaria aumentando la tensión en los elementos restantes, sin exceder el 5 % del valor previsto inicialmente. En caso de que se pierda totalmente la fuerza de pretensado debido a la rotura de elementos irreemplazables de la armadura, la pérdida no podrá superar el 2 % de la fuerza de pretensado prevista en el proyecto.

La temperatura ambiente es un factor crítico. Debe evitarse el tesado a temperaturas inferiores a 5 °C, salvo que se implementen medidas específicas para compensar los efectos del frío, como el uso de equipos de calefacción en el área de trabajo. Además, el acero utilizado debe cumplir con normas internacionales como la EN 10080, que garantizan su calidad y resistencia.

La seguridad durante el tesado es un aspecto prioritario. Las medidas de seguridad incluyen protecciones detrás de los gatos y se prohibirá el paso entre dichas protecciones y el gato durante el izado. En las pretesas, es esencial colocar señales visibles que indiquen la carga máxima permitida para la que han sido proyectados los estribos de anclaje y delimitar las zonas de acceso restringido. Además, para evitar que las armaduras salten si se rompen durante el tesado, se deben utilizar placas horadadas, cubriéndolas o envolviéndolas. El tesado no se iniciará sin la autorización de la dirección de obra, que comprobará la idoneidad del programa de tesado y la resistencia del hormigón. Todo el proceso debe estar supervisado por personal técnico cualificado.

Armaduras pretesas

Hormigón pretensado en forma de viguetas. https://www.becosan.com/es/hormigon-pretensado/

Las armaduras pretesas se tensan antes del vertido del hormigón para garantizar que la fuerza se transfiera a la matriz del hormigón durante el fraguado. Este método se utiliza principalmente en la fabricación de elementos prefabricados, como vigas, losas y pilares.

El proceso de pretensado consiste en fijar los extremos de las armaduras en dispositivos de anclaje y aplicarles una fuerza controlada antes de verter el hormigón. Una vez que el hormigón alcanza la resistencia requerida, se libera la tensión de manera gradual, lo que permite que el hormigón absorba el esfuerzo de pretensado.

El programa de tesado deberá especificar el orden de tesado de las armaduras y, en su caso, las sucesivas etapas parciales de pretensado. También se deberá indicar la presión o fuerza que no debe sobrepasarse en los gatos, el valor de la carga de tesado en los anclajes y los alargamientos que deben obtenerse, teniendo en cuenta los movimientos originados por la penetración de la cuña. Además, se debe detallar el modo y la secuencia que deberá seguirse para liberar los tendones, así como la resistencia requerida al hormigón en el momento de la transferencia.

La adherencia de las armaduras activas al hormigón depende de la longitud de transmisión, que es necesaria para transferir al hormigón por adherencia la fuerza de pretensado introducida en las armaduras, y de la longitud de anclaje, que garantiza la resistencia del anclaje por adherencia hasta la rotura del acero. Estos factores dependen principalmente de tres elementos: el diámetro de la armadura, sus características superficiales y la resistencia del hormigón.

El destesado es la operación mediante la cual se transmite el esfuerzo de pretensado de las armaduras pretesas al hormigón, para lo cual se deben soltar de manera lenta, gradual y uniforme, sin sacudidas bruscas y de forma ordenada, con el fin de evitar asimetrías. Antes de iniciar esta operación, se verifica que el hormigón haya alcanzado la resistencia especificada, eliminar obstáculos que impidan el movimiento de las piezas y cortar las puntas de las armaduras que sobresalgan de las testas, si van a quedar expuestas y no embebidas en el hormigón. El destesado prematuro representa un peligro debido a las pérdidas elevadas, mientras que el destesado brusco puede causar esfuerzos anormales, aumentar la longitud de transmisión y anclaje, y aumentar los riesgos de deslizamiento.

Armaduras postesas

Anclajes de hormigón postesado. https://www.becosan.com/es/hormigon-pretensado/

Las armaduras postesas se tensan una vez fraguado el hormigón, lo que permite mayor flexibilidad en el diseño de estructuras complejas. Se utilizan comúnmente en grandes puentes, viaductos y edificios importantes.

Durante el proceso, los tendones se colocan dentro de vainas que atraviesan el hormigón. Una vez fraguado, se aplican fuerzas de pretensado mediante gatos hidráulicos y se fijan los extremos con cuñas especiales que aseguran la transferencia de cargas a largo plazo.

El programa de tesado deberá especificar expresamente la secuencia detallada de tesado de las armaduras, la presión o fuerza que debe desarrollarse en el gato, los alargamientos esperados y la máxima penetración de cuña, así como el momento de retirada de las cimbras durante el tesado, si procede. También se deberá indicar la resistencia requerida al hormigón antes del tesado, el número, el tipo y la localización de los acopladores, así como la necesidad de protección temporal si el tesado se realiza en etapas sucesivas. El tesado no se iniciará sin la autorización de la dirección de obra, que comprobará la idoneidad del programa de tesado y la resistencia del hormigón. Cada etapa debe ejecutarse en condiciones de control estrictas, registrándose cada operación para su posterior verificación y trazabilidad.

La tensión máxima inicial admisible en las armaduras se limita con el fin de disminuir riesgos como la rotura o la corrosión. El valor máximo de la tensión en las armaduras antes de anclarlas no podrá ser superior al menor de los siguientes valores: el 75 % de la carga unitaria máxima característica o el 90 % del límite elástico característico. De forma temporal, esta tensión podrá aumentarse hasta alcanzar uno de los siguientes valores: el 85 % de la carga unitaria máxima característica o el 95 % del límite elástico característico.

Proceso postesado. Fuente: Catálogo Stronghold

El proceso de tesado consta de varias fases secuenciales cuidadosamente planificadas para garantizar la correcta transferencia de la fuerza de pretensado. En primer lugar, se colocan y alinean los gatos hidráulicos frente a los anclajes, asegurándose de que estén perpendiculares y centrados para evitar desviaciones.

Una vez posicionados, se inicia el proceso de aplicación de fuerza de manera gradual y continua. La presión se incrementa en etapas controladas para evitar tensiones repentinas que puedan causar daños estructurales. Durante esta fase, se realiza un seguimiento constante de la presión y del alargamiento alcanzado en las armaduras.

A medida que el acero se alarga, hay que verificar los anclajes y realizar ajustes si es necesario. El equipo técnico debe registrar cada paso, documentando las presiones aplicadas, los alargamientos medidos y los incidentes que puedan ocurrir durante el proceso.

Una vez alcanzada la fuerza especificada en el proyecto, se fijan definitivamente las armaduras mediante cuñas mecánicas o dispositivos de anclaje hidráulico. De este modo, se asegura que el acero mantenga la tensión aplicada incluso después de retirar los equipos de tesado.

Por último, se llevan a cabo inspecciones visuales y técnicas para confirmar que el proceso de tesado se ha realizado correctamente. Cualquier anomalía detectada debe ser corregida antes de pasar a la siguiente fase de construcción.

El control del tesado implica medir simultáneamente el esfuerzo ejercido por el gato y el alargamiento de la armadura, con una precisión de ±2 % del recorrido total. Se debe garantizar que la fuerza de pretensado se mantenga dentro de un ±5 % del valor de proyecto y que los alargamientos sean de ±15 % para un tendón particular y ±5 % para la suma de todos los valores en la misma sección. Para facilitar el control, se utilizará una tabla de tesado que incluirá los datos del programa, la identificación de los tendones, los resultados del tesado y los incidentes. Los datos recopilados deben documentarse con todo detalle, incluyendo las desviaciones y las correcciones realizadas.

El retesado de armaduras postesas se define como cualquier operación de tesado efectuada sobre un tendón después de su tesado inicial. Este procedimiento solo está justificado si es necesario para uniformar las tensiones de los diferentes tendones de un mismo elemento o si está previsto en el programa el tesado en etapas sucesivas. No se debe realizar un retesado con el único objetivo de disminuir las pérdidas diferidas de tensión, salvo en circunstancias especiales.

Antes de proceder con el retesado, se realiza una evaluación exhaustiva de la estructura para determinar si es necesario. El procedimiento debe ajustarse al programa de tesado original y a las condiciones actuales del proyecto. Las presiones aplicadas durante el retesado deben controlarse cuidadosamente para evitar daños en los elementos estructurales.

Además, es fundamental recalibrar los equipos de tesado antes de iniciar esta operación para garantizar que los valores aplicados sean precisos. Una vez finalizado, deben realizarse nuevas inspecciones y pruebas de carga para verificar la efectividad del proceso.

Inyección de armaduras

La inyección de lechada es fundamental para proteger las armaduras de pretensado contra la corrosión y garantizar su adherencia al hormigón. Este proceso consiste en llenar los conductos que contienen los tendones con una mezcla diseñada para resistir agresiones químicas y ambientales. Debe realizarse lo antes posible después del tesado.

La preparación de la mezcla de inyección es una etapa clave para garantizar el correcto funcionamiento del sistema de pretensado. La lechada es una mezcla cuidadosamente dosificada de cemento, agua y aditivos específicos. La proporción de estos componentes se calcula en función de factores como la temperatura ambiente, el tipo de estructura y las condiciones específicas del lugar de construcción.

El proceso de mezclado debe realizarse con equipos mecánicos especializados que aseguren una mezcla homogénea y libre de grumos. El tiempo de mezclado oscila entre 2 y 4 minutos, aunque puede prolongarse si se utilizan aditivos retardadores en casos en que se prevea un tiempo prolongado antes de la inyección, de mas de 30 minutos.

La relación agua-cemento debe mantenerse dentro de unos márgenes estrictos, generalmente entre 0,4 y 0,5, para garantizar una consistencia coloidal que facilite el flujo de la lechada a través de los conductos. Además, es indispensable realizar pruebas preliminares para verificar la fluidez, la resistencia inicial y la adherencia.

La temperatura de la mezcla no debe exceder los 30 °C para evitar fraguados prematuros. Si se anticipa una demora en el proceso de inyección, se pueden incorporar aditivos estabilizantes que prolonguen la trabajabilidad de la lechada sin afectar a sus propiedades mecánicas.

Finalmente, antes de proceder con la inyección, se debe inspeccionar visual y técnicamente el equipo de mezclado para garantizar su correcto funcionamiento y evitar contaminaciones o errores en la dosificación.

La ejecución de la inyección requiere una planificación detallada que tenga en cuenta las condiciones del proyecto y las especificaciones técnicas establecidas. El programa de inyección debe contener, al menos, las características de la lechada (tiempos), las características del equipo de inyección, la limpieza de los conductos, la secuencia de operaciones y ensayos a realizar, las probetas para los ensayos, el volumen de lechada a preparar y la previsión de incidentes, entre otros aspectos. Se deben utilizar equipos de inyección calibrados para garantizar la aplicación continua y uniforme de la lechada.

La ejecución de la inyección de armaduras postesas requiere comprobar previamente las siguientes condiciones: el equipo de inyección, la bomba de inyección auxiliar, el suministro permanente de agua a presión y aire comprimido, el exceso de materiales para el amasado del producto de inyección, las vainas libres de materiales perjudiciales, los conductos a inyectar preparados e identificados y los ensayos de control de la lechada preparados.

El proceso comienza con la conexión segura del equipo de inyección a los conductos. La inyección debe realizarse bajo las siguientes condiciones: la longitud máxima de inyección no debe superar los 120 m y, en tiempo frío, se debe asegurar de que no haya hielo en los conductos, inyectando agua caliente si es necesario. Queda prohibido efectuar la inyección mediante aire comprimido. La inyección debe ser continua e ininterrumpida, con una velocidad de avance constante entre 5 y 15 m/min, y debe realizarse desde puntos bajos para garantizar un llenado completo y evitar bolsas de aire. El proceso finaliza cuando la lechada comienza a rebosar por los puntos de purga con la misma consistencia que la mezcla inicial. Una vez finalizada la operación, se obstruyen herméticamente los orificios de purga para evitar la entrada de aire o humedad que pueda afectar a la durabilidad de la estructura. La presión de inyección se ajusta cuidadosamente para garantizar una distribución uniforme del material y minimizar el riesgo de rotura de los conductos.

La inspección de la inyección debe incluir la elaboración de un informe para cada inyección, en el que se anoten las características del producto, la temperatura ambiente en el momento de la inyección, el tipo de cemento utilizado, el aditivo incorporado a la mezcla (si corresponde) y su dosificación, la relación agua/cemento elegida, el tipo de mezclador, la duración del mezclado y las probetas fabricadas para controlar las condiciones relativas a los productos de inyección. Estos informes deben archivarse como parte de los registros permanentes de la obra.

La seguridad durante la inyección debe extremarse. El personal involucrado debe recibir capacitación específica en técnicas de inyección y procedimientos de seguridad. Es obligatorio el uso de equipos de protección individual, como guantes, gafas y cascos, especialmente en áreas donde exista riesgo de contacto con productos químicos. Está prohibido que los operarios miren a través de los tubos o rebosaderos.

Durante la inyección, debe establecerse un perímetro de seguridad alrededor de la zona de trabajo para prevenir accidentes. Además, es imprescindible realizar inspecciones visuales y técnicas en tiempo real para detectar posibles fugas, obstrucciones o anomalías en la aplicación.

Por último, una auditoría posterior a la inyección debe verificar que todos los conductos se han llenado correctamente y que las purgas se han realizado según los estándares. Este control garantiza que el sistema de pretensado funcione de manera óptima y se mantenga con el paso del tiempo.

Consideraciones normativas

Las operaciones relacionadas con el pretensado y la inyección deben cumplir estándares técnicos específicos que garanticen la seguridad, durabilidad y funcionalidad de las estructuras construidas. La normativa europea EN 13391 regula los dispositivos de anclaje utilizados en pretensado y especifica los requisitos de diseño, resistencia y métodos de prueba.

El Código Estructural establece pautas detalladas para el diseño y la ejecución de elementos pretensados, incluidos los procedimientos de tesado, inyección y control de calidad. También exige que cada etapa del proceso esté documentada y supervisada por profesionales acreditados.

En proyectos internacionales, normas como la ACI 318 (American Concrete Institute) definen criterios adicionales de cálculo estructural y verificación de materiales. El cumplimiento de estas normativas garantiza la integridad estructural, la capacidad portante y la resistencia a condiciones adversas durante la vida útil de la estructura.

Además, los reglamentos de seguridad laboral exigen que los operarios estén certificados y que se implementen medidas de protección para evitar accidentes. El seguimiento estricto de estas disposiciones permite minimizar riesgos y garantizar el éxito del proyecto desde la fase inicial hasta la finalización.

Conclusión

La activación de la fuerza de pretensado y la inyección en construcciones de hormigón son procesos técnicos esenciales. Si se siguen procedimientos detallados, normas específicas y controles de calidad rigurosos, su correcta aplicación garantiza estructuras seguras y duraderas.

Dejo a continuación unos vídeos que, espero, os resulten interesantes.

Os dejo a continuación una presentación de Luis Cosano, del departamento técnico de Freyssinet, S.A. Espero que os sea de interés.

Descargar (PDF, 2.81MB)

Además, a continuación podéis descargar el artículo 50 del Código Estructural relativo a los procesos de colocación y tesado de las armaduras activas.

Descargar (PDF, 486KB)

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Código de buenas prácticas para las obras temporales. Norma BS 5975:2019

Las obras temporales son un componente esencial de cualquier proyecto de construcción, ya que proporcionan soporte crítico durante las fases más vulnerables del ciclo de vida de una estructura. Su correcta planificación y ejecución no solo garantiza la estabilidad de la obra, sino que también protege a los trabajadores, al público y al medio ambiente. Un fallo en estas estructuras puede tener consecuencias catastróficas, como pérdidas humanas, daños materiales y responsabilidades legales importantes.

La norma BS 5975:2019 es una guía exhaustiva que establece los principios básicos para gestionar y diseñar obras provisionales o estructuras auxiliares en el sector de la construcción. Publicado por primera vez en 1982, se ha ido actualizando regularmente para abordar los cambios en la industria, las necesidades tecnológicas y normativas, y para garantizar que los proyectos de construcción se ejecuten de manera segura, eficiente y conforme a la normativa aplicable.

En sus orígenes, esta norma surgió como respuesta a incidentes graves ocurridos en obras temporales, como colapsos estructurales debidos a fallos en el diseño o la ejecución. Las recomendaciones iniciales, derivadas del informe Bragg y otros estudios relevantes, hicieron hincapié en la necesidad de controles estrictos y funciones bien definidas en la gestión de estas estructuras. Desde entonces, la norma ha evolucionado para incluir no solo aspectos técnicos, sino también procedimientos organizativos que refuerzan la coordinación entre las partes involucradas en un proyecto.

La versión de 2019 incorpora cambios significativos relacionados con las Regulaciones de Diseño y Gestión de la Construcción (CDM 2015). Estas regulaciones reflejan un enfoque moderno en materia de seguridad y exigen que todos los implicados, desde los clientes hasta los subcontratistas, comprendan y asuman sus responsabilidades en la planificación, el diseño y la ejecución de obras temporales.

Objetivos y alcance

La norma BS 5975:2019 busca garantizar que las obras temporales sean seguras, eficientes y sostenibles en todas sus fases, desde el diseño hasta el desmantelamiento. Proporciona directrices detalladas para minimizar riesgos, optimizar recursos y establecer una trazabilidad clara de responsabilidades. Además, promueve la colaboración efectiva entre diseñadores, contratistas y clientes, de modo que cada parte comprenda su papel y cumpla con la normativa aplicable.

El ámbito de aplicación de la norma cubre una amplia gama de estructuras y procedimientos relacionados con obras temporales, entre las que se incluyen:

  • Soporte de estructuras permanentes: elementos de soporte durante la construcción, remodelación o demolición.
  • Estabilidad estructural temporal: sistemas de apoyo para edificios, puentes, taludes o excavaciones.
  • Acceso y seguridad: instalación de plataformas, escaleras, pasarelas y otros elementos que permitan acceder de manera segura a las zonas de trabajo.
  • Control geotécnico e hidráulico: apuntalamientos y estructuras diseñadas para gestionar la estabilidad del terreno y los efectos del agua.
  • Soporte para equipos y materiales: estructuras temporales que estabilicen maquinaria o almacenen materiales durante la obra.

La norma también se aplica a proyectos de gran envergadura, como aeropuertos, plantas industriales y obras de infraestructura, donde las exigencias técnicas y organizativas son mayores. En estos casos, pueden ser necesarios procedimientos específicos adicionales para garantizar un control efectivo.

Términos clave y responsabilidades

La norma BS 5975:2019 define una serie de términos clave que estandarizan los roles y responsabilidades en la gestión de obras temporales. A continuación, se muestran los más relevantes:

  • Coordinador de obras temporales (TWC): es el responsable principal de supervisar y coordinar todas las actividades relacionadas con las obras temporales. Entre sus funciones se encuentran la revisión de diseños, la emisión de permisos para cargar estructuras y la verificación de que las instalaciones cumplen con los estándares de seguridad. En proyectos grandes o complejos, el TWC puede delegar ciertas tareas en supervisores específicos (TWS) para garantizar un control efectivo.
  • Supervisor de obras temporales (TWS): ayuda al TWC en tareas específicas, como la inspección diaria de las estructuras y la aplicación de las recomendaciones de diseño. Este rol es crucial para garantizar que las obras temporales se construyan y operen según las especificaciones aprobadas.
  • El delegado de la organización (DI): es un representante sénior dentro de la organización que tiene la responsabilidad de establecer y mantener los procedimientos internos para la gestión de obras temporales. Su función es garantizar que los sistemas y procesos de la empresa cumplan con el estándar y se implementen de manera adecuada.
  • Cliente y contratista principal (PC): es responsable de verificar que el contratista principal (PC) sea competente para gestionar el proyecto. Una vez designado, el PC asume la responsabilidad general de todas las actividades en el lugar de trabajo, incluidas las relacionadas con las obras temporales. El PC debe coordinar a los subcontratistas y asegurarse de que trabajen bajo un marco común.
  • Obras temporales: son estructuras diseñadas para soportar, proteger o estabilizar elementos durante la construcción. Esto incluye encofrados, cimbras, andamios, apuntalamientos, estructuras de retención y plataformas temporales.

Gestión de obras temporales

La gestión de obras temporales es uno de los aspectos centrales de la norma BS 5975:2019, ya que establece los procedimientos y las responsabilidades necesarios para garantizar la seguridad, estabilidad y funcionalidad de estas estructuras. Este enfoque abarca desde la planificación inicial hasta la evaluación posterior al desmontaje, garantizando que cada etapa del ciclo de vida de las obras temporales esté bajo control.

La gestión de obras temporales se basa en tres principios fundamentales, que aseguran que todas las partes implicadas trabajen bajo un marco común, que incluye procedimientos claros y una trazabilidad completa de las responsabilidades.:

  1. Control organizativo: cada organización involucrada debe gestionar sus actividades de manera que se minimicen errores y riesgos, y se maximice la seguridad.
  2. Responsabilidad del contratista principal (PC): el PC asume el control total del proyecto, incluida la gestión de las obras temporales.
  3. Nombramiento de un responsable centralizado: una persona, generalmente el coordinador de obras temporales, debe asumir la responsabilidad general de supervisar y coordinar las obras temporales en el lugar.

Cada organización debe establecer procedimientos específicos para gestionar obras temporales, adaptados a la naturaleza y la escala del proyecto. Estos procedimientos incluyen lo siguiente:

  • Planificación inicial: Desde la etapa de diseño, las organizaciones deben identificar las necesidades de obras temporales teniendo en cuenta factores como los requerimientos técnicos, que incluyen las cargas previstas, la estabilidad y los materiales necesarios; los requerimientos legales, que abarcan el cumplimiento de normativas locales y de la norma BS 5975:2019; y las condiciones de la obra, que comprenden factores geotécnicos, climáticos y de acceso al lugar de trabajo.
  • Asignación de roles y responsabilidades: Es esencial asignar roles específicos dentro de cada organización para gestionar las obras temporales. Estos roles incluyen al delegado (DI), responsable de supervisar la implementación de los procedimientos organizativos; al coordinador de obras temporales (TWC), encargado de supervisar y coordinar todas las actividades relacionadas con las obras temporales en el lugar de trabajo, y al supervisor de obras temporales (TWS), responsable de las tareas diarias de inspección y control, trabajando bajo la dirección del TWC.
  • Coordinación interorganizacional: En proyectos complejos con múltiples contratistas, la coordinación entre organizaciones es fundamental para evitar conflictos y garantizar que todas las actividades relacionadas con las obras temporales estén alineadas. Esto incluye el intercambio de información, es decir, compartir diseños, especificaciones y requisitos técnicos entre contratistas y subcontratistas, y la gestión de interfaces, que implica supervisar la interacción entre diferentes áreas de responsabilidad, especialmente en proyectos que involucren estructuras compartidas o adyacentes.

La gestión adecuada de obras temporales requiere un sistema riguroso de documentación y trazabilidad que permita supervisar todas las actividades relacionadas.

  • Registro de obras temporales: La norma exige mantener un registro detallado de todas las estructuras temporales utilizadas en el proyecto, que debe incluir información como la descripción de las estructuras, su ubicación, el estado actual (instalación, uso, desmontaje) y los permisos emitidos para su construcción y carga.
  • Certificación y revisión: Antes de utilizar una estructura temporal, debe emitirse un certificado que confirme que ha sido diseñada, construida y revisada de acuerdo con los estándares aplicables. Este proceso incluye la verificación del diseño, que consiste en una revisión técnica para asegurar que la estructura cumple con los requisitos de carga y estabilidad, y la revisión in situ, que implica una inspección física para confirmar que la estructura se ha construido según el diseño aprobado.
  • Permisos y autorizaciones: El uso de obras temporales requiere la emisión de permisos específicos en varias etapas, como el permiso de construcción, que se otorga antes de ensamblar la estructura, el permiso de carga, que se emite tras verificar que la estructura es segura para soportar las cargas previstas, y el permiso de desmontaje, que garantiza que este se realice de manera segura y ordenada.

La norma subraya la importancia de la supervisión activa durante todas las fases del proyecto para garantizar que las obras temporales se utilicen de manera segura y eficiente.

  • Inspecciones regulares: deben realizarse inspecciones periódicas para verificar que las estructuras se mantengan en condiciones óptimas durante su uso. Dichas inspecciones incluirán la revisión de materiales y componentes para detectar daños o desgaste, la evaluación de la estabilidad estructural en condiciones cambiantes, como cargas dinámicas o climáticas, y la verificación de que las operaciones en el lugar no afecten negativamente a la integridad de las obras temporales.
  • Mantenimiento preventivo: en proyectos de larga duración, es fundamental realizar un mantenimiento periódico de las estructuras temporales para prevenir fallos, lo que incluye el reemplazo de componentes dañados, el ajuste de elementos como puntales o sistemas de fijación y el refuerzo adicional en caso de condiciones imprevistas, como cargas mayores o cambios climáticos extremos.
  • Desmontaje seguro: el desmontaje de estructuras temporales debe planificarse cuidadosamente para minimizar riesgos, lo que incluye evaluar la secuencia de desmontaje para evitar inestabilidad estructural, proporcionar soporte adicional a elementos permanentes si es necesario y retirar componentes de manera ordenada para evitar dañar otros elementos del proyecto o el entorno.

La gestión efectiva de obras temporales requiere una comunicación clara y una formación adecuada para todos los involucrados.

  • Comunicación interna: La información sobre procedimientos, funciones y responsabilidades debe comunicarse claramente a todos los niveles de la organización, lo que incluye reuniones periódicas entre el TWC, el TWS y otros supervisores, así como documentación accesible que detalle los requisitos técnicos y operativos.
  • Formación del personal: El personal involucrado en la construcción, el uso y el desmontaje de obras temporales debe recibir una formación específica que incluya procedimientos de seguridad, uso correcto de materiales y equipos, e identificación y manejo de riesgos asociados con las estructuras temporales.

Diseño y control

El diseño y el control de las obras temporales son pilares fundamentales de la norma BS 5975:2019, ya que garantizan la seguridad, estabilidad y eficiencia en todas las fases de un proyecto de construcción. Este apartado proporciona directrices técnicas y organizativas detalladas para abordar las diversas cargas, materiales y procedimientos relacionados con el diseño de estas estructuras.

  • Consideraciones generales en el diseño: El diseño de obras temporales debe tener en cuenta el propósito específico de cada estructura para cumplir con los requisitos técnicos y operativos del proyecto. Esto implica analizar las cargas, las condiciones ambientales y las necesidades de uso, y garantizar la seguridad en todas las fases, desde la construcción hasta el desmantelamiento. Además, las estructuras temporales deben ser compatibles con las obras permanentes e integrarse sin interferir en su ejecución.
  • Tipos de cargas en el diseño:La norma establece que el diseño de obras temporales debe tener en cuenta varios tipos de cargas: estáticas, como el peso propio de la estructura y la carga muerta de elementos permanentes que se apoyan temporalmente en ella; dinámicas, como el movimiento de maquinaria y las vibraciones causadas por actividades cercanas; ambientales, como el viento, la lluvia y la nieve, que pueden afectar a la estabilidad según la norma Eurocódigo EN 1991-1-3; y accidentales, como impactos de vehículos o la caída de objetos. El diseño debe incorporar factores de seguridad para mitigar estos riesgos y garantizar la estabilidad estructural.
  • Selección de materiales y componentes:La elección de materiales adecuados es crucial para cumplir con los requisitos funcionales y de seguridad en obras temporales. El acero es el material más común por su alta resistencia y ductilidad, y es ideal para cimbras y andamios. La madera se utiliza en proyectos más pequeños o económicos, siempre que cumpla con estándares como el BS 5756:2007. Los componentes prefabricados, como vigas y paneles modulares, permiten una instalación rápida y garantizan una calidad uniforme. Los materiales deben ser inspeccionados y sometidos a pruebas de resistencia para garantizar su capacidad de carga y contar con certificaciones de calidad. Además, los componentes reutilizables, como los puntales y los andamios, requieren un mantenimiento preventivo regular.
  • Verificación del diseño: La BS 5975:2019 establece procedimientos estrictos para la verificación de los diseños de obras temporales. Esto incluye:
    • Niveles de verificación: El nivel de revisión requerido depende de la complejidad y el riesgo asociado al diseño:
      • Diseños simples: Revisión por un ingeniero calificado dentro del equipo del proyecto.
      • Diseños complejos: Revisión independiente por un ingeniero especializado, quien realiza cálculos detallados y simulaciones para verificar la estabilidad de la estructura.
    • Categorías de diseño: La norma clasifica los diseños de obras temporales en tres categorías principales, basándose en su nivel de riesgo:
      • Categoría 1: Diseños estándar con riesgos bajos y procedimientos bien establecidos.
      • Categoría 2: Diseños con ciertos riesgos o complejidad, que requieren una revisión detallada por parte de un ingeniero experimentado.
      • Categoría 3: Diseños de alta complejidad o riesgo, que exigen revisiones externas e independientes.
    • Documentación del diseño: Cada diseño debe estar respaldado por una documentación exhaustiva, que incluya:
      • Declaraciones de diseño que expliquen los cálculos y supuestos utilizados.
      • Certificados de conformidad con normativas aplicables.
      • Planos detallados que muestren la configuración de la estructura temporal.
  • Procedimientos de control en obra:El control de las obras temporales incluye la supervisión durante su construcción, uso y desmantelamiento. La norma exige inspecciones periódicas realizadas por personal cualificado, como el TWC o el TWS, para garantizar que las estructuras cumplen con los diseños aprobados. Antes de cargar o desmontar una estructura, deben obtenerse permisos que certifiquen su correcta construcción y revisión. En proyectos largos o con condiciones cambiantes, es necesaria una supervisión continua para detectar deformaciones o inestabilidad.

Capacitación y formación

La capacitación y formación son pilares esenciales en la gestión de obras temporales, según la norma BS 5975:2019. La seguridad, eficiencia y calidad de estas estructuras dependen directamente del nivel de conocimiento y habilidad del personal involucrado. Una formación adecuada no solo asegura la competencia técnica, sino que también promueve una cultura de prevención de riesgos y mejora continua en todos los niveles organizativos.

  • Importancia de la capacitación:La naturaleza de las obras temporales exige precisión en su diseño, construcción, uso y desmantelamiento, ya que errores en cualquiera de estas fases pueden causar colapsos estructurales, accidentes laborales, retrasos y sanciones legales. Por ello, es fundamental capacitarse para garantizar la seguridad laboral mediante la reducción de riesgos, el cumplimiento normativo siguiendo regulaciones como el CDM 2015 y el BS 5975:2019, la eficiencia operativa optimizando recursos y minimizando desperdicios y la resiliencia estructural, preparando al personal para afrontar imprevistos como cargas adicionales o condiciones climáticas adversas.
  • Áreas clave de formación: La formación debe abordar diversas áreas técnicas y organizativas para cubrir las necesidades de todos los roles involucrados.
    • Formación en roles específicos
      • Coordinador de obras temporales (TWC): desempeña un papel clave en la gestión de estas obras, por lo que su formación debe abarcar procedimientos de diseño, inspección y control, gestión de riesgos asociados a las estructuras temporales, coordinación y supervisión de subcontratistas y equipos en el lugar, comunicación efectiva con diseñadores, clientes y contratistas, así como el conocimiento de normativas aplicables, como el CDM 2015 y los Eurocódigos relacionados.
      • Supervisor de obras temporales (TWS): asiste al TWC en tareas específicas, por lo que su formación debe centrarse en la inspección y el mantenimiento de estructuras en uso, la identificación de problemas potenciales, como defectos en materiales o inestabilidad estructural, los procedimientos de permisos, incluidos el «permiso para cargar» y el «permiso para desmontar», así como la revisión de documentación técnica y planos de diseño.
      • Personal técnico y de obra: encargado de construir, mantener y desmontar las obras temporales debe estar capacitado para usar herramientas y equipos de manera segura, como puntales, andamios y encofrados, y debe conocer las técnicas de construcción para garantizar la estabilidad estructural, los procedimientos de emergencia ante fallos estructurales y la identificación y mitigación de riesgos en el lugar de trabajo.
    • Formación técnica especializada: para puestos avanzados o proyectos complejos debe incluir cálculos estructurales para diseñadores y revisores, que abarquen cargas dinámicas, estáticas y ambientales; selección de materiales, evaluando el acero, la madera y los componentes prefabricados según los estándares aplicables; uso de software especializado como herramientas de modelado 3D y simulación estructural (BIM); y gestión de interfaces, para asegurar la coordinación entre equipos multidisciplinares y subcontratistas y evitar conflictos.
  • Métodos de capacitación: La formación puede implementarse a través de una combinación de métodos para abordar diferentes niveles de experiencia y áreas de especialización:
    • Formación teórica: La formación teórica incluye cursos en aula o en línea que proporcionan conocimientos fundamentales sobre normativas aplicables, principios de diseño y control, y gestión de riesgos en obras temporales.
    • Entrenamiento práctico: El entrenamiento práctico es imprescindible para los roles operativos, ya que permite a los trabajadores aplicar lo aprendido en un entorno controlado. Algunos ejemplos de este enfoque son la construcción y desmontaje de estructuras simuladas, la inspección de materiales y componentes en escenarios reales y el uso de equipos especializados, como grúas y sistemas de soporte.
    • Evaluaciones y certificaciones: Se deben realizar pruebas para verificar la comprensión y habilidad de los participantes. Los programas deben incluir certificaciones reconocidas, que aseguren que el personal cumple con los estándares requeridos para sus roles específicos.
    • Aprendizaje continuo: La industria de la construcción evoluciona constantemente, con nuevas tecnologías y normativas que exigen una actualización continua, por lo que los programas de capacitación deben incluir formación continua, con actualizaciones periódicas sobre normativas y prácticas emergentes, así como capacitación avanzada dirigida a personal experimentado que busca asumir roles de mayor responsabilidad.
  • Beneficios de una formación adecuada: La inversión en formación y capacitación genera beneficios significativos para las organizaciones, los trabajadores y los proyectos, como la reducción de accidentes, ya que un personal bien capacitado es más consciente de los riesgos y sabe cómo evitarlos; una mayor eficiencia, al mejorar la productividad y reducir el tiempo necesario para completar tareas complejas; el cumplimiento normativo, ya que todos los procedimientos cumplen con las regulaciones locales e internacionales; y la retención de talento, ya que los empleados capacitados se sienten valorados y son más propensos a permanecer en la organización.
  • Programas específicos de formación recomendados por la BS 5975:2019: La norma sugiere que las organizaciones desarrollen programas de capacitación adaptados a la complejidad de sus proyectos para preparar adecuadamente al personal. Estos programas deben incluir una inducción inicial que explique el diseño del proyecto, los roles y responsabilidades, y los procedimientos básicos de seguridad y emergencia. Para proyectos complejos, se recomiendan talleres especializados sobre temas técnicos, como la estabilidad, la gestión de cargas y el diseño avanzado. Además, se deben realizar simulaciones prácticas que incluyan el montaje y desmontaje de estructuras, la resolución de problemas técnicos y la gestión de emergencias. Evaluaciones periódicas medirán la efectividad de la formación y ayudarán a identificar áreas de mejora.
  • Requisitos para formadores: Los formadores deben ser profesionales altamente cualificados, con experiencia práctica en la gestión y el diseño de obras temporales, y con conocimientos profundos del BS 5975:2019 y otras normativas relevantes. Además, deben tener experiencia en proyectos complejos que incluyan obras temporales y capacidad para comunicar conceptos técnicos a públicos con diferentes niveles de experiencia.

Conclusión

Para garantizar que los proyectos de construcción se ejecuten de manera segura, eficiente y sostenible, es fundamental implementar correctamente la norma BS 5975:2019 en la gestión de obras temporales. Al seguir esta norma, las empresas de construcción pueden no solo cumplir con las normativas, sino también mejorar su productividad, reducir riesgos, optimizar el uso de recursos y fomentar una cultura organizativa basada en la mejora continua y la excelencia.

La capacitación continua y la formación específica para cada rol son esenciales para garantizar que el personal esté siempre preparado para enfrentar los desafíos que surjan durante el ciclo de vida del proyecto. Además, la colaboración efectiva entre todos los participantes del proyecto y la integración de tecnologías innovadoras permitirán a las empresas construir obras más resilientes, seguras y respetuosas con el medio ambiente. La implementación de estos principios no solo beneficiará a la empresa en términos de competitividad y rentabilidad, sino que también contribuirá al progreso hacia una industria de la construcción más segura y responsable.

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Curso de fabricación y puesta en obra del hormigón.

Construcción en América Latina y el Caribe: digitalización e innovación como claves para la sostenibilidad

El sector de la construcción en América Latina y el Caribe (ALC) es uno de los pilares fundamentales de la economía regional, pero también se enfrenta a desafíos significativos en términos de sostenibilidad, productividad y digitalización.

A continuación nos hacemos eco de un informe donde se detallan las claves para transformar el sector basándose en datos, análisis de tendencias y recomendaciones prácticas. El informe lo tenéis al final de este resumen.

 

1. Introducción: importancia del sector y sus retos

El sector de la construcción genera aproximadamente 300 000 millones de dólares en América Latina y el Caribe, lo que representa el 6 % del producto interior bruto (PIB) regional y más de 20 millones de empleos directos. A nivel mundial, contribuye al 13 % del PIB y da empleo a 250 millones de personas. Sin embargo, su productividad ha crecido solo un 1 % anual en las últimas dos décadas, lo que la sitúa muy por debajo de sectores como la manufactura (3,6 %) y la agricultura (2,8 %).

El sector de la construcción es uno de los mayores consumidores de recursos naturales y contribuye significativamente al cambio climático. Según el World Green Building Council (2023):

  • Representa el 50 % del consumo global de recursos extraídos.
  • Utiliza el 15 % del agua potable mundial.
  • Es responsable del 37 % de las emisiones globales de CO₂ relacionadas con la energía.
  • Genera el 35 % de los residuos sólidos producidos anualmente en el planeta.

Además, las proyecciones indican que el sector crecerá considerablemente en los próximos años. Se estima que para 2050 aún no se ha construido el 60 % de los edificios necesarios y que el 20 % de las estructuras existentes requieren renovaciones para cumplir los objetivos de sostenibilidad y cero emisiones netas.

2. Soluciones habilitantes para la construcción sostenible

El documento identifica seis categorías fundamentales de soluciones que pueden transformar el sector hacia la sostenibilidad. Estas soluciones integran tecnologías digitales, diseño innovador, materiales sostenibles y enfoques de gestión eficientes.

  • Tecnologías digitales avanzadas: Las tecnologías digitales son esenciales para mejorar la eficiencia, la transparencia y la sostenibilidad en todas las etapas del ciclo de vida de los proyectos de construcción.
    1. Building Information Modeling (BIM): permite el diseño colaborativo de infraestructuras en un entorno digital. Sus beneficios incluyen:
      • Incremento de la productividad en un 13%.
      • Reducción de costos en un 4% y de los plazos en un 6%.
      • Automatización de procesos como la simulación de consumo energético y la evaluación de impactos climáticos.
      • Caso de éxito: en Uruguay, el uso de BIM y LEAN Construction en el proyecto CAIF Aeroparque resultó en un ahorro del 50% en tiempos de respuesta y un 63% menos en sobrecostos durante la pandemia​.
    2. Inteligencia artificial (IA): mejora la planificación, el diseño y la operación de los activos construidos. Ejemplos:
      • Simulaciones para evaluar el rendimiento energético y el comportamiento estructural ante desastres.
      • Optimización de rutas de transporte y logística en obra, reduciendo costos y emisiones.
    3. Internet de las cosas (IoT):
      • Sensores inteligentes monitorean el uso de energía, agua y recursos en tiempo real, ajustando automáticamente los sistemas para maximizar la eficiencia.
      • Aplicaciones como Building Resilience ayudan a evaluar riesgos climáticos y seleccionar ubicaciones óptimas para proyectos.
    4. Impresión 3D:
      • Permite fabricar componentes en obra o en fábricas cercanas, reduciendo los residuos y las emisiones de transporte.
      • Facilita el uso de materiales reciclados, disminuyendo la dependencia de recursos vírgenes.
    5. Blockchain:
      • Asegura la trazabilidad de materiales, verifica certificaciones ambientales y gestiona residuos con mayor transparencia.
    6. Gestión en la nube:
      • Reduce el empleo de papel, mejora la colaboración en tiempo real y almacena datos clave para optimizar la sostenibilidad.

  • Diseño sostenible: El diseño sostenible aborda el impacto ambiental desde la concepción del proyecto, empleando enfoques como el diseño bioclimático, que optimiza la orientación solar, el aislamiento térmico y la ventilación pasiva para reducir la demanda energética. Un ejemplo de ello son los edificios pasivos, que minimizan el uso de climatización activa; la eficiencia energética y la generación de energía renovable mediante paneles solares, sistemas LED y edificaciones de carbono neutro o positivas que producen más energía de la que consumen; y la flexibilidad en el diseño, con espacios modulares que se adaptan a diferentes usos y disminuyen la necesidad de futuras demoliciones.
  • Materiales sostenibles: El uso de materiales con bajas emisiones de carbono es fundamental para reducir el impacto ambiental. Entre estos materiales destacan la madera certificada, que tiene una huella de carbono negativa, es renovable, reciclable y eficiente energéticamente, y constituye una alternativa clave al hormigón en Chile, que representa el 54 % de las emisiones de carbono de un edificio; el bambú, un material resistente y de rápido crecimiento utilizado en zonas tropicales; y los materiales reciclados, que disminuyen la extracción de recursos naturales y los residuos de construcción.
  • Sistemas de construcción industrializada: La prefabricación, la construcción modular y la impresión 3D contribuyen a reducir los residuos en obra y el tiempo de construcción, y permiten finalizar las obras hasta un 50 % más rápido que con los métodos tradicionales.
  • Medición y verificación del impacto ambiental: Certificaciones como LEED, EDGE y BREEAM permiten evaluar y validar la sostenibilidad de los proyectos.
  • Enfoques de gestión eficientes: Metodologías como LEAN Construction y Advanced Work Packaging optimizan los procesos y reducen retrasos.

3. Experiencias, retos y oportunidades en Latinoamérica y el Caribe

El análisis en Brasil, Chile, Costa Rica y Uruguay revela 44 iniciativas identificadas desde 2015, la mayoría lideradas por el sector público. Entre los retos a los que se enfrentan destacan la falta de integración entre soluciones digitales y sostenibles, la baja percepción del valor económico de la sostenibilidad y los altos niveles de informalidad en el sector. Entre las buenas prácticas destacan el uso de estrategias internacionales de benchmarking, la capacitación técnica en metodologías digitales y la compra pública innovadora y ecológica para estimular la demanda de tecnologías sostenibles.

4. Claves para el futuro

Para transformar el sector, se recomiendan políticas de liderazgo público que promuevan la digitalización y la sostenibilidad, así como incentivos financieros y no financieros, como subsidios, créditos y regulaciones, para fomentar la adopción de prácticas sostenibles. También se recomienda fomentar la colaboración multisectorial mediante alianzas entre los sectores público, privado y académico para compartir conocimientos y recursos, y ofrecer programas de capacitación y educación en habilidades digitales para los trabajadores del sector.

5. Conclusión

La adopción masiva de tecnologías digitales, materiales sostenibles y enfoques innovadores puede situar a Latinoamérica y el Caribe a la vanguardia de la construcción sostenible a escala mundial. Para transformar el sector de la construcción, es necesario adoptar un enfoque holístico que combine innovación tecnológica, gestión eficiente y políticas públicas. La adopción generalizada de soluciones digitales y sostenibles no solo mejorará la productividad, sino que también reducirá el impacto ambiental, lo que hará que el sector sea más resiliente y competitivo en el contexto global.

Os dejo el siguiente documento, donde tenéis toda la información. Espero que os sea de interés.

Descargar (PDF, 4.11MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Qué es una campaña geotécnica y su relevancia en proyectos de ingeniería

Una campaña geotécnica consiste en un conjunto de actividades y estudios técnicos destinados a caracterizar el subsuelo, identificar las propiedades geológicas y geotécnicas relevantes, detectar posibles problemas y garantizar la viabilidad técnica y la seguridad de las obras. Incluye prospecciones (sondeos, calicatas, ensayos), análisis de materiales y condiciones del terreno, que sirven de apoyo a la toma de decisiones en el diseño y construcción. Estas campañas son fundamentales para garantizar la viabilidad técnica, la seguridad y la sostenibilidad de los proyectos, y también para minimizar riesgos y optimizar costes.

En este artículo, profundizaremos en qué consiste una campaña geotécnica, cómo se lleva a cabo y por qué es relevante ejecutarla correctamente en cualquier proyecto de construcción.

El terreno como protagonista en la ingeniería

El terreno es un elemento crucial en cualquier obra. Un conocimiento inadecuado de sus características puede derivar en problemas como asentamientos diferenciales, deslizamientos, licuefacción o incluso colapsos estructurales. Por ello, las campañas geotécnicas son cruciales para diseñar cimentaciones y estructuras adaptadas a las condiciones específicas de cada emplazamiento.

Estas investigaciones se sustentan en tres pilares esenciales:

  1. Experiencia técnica: es indispensable contar con especialistas capaces de identificar las propiedades del terreno, evaluar riesgos y diseñar soluciones personalizadas.
  2. Calidad de ejecución: desde el alcance del estudio hasta la supervisión de campo, cada etapa debe garantizar la precisión de los resultados.
  3. Normativa y seguridad: el cumplimiento de marcos regulatorios, como el Código Técnico de la Edificación (CTE) y la Guía de Cimentaciones en Obras de Carretera, garantiza que las soluciones sean técnicamente adecuadas y cumplan con los estándares establecidos.

Objetivos y beneficios de las campañas geotécnicas

El objetivo principal de una campaña geotécnica es caracterizar el terreno para poder diseñar soluciones constructivas seguras y eficientes. Entre sus ventajas más destacadas se encuentran:

  • Garantía de seguridad: la identificación de riesgos geotécnicos evita desastres que puedan afectar a personas y estructuras.
  • Optimización de costes: aunque a menudo se perciben como un coste adicional, estas campañas permiten prevenir gastos futuros en reparaciones o rediseños.
  • Diseño adaptado: permite elegir los métodos constructivos más adecuados en función de las características del suelo y de las cargas de la estructura.
  • Mitigación de impactos ambientales y legales: al considerar el entorno y posibles restricciones, se minimizan conflictos y se garantiza la sostenibilidad del proyecto.

Etapas de una campaña geotécnica

1. Recopilación de información previa

Antes de llevar a cabo estudios de campo, es crucial recopilar datos relevantes sobre la zona. Esto incluye:

  • Planos topográficos: proporcionan una visión detallada del terreno.
  • Mapas geológicos: permiten identificar características estratigráficas y litológicas.
  • Historial de uso del terreno: puede revelar posibles riesgos, como rellenos no compactados o estructuras enterradas.
  • Normativa aplicable: por ejemplo, el Eurocódigo 7 sobre diseño geotécnico.

2. Reconocimientos de campo

Los reconocimientos de campo son el núcleo de una campaña geotécnica. Algunas de las técnicas más comunes son:

  • Sondeos mecánicos: Perforaciones para extraer muestras y analizar la estratigrafía del terreno.
  • Ensayos de penetración (SPT, CPT): Evalúan la resistencia del terreno mediante penetraciones controladas.
  • Calicatas y rozas: Excavaciones superficiales para observar directamente las capas del suelo.
  • Ensayos geofísicos: Métodos no invasivos, como sísmica de refracción, para obtener una visión global del subsuelo.
  • Estudios hidrogeológicos: Determinan la posición y características del agua subterránea, que influye en la estabilidad y resistencia del suelo.

Profundidades recomendadas:

  • Para cimentaciones superficiales, al menos 1,5 veces el ancho proyectado de la cimentación.
  • Para cimentaciones profundas (pilotes): a una profundidad mínima de 6 metros por debajo de la punta del pilote.

3. Análisis en laboratorio

Las muestras recolectadas se someten a análisis detallados para determinar:

  • Granulometría y plasticidad: identificación del tipo de suelo y su comportamiento bajo carga.
  • Resistencia y deformabilidad: ensayos triaxiales y edométricos.
  • Permeabilidad: evaluación de la capacidad del terreno para drenar agua.

4. Interpretación y diseño geotécnico

Con los datos recopilados, los ingenieros crean modelos y realizan cálculos para encontrar soluciones óptimas para las cimentaciones y las estructuras. Este proceso incluye:

— Selección del modelo de cálculo adecuado.
— Definición de parámetros de seguridad según la normativa.
— Ajustes según observaciones durante la ejecución.

Importancia de una correcta planificación

  • Construcción de un puente: En un cauce fluvial, por ejemplo, se pueden detectar suelos aluviales inestables, por lo que será necesario diseñar pilotes profundos para evitar asentamientos diferenciales. Por este motivo, se diseñaron pilotes profundos para evitar asentamientos diferenciales.
  • Proyecto de viviendas: Un caso en el que una zona había sido un vertedero, los estudios geotécnicos identifican rellenos inadecuados. La solución puede ser retirar los rellenos inadecuados y compactar el terreno con materiales adecuados.

Desafíos comunes:

  • Limitaciones presupuestarias: reducir la intensidad de los estudios puede ocasionar problemas graves durante la construcción.
  • Condiciones complejas: la heterogeneidad del terreno o la ubicación en zonas sísmicas requieren investigaciones más exhaustivas.
  • Falta de datos previos: la ausencia de estudios anteriores puede complicar la fase inicial de planificación.

Herramientas y normativas clave

  • Software especializado: Programas como Plaxis o GeoStudio permiten modelar comportamientos del terreno y simular condiciones críticas.
  • Normativa aplicable:
    • Código Técnico de la Edificación (CTE): Proporciona directrices para reconocer y mitigar riesgos.
    • Guía de Cimentaciones en Obras de Carretera: Define protocolos para infraestructuras viales.

Conclusión

Las campañas geotécnicas son mucho más que un paso previo en la construcción: son la base sobre la que se asienta la seguridad, la viabilidad y la sostenibilidad de cualquier proyecto. Al identificar riesgos, garantizar diseños óptimos y cumplir con normativas, estas investigaciones se convierten en una inversión estratégica que previene problemas futuros.

En un entorno cada vez más desafiante para la ingeniería, realizar campañas geotécnicas no solo es una práctica recomendada, sino esencial para asegurar el éxito de cualquier obra.

A continuación dejamos un documento que proporciona recomendaciones técnicas detalladas sobre la campaña geotécnica en proyectos de infraestructura vial para la Dirección General de Carreteras, con el objetivo de establecer criterios uniformes y seguros para la investigación del subsuelo durante las diferentes etapas de desarrollo de un proyecto.

Descargar (PDF, 589KB)

Os dejo también un vídeo al respecto. Espero que os sea de interés.

 

Losas aligeradas multiaxiales: innovación y sostenibilidad en los Métodos Modernos de Construcción

Vivienda unifamiliar con losas aligeradas multiaxiales «Unidome»

El artículo de investigación presentado en el 28th International Congress on Project Management and Engineering por los autores Sánchez-Garrido, Yepes-Bellver, Saiz y Yepes es un análisis de losas aligeradas multiaxiales empleadas en edificación.

En la actualidad, el sector de la construcción se enfrenta a desafíos significativos relacionados con la necesidad de optimizar recursos, minimizar el impacto ambiental y satisfacer demandas estructurales complejas. Ante este panorama, los Métodos Modernos de Construcción (MMC) han surgido como una alternativa disruptiva a las técnicas tradicionales. Este artículo analiza la implementación de losas aligeradas multiaxiales, y destaca su diseño, beneficios, impacto en la sostenibilidad y su comparación con estructuras convencionales.

El trabajo se enmarca dentro de los proyectos de investigación HYDELIFE y RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El auge de los Métodos Modernos de Construcción

Los MMC, también conocidos como «construcción inteligente», introducen un enfoque industrializado que revoluciona la forma de diseñar y construir edificios. Este concepto, inicialmente popularizado en el Reino Unido, abarca tecnologías modulares y procesos automatizados que hacen que la construcción sea más rápida, económica y sostenible.

A diferencia de los métodos tradicionales, los MMC integran disciplinas como la ingeniería estructural, la arquitectura y la gestión de proyectos. Estas técnicas permiten aprovechar al máximo los materiales, reducir los residuos y acortar los plazos de ejecución. Dentro de este enfoque, destacan las losas aligeradas multiaxiales, una solución que combina eficiencia estructural y sostenibilidad.

Características técnicas de las losas aligeradas

Las losas aligeradas multiaxiales suponen una evolución frente a las losas macizas tradicionales. Su diseño incorpora elementos huecos, como los formadores «Unidome», que sustituyen el hormigón en áreas de baja capacidad portante, lo que genera importantes beneficios estructurales y medioambientales.

  1. Materiales:
    • Hormigón armado.
    • Aligeradores de plástico reciclado (HDPE o PP).
    • Barras de acero para refuerzo y fijación.
  2. Diseño:
    • Reducción de hasta el 35 % del hormigón empleado.
    • Aligeramiento del peso propio de la losa, lo que facilita su transporte y montaje.
    • Incorporación de zonas macizas en áreas críticas, como las cercanas a pilares, para garantizar la resistencia a cortante y al punzonamiento.
  3. Flexibilidad estructural:
    • Reducción de entre un 5-10 % en el canto del forjado.
    • Aumento de luces hasta un 40 % más respecto a las losas macizas.
    • Mejora en la distribución de cargas y en el comportamiento frente a sismos.
  4. Durabilidad:
    • Diseño optimizado para prevenir fallos estructurales por flexión, cortante o cargas axiales.
    • Resistencia al fuego gracias a recubrimientos específicos y diseño uniaxial o biaxial.

Comparativa: estructura convencional frente a MMC

Para evaluar el impacto de las losas aligeradas, se realizó un estudio de caso en un edificio residencial público de Chiclana (Cádiz), donde se compararon dos alternativas estructurales: una convencional y otra basada en MMC.

Opción A: Estructura convencional

  • Características:
    • 10 pilares para luces de 6,6 m.
    • Losas macizas de hormigón armado con espesores de 26-28 cm.
    • Mayor peso propio, que requiere cimentaciones más robustas.
  • Materiales utilizados:
    • 509,87 m³ de hormigón.
    • 59.837 kg de acero.

Opción B: Estructura MMC con losas aligeradas

  • Características:
    • 6 pilares soportan luces de hasta 13,2 m, eliminando filas intermedias.
    • Losas aligeradas de 40-44 cm con un 35 % menos de peso propio en áreas no críticas.
  • Materiales utilizados:
    • 532,60 m³ de hormigón (4,5 % más que la opción A).
    • 69.892 kg de acero (16 % más que la opción A).

Aunque la opción B requiere más materiales, su diseño permite reducir significativamente los elementos estructurales, como los pilares, lo que da como resultado una estructura más esbelta y eficiente. Además, al eliminar soportes intermedios, se obtienen beneficios adicionales como espacios diáfanos, flexibilidad en el diseño interior y menores tiempos de ejecución.

Sostenibilidad: Un enfoque imprescindible

La sostenibilidad es uno de los pilares de los MMC y las losas aligeradas no son una excepción. La implementación de estas losas tiene un impacto positivo que se refleja en diversos aspectos:

  1. Reducción de CO₂:
    • Cada módulo aligerado sustituye hasta un 35% del hormigón, lo que equivale a una reducción promedio de 46 toneladas de CO₂ por módulo construido.
    • Uso de plástico reciclado para los aligeradores, disminuyendo la dependencia de materiales vírgenes.
  2. Eficiencia energética:
    • Menor consumo de energía en la producción y transporte de materiales.
    • Reducción del 20% en el gasto energético durante la construcción.
  3. Optimización de recursos:
    • Ahorro de agua en el proceso de fabricación del hormigón.
    • Disminución del peso propio, lo que optimiza cimentaciones y reduce la cantidad de acero requerido.

Resultados concretos

En el estudio comparativo, las losas MMC redujeron las emisiones de CO₂ en un 25 % por metro cuadrado, mientras que su transporte requirió un 30 % menos de camiones en comparación con las losas macizas tradicionales.

Aplicaciones prácticas y retos futuros

Las losas aligeradas tienen un amplio rango de aplicaciones, desde edificios residenciales hasta rascacielos y escuelas. Su adaptabilidad permite implementarlas en forjados y cimentaciones con espesores que van desde los 20 cm hasta los 80 cm. No obstante, todavía enfrentan ciertos desafíos:

  • Aceptación del mercado: La estandarización y la capacitación de los profesionales son esenciales para su adopción masiva.
  • Optimización del diseño: Futuras investigaciones buscan extender las aplicaciones a cargas y luces mayores, comparando su desempeño con otras soluciones como forjados reticulares o postensados.

Beneficios adicionales para los proyectos

Además de los aspectos técnicos y sostenibles, las losas aligeradas ofrecen ventajas tangibles para los equipos de diseño y construcción:

  1. Simplificación del proyecto:
    • Geometrías más sencillas y menos complejas.
    • Reducción de cargas estructurales, lo que facilita el cálculo estático.
  2. Velocidad de construcción:
    • Los formadores de huecos llegan preensamblados o listos para instalar, reduciendo los tiempos de montaje.
    • El menor peso de los elementos acelera el proceso de hormigonado.
  3. Versatilidad arquitectónica:
    • Mayor libertad en la distribución de espacios interiores.
    • Facilidad para abrir huecos adicionales o modificar diseños.

Conclusiones

Los Métodos Modernos de Construcción, y específicamente las losas aligeradas multiaxiales, representan un cambio de paradigma en la ingeniería civil. Al reducir el uso de materiales y optimizar recursos, así como al mejorar el desempeño estructural, estas soluciones no solo son más sostenibles, sino también más adaptables a las necesidades contemporáneas de diseño y construcción.

Al combinar eficiencia, flexibilidad y sostenibilidad, las losas aligeradas ofrecen una respuesta sólida a los retos actuales del sector. Su implementación masiva tiene el potencial de transformar el panorama de la construcción y alinearse con objetivos globales como la reducción de emisiones y la industrialización sostenible.

Os dejo la presentación que se hizo en el congreso:

Como está publicado en abierto, os dejo la comunicación completa a continuación:

Descargar (PDF, 3.56MB)

Referencia:

SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; SAIZ, D.; YEPES, V. (2024). Ingeniería de proyectos en Modernos Métodos de Construcción: El caso de edificios con losas planas mediante elementos aligerantes multiaxiales. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain), pp. 392-406. DOI:10.61547/2402009

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimentos bicapa de hormigón

Los pavimentos bicapa de hormigón son una solución eficiente y duradera para las infraestructuras viales. Compuestos por una capa inferior estructural que soporta las cargas de tráfico y una capa superior de rodadura que proporciona funcionalidad y seguridad, estos pavimentos son una alternativa sostenible frente a los pavimentos monocapa. Su desarrollo se remonta a la crisis energética de los años setenta, cuando se buscaban opciones menos dependientes de materiales bituminosos, lo que impulsó la adopción de pavimentos rígidos.

El diseño de los pavimentos bicapa requiere una evaluación exhaustiva de las cargas y la selección adecuada de materiales. La capa estructural emplea hormigón de alta resistencia, mientras que la de rodadura se optimiza para garantizar su durabilidad y comodidad. Las juntas de contracción y expansión, junto con conectores de acero, garantizan la estabilidad y reducen el riesgo de grietas causadas por cambios térmicos y de carga.

El proceso de construcción implica una cuidadosa preparación de la explanada y un riguroso control de calidad en cada una de las etapas, desde el extendido y el acabado hasta el curado de la superficie. En la gestión, se presta especial atención a la regularidad superficial y a la calidad de los materiales empleados para garantizar la durabilidad y la resistencia. En cuanto a la conservación, los pavimentos bicapa requieren menos intervenciones y suponen un menor coste de mantenimiento a largo plazo.

Además, desde el punto de vista ambiental, presentan ventajas como la reducción de emisiones y un menor efecto de calor urbano debido a su reflectancia. Proyectos de demostración en España han confirmado su viabilidad y sus ventajas en términos de sostenibilidad, eficiencia y confort. La adopción de estos pavimentos, junto con una formación técnica adecuada, puede revolucionar la construcción de infraestructuras viales y proporcionar carreteras más seguras, duraderas y sostenibles.

1. Introducción a los pavimentos bicapa de hormigón

Los pavimentos de hormigón surgieron como una solución duradera para responder a la creciente demanda de carreteras resistentes y con menor necesidad de mantenimiento. Las primeras pruebas en España se realizaron a principios del siglo XX, cuando se desarrollaron técnicas innovadoras como el uso de encofrados deslizantes y hormigón armado. La crisis energética de 1973 incentivó la búsqueda de alternativas menos dependientes del petróleo, lo que impulsó el uso de pavimentos rígidos de hormigón y, con el tiempo, favoreció la aplicación de pavimentos bicapa en diversos tipos de vías.

Los pavimentos bicapa de hormigón están compuestos por dos capas diferenciadas: una capa inferior o estructural, destinada a soportar las cargas principales del tráfico, y una capa superior o de rodadura, que proporciona una superficie de contacto segura, duradera y cómoda para el tráfico de vehículos. Este diseño bicapa ofrece ventajas significativas, como una mayor durabilidad, un mejor desempeño acústico y propiedades superficiales específicas, como resistencia a la abrasión y mayor reflectancia, lo que contribuye al confort y la seguridad en las vías.

Los pavimentos bicapa de hormigón presentan varias ventajas frente a los monocapa, entre las que destaca su sostenibilidad, ya que reducen la necesidad de reposiciones frecuentes y, por tanto, disminuyen el uso de recursos materiales y energéticos a largo plazo. Además, ofrecen un mayor confort y seguridad gracias a sus mejores acabados superficiales, mayor regularidad y menor sonoridad. Aunque la inversión inicial es mayor, los costes de mantenimiento y funcionamiento se reducen significativamente, por lo que resultan más rentables a largo plazo.

En España no se han llevado a cabo experiencias significativas con pavimentos de hormigón bicapa construidos con dos tipos de hormigón diferentes adaptados a las características requeridas para cada capa. Sin embargo, la Instrucción Española 6.1-IC sobre secciones de firmes y el PG-3 permiten esta opción. Es importante destacar que el procedimiento constructivo es exigente y requiere la duplicación de los equipos de extendido y de las centrales de hormigón preparado.

2. Bases teóricas del diseño de pavimentos bicapa

El diseño estructural de pavimentos bicapa se basa en la evaluación de cargas y en el análisis de las exigencias del tráfico pesado para estimar el espesor y la resistencia necesarios en la capa inferior. También se tiene en cuenta la distribución de la presión a lo largo de la estructura para garantizar la integridad del pavimento con el paso del tiempo. La capa estructural asume la carga del tráfico, mientras que la capa de rodadura protege el hormigón de base y facilita una conducción suave. Para ello, se calculan los esfuerzos de tensión y compresión en ambas capas mediante modelos de elasticidad y resistencia estructural.

Para la selección de materiales en pavimentos bicapa, se recomienda utilizar hormigón de alta resistencia para la capa inferior, que debe tener bajo contenido de aire, buena cohesión y agregados gruesos y uniformes que maximicen la resistencia estructural. En cuanto a la capa superior o de rodadura, es importante emplear un hormigón con características específicas de textura superficial y reflectancia. También se puede añadir un aditivo polímero si es necesario mejorar la resistencia a la abrasión o hacer frente a condiciones climáticas extremas.

En el diseño de pavimentos bicapa, los aspectos clave incluyen la clasificación del tráfico, ya que identificar el tipo e intensidad del mismo permite determinar la resistencia necesaria para ambas capas. Se recomienda un diseño más robusto en vías de alto tráfico para evitar el desgaste prematuro. Además, es fundamental verificar la estabilidad de la explanada, ya que es necesario garantizar su capacidad de soporte mediante pruebas del módulo de compresibilidad y de deflexión patrón. Por último, el diseño de juntas es esencial para permitir la dilatación y prevenir agrietamientos, para lo cual hay que calcular la disposición de juntas de contracción y expansión, así como juntas longitudinales y transversales, en función de las tensiones térmicas y de carga en cada segmento de pavimento.

3. Proceso de construcción del pavimento bicapa

Los pavimentos de hormigón pueden ejecutarse en dos capas. Se coloca una capa de rodadura de hormigón de pequeño espesor (entre 4 y 5 cm) sobre otra capa de hormigón que se extiende junto con la anterior para que funcionen como una sola capa, creando así el pavimento descrito. Esto permite utilizar áridos de peor calidad en la capa inferior y reservar los de mayor calidad para la capa de rodadura, que debe cumplir estrictas exigencias de resistencia al desgaste y al pulimento. También es posible limitar la disminución del tamaño máximo del árido en la capa superior, lo que da como resultado un pavimento menos ruidoso (aunque requiere una mayor cantidad de cemento).

Las etapas de construcción de pavimentos bicapa comienzan con la preparación de la explanada, donde se debe nivelar y compactar el suelo de apoyo para recibir la capa estructural de hormigón, lo que puede incluir una capa de regularización para corregir cualquier irregularidad del terreno. A continuación, se extiende el hormigón de la capa estructural mediante un proceso de nivelación mecánica, para lo que se utilizan vibradores y rodillos compactadores con el fin de lograr una densificación adecuada que asegure una buena cohesión y resistencia. Finalmente, se aplica la capa de rodadura de manera continua sobre la capa inferior para evitar la formación de juntas frías y mejorar la durabilidad del pavimento.

La instalación de juntas y conectores es esencial para la durabilidad de los pavimentos bicapa, ya que las juntas de contracción y expansión previenen las grietas causadas por movimientos térmicos y de carga, mientras que los conectores de acero, como barras de atado y pasadores, facilitan la transferencia de carga entre las losas y garantizan la alineación estructural. Además, en las áreas de transición, como los carriles de desaceleración o la conexión con puentes, se utilizan sistemas de transición que minimizan las discontinuidades entre los diferentes tipos de pavimentos, mejorando la continuidad y el rendimiento general del sistema.

El proceso de curado y acabado en la construcción de pavimentos bicapa incluye la aplicación de inhibidores de fraguado y curado, que consisten en un curador químico destinado a evitar la evaporación del agua y asegurar un fraguado controlado, lo que reduce la formación de fisuras y aumenta la durabilidad del pavimento. Además, se realiza un acabado de la superficie mediante equipos especializados que ajustan la textura y la regularidad, eliminando cualquier irregularidad y garantizando así la seguridad y el confort del usuario.

4. Gestión de calidad en la construcción

El control de calidad de los materiales empleados en la construcción de pavimentos bicapa incluye la realización de pruebas de calidad del hormigón en fábrica, donde se verifica que cumpla con las especificaciones de resistencia y durabilidad mediante el análisis de la resistencia a la compresión y el contenido de aire. Además, se lleva a cabo un riguroso control de los componentes de las juntas para garantizar que los materiales de sellado y las barras de conexión cumplan con las normas específicas de elasticidad y resistencia, lo que es crucial para la integridad y funcionalidad del pavimento.

El control de la ejecución y el acabado en la construcción de pavimentos bicapa incluye la verificación de la alineación y el espesor de las capas, lo que es fundamental para garantizar que se coloquen según las especificaciones diseñadas y asegurar así la durabilidad y resistencia del pavimento. Además, se utilizan equipos de perfilometría para medir la rugosidad y la regularidad de la superficie, lo que permite ajustar la textura superficial con el fin de reducir el ruido y mejorar la tracción, lo que contribuye a un mejor rendimiento y seguridad en las vías.

5. Conservación y mantenimiento de pavimentos bicapa

La gestión de la conservación de pavimentos bicapa se basa en estrategias de conservación preventiva y correctiva que incluyen el control de las condiciones y el mantenimiento periódico. Un plan preventivo puede contemplar aplicaciones de sellado para evitar la entrada de agua en las juntas y reducir el desgaste. Además, se utilizan bases de datos y sistemas de gestión para registrar el estado del pavimento, lo que facilita el seguimiento y la planificación de intervenciones futuras, y asegura la prolongación de su vida útil.

Las intervenciones y renovaciones en pavimentos bicapa abarcan el mantenimiento superficial y la reparación de juntas, lo que incluye el sellado de juntas y la reparación de grietas superficiales. En casos de desgaste significativo, se puede aplicar una nueva capa de rodadura. Además, en situaciones en las que el pavimento estructural haya fallado, puede ser necesario realizar un refuerzo o incluso una rehabilitación completa del mismo. Estas intervenciones se planifican cuidadosamente para minimizar la afectación al tráfico, garantizando así la seguridad y la funcionalidad de la vía.

6. Sostenibilidad y análisis ambiental

La evaluación de impacto ambiental de los pavimentos bicapa destaca su eficiencia energética, ya que reducen la dependencia de materiales bituminosos y, por tanto, disminuyen las emisiones de gases durante su producción y transporte. Además, su capacidad de reflectancia contribuye a reducir la temperatura en entornos urbanos, lo que ayuda a mitigar el fenómeno de las islas de calor y a promover un ambiente más sostenible y saludable.

Los aspectos económicos y sociales de los pavimentos bicapa reflejan una relación coste-beneficio a largo plazo, ya que, aunque su coste inicial es más elevado, su durabilidad y sus bajos requerimientos de mantenimiento pueden generar ahorros significativos con el tiempo. Además, la calidad de la superficie de rodadura ofrece un mayor confort y seguridad para el usuario, ya que proporciona una experiencia de conducción más cómoda, con un menor riesgo de deslizamientos y una mayor resistencia al frenado. Esto contribuye a la seguridad vial en general.

7. Conclusiones

En conclusión, la adopción de pavimentos bicapa ofrece numerosas ventajas, como la construcción de carreteras más sostenibles y la reducción de costes operativos a largo plazo. Para futuros proyectos, se recomienda fomentar la formación de ingenieros y técnicos en esta tecnología, así como llevar a cabo estudios piloto en regiones donde el pavimento bicapa aún no se ha implementado ampliamente, lo que facilitaría su adopción y contribuiría a la mejora de la infraestructura vial.

A continuación, os dejo un vídeo de IECA sobre la construcción de un pavimento bicapa de hormigón con terminación de árido visto en un tramo de la autovía C-17, en Barcelona. Espero que os guste.

Referencias:

AGUADO, A.; CARRASCÓN, S.; CAVALARO, S.; PUIG, I.; SENÉS, C. (2010). Manual para el proyecto, construcción y gestión de pavimentos bicapa de hormigón. Universitat Politècnica de Catalunya, 204 pp.

Curso:

Curso de fabricación y puesta en obra del hormigón.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los sistemas de pretensado en las estructuras de hormigón

Figura 1. Viga postesada. https://prodac.pe/edificaciones/soluciones-para-la-industria-de-prefabricados/alambre-pretensado/

El pretensado es una técnica que aumenta la capacidad del hormigón para soportar cargas al someterlo previamente a esfuerzos de compresión. Esta técnica crea una resistencia adicional a los esfuerzos de tracción, lo que permite construir estructuras más resistentes y duraderas. Se utiliza ampliamente en la construcción de puentes, vigas, losas y otros elementos sometidos a cargas significativas, tanto en estructuras prefabricadas como en construcciones in situ.

En esencia, el sistema de pretensado consiste en instalar y tensar armaduras activas, como cables, alambres o cordones de acero de alta resistencia, dentro del hormigón antes de que este se someta a las cargas de servicio. Al tensar estas armaduras, se generan fuerzas internas que comprimen el hormigón y contrarrestan las fuerzas externas a las que estará sometido. De esta manera, el hormigón precomprimido es más efectivo para soportar tensiones, lo que previene problemas como las fisuras y mejora la estabilidad de la estructura.

El proceso comienza con la elección de las armaduras activas y el almacenamiento adecuado del acero para protegerlo de la corrosión y la contaminación. A continuación, se colocan y tesan las armaduras, para lo que se utilizan equipos especializados, como enfiladoras, gatos hidráulicos y centrales de presión. Estos equipos permiten tensar las armaduras de forma controlada y precisa, y aseguran que se logren los niveles de tensión adecuados según el diseño estructural.

Los anclajes cumplen una función fundamental, ya que fijan los extremos de las armaduras tensadas al hormigón y aseguran la transmisión de las fuerzas de compresión. Existen dos tipos de anclajes: activos o móviles, que se colocan en el extremo de tensado, y pasivos o fijos, situados en el extremo opuesto. Los empalmes permiten extender los tendones cuando la estructura lo requiere y garantizan la continuidad y la alineación. Por su parte, los conectadores permiten aplicar tensión en puntos intermedios de tendones cerrados o de acceso limitado.

Las vainas son otros componentes esenciales del sistema, ya que alojan los tendones en el hormigón y permiten inyectar adecuadamente materiales adherentes o protectores. Los productos de inyección, como lechadas de cemento para sistemas adherentes, betunes y grasas para sistemas no adherentes, protegen los tendones contra la corrosión y aumentan la adherencia en el caso de los sistemas adherentes. Esto es esencial para garantizar la durabilidad y eficacia del pretensado.

El sistema de pretensado es muy eficiente, pero requiere precisión en su ejecución y un control estricto de la calidad, ya que cualquier fallo en el tensado o en los materiales puede afectar a la integridad estructural del proyecto. Si se implementa adecuadamente, el pretensado permite construir estructuras seguras y resistentes que maximizan las ventajas del hormigón y lo convierten en un material adecuado para una amplia gama de aplicaciones de ingeniería.

Introducción a los sistemas de pretensado

El pretensado es una técnica avanzada de construcción que consiste en aplicar esfuerzos de compresión al hormigón antes de que el elemento estructural soporte su carga de servicio, con el fin de mejorar su resistencia. En este método, se induce una compresión interna en el hormigón, lo que permite que la estructura soporte mejor los esfuerzos de tracción y aumente su capacidad para resistir cargas elevadas y deformaciones excesivas. Este sistema, ampliamente utilizado en proyectos de construcción como puentes, edificios de gran altura, cubiertas y elementos prefabricados, se basa en el uso de armaduras activas, normalmente de acero, que se tensan y anclan en el interior de la estructura para transferir la fuerza de compresión al hormigón.

En este artículo se describen en detalle los distintos elementos y equipos que intervienen en los sistemas de pretensado. Cada componente, desde los tendones y los anclajes hasta las vainas y los equipos de tesado, cumple una función específica en el éxito del sistema de pretensado y en la calidad final de la estructura de hormigón.

1. Armaduras activas: suministro y almacenamiento

Las armaduras activas son el componente principal del sistema de pretensado y están fabricadas principalmente con acero de alta resistencia. Estas armaduras se tensan previamente para introducir esfuerzos de compresión en el hormigón, lo que aumenta su capacidad para soportar tracciones sin agrietarse ni sufrir otras deformaciones no deseadas.

1.1 Tipos de armaduras activas

  • Alambres: suelen entregarse en rollos y su diámetro de bobinado no debe ser inferior a 250 veces el diámetro del alambre para evitar deformaciones.
  • Barras: se entregan en tramos rectos, lo que garantiza su resistencia y evita daños durante el transporte.
  • Cordones: existen cordones de 2, 3 o 7 alambres, que se utilizan según el diseño estructural y los requisitos de carga. Los cordones de 2 o 3 alambres se entregan en rollos con un diámetro mínimo de 600 mm, mientras que los de 7 alambres se suministran en bobinas o carretes de 750 mm de diámetro interior o mayor.
Figura 2. Unidades de anclaje de 3 y 5 cordones en forjado postesado. http://www.freyssinet.es/freyssinet/wfreyssinetsa_sp.nsf/sb/soluciones.construccion..pretensado-(cordones)

1.2 Requerimientos de suministro

Para que las armaduras activas mantengan sus propiedades mecánicas y estén protegidas contra factores externos, deben almacenarse y transportarse siguiendo unas medidas específicas. El acero debe protegerse de la humedad y de la contaminación por polvo, grasas y otros agentes que puedan alterar su comportamiento estructural.

1.3 Almacenamiento de armaduras activas

El almacenamiento de las armaduras es esencial para garantizar su durabilidad y su correcto funcionamiento en la obra. Las principales recomendaciones son las siguientes:

  • Ventilación adecuada: las armaduras deben almacenarse en locales ventilados, lejos de la humedad del suelo y las paredes.
  • Clasificación y limpieza: es importante que las armaduras estén libres de grasa, aceite, polvo u otras materias que puedan afectar a su adherencia. También deben clasificarse por tipo y lote.
  • Inspección de la superficie: antes de ser utilizadas, las armaduras deben inspeccionarse para detectar cualquier deterioro en la superficie, y garantizar que cumplen las condiciones de uso.

2. Sistemas de pretensado: componentes y función de los elementos

Un sistema de pretensado es un conjunto de elementos estructurales y dispositivos especializados diseñados para aplicar y mantener la tensión en las armaduras activas y transmitirla de forma segura y eficiente al hormigón.

2.1 Componentes principales del sistema de pretensado

Los principales elementos del sistema de pretensado son los anclajes, los empalmes, los conectadores y las vainas. Estos componentes cumplen funciones específicas, como asegurar los tendones, extender su longitud o permitir la transmisión uniforme de fuerzas.

  • Los anclajes son dispositivos esenciales en los sistemas de pretensado, ya que aseguran los tendones y transmiten las fuerzas de tensión al hormigón. Existen dos tipos principales de anclajes: el anclaje activo o móvil, que está situado en el extremo del tendón por donde se aplica la tensión, y el anclaje pasivo o fijo, que está situado en el extremo opuesto del tendón, donde no se aplica tensión. Este tipo de anclaje permite que los cables de acero se tensen según el diseño estructural y soporten las fuerzas aplicadas. El otro tipo de anclaje es el pasivo o fijo, que está situado en el extremo opuesto del tendón, donde no se aplica tensión. Este anclaje asegura la estabilidad del tendón y permite que el esfuerzo de compresión se transmita eficazmente al hormigón. Dentro de estos tipos, destacan varios modelos de anclaje adaptados a diferentes necesidades y geometrías, como los anclajes activos tipo L y los anclajes pasivos tipo S, que se emplean en vigas y elementos lineales. Cada anclaje está diseñado para resistir esfuerzos específicos y asegurar una adecuada transmisión de fuerzas al hormigón.
  • Los empalmes son elementos que dan continuidad a los tendones cuando estos requieren extensiones adicionales debido al tamaño del proyecto o al método de construcción. Los empalmes se clasifican en: empalme fijo, que mantiene los tendones en posición fija y asegura su continuidad sin movimientos adicionales, y empalme móvil, que permite cierta movilidad a los tendones, facilita el alineado de las armaduras y reduce los esfuerzos durante el tensado. Ambos tipos de empalme son esenciales para estructuras de grandes dimensiones y en casos en que el tendón debe dividirse en varias secciones.
  • Los conectadores permiten aplicar tensión en puntos intermedios o en elementos cerrados (como tuberías o silos) a los que es difícil acceder por sus extremos. Estos conectadores proporcionan puntos adicionales de anclaje en estructuras grandes o con geometrías complejas y aseguran la transferencia uniforme de las fuerzas.

    Figura 3. Selección del tipo de anclaje o conector a utilizar en el hormigón pretensado

2.2 Elementos de aseguramiento y distribución

También existen elementos auxiliares que colaboran en la distribución uniforme de las fuerzas y la fijación de las armaduras activas en el sistema de pretensado:

  • Cuñas: estas piezas metálicas fijan los extremos de las armaduras activas en las placas de anclaje.
  • Placas de anclaje: placas perforadas con forma cónica donde se alojan las cuñas, lo que permite sujetar el tendón de manera efectiva.
  • Placas de reparto: dispositivos situados entre la placa de anclaje y el hormigón que distribuyen las fuerzas en la zona de contacto y evitan sobrecargas.
  • Trompetas de empalme: estas piezas, troncocónicas o cónicas, enlazan las placas de anclaje con las vainas y facilitan la transferencia de tensión en las armaduras activas.

 

Figura 4. Placa de anclaje.De Störfix – Fotografía propia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=296999

3. Vainas y accesorios

Las vainas son conductos de pretensado que albergan los tendones en su interior. Estos conductos pueden estar fabricados de metal, plástico u otros materiales, y son esenciales para proteger y guiar las armaduras postesas en el interior del hormigón, evitando así el contacto directo con este y facilitando el proceso de inyección.

3.1 Vainas metálicas

Las vainas metálicas son las más comunes, especialmente por su resistencia al aplastamiento y su capacidad para soportar el peso del hormigón fresco. Además, la superficie corrugada de las vainas mejora la adherencia con el hormigón y su rigidez estructural. Las características principales de las vainas metálicas son las siguientes:

  • Resistencia mecánica: deben ser suficientemente robustas para soportar el peso y la presión del hormigón fresco sin deformarse.
  • Estanqueidad: las vainas deben ser herméticas para evitar la infiltración de agua o lechada de cemento en su interior y mantener las armaduras activas protegidas.
  • Diámetro adecuado: el diámetro interno de la vaina debe ser el apropiado para permitir una inyección eficaz del producto inyectado y asegurar una cobertura uniforme alrededor de los tendones.

3.2 Otros accesorios en vainas

  • Separadores: piezas que ayudan a distribuir las armaduras activas dentro de las vainas y aseguran una distancia y una alineación uniformes.
  • Tubo matriz: tubo flexible, generalmente de polietileno, que se coloca dentro de la vaina para suavizar el trazado y evitar tensiones no deseadas en las armaduras.

3.3 Tubos de purga

Los tubos de purga o respiraderos son pequeñas piezas que se colocan en los puntos altos y bajos del trazado de las vainas. Estos tubos permiten la evacuación del aire y del agua durante el proceso de inyección, lo que asegura que no queden huecos y que el producto inyectado cubra toda el área interna.

4. Equipos para enfilado, tesado e inyección

La tecnología de pretensado requiere equipos especializados que faciliten el enfilado de los tendones, la aplicación de tensión y la inyección de materiales protectores en los conductos. Los equipos esenciales son las enfiladoras, los gatos hidráulicos, las centrales de presión y los equipos auxiliares de manipulación.

  • Enfiladoras: son máquinas diseñadas para colocar los tendones dentro de las vainas de pretensado mediante un sistema de empuje o estirado, según el diseño de la estructura. Estas máquinas garantizan que los tendones estén correctamente alineados antes de aplicar la tensión.
  • Gatos hidráulicos: Los gatos son dispositivos hidráulicos que permiten el tesado de los tendones a una fuerza precisa y controlada. Se utilizan en combinación con cuñas para mantener la tensión en los extremos anclados y asegurar que la fuerza de pretensado se transmita de forma uniforme al hormigón.
  • Centrales de presión: las centrales de presión controlan los gatos hidráulicos mediante válvulas reguladoras y circuitos eléctricos que permiten ajustar la presión aplicada con precisión. Estos sistemas incluyen manómetros o dinamómetros para garantizar que la presión de tesado cumpla con los requisitos especificados en el proyecto.
  • Equipos auxiliares: Los equipos auxiliares incluyen grúas y otros medios de manipulación que facilitan el posicionamiento de los gatos, las vainas y las armaduras activas. Son especialmente útiles en obras de gran envergadura, donde el peso y el tamaño de los elementos dificultan su instalación manual.

5. Productos de inyección

La inyección de materiales dentro de las vainas es fundamental para proteger las armaduras activas y mejorar la adherencia entre el tendón y el hormigón. Existen dos tipos principales de productos de inyección:

  • Inyecciones adherentes: consisten en lechadas o morteros de cemento que llenan los conductos de las vainas y mejoran la unión entre el tendón y el hormigón. Algunas características esenciales de estos productos son:

— Uso de cemento Portland CEM-I, que asegura una buena adherencia y resistencia mecánica.
— Aditivos que permiten modificar las propiedades de la lechada para mejorar la protección de las armaduras.
— Relación agua/cemento baja (entre 0,38 y 0,43) para lograr una mayor resistencia a la compresión y una baja porosidad.

  • Inyecciones no adherentes: los productos de inyección no adherentes, como los betunes, mástiques bituminosos y grasas solubles, protegen las armaduras contra la corrosión sin generar adherencia con el hormigón. Son adecuados para estructuras donde se requiere flexibilidad en los tendones y una menor adherencia al hormigón.

Para aplicar los productos de inyección se utilizan equipos de mezcla e inyección que aseguran la preparación y la distribución uniforme del material dentro de las vainas. Estos equipos deben disponer de sistemas de control de calidad que permitan ajustar la mezcla y supervisar su aplicación durante el proceso de inyección.

Conclusión

Los sistemas de pretensado en hormigón son una solución técnica que aumenta la resistencia y durabilidad de las estructuras. Desde el suministro y almacenamiento de las armaduras activas hasta el tesado y la inyección, cada componente del sistema es crucial para el éxito de la estructura. Estos sistemas no solo aumentan la capacidad del hormigón para resistir esfuerzos de tracción, sino que también contribuyen a reducir el riesgo de deformaciones y a mejorar la calidad estructural general de las obras de ingeniería.

Os dejo algunos vídeos, que espero sean de vuestro interés.

Curso:

Curso de fabricación y puesta en obra del hormigón.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La cadena crítica en la planificación de proyectos de construcción

En el ámbito de la ingeniería de la construcción, la planificación de proyectos es fundamental para asegurar el cumplimiento de los plazos y la optimización de los recursos. Tradicionalmente, este proceso ha estado marcado por el uso del método PERT/CPM, que se basa en la premisa de que los proyectos están condicionados principalmente por el tiempo. En este enfoque, los pasos clave incluyen la asignación de duraciones a las actividades y la definición de sus precedencias. Sin embargo, este método asume de manera implícita que los recursos, como la mano de obra, los equipos y los materiales, están siempre disponibles y en cantidades suficientes para cumplir con la secuencia constructiva planificada. En la práctica, muchas veces ni siquiera se consideran los recursos de las actividades al definir la red de trabajo; en su lugar, el enfoque se limita a gestionar los aspectos temporales de la programación.

La realidad del sector de la construcción presenta otros desafíos, como los «cuellos de botella», que afectan significativamente el cronograma de los proyectos. En este contexto de limitaciones de recursos ha surgido el método de la cadena crítica (Critical Chain Method, CCM; Critical Chain Scheduling, CCS; o Critical Chain Project Management, CCPM). Este enfoque innovador no solo tiene en cuenta la secuencia de las actividades, sino también la disponibilidad de los recursos, lo que permite una planificación más realista y eficaz.

Además, es importante mencionar que la metodología tradicional de elaboración de cronogramas tiende a utilizar duraciones «hinchadas», lo que puede provocar una dilatación de los plazos del proyecto. El método de la cadena crítica (CCPM) sugiere reducir significativamente estas estimaciones, eliminando las reservas de tiempo innecesarias. La solución propuesta consiste en programar el proyecto con duraciones más ajustadas y añadir «colchones» para gestionar el tiempo de manera más efectiva. Al aplicar el CCPM, se incorpora la teoría de las restricciones a la gestión de proyectos, lo que supone un cambio significativo en la forma de planificar y ejecutar los proyectos.

Origen de la cadena crítica

La cadena crítica tiene sus raíces en la novela «La meta», publicada en 1984 por el físico israelí Eliyahu M. Goldratt. En esta obra, Goldratt llamó la atención del público al presentar ideas innovadoras sobre la gestión de empresas, utilizando como telón de fondo una fábrica ineficiente y su atormentado director, que siempre se enfrentaba a los cuellos de botella de la producción. A través de esta narrativa, Goldratt introdujo los principios de la teoría de las restricciones, que establece que, en cada momento, hay un número limitado de factores que actúan como obstáculos para el pleno desarrollo de la producción.

En 1997, Goldratt amplió estos conceptos en su libro «La cadena crítica», donde se centró en la velocidad y la fiabilidad en la ejecución de proyectos. Su enfoque se basa en la reducción drástica de la duración de las actividades y en la incorporación de colchones de protección en los plazos. Goldratt, reconocido como un gurú en el ámbito empresarial, difundió el concepto de cadena crítica en el sector de las grandes corporaciones. Los expertos consideran sus ideas como una de las mayores contribuciones a la planificación de proyectos de los últimos treinta años. A medida que el método de la cadena crítica se ha ido implementando progresivamente en el sector de la construcción, se han logrado reducciones en los plazos de entrega de entre un 10 % y un 50 %.

Teoría de las restricciones

La teoría de las restricciones (Theory of Constraints, TOC) se define por la identificación de «restricciones», que son aquellos factores que impiden que un sistema alcance su máximo rendimiento. Según la TOC, cada sistema presenta al menos una restricción que afecta a su flujo de producción. Si no existieran restricciones, el flujo podría crecer indefinidamente o, en el extremo opuesto, ser nulo, ya que el flujo máximo de producción no puede exceder el de su recurso de menor capacidad, conocido como «cuello de botella».

La analogía de un proyecto con un flujo de corriente permite identificar que su restricción es el eslabón más débil, el cual determina la capacidad del sistema. Desde la perspectiva temporal, la restricción de un proyecto corresponde a la secuencia más larga de actividades, que a su vez establece el plazo total.

Es importante destacar que las restricciones pueden ser tanto físicas como no físicas e incluir factores políticos y emocionales. Un problema central, conocido como «conflicto sin resolver» (core conflict), debe ser abordado por el equipo de gestión, que tiene la responsabilidad de encontrar una solución o, al menos, minimizar su impacto.

El algoritmo de la teoría de las restricciones (TOC) para optimizar el rendimiento de una cadena de actividades se compone de cinco pasos que pueden considerarse una estrategia de mejora continua. Estos pasos incluyen:

  1. Identificar la restricción del sistema: El objetivo es completar el proyecto lo antes posible. La cadena crítica representa el camino más corto, considerando no solo las dependencias lógicas y las duraciones de las actividades, sino también la disponibilidad de recursos.
  2. Explorar la restricción: Esta fase consiste en proteger la duración total del proyecto contra retrasos en las tareas que forman parte de la cadena crítica. Comprimir la duración de estas actividades, eliminando obstáculos y márgenes de tiempo, contribuye a que el proyecto cumpla plazos más ajustados.

En conclusión, la adopción de la cadena crítica y la teoría de las restricciones en la planificación de proyectos de construcción no solo mejora la eficiencia, sino que también proporciona un enfoque más realista para gestionar los plazos y los recursos. Con una implementación adecuada de estas metodologías, las empresas constructoras pueden optimizar su rendimiento y alcanzar sus objetivos de manera más efectiva.

Os dejo algunos vídeos explicativos al respecto.

Referencias:

GOLDRATT, E. M.; COX, J. (2016). The goal: a process of ongoing improvement. Routledge.

GOLDRATT, E. M. (2017). Critical chain: A business novel. Routledge, 2017.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2013). Construction management. John Wiley & Sons.

MATTOS, A.D.; VALDERRAMA, F. (2020). Métodos de planificación y control de obras. Editorial Reverté.

YANG, J-B. How the critical chain scheduling method is working for construction. Cost engineering, 2007, vol. 49, no 4, p. 25.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Gestión del conocimiento: clave para la innovación y competitividad de las pymes en el sector de la construcción

El estudio, liderado por Salvador López y Víctor Yepes y publicado en la revista Advances in Civil Engineering, se centra en cómo las pequeñas y medianas empresas (pymes) del sector de la construcción pueden optimizar la gestión y el intercambio de conocimiento (conocido como KS, Knowledge Sharing, y KT, Knowledge Transfer) para mejorar su competitividad y capacidad de innovación. Este tipo de empresas, que son fundamentales para el crecimiento económico y la generación de empleo en muchas economías, se enfrentan a retos significativos en la adaptación a los cambios del mercado y en la implementación de procesos innovadores, especialmente en un sector tan competitivo y dinámico como el de la construcción.

El valor del conocimiento en las pymes de construcción

El estudio parte de la premisa de que el conocimiento es uno de los activos más valiosos para las organizaciones, especialmente en industrias de rápido cambio. Una gestión adecuada del conocimiento en las pymes no solo permite que estas empresas sobrevivan, sino que prosperen, manteniendo una ventaja competitiva mediante la innovación continua. Sin embargo, a pesar de su importancia, las pymes han enfrentado históricamente dificultades en este ámbito, dado que, a diferencia de las grandes empresas, suelen carecer de estructuras de gestión del conocimiento consolidadas o de los recursos necesarios para implementar complejos sistemas de intercambio de información.

Metodología del estudio

Para comprender mejor el panorama actual y las tendencias futuras en la gestión del conocimiento en pymes de la construcción, López y Yepes emplearon un enfoque bibliométrico y analizaron 184 publicaciones académicas mediante técnicas avanzadas, como el análisis de co-citación y el análisis de palabras clave, facilitado por el software VOSviewer. Este programa permitió crear un mapa conceptual que muestra las conexiones entre estudios y temáticas clave, y ayudó a identificar patrones emergentes y áreas que requieren más investigación. La visualización de estos datos ayudó a resaltar cómo el intercambio y la transferencia de conocimientos han evolucionado en el sector, y ofreció una visión estructurada de los temas y métodos predominantes en el ámbito de la gestión del conocimiento.

Resultados principales y recomendaciones

El análisis revela varias tendencias importantes. En primer lugar, la colaboración interorganizacional y el aprendizaje continuo se destacan como factores esenciales para el éxito de las pymes en la gestión del conocimiento. Al fomentar redes de trabajo en colaboración, tanto dentro como fuera de la organización, las pymes pueden beneficiarse de una mayor fluidez en el intercambio de conocimientos, lo que facilita la innovación y la mejora de procesos. Otro aspecto clave es el desarrollo de capacidades tecnológicas y la implementación de sistemas digitales que permitan organizar y difundir el conocimiento de manera eficiente. Estos sistemas pueden incluir desde plataformas digitales de comunicación interna hasta bases de datos de conocimientos compartidos.

López y Yepes subrayan también la importancia del liderazgo transformacional en estas empresas. Un estilo de liderazgo que fomente la apertura y la flexibilidad de la organización puede ser determinante para crear una cultura de innovación en la que el conocimiento fluya de forma más efectiva. Esta cultura de apertura es crucial para que las pymes puedan adaptarse a los cambios en el sector y aprovechar las oportunidades de mejora y crecimiento.

Además, el estudio identifica varias áreas de mejora. Las pymes del sector de la construcción suelen enfrentar problemas en la transferencia de conocimientos debido a ineficiencias en sus redes colaborativas y a la falta de sistemas digitales que apoyen esta tarea. Como resultado, los autores recomiendan una mayor inversión en infraestructura tecnológica, como herramientas de gestión del conocimiento, que faciliten la recopilación, el almacenamiento y la difusión de la información relevante. También sugieren adaptar estas prácticas de intercambio a contextos culturales y geográficos específicos, especialmente para las empresas que operan en mercados globales o que colaboran con organizaciones de otras regiones.

Implicaciones para el futuro de la gestión del conocimiento en pymes

Las conclusiones de López y Yepes destacan la necesidad de que la gestión del conocimiento en las pymes del sector de la construcción evolucione para responder a los desafíos del mercado actual. Entre las recomendaciones de futuro, el estudio enfatiza la necesidad de adoptar un enfoque de aprendizaje continuo y de mejorar las capacidades tecnológicas para facilitar la innovación y el crecimiento sostenido. Además, sugiere que las pymes deberían desarrollar una cultura organizacional que valore y facilite el intercambio de conocimientos a todos los niveles, desde la alta dirección hasta el personal operativo.

Este marco de gestión del conocimiento supone un cambio fundamental para las pymes del sector de la construcción, ya que les proporciona una base sólida para crear redes colaborativas y sistemas de intercambio de información que les permitan ser competitivas en un sector globalizado y en rápida evolución. Así, este trabajo no solo proporciona un marco conceptual para entender la gestión del conocimiento en estas empresas, sino que también ofrece una guía práctica para que puedan adaptarse y prosperar en el entorno actual.

Referencia:

LOPEZ, S.; YEPES, V. (2024). Visualizing the future of Knowledge sharing in SMEs in the construction industry: A VOS-viewer Analysis of emerging trends and best practices. Advances in Civil Engineering, 2024:6657677. DOI:10.1155/2024/6657677

Como el artículo está publicado en abierto, os lo dejo para su descarga.

Descargar (PDF, 2.08MB)