Docencia e inteligencia artificial: nuevas estrategias para educadores

La educación está experimentando una transformación sin precedentes gracias a los avances en inteligencia artificial (IA). La integración de la IA en el ámbito educativo ha traído consigo oportunidades y desafíos que requieren una adaptación rápida por parte de los docentes y los sistemas de enseñanza.

Esta revolución tecnológica ha dado lugar a la automatización de tareas administrativas, la personalización del aprendizaje, la optimización de evaluaciones y el desarrollo de nuevas metodologías de enseñanza que mejoran la eficiencia del aula. Sin embargo, su implementación también genera preocupaciones relacionadas con la equidad, la privacidad de los datos y la ética en la educación.

Este informe explora en profundidad cómo los docentes pueden aprovechar la IA para mejorar sus prácticas pedagógicas y hacer frente a los desafíos emergentes. Se proporcionarán ejemplos detallados, herramientas específicas y estrategias que permitirán a los educadores integrar esta tecnología de manera efectiva y responsable en sus aulas.

1. Inteligencia artificial generativa y su aplicación en la docencia

1.1. Definición y características

La inteligencia artificial generativa es una rama avanzada de la IA que emplea redes neuronales profundas para crear contenido original en formato de texto, imágenes, audio y vídeo. Este tipo de IA puede proporcionar respuestas personalizadas y adaptadas a distintos contextos de aprendizaje, lo que la convierte en una herramienta muy útil en el ámbito educativo.

Algunos ejemplos notables de IA generativa son ChatGPT, que puede generar respuestas detalladas en múltiples idiomas; DALL-E, que crea imágenes a partir de descripciones textuales, y Bard AI, que ofrece información en tiempo real a partir de consultas específicas.

El uso de estas herramientas en la docencia permite mejorar la interacción con los estudiantes, proporcionar materiales personalizados y fomentar un aprendizaje más dinámico. Además, la IA generativa puede ayudar en la corrección de textos, la generación de pruebas automatizadas y la creación de contenidos visuales para reforzar los conceptos enseñados en el aula.

1.2. Aplicaciones en el aula

Las aplicaciones de la inteligencia artificial (IA) generativa en la enseñanza son diversas y pueden utilizarse en diferentes áreas del conocimiento. Entre las más destacadas se encuentran:

  • Creación de material didáctico: la IA permite generar rápidamente presentaciones, resúmenes y documentos de apoyo para los estudiantes. Herramientas como Canva AI o Tome AI facilitan la producción de diapositivas atractivas con contenido relevante.
  • Automatización de respuestas: los docentes pueden utilizar chatbots educativos como PersonalChat para responder de manera inmediata a las dudas recurrentes de los estudiantes.
  • Evaluaciones y retroalimentación: plataformas como Gradescope permiten corregir exámenes de manera automatizada, lo que reduce la carga de trabajo de los docentes y asegura una evaluación más objetiva.
  • Generación de contenido multimedia: con herramientas como Runway AI y Pictory, los docentes pueden crear vídeos educativos personalizados y mejorar la experiencia de aprendizaje.

Un ejemplo concreto de su aplicación es el uso de ChatGPT en universidades para ayudar a los estudiantes en la redacción de ensayos, proporcionando estructuras sugeridas y correcciones gramaticales detalladas. Esto no solo mejora la calidad de los trabajos académicos, sino que también fomenta la autonomía y la autoevaluación de los estudiantes.

2. Personalización del aprendizaje y evaluación con IA

2.1. Aprendizaje adaptativo

Uno de los mayores beneficios de la inteligencia artificial (IA) en la educación es su capacidad para personalizar el aprendizaje en función del nivel y el ritmo de cada estudiante. Gracias al análisis de datos, los algoritmos de IA pueden identificar fortalezas y debilidades de los alumnos y ajustar los contenidos educativos en tiempo real para optimizar su rendimiento académico.

Algunas plataformas que utilizan este enfoque son:

  • Khan Academy con IA ofrece ejercicios personalizados según el nivel de conocimiento del estudiante.
  • Duolingo AI: adapta la dificultad de los ejercicios de idiomas en función del progreso del usuario.
  • Carnegie Learning ofrece tutorías de matemáticas con IA, que adaptan las preguntas al rendimiento del estudiante.

Este enfoque permite que los estudiantes reciban una educación más centrada en sus necesidades individuales, lo que reduce las brechas de aprendizaje y mejora la retención del conocimiento.

2.2. Evaluación automatizada

Otro aspecto crucial de la IA en la educación es la optimización del proceso de evaluación. Tradicionalmente, corregir exámenes y tareas supone un gran esfuerzo para los docentes. Gracias a herramientas como Gradescope y ZipGrade, ahora es posible evaluar pruebas de manera instantánea, proporcionar retroalimentación detallada y reducir el margen de error.

Además de la corrección automatizada, la IA puede utilizarse para analizar el rendimiento de los estudiantes a lo largo del tiempo y predecir posibles dificultades académicas. Por ejemplo, la plataforma Edsight AI recopila datos sobre las respuestas de los alumnos y genera informes personalizados con recomendaciones para mejorar su rendimiento.

A pesar de sus ventajas, la evaluación automatizada debe complementarse con métodos tradicionales para garantizar una comprensión profunda de los conceptos por parte de los estudiantes y evitar depender exclusivamente de algoritmos para medir los conocimientos.

3. Desafíos y consideraciones éticas

3.1. Sesgo en los algoritmos

Uno de los principales desafíos de la IA en la educación es la presencia de sesgos en los modelos de aprendizaje. Dado que las IA se entrenan con grandes volúmenes de datos históricos, pueden reflejar prejuicios existentes en la sociedad, lo que podría afectar negativamente a la equidad de la enseñanza.

Para minimizar estos riesgos, es fundamental que los docentes supervisen el contenido generado por IA y utilicen diversas fuentes para contrastar la información. Además, se recomienda fomentar el pensamiento crítico entre los estudiantes para que evalúen la veracidad y la imparcialidad de los datos proporcionados por estos sistemas.

3.2. Privacidad y seguridad de datos

El uso de la IA en la educación implica la recopilación y el análisis de grandes volúmenes de datos sobre los estudiantes. Para proteger su privacidad, es crucial que las instituciones educativas implementen regulaciones estrictas sobre el almacenamiento y uso de la información personal.

Algunas estrategias recomendadas son:

  • Utilización de plataformas con altos estándares de seguridad, como Microsoft Copilot y Google AI Education.
  • Concienciar sobre la importancia de la privacidad y enseñar a los estudiantes a gestionar sus datos de forma segura en entornos digitales.
  • Cumplimiento de normativas de protección de datos, como el Reglamento General de Protección de Datos (RGPD) en Europa.

Conclusiones

La inteligencia artificial está revolucionando la educación, ya que ofrece nuevas posibilidades para mejorar la enseñanza y el aprendizaje. Sin embargo, su implementación debe realizarse de manera responsable, garantizando el papel central del docente y promoviendo el uso ético de la tecnología.

Para maximizar sus beneficios, es esencial que los educadores se mantengan actualizados sobre las últimas tendencias en IA y adopten herramientas que complementen sus metodologías de enseñanza. La combinación de innovación tecnológica con estrategias pedagógicas efectivas transformará la educación y preparará a los estudiantes para los desafíos del futuro.

Os dejo un documento de la Universidad de Burgos que profundiza en el tema. Espero que os resulte de interés.

Descargar (PDF, 10.69MB)

Modelos subrogados para optimizar el coste de pasos superiores pretensados

Acaban de publicar nuestro artículo en la revista Infrastructures, indexada en el JCR. El estudio presenta una metodología de optimización de costes para puentes losa aligerados postesados mediante metamodelos, en la que se destaca la aplicación del modelo Kriging en combinación con algoritmos heurísticos.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València.  A continuación, explicamos brevemente el contenido del artículo que podéis descargar gratuitamente.

La investigación se centra en un puente de tres vanos con luces de 24, 34 y 28 m, y optimiza el diseño estructural para reducir costes sin comprometer los criterios de servicio y seguridad. Se identifica una reducción del 6,54 % en los costes en comparación con enfoques tradicionales, lograda principalmente mediante la disminución del uso de hormigón en un 14,8 % y del pretensado en un 11,25 %.

El trabajo también evalúa distintas técnicas predictivas, como redes neuronales y funciones de base radial, y determina que las redes neuronales presentan el menor error de predicción, aunque requieren varias ejecuciones para garantizar estabilidad. En contraste, el modelo Kriging permite identificar óptimos locales con alta precisión. La metodología propuesta proporciona una estrategia eficiente para la toma de decisiones en ingeniería estructural, que promueve diseños de puentes más rentables sin comprometer el rendimiento estructural.

Figura. Paso superior en la autovía A-7, en Cocentaina (Alicante)

Los resultados indican que la optimización mediante modelos subrogados permite reducir significativamente los costes de diseño de pasos superiores pretensados. La estrategia adoptada optimiza variables como la profundidad de la losa, la geometría de la base y la resistencia del hormigón, y respeta las restricciones impuestas por los estados límite de servicio, que son los últimos según el Eurocódigo 2. Se observa que la metodología basada en kriging y la optimización heurística proporciona resultados prácticos con menor esfuerzo computacional en comparación con la optimización directa de todas las variables estructurales.

El modelo Kriging optimizado mediante Simulated Annealing identificó una configuración de losa con una profundidad de 1,30 m y una base de 3,15 m como la solución más rentable. Esta configuración se corrobora mediante la predicción de redes neuronales, lo que muestra coherencia en la localización del óptimo. En comparación con estudios previos, los resultados indican que la metodología utilizada en este trabajo permite obtener ahorros significativos sin necesidad de analizar exhaustivamente cada alternativa estructural.

A partir de los hallazgos obtenidos, se sugiere explorar la integración de métodos de optimización multiobjetivo que tengan en cuenta no solo el coste, sino también el impacto ambiental y los costes de mantenimiento a lo largo del ciclo de vida del puente. La inclusión de criterios de sostenibilidad podría mejorar la eficiencia global del diseño estructural y su capacidad de adaptación a normativas futuras.

Otra línea de investigación relevante consiste en aplicar modelos subrogados en el diseño de otros tipos de estructuras, como puentes de vigas o marcos de hormigón armado, para evaluar su viabilidad en distintas configuraciones estructurales. Además, el desarrollo de modelos predictivos más sofisticados, que integren aprendizaje automático y simulaciones de alta fidelidad, podría optimizar aún más los diseños propuestos.

Por último, se recomienda estudiar el impacto de la variabilidad de los materiales y las condiciones de carga en la optimización del diseño. La incorporación de análisis probabilísticos mejoraría la fiabilidad de las soluciones obtenidas, ya que se obtendrían diseños estructurales más robustos y seguros.

Referencia:

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

Descargar (PDF, 1.95MB)

Introducción a los Modelos de Ecuaciones Estructurales (SEM)

Simbología y nomenclatura de los modelos PLS (Aldas, 2018)

Los modelos de ecuaciones estructurales (SEM, por sus siglas en inglés) son una técnica estadística multivariante utilizada para analizar y estimar relaciones causales, combinando datos estadísticos con suposiciones cualitativas sobre la causalidad. Esta metodología es especialmente valiosa en las ciencias sociales, la psicología, el marketing y otras disciplinas en las que las relaciones entre variables no son lineales y pueden involucrar tanto variables observables como latentes. Gracias a los SEM, los investigadores no solo pueden comprobar teorías existentes, sino también desarrollar nuevas hipótesis y modelos que reflejen la realidad de los fenómenos estudiados.

Los modelos de ecuaciones estructurales (MES) combinan el análisis factorial y la regresión lineal para evaluar la correspondencia entre los datos observados y el modelo hipotetizado, que se representa mediante un diagrama de senderos. Los MES proporcionan los valores asociados a cada relación del modelo y un estadístico que mide el ajuste de los datos y valida el modelo.

Una de sus principales fortalezas es la capacidad de construir variables latentes, es decir, variables no observables directamente, sino estimadas a partir de otras que covarían entre sí. Esto permite tener en cuenta explícitamente la fiabilidad del modelo. Además, el análisis factorial, el análisis de caminos y la regresión lineal son casos particulares dentro del enfoque de los MES.

Fundamentos teóricos

Variables latentes y observables:

  • Variables latentes: son constructos teóricos que no pueden medirse directamente. Por ejemplo, la «satisfacción del cliente» o «lealtad a la marca» son variables latentes que se infieren a partir de las respuestas a encuestas o del comportamiento observable.
  • Variables observables: son los indicadores que se utilizan para medir las variables latentes. Por ejemplo, en el caso de la satisfacción del cliente, las respuestas a preguntas específicas en una encuesta (como «¿Qué tan satisfecho está con nuestro servicio?»), son variables observables.

Modelo estructural vs. modelo de medida:

  • Modelo estructural: describe las relaciones causales entre las variables latentes. Este modelo permite a los investigadores establecer hipótesis sobre cómo una variable puede influir en otra.
  • Modelo de medida: establece cómo se relacionan las variables observables con las variables latentes. Es fundamental validar este modelo para garantizar que los indicadores reflejan realmente el constructo que se pretende medir.
Ejemplo de un modelo de medida y un modelo estructural

Tipos de modelos

Existen dos enfoques principales en SEM:

Análisis de estructuras de covarianza (CB-SEM):

  • Este enfoque se basa en la matriz de varianza-covarianza y es adecuado para contrastar teorías y probar hipótesis. CB-SEM es una técnica paramétrica que requiere que se cumplan ciertos supuestos estadísticos, como la normalidad multivariada y la independencia de las observaciones.
  • Aplicaciones: Ideal para estudios confirmatorios donde se busca validar teorías existentes. Se utiliza comúnmente en investigaciones que requieren un alto nivel de rigor estadístico.

Mínimos cuadrados parciales (PLS-SEM):

  • Este enfoque es más flexible y no requiere los mismos supuestos rigurosos que CB-SEM. PLS-SEM se centra en maximizar la varianza explicada de las variables latentes dependientes a partir de las variables latentes independientes.
  • Ventajas: Funciona bien con muestras pequeñas y permite la inclusión de constructos formativos, lo que amplía su aplicabilidad en contextos donde los constructos son complejos y multidimensionales.
  • Aplicaciones: Es especialmente útil en estudios exploratorios y en situaciones donde se busca hacer predicciones, como en el análisis de comportamiento del consumidor.

Metodología de PLS-SEM

La metodología de PLS-SEM se puede resumir en varias etapas clave:

  1. Inicialización: Se obtiene una primera aproximación a los valores de las variables latentes a partir de sus indicadores. Este paso es crucial para establecer un punto de partida en el proceso de estimación.
  2. Estimación de coeficientes de regresión: Se estiman los pesos o coeficientes de regresión de las variables latentes. Este proceso implica calcular las relaciones entre las variables latentes y sus indicadores, así como entre las variables latentes mismas.
  3. Optimización: Se busca maximizar el coeficiente de determinación (R²) de los factores latentes mediante un proceso iterativo. Este proceso de optimización es fundamental para mejorar la precisión de las estimaciones y asegurar que el modelo se ajuste adecuadamente a los datos.
  4. Evaluación de la validez y fiabilidad: Se analizan los constructos para asegurar que miden correctamente lo que se pretende medir. Esto incluye:
    —Fiabilidad individual: Evaluación de la consistencia interna de cada indicador utilizando el alfa de Cronbach.
    —Validez convergente: Medida a través de la varianza extraída (AVE), que debe ser superior a 0,5 para indicar que los indicadores reflejan el mismo constructo.
    —Validez discriminante: Comparación de las correlaciones entre constructos para asegurar que cada constructo es significativamente diferente de los demás. Esto se puede evaluar utilizando el criterio de Fornell-Larcker, que establece que la raíz cuadrada del AVE de cada constructo debe ser mayor que las correlaciones entre constructos.

Ventajas y desventajas de PLS-SEM

Ventajas:

  • Flexibilidad: PLS-SEM no requiere normalidad multivariada, lo que lo hace más accesible para investigadores en ciencias sociales que trabajan con datos no normales.
  • Muestras pequeñas: Funciona bien con muestras pequeñas, lo que es ventajoso en estudios exploratorios donde la recolección de datos puede ser limitada.
  • Constructos formativos: Permite la inclusión de constructos formativos, lo que amplía su aplicabilidad en contextos donde los constructos son complejos y multidimensionales.

Desventajas:

  • Falta de indicadores de ajuste global: PLS-SEM no proporciona indicadores de ajuste global del modelo, lo que puede limitar la comparación entre modelos y la evaluación de su calidad.
  • Restricciones en la estructura del modelo: Cada variable latente debe estar conectada a otra mediante una relación estructural, lo que puede ser restrictivo en algunos contextos.
  • Estimaciones no óptimas: La estimación de parámetros no es óptima en términos de sesgo y consistencia a menos que se utilice el algoritmo PLS consistente, lo que puede afectar la validez de los resultados.

Presentación de resultados

Al presentar los resultados de un análisis SEM, se recomienda estructurarlos en tablas que resuman la fiabilidad y validez del instrumento de medida, así como los análisis de validez discriminante y las hipótesis contrastadas. Así se facilita la comprensión y la interpretación de los resultados por parte de otros investigadores y lectores. La presentación clara y concisa de los resultados es esencial para garantizar la reproducibilidad y la transparencia de la investigación.

Tablas recomendadas:

  • Tabla de fiabilidad y validez: Resumen de los índices de fiabilidad (alfa de Cronbach, fiabilidad compuesta) y validez (AVE).
  • Tabla de validez discriminante: Comparación de las correlaciones entre constructos y sus AVE.
  • Tabla de resultados estructurales: Coeficientes de regresión, R² y significancia de las relaciones estructurales.

Conclusión

Los modelos de ecuaciones estructurales son una herramienta muy valiosa en la investigación social y del comportamiento, ya que permiten a los investigadores modelar y analizar relaciones complejas entre variables. La elección entre CB-SEM y PLS-SEM dependerá de los objetivos de la investigación, la naturaleza de los datos y las hipótesis planteadas. Con una correcta aplicación y validación, SEM puede proporcionar información significativa y fiable en diversas áreas de estudio, contribuyendo al avance del conocimiento en múltiples disciplinas. Para cualquier investigador que busque explorar las complejidades de las relaciones entre variables en su campo de estudio, es esencial comprender profundamente esta metodología y aplicarla correctamente.

Referencias:

Aldás, J. (2018). Modelización estructural mediante Partial Least Squares-PLSPM. Apuntes del seminario de modelización estructural.

Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94.

Fornell, C., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4), 440–452.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least square structural equation modeling (PLS-SEM). California, United States: Sage.

López, S., & Yepes, V. (2024). Visualizing the future of knowledge sharing in SMEs in the construction industry: A VOS-viewer analysis of emerging trends and best practices. Advances in Civil Engineering, 2024, 6657677.

Yepes, V., & López, S. (2023). The knowledge sharing capability in innovative behavior: A SEM approach from graduate students’ insights. International Journal of Environmental Research and Public Health, 20(2), 1284.

Os dejo a continuación un artículo explicativo al respecto. Espero que os sea de interés.

Descargar (PDF, 273KB)

También os pueden ser útiles algunos vídeos al respecto.


Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Aprendizaje supervisado en ingeniería civil

En un artículo anterior hablamos del aprendizaje no supervisado aplicado a la ingeniería civil. La otra rama del aprendizaje automático (machine learning) es el aprendizaje supervisado. Se trata de un enfoque que utiliza conjuntos de datos de entrada y sus correspondientes respuestas para entrenar modelos capaces de realizar predicciones sobre datos nuevos. Este método es particularmente útil en contextos donde se dispone de información previa sobre la variable que se desea predecir, lo que permite establecer relaciones y patrones en los datos.

El aprendizaje supervisado emerge como una herramienta muy poderosa en el campo de la ingeniería civil, ya que facilita la toma de decisiones y la optimización de procesos mediante el análisis de datos. Este enfoque se basa en el uso de algoritmos que aprenden a partir de un conjunto de datos etiquetados, lo que les permite realizar predicciones sobre nuevos datos. A continuación, se presentan algunas aplicaciones y beneficios del aprendizaje supervisado en este campo.

Técnicas de aprendizaje supervisado

Las técnicas de aprendizaje supervisado se dividen en dos categorías principales: clasificación y regresión. La clasificación se centra en predecir respuestas discretas, es decir, en asignar una etiqueta a un conjunto de datos. Por ejemplo, en el ámbito del correo electrónico, se puede clasificar un mensaje como genuino o spam. Este tipo de modelos se aplica en diversas áreas, como la imagenología médica, donde se pueden clasificar tumores en diferentes categorías de tamaño, o en el reconocimiento de voz, donde se identifican comandos específicos. La clasificación se basa en la capacidad de los modelos para categorizar datos en grupos definidos, lo que resulta esencial en aplicaciones como la evaluación crediticia, donde se determina la solvencia de una persona.

Por el contrario, la regresión se ocupa de predecir respuestas continuas, lo que implica estimar valores en un rango numérico. Por ejemplo, se puede utilizar la regresión para prever cambios en la temperatura o fluctuaciones en la demanda eléctrica. Este enfoque es aplicable en contextos como la previsión de precios de acciones, donde se busca anticipar el comportamiento del mercado, o en el reconocimiento de escritura a mano, donde se traduce la entrada manual en texto digital. La elección entre clasificación y regresión depende de la naturaleza de los datos y de la pregunta específica que se desea responder.

Selección del algoritmo adecuado.

La selección de un algoritmo de aprendizaje automático es un proceso que requiere un enfoque metódico, ya que hay que encontrar el equilibrio entre diversas características de los algoritmos. Entre estas características se encuentran la velocidad de entrenamiento, el uso de memoria, la precisión predictiva en nuevos datos y la transparencia o interpretabilidad del modelo. La velocidad de entrenamiento se refiere al tiempo que un algoritmo necesita para aprender de los datos, mientras que el uso de memoria se relaciona con la cantidad de recursos computacionales que requiere. La precisión predictiva es crucial, ya que determina la capacidad del modelo para generalizar a datos no vistos. Por último, la interpretabilidad se refiere a la facilidad con la que se pueden entender las decisiones del modelo, lo que es especialmente relevante en aplicaciones donde la confianza en el modelo es esencial.

El uso de conjuntos de datos de entrenamiento más grandes generalmente permite que los modelos generalicen mejor en datos nuevos, lo que se traduce en una mayor precisión en las predicciones. Sin embargo, la selección del algoritmo también puede depender del contexto específico y de las características de los datos disponibles.

Clasificación binaria y multicategoría

Al abordar un problema de clasificación, es fundamental determinar si se trata de un problema binario o multicategórico. En un problema de clasificación binaria, cada instancia se clasifica en una de las dos clases, como ocurre cuando se identifica la autenticidad de los correos electrónicos o su clasificación como spam. Este tipo de clasificación es más sencillo y, por lo general, se puede resolver con algoritmos diseñados específicamente para este propósito. En contraste, un problema de clasificación multicategórica implica más de dos clases, como clasificar imágenes de animales en perros, gatos u otros. Los problemas multicategóricos suelen ser más complejos, ya que requieren modelos más sofisticados que puedan manejar la diversidad de clases y sus interacciones.

Es importante señalar que algunos algoritmos, como la regresión logística, están diseñados específicamente para problemas de clasificación binaria y tienden a ser más eficientes durante el entrenamiento. Sin embargo, existen técnicas que permiten adaptar algoritmos de clasificación binaria para abordar problemas multicategóricos, lo que amplía su aplicabilidad.

Algoritmos de clasificación comunes

Existen diversos varios algoritmos de clasificación ampliamente utilizados en el campo del aprendizaje supervisado.

  • La regresión logística es uno de los métodos más comunes, ya que permite predecir la probabilidad de que una respuesta binaria pertenezca a una de las dos clases. Este algoritmo es valorado por su simplicidad y se emplea frecuentemente como punto de partida en problemas de clasificación binaria. Su capacidad para ofrecer una interpretación clara de los resultados lo convierte en una herramienta muy valiosa en diversas aplicaciones.
  • El algoritmo k-vecinos más cercanos (kNN) clasifica objetos basándose en las clases de sus vecinos más cercanos, utilizando métricas de distancia como la euclidiana o la de Manhattan. Este enfoque es intuitivo y fácil de implementar, aunque puede resultar costoso en términos de cálculo en conjuntos de datos grandes.
  • El soporte vectorial (SVM) es otro algoritmo destacado que clasifica datos al encontrar un límite de decisión lineal que separe las clases. En situaciones en las que los datos no son linealmente separables, se puede aplicar una transformación de kernel para facilitar la clasificación. Este método es especialmente útil en contextos de alta dimensionalidad, donde la complejidad de los datos puede dificultar la clasificación.
  • Las redes neuronales, inspiradas en la estructura del cerebro humano, son útiles para modelar sistemas altamente no lineales. Estas redes se entrenan ajustando las conexiones entre neuronas, lo que permite que el modelo aprenda patrones complejos en los datos. Aunque su interpretación puede ser más complicada, su capacidad para capturar relaciones no lineales las hace valiosas en diversas aplicaciones.
  • El clasificador Naïve Bayes se basa en la suposición de que la presencia de una característica en una clase no depende de la presencia de otras características. Este enfoque permite clasificar nuevos datos en función de la probabilidad máxima de pertenencia a una clase, lo que resulta útil en contextos en los que se requiere una clasificación rápida y eficiente.
  • El análisis discriminante clasifica los datos mediante combinaciones lineales de características, asumiendo que los diferentes conjuntos de datos tienen distribuciones gaussianas. Este método es apreciado por su simplicidad y facilidad de interpretación.
  • Los árboles de decisión permiten predecir respuestas basándose en decisiones tomadas en un árbol estructurado, donde cada rama representa una condición de decisión. Este enfoque es intuitivo y fácil de interpretar, por lo que es una opción popular en diversas aplicaciones.

Algoritmos de regresión comunes

Los algoritmos de regresión son esenciales para predecir valores continuos.

  • La regresión lineal es una técnica que describe una variable de respuesta continua como una función lineal de una o más variables predictoras. Este modelo es fácil de interpretar y se utiliza frecuentemente como referencia para modelos más complejos. Su simplicidad y eficacia en contextos lineales lo convierten en una opción inicial para el análisis de datos.
  • La regresión no lineal se utiliza cuando los datos presentan tendencias no lineales significativas. Este enfoque permite modelar relaciones más complejas que no pueden ser capturadas por modelos lineales, lo que resulta útil en contextos donde las variables interactúan de manera no lineal.
  • El modelo de regresión de procesos gaussianos es un enfoque no paramétrico que se utiliza para predecir valores continuos y es común en el análisis espacial. Este método es especialmente valioso en contextos donde se requiere interpolación y se trabaja con datos que presentan incertidumbre.
  • La regresión SVM, similar a su contraparte de clasificación, busca un modelo que se desvíe de los datos medidos en la menor cantidad posible. Este enfoque es útil en contextos de alta dimensionalidad, donde se espera que haya un gran número de variables predictoras.
  • El modelo lineal generalizado se utiliza cuando las variables de respuesta tienen distribuciones no normales, lo que permite abordar una variedad de situaciones en las que no se cumplen los supuestos de la regresión lineal.
  • Los árboles de regresión son una adaptación de los árboles de decisión que permiten predecir respuestas continuas, por lo que son útiles en contextos donde se requiere una interpretación clara y rápida.

Mejora de modelos

La mejora de un modelo implica aumentar su precisión y capacidad predictiva, así como prevenir el sobreajuste, que ocurre cuando un modelo se ajusta demasiado a los datos de entrenamiento y pierde capacidad de generalización. Este proceso incluye la ingeniería de características, que abarca la selección y transformación de variables, y la optimización de hiperparámetros, que busca identificar el conjunto de parámetros que mejor se ajustan al modelo.

  • La selección de características es un aspecto crítico en el aprendizaje supervisado, especialmente en conjuntos de datos de alta dimensión. Este proceso permite identificar las variables más relevantes para la predicción, lo que no solo mejora la precisión del modelo, sino que también reduce el tiempo de entrenamiento y la complejidad del mismo. Entre las técnicas de selección de características se encuentran la regresión por pasos, que implica agregar o eliminar características de manera secuencial, y la regularización, que utiliza estimadores de reducción para eliminar características redundantes.
  • La transformación de características es otra estrategia importante que busca mejorar la representación de los datos. Técnicas como el análisis de componentes principales (PCA) permiten realizar transformaciones lineales en los datos, que capturan la mayor parte de la varianza en un número reducido de componentes. Esto resulta útil en contextos donde se trabaja con datos de alta dimensionalidad, ya que facilita la visualización y el análisis.
  • La optimización de hiperparámetros es un proceso iterativo que busca encontrar los valores óptimos para los parámetros del modelo. Este proceso puede llevarse a cabo mediante métodos como la optimización bayesiana, la búsqueda en cuadrícula y la optimización basada en gradientes. Un modelo bien ajustado puede superar a un modelo complejo que no ha sido optimizado adecuadamente, lo que subraya la importancia de este proceso en el desarrollo de modelos efectivos.

Aplicaciones del aprendizaje supervisado en ingeniería civil

  • Predicción de fallos estructurales: los modelos de aprendizaje supervisado se utilizan para predecir fallos en estructuras como puentes y edificios. Al analizar datos históricos de inspecciones y condiciones ambientales, es posible identificar patrones que indiquen un posible fallo estructural. Esto permite a los ingenieros realizar mantenimientos preventivos y mejorar la seguridad de las infraestructuras.
  • Optimización de recursos en construcción: en la planificación de proyectos, el aprendizaje supervisado optimiza el uso de recursos como, por ejemplo, materiales y mano de obra. Al predecir la demanda de recursos en función de variables como el clima y la evolución del proyecto, es posible reducir costes y mejorar la eficiencia.
  • Análisis de riesgos: los modelos de aprendizaje supervisado son útiles para evaluar riesgos en proyectos de ingeniería civil. Al analizar datos sobre desastres naturales, como inundaciones y terremotos, se pueden identificar zonas vulnerables y desarrollar estrategias de mitigación eficaces.
  • Control de infraestructuras: la incorporación de sensores en infraestructuras permite la recolección de datos en tiempo real. Los algoritmos de aprendizaje supervisado pueden analizar estos datos para detectar anomalías y prever el mantenimiento necesario, lo que contribuye a la sostenibilidad y durabilidad de las estructuras.

Por tanto, el aprendizaje supervisado se está consolidando como una herramienta esencial en ingeniería civil, ya que ofrece soluciones innovadoras para predecir, optimizar y controlar infraestructuras. Su capacidad para analizar grandes volúmenes de datos y ofrecer información valiosa está transformando la forma en que se gestionan los proyectos en este ámbito.

Os dejo un mapa mental acerca del aprendizaje supervisado.

También os dejo unos vídeos al respecto. Espero que os sean de interés.

Referencias

  1. Garcia, J., Villavicencio, G., Altimiras, F., Crawford, B., Soto, R., Minatogawa, V., Franco, M., Martínez-Muñoz, D., & Yepes, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction142, 104532.
  2. Kaveh, A. (2024). Applications of artificial neural networks and machine learning in civil engineering. Studies in computational intelligence1168, 472.
  3. Khallaf, R., & Khallaf, M. (2021). Classification and analysis of deep learning applications in construction: A systematic literature review. Automation in construction129, 103760.
  4. Mostofi, F., & Toğan, V. (2023). A data-driven recommendation system for construction safety risk assessment. Journal of Construction Engineering and Management149(12), 04023139.
  5. Naderpour, H., Mirrashid, M., & Parsa, P. (2021). Failure mode prediction of reinforced concrete columns using machine learning methods. Engineering Structures248, 113263.
  6. Reich, Y. (1997). Machine learning techniques for civil engineering problems. Computer‐Aided Civil and Infrastructure Engineering12(4), 295-310.
  7. Thai, H. T. (2022). Machine learning for structural engineering: A state-of-the-art review. In Structures (Vol. 38, pp. 448-491). Elsevier.

Descargar (PDF, 1.52MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fases de un estudio de investigación operativa

La investigación operativa busca determinar la solución óptima para un problema de decisión con recursos limitados. Se trata de un procedimiento científico que analiza las actividades de un sistema de organización.

Las principales componentes de un modelo de investigación operativa son: alternativas, restricciones y un criterio objetivo para elegir la mejor opción. Las alternativas se representan como variables desconocidas que luego se utilizan para construir las restricciones y la función objetivo mediante métodos matemáticos. El modelo matemático establece la relación entre estas variables, restricciones y función objetivo. La solución consiste en asignar valores a las variables para optimizar (maximizar o minimizar) la función objetivo y cumplir con las restricciones. A esta solución se le denomina solución posible óptima.

El enfoque del estudio de la ingeniería de operaciones está relacionado con la toma de decisiones para aprovechar al máximo los recursos limitados. Para ello, utiliza herramientas y modelos adaptados a las necesidades para facilitar la toma de decisiones en la resolución de problemas. Implica un trabajo en equipo entre analistas y clientes, con una estrecha colaboración. Los analistas aportan conocimientos de modelado y el cliente, experiencia y cooperación.

Como herramienta para la toma de decisiones, la investigación de operaciones combina ciencia y arte. Es ciencia por sus técnicas matemáticas y arte, porque el éxito en todas las fases, antes y después de resolver el modelo matemático, depende de la creatividad y experiencia del equipo. La práctica efectiva de la investigación de operaciones requiere más que competencia analítica, e incluye la capacidad de juzgar cuándo y cómo utilizar una técnica, así como habilidades de comunicación y adaptación organizativa.

Es complicado recomendar acciones específicas, como las de la teoría precisa de los modelos matemáticos, para abordar factores intangibles. Solo pueden ofrecerse directrices generales para aplicar la investigación de operaciones en la práctica.

El estudio de investigación operativa consta de varias etapas principales, entre las que destacan las siguientes:

  1. Formulación y definición del problema.
  2. Construcción del modelo.
  3. Solución del modelo.
  4. Verificación del modelo y de la solución.
  5. Puesta en práctica y mantenimiento de la solución.

Aunque las fases del proyecto suelen iniciarse en el orden establecido, no suelen completarse en el mismo orden. La interacción entre las fases requiere revisarlas y actualizarlas continuamente hasta la finalización del proyecto. La tercera fase es la única de carácter puramente matemático, ya que en ella se aplican las técnicas y teorías matemáticas necesarias para resolver el problema. El éxito de las demás etapas depende más de la práctica que de la teoría, siendo la experiencia el factor clave para su correcta ejecución.

Definir el problema implica determinar su alcance, tarea que lleva a cabo todo el equipo de investigación de operaciones. El resultado final debe identificar tres elementos principales: 1) descripción de las alternativas de decisión, 2) determinación del objetivo del estudio y 3) especificación de las restricciones del sistema modelado. Además, se deben recolectar los datos necesarios.

La formulación del modelo es quizá la fase más delicada del proceso, ya que consiste en traducir el problema a relaciones matemáticas. Si el modelo se ajusta a un modelo matemático estándar, como la programación lineal, puede resolverse con los algoritmos correspondientes. Para ello, deben definirse las variables de decisión, la función objetivo y las restricciones. Si las relaciones son demasiado complejas para una solución analítica, se puede simplificar el modelo mediante un método heurístico o recurrir a una simulación aproximada. En algunos casos, puede ser necesaria una combinación de modelos matemáticos, simulaciones y heurísticas para resolver el problema de toma de decisiones.

La solución del modelo es la fase más sencilla de la investigación de operaciones, ya que utiliza algoritmos de optimización bien definidos para encontrar la solución óptima. Un aspecto clave es el análisis de sensibilidad, que proporciona información sobre la forma en que la solución óptima responde a cambios en los parámetros del modelo. Esto es crucial cuando los parámetros no se pueden estimar con precisión, puesto que permite estudiar cómo varía la solución cerca de los valores estimados.

La validación del modelo verifica si cumple su propósito, es decir, si predice adecuadamente el comportamiento del sistema estudiado. Para ello, se evalúa si la solución tiene sentido y si los resultados son aceptables, comparando la solución con datos históricos para verificar si habría sido la correcta. Sin embargo, esto no garantiza que el futuro imite al pasado. Si el modelo representa un sistema nuevo sin datos históricos, se puede usar una simulación como herramienta independiente para comprobar los resultados del modelo matemático.

La implantación de la solución de un modelo validado consiste en traducir los resultados en instrucciones claras para quienes gestionarán el sistema recomendado. Esta tarea recae principalmente en el equipo de investigación de operaciones. En esta fase, el equipo debe capacitar al personal encargado de aplicar el modelo, asegurándose de que puedan traducir sus resultados en instrucciones de operación y usarlo correctamente para tomar decisiones sobre los problemas que motivaron su creación.

Os dejo algún vídeo al respecto.

Referencias:

Altier, W. J. (1999). The thinking manager’s toolbox: Effective processes for problem solving and decision making. Oxford University Press.

Checkland, P. (1999). Systems thinking, system practice. Wiley.

Evans, J. (1991). Creative thinking in the decision and management sciences. South-Western Publishing.

Gass, S. (1990). Model world: Danger, beware the user as a modeler. Interfaces, 20(3), 60-64.

Morris, W. (1967). On the art of modeling. Management Science, 13, B707-B717.

Paulos, J. A. (1988). Innumeracy: Mathematical illiteracy and its consequences. Hill and Wang.

Taha, H. A., & Taha, H. A. (2003). Operations research: an introduction (Vol. 7). Upper Saddle River, NJ: Prentice hall.

Willemain, T. R. (1994). Insights on modeling from a dozen experts. Operations Research, 42(2), 213-222.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hardy Cross

Hardy Cross (1885-1959). https://distributedmuseum.illinois.edu/exhibit/hardy_cross/

Hardy Cross fue un ingeniero de estructuras estadounidense que nació el 10 de febrero de 1885 en la plantación familiar ubicada en el condado de Nansemond, cerca del Gran Pantano Dismal, en Virginia. Falleció el 11 de febrero de 1959, en Virginia Beach (Virginia, EE. UU.).

Tanto él como su hermano, Tom Peete, se educaron en la Norfolk Academy de Norfolk, Virginia. Posteriormente, ambos ingresaron en el Hampden-Sydney College, donde Cross obtuvo sus títulos de Bachelor of Arts (B.A.) en 1902 y Bachelor of Science (B.S.) en 1903, antes de cumplir los 18 años.

Durante los tres años siguientes, enseñó inglés y matemáticas en la Academia Norfolk. A la edad de tan solo 23 años, consiguió un Bachelor of Science en ingeniería civil en el Instituto Tecnológico de Massachusetts (M.I.T.), donde se graduó en Ingeniería Civil en tan solo dos años. En 1911, la Universidad de Harvard le otorgó el título de máster en ingeniería civil.

Entonces comenzó su carrera como docente. Su primer nombramiento fue en la Universidad de Brown, donde enseñó durante siete años, entre 1911 y 1918. Fuera del aula, trabajó como ingeniero de puentes para el Missouri Pacific Railroad, colaborando con destacados consultores en ingeniería civil especializados en estructuras e ingeniería hidráulica. Además, en 1920 trabajó como ingeniero asistente para Charles T. Main. Tras un breve regreso a la práctica de la ingeniería en general, en 1921 aceptó un puesto como profesor de ingeniería estructural en la Universidad de Illinois en Urbana-Champaign. Desde 1937 hasta obtener el estatus de profesor emérito en 1951, enseñó e investigó en la Universidad de Yale, donde también fue jefe del Departamento de Ingeniería Civil.

Como docente, Hardy Cross fue un firme defensor de los exámenes orales para los candidatos a grados avanzados y participaba frecuentemente en debates sobre esta cuestión. Insistió en la gran responsabilidad individual de los profesores y en su desprecio por lo superficial en la enseñanza. Escribió el libro “Ingenieros y torres de marfil”, donde aborda magistralmente temas relacionados con la enseñanza y el ejercicio de la ingeniería civil.

Recibió numerosos reconocimientos. Entre ellos, destacan el grado honorífico de Maestro de Artes de la Universidad de Yale, la medalla Lamme de la Sociedad Americana para la Educación en Ingeniería (1944), la medalla Wason del Instituto Americano del Hormigón (1935) y la medalla de oro del Instituto de Ingenieros Estructurales de Gran Bretaña (1959).

En la edición de mayo de 1930 de los Proceedings of the American Society of Civil Engineers (ASCE), Hardy Cross resolvió un problema aparentemente irresoluble de la teoría de estructuras. Su genialidad radicó en calcular sistemas estáticamente indeterminados mediante un método iterativo que utilizaba la forma más sencilla de aritmética (Cross, 1930).

El método de Cross era ideal para analizar sistemas con un alto grado de indeterminación estática, como suele ocurrir en el diseño de edificios de gran altura. Con este aporte, Cross puso fin a la búsqueda que había caracterizado la fase de aplicación de la teoría de estructuras: encontrar métodos de cálculo adecuados para resolver sistemas con elevada indeterminación estática de forma racional.

El método de Cross no solo marcó el inicio de una algoritmización sin precedentes del análisis estructural en el siglo XX, sino que también llevó la racionalización de los cálculos estructurales a un nuevo nivel. Por tanto, no es de extrañar que tras su trabajo apareciera una avalancha de extensos artículos de discusión en las Transactions de la ASCE (Cross, 1932). Su ingenioso método iterativo provocó que innumerables ingenieros, incluso durante la fase de innovación de la teoría de estructuras, describieran y desarrollaran aún más el método de Cross. Nunca antes un artículo en el campo de la teoría de estructuras había generado un debate tan amplio. En su trabajo, Cross proponía abandonar las soluciones exactas de la teoría de estructuras y sustituirlas por un enfoque más cercano a la realidad. Favorecía los métodos de análisis estructural que combinaran una precisión aceptable con cálculos rápidos.

El progreso infinito (en el sentido del valor límite) inherente a los símbolos de la teoría formalizada del cálculo diferencial e integral fue reemplazado por el progreso finito del trabajo del calculista. Solo era cuestión de tiempo antes de que este trabajo se mecanizara. Pocos años después, Konrad Zuse (1910-1995) utilizaría una máquina similar: la «máquina de cálculo del ingeniero» (Zuse, 1936).

El método de Cross, también conocido como método de distribución de momentos, se concibió para el cálculo de grandes estructuras de hormigón armado. Este método se utilizó con frecuencia entre 1935 y 1960, momento en que fue sustituido por otros métodos. Gracias a él, fue posible diseñar de manera eficiente y segura un gran número de construcciones de hormigón armado durante una generación entera.

Cross representa un enfoque tipo Henry Ford en la producción de cálculos estructurales durante la transición al periodo de integración de dicha teoría. No es de extrañar que se publicaran innumerables trabajos sobre su método hasta bien entrada la década de 1960.

De hecho, se ha escrito tanto sobre este tema que fácilmente llenaría la biblioteca privada de tamaño medio de cualquier académico. Además, el método de Cross no se limitó a la teoría de estructuras, sino que fue rápidamente adoptado en disciplinas como la construcción naval y el diseño de aeronaves.

El propio Cross trasladó la idea básica de su método iterativo al cálculo de flujos estacionarios en sistemas de tuberías, dando origen al «método Hardy-Cross», lo que supuso un avance fenomenal en este ámbito. Los reconocimientos que recibió a lo largo de su carrera son innumerables.

Principales contribuciones a la teoría de estructuras:

  • Analysis of continuous frames by distributing fixed-end moments [1930].
  • Analysis of continuous frames by distributing fixed-end moments [1932/1].
  • Continuous Frames of Reinforced Concrete [1932/2].
  • Analysis of continuous frames by distributing fixed-end moments [1949].
  • Engineers and Ivory Towers [1952].
  • Arches, Continuous Frames, Columns and Conduits: Selected Papers of Hardy Cross [1963].

Aprendizaje no supervisado en la ingeniería civil

El aprendizaje no supervisado es una rama del aprendizaje automático (Machine Learning) que se centra en analizar y estructurar datos sin etiquetas ni categorías predefinidas. A diferencia del aprendizaje supervisado, en el que los modelos se entrenan con datos etiquetados, en el aprendizaje no supervisado los algoritmos deben identificar de manera autónoma patrones, relaciones o estructuras ocultas dentro de los datos. Se trata de una herramienta poderosa para explorar y entender datos complejos sin la necesidad de etiquetas predefinidas, descubriendo patrones y estructuras ocultas que pueden ser de gran valor en diversas aplicaciones prácticas.

El aprendizaje no supervisado permite analizar datos sin un objetivo definido o sin conocimiento previo de su estructura. Este enfoque es ideal para explorar patrones latentes y reducir la dimensionalidad de grandes conjuntos de datos, lo que facilita una mejor comprensión de su estructura. Además, al no depender de etiquetas previamente asignadas, permite adaptarse de manera flexible a diversos tipos de datos, incluidos aquellos cuya estructura subyacente no es evidente. Esta característica lo hace especialmente valioso en ámbitos como la exploración científica y el análisis de datos de mercado, donde los datos pueden ser abundantes, pero carecer de categorías predefinidas.

A pesar de sus ventajas, el aprendizaje no supervisado plantea desafíos como la interpretación de los resultados, ya que sin etiquetas predefinidas puede ser difícil evaluar la precisión de los modelos. Además, la elección del número óptimo de grupos o la validación de las reglas de asociación descubiertas puede requerir la intervención de expertos y métodos adicionales de validación.

El aprendizaje no supervisado incluye diversas técnicas que permiten analizar y extraer patrones de grandes conjuntos de datos sin necesidad de etiquetas. Una de las principales técnicas es el agrupamiento (clustering), que busca dividir los datos en grupos basados en similitudes inherentes. Existen dos tipos de algoritmos de agrupamiento: el agrupamiento duro, que asigna un dato a un único grupo, y el agrupamiento suave, que permite que un dato pertenezca a varios grupos con diferentes grados de pertenencia. Técnicas como k-means y k-medoids se utilizan mucho en este contexto. Mientras que k-means busca minimizar la distancia entre los datos y los centros de los grupos, k-medoids es más robusto frente a valores atípicos y adecuado para datos categóricos. Por otro lado, el agrupamiento jerárquico genera un dendrograma que permite explorar relaciones jerárquicas en los datos. Los mapas autoorganizados, que emplean redes neuronales, se utilizan para reducir la dimensionalidad de los datos sin perder su estructura y facilitar su interpretación en campos como la bioinformática y la economía.

En situaciones donde los datos tienen relaciones difusas, el agrupamiento suave, como el fuzzy c-means, asigna grados de pertenencia a cada dato, lo que resulta útil en áreas como la biomedicina. Los modelos de mezcla gaussiana, que utilizan distribuciones normales multivariadas, también se aplican a problemas complejos como la segmentación de mercado o la detección de anomalías. Además, el aprendizaje no supervisado incluye técnicas de asociación que buscan descubrir relaciones entre variables en grandes bases de datos, como el análisis de la cesta de la compra, donde se identifican productos que suelen comprarse juntos. También se utilizan técnicas de reducción de la dimensionalidad, que simplifican los datos de alta dimensionalidad sin perder mucha variabilidad. El análisis de componentes principales (PCA) es una técnica común en este ámbito, ya que transforma los datos en combinaciones lineales que facilitan su visualización y análisis, especialmente en casos de datos ruidosos, como los procedentes de sensores industriales o dispositivos médicos. Otras técnicas, como el análisis factorial y la factorización matricial no negativa, también se utilizan para reducir la complejidad de los datos y hacerlos más manejables, y son útiles en áreas como la bioinformática, el procesamiento de imágenes y el análisis de textos.

El aprendizaje no supervisado tiene diversas aplicaciones, como el análisis de clientes, que permite identificar segmentos con características o comportamientos similares, lo que optimiza las estrategias de marketing y la personalización de los servicios. También se utiliza en la detección de anomalías, ya que ayuda a identificar datos atípicos que pueden indicar fraudes, fallos en los sistemas o comportamientos inusuales en áreas industriales y financieras; en este campo, el análisis factorial revela dinámicas compartidas entre sectores económicos, lo que mejora la predicción de tendencias de mercado. En el procesamiento de imágenes, facilita tareas como la segmentación, que consiste en agrupar píxeles con características similares para identificar objetos o regiones dentro de una imagen. Además, en el análisis de textos, técnicas como la factorización matricial no negativa permiten descubrir temas latentes en grandes colecciones de documentos, mejorando los sistemas de recomendación y el análisis de sentimientos. En la investigación genómica, el clustering suave ha permitido identificar genes implicados en el desarrollo de enfermedades, lo que ha contribuido a avanzar en la medicina personalizada. Esta capacidad para analizar patrones complejos en datos biológicos ha acelerado el descubrimiento de biomarcadores y posibles dianas terapéuticas. Este enfoque también permite identificar correlaciones entre variables macroeconómicas que de otra manera podrían pasar desapercibidas. Por otro lado, el PCA se ha aplicado con éxito en la monitorización de sistemas industriales, ya que permite predecir fallos y reducir costes operativos mediante el análisis de variaciones en múltiples sensores. En el ámbito de la minería de textos, la factorización no negativa permite descubrir temas latentes, lo que mejora los sistemas de recomendación y análisis de sentimiento. Esto resulta particularmente valioso en aplicaciones de marketing digital, donde la segmentación precisa del contenido puede aumentar la eficacia de las campañas.

El aprendizaje no supervisado ha encontrado diversas aplicaciones en el ámbito de la ingeniería civil, ya que permite optimizar procesos y mejorar la toma de decisiones. A continuación, se destacan algunas de ellas:

  • Clasificación de suelos y materiales de construcción: Mediante técnicas de agrupación (clustering), es posible agrupar muestras de suelo o materiales de construcción según sus propiedades físicas y mecánicas. Esto facilita la selección adecuada de materiales para proyectos específicos y optimiza el diseño de cimentaciones y estructuras.
  • Análisis de patrones de tráfico: El aprendizaje automático permite identificar patrones en los flujos de tráfico, detectando comportamientos anómalos o recurrentes. Esta información es esencial para diseñar infraestructuras viales más eficientes y aplicar medidas de control de tráfico.
  • Monitorización de estructuras: Mediante la reducción dimensional y el análisis de datos procedentes de sensores instalados en puentes, edificios y otras infraestructuras, se pueden detectar anomalías o cambios en el comportamiento estructural. Esto contribuye a la prevención de fallos y al mantenimiento predictivo.
  • Optimización de rutas para maquinaria pesada: En proyectos de construcción a gran escala, el aprendizaje no supervisado ayuda a determinar las rutas más eficientes para la maquinaria, considerando factores como el terreno, el consumo de combustible y la seguridad, lo que se traduce en una mayor productividad y reducción de costes.
  • Segmentación de imágenes por satélite y aéreas: Las técnicas de aprendizaje no supervisado permiten clasificar y segmentar imágenes obtenidas de satélites o drones, identificando áreas urbanas, vegetación, cuerpos de agua y otros elementos. Esto es útil para la planificación urbana y la gestión de recursos naturales.
  • Análisis de datos de sensores en tiempo real: En la construcción de túneles y excavaciones, el análisis en tiempo real de datos de sensores puede realizarse mediante algoritmos no supervisados para detectar condiciones peligrosas, como deslizamientos de tierra o acumulación de gases, lo que mejora la seguridad en las obras.

En conclusión, el aprendizaje no supervisado es una herramienta versátil y potente para abordar problemas complejos y descubrir patrones ocultos en datos sin etiquetar. Su aplicación trasciende sectores, ya que ofrece soluciones prácticas para la investigación, la industria y el análisis de datos. En un mundo impulsado por el crecimiento exponencial de la información, el dominio de estas técnicas se presenta como una ventaja competitiva fundamental. La capacidad para analizar grandes volúmenes de datos y extraer información útil sigue siendo un motor clave de innovación y progreso.

Os dejo un mapa mental acerca del aprendizaje no supervisado.

Para profundizar en este tema, puedes consultar la siguiente conferencia:

Descargar (PDF, 1.18MB)

Referencia:

GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Diseño optimizado de edificios de pórticos de hormigón armado frente al colapso progresivo mediante metamodelos

El diseño estructural de los edificios plantea importantes retos para garantizar su seguridad y sostenibilidad. El colapso progresivo, provocado por eventos extremos como terremotos o explosiones, puede ocasionar daños catastróficos. Para reducir este riesgo, se propone una metodología de diseño apoyada en metamodelos que combina optimización estructural y criterios de seguridad, y que tiene en cuenta elementos que a menudo se pasan por alto, como los forjados, las pantallas de arriostramiento y la interacción suelo-estructura (SSI, por sus siglas en inglés).

El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. También es fruto de la colaboración con investigadores de Brasil y Cuba.

Metodología

Descripción del problema

Se estudiaron cinco edificios de pórticos de hormigón armado con diferentes configuraciones de plantas y luces. Las estructuras incluyen vigas, columnas, forjados y pantallas de arriostramiento. Además, se incorporó el diseño optimizado de cimentaciones, considerando la interacción con el suelo mediante modelos de elasticidad lineal. Las dimensiones de los elementos estructurales se ajustaron siguiendo las normas internacionales de diseño y se consideraron distintas combinaciones de carga para evaluar escenarios críticos.

Se realizaron simulaciones numéricas avanzadas que tuvieron en cuenta escenarios de carga extremos, incluyendo la pérdida de columnas críticas en diversas posiciones. En el análisis se tuvieron en cuenta factores de seguridad, límites de servicio y fallos estructurales para determinar los diseños óptimos. También se tuvieron en cuenta criterios de sostenibilidad y se midieron las emisiones de CO₂ asociadas a cada solución.

Optimización basada en un diseño robusto frente al colapso progresivo (ObRDPC)

La metodología ObRDPC se centra en minimizar las emisiones de CO₂ como función objetivo, garantizando simultáneamente la robustez estructural mediante restricciones de seguridad. Para evaluar el colapso progresivo y simular la pérdida de columnas críticas, así como analizar la redistribución de cargas, se empleó el método de camino alternativo (AP). La metodología incluye la verificación de estados límite últimos y de servicio, lo que garantiza el cumplimiento de los requisitos normativos.

El proceso de optimización incluye la definición precisa de las variables de diseño, como las dimensiones de las vigas, columnas y cimentaciones, así como el tipo de hormigón utilizado. Para maximizar la eficiencia estructural y minimizar los costos ambientales, se aplican técnicas de programación matemática.

Modelización de forjados y pantallas de arriostramiento

  • Forjados: se modelaron como elementos tipo placa de 12 cm de espesor y se conectaron a las vigas mediante nodos rígidos para asegurar la continuidad estructural. Se realizó una discretización adecuada para representar su comportamiento realista ante cargas verticales y horizontales. El análisis incluyó el comportamiento a flexión, los efectos de cargas concentradas y la interacción con los elementos perimetrales. Se consideraron diferentes configuraciones de refuerzo para maximizar la resistencia y minimizar las deformaciones.
  • Pantallas de arriostramiento: representadas mediante diagonales equivalentes elásticas, según las especificaciones normativas. Se definieron sus propiedades mecánicas mediante modelos experimentales previos, incluyendo el módulo de elasticidad y la resistencia a compresión. Se estudiaron distintos tipos de mampostería y su influencia en la resistencia general. Las pantallas de arriostramiento también se evaluaron como elementos activos en la redistribución de cargas después de eventos que provocan la pérdida de soporte, lo que mejora la estabilidad global del sistema estructural.

Interacción suelo-estructura (SSI)

Se consideró el asentamiento diferencial de las cimentaciones mediante coeficientes de rigidez calculados según modelos elásticos. El suelo se modeló como un medio elástico semiespacial. En el análisis se incluyó la interacción entre la superestructura y el terreno para capturar los efectos de asentamientos desiguales y su impacto en el estado de esfuerzos y deformaciones.

En el análisis se tuvieron en cuenta diferentes tipos de suelos, desde arcillas de baja resistencia hasta suelos granulares compactados. Se realizaron estudios paramétricos para evaluar la sensibilidad del sistema a variaciones en la rigidez del terreno y el módulo de elasticidad del hormigón.

Cinco estudios de casos que consideran la modelización de cimientos, forjados y pantallas de arriostramiento.

Optimización asistida por metamodelos

Se utilizaron técnicas avanzadas de optimización asistida por metamodelos para reducir la carga computacional. El proceso incluyó un muestreo inicial mediante muestreo hipercúbico latino para cubrir eficientemente el espacio de diseño, seguido de la construcción del metamodelo a través de técnicas de interpolación Kriging para aproximar las respuestas estructurales, evaluando múltiples configuraciones para garantizar la precisión. Posteriormente, se aplicó una optimización global utilizando algoritmos evolutivos, como la Biogeography-based Optimization (BBO), para explorar soluciones factibles y un método iterativo para refinar las soluciones y garantizar su viabilidad en condiciones críticas.

Resultados

Impacto de forjados y pantallas de arriostramiento

La inclusión de forjados y pantallas de arriostramiento mejoró significativamente la redistribución de cargas y la resistencia al colapso progresivo. El análisis mostró una reducción del 11 % en el impacto ambiental para diseños resistentes al colapso, en comparación con modelos que solo consideran vigas y columnas.

Se observó una mejora notable en la capacidad de redistribución de cargas después de la pérdida de columnas críticas. Las pantallas de arriostramiento actuaron como elementos resistentes adicionales, mitigando fallos en los elementos primarios y reduciendo los desplazamientos globales.

Comparación de enfoques de diseño

Se observó que aumentar el número de niveles incrementa la robustez estructural debido a la mayor redundancia de elementos. Sin embargo, el incremento de la longitud de las luces de las vigas reduce esta capacidad, por lo que es necesario utilizar secciones más robustas y aplicar mayores refuerzos.

Los modelos con luces de 8 m presentaron un aumento del 50 % en las emisiones de CO₂ cuando no se incluyeron forjados ni pantallas de arriostramiento. Al incorporarlos, se consiguió reducir este incremento a la mitad.

Recomendaciones prácticas para el diseño estructural

  1. Incluir forjados y pantallas de arriostramiento: Su integración mejora significativamente la resistencia al colapso progresivo, particularmente en edificios con luces amplias.
  2. Optimizar secciones estructurales: Diseñar secciones de vigas y columnas equilibrando rigidez y eficiencia económica.
  3. Evaluar diferentes tipos de cimentaciones: Incorporar análisis de interacción suelo-estructura para definir bases óptimas.
  4. Aplicar análisis paramétricos: Evaluar la sensibilidad de los diseños a variaciones en la resistencia del hormigón y las condiciones geotécnicas.
  5. Considerar combinaciones de carga extremas: Simular múltiples fallos para garantizar diseños robustos y seguros.

Conclusión

La optimización basada en un diseño robusto frente al colapso progresivo (ObRDPC) permite diseñar estructuras resistentes al colapso progresivo con menor impacto medioambiental. El uso de metamodelos y la consideración de forjados, pantallas de arriostramiento y la interacción suelo-estructura mejoran significativamente la seguridad estructural y la sostenibilidad del diseño. Se recomienda ampliar esta investigación a otros tipos de estructuras y condiciones geotécnicas complejas para validar y perfeccionar la metodología propuesta.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Metamodel-assisted design optimization of robust-to-progressive-collapse RC frame buildings considering the impact of floor slabs, infill walls, and SSI implementation. Engineering Structures, 325:119487. DOI:10.1016/j.engstruct.2024.119487

El artículo os lo podéis descargar gratuitamente, hasta el 1 de febrero de 2025, en el siguiente enlace: https://authors.elsevier.com/c/1kFtRW4G4f7uC

Optimización de programas de mantenimiento vial: eficiencia y estrategias a largo plazo con algoritmos heurísticos.

Optimal pavement maintenance programs based on a hybrid Greedy Randomized Adaptive Search Procedure Algorithm

El artículo, titulado «Optimal pavement maintenance programs based on a hybrid Greedy Randomized Adaptive Search Procedure Algorithm», escrito por Víctor Yepes, Cristina Torres-Machí, Alondra Chamorro y Eugenio Pellicer, y publicado en el Journal of Civil Engineering and Management, presenta una innovadora herramienta para la gestión eficiente del mantenimiento vial. Este trabajo aborda cómo diseñar programas que maximicen la efectividad a largo plazo (Long-Term Effectiveness, LTE) en redes viales, superando las limitaciones presupuestarias y el desgaste progresivo de las infraestructuras. Para ello, se desarrolla un enfoque híbrido que combina los algoritmos Greedy Randomized Adaptive Search Procedure (GRASP) y Threshold Accepting (TA), lo que permite optimizar la asignación de recursos y cumplir con restricciones técnicas y económicas. Entre los resultados más destacados, se encuentra una mejora del 40 % en la LTE en comparación con estrategias reactivas, que también subraya la importancia de priorizar inversiones tempranas y de implementar tratamientos preventivos como la opción más eficiente a largo plazo.

Introducción

La infraestructura vial es uno de los activos más valiosos de cualquier nación, ya que tiene un impacto directo en el desarrollo económico y social al facilitar el transporte de bienes y personas, por lo que es necesario realizar un mantenimiento adecuado para evitar el deterioro y el incremento de los costes futuros de rehabilitación. Sin embargo, los presupuestos de las agencias públicas son limitados y no alcanzan a cubrir las necesidades de conservación, lo que genera una brecha cada vez mayor entre el estado actual de las infraestructuras y los niveles de inversión requeridos. En Estados Unidos, un tercio de las carreteras están en condiciones mediocres o deficientes, y uno de cada nueve puentes presenta deficiencias estructurales. En España, las necesidades de mantenimiento vial superan los 5500 millones de euros, pero los presupuestos se redujeron un 20 % en 2012, lo que agravó aún más la situación. Este mantenimiento tardío no solo incrementa los riesgos estructurales, sino que también triplica los costes de rehabilitación y los gastos operativos de los vehículos, lo que plantea un problema central: decidir cómo asignar los fondos disponibles de forma óptima para maximizar el rendimiento a largo plazo de las infraestructuras, respetando restricciones técnicas y económicas, y considerando los beneficios acumulados para los usuarios.

Metodología

Formulación del problema de optimización

El problema se define como la maximización de la LTE, un indicador que mide los beneficios acumulados derivados de una infraestructura bien mantenida durante su ciclo de vida.

  1. Función objetivo:
    • Maximizar el área bajo la curva de rendimiento de las infraestructuras (Area Bounded by the Performance Curve, ABPC). Este área refleja la calidad y el nivel de servicio de la infraestructura a lo largo del tiempo.
  2. Restricciones:
    • Presupuestaria: Garantizar que los costos anuales de mantenimiento no excedan el presupuesto disponible en cada año del periodo de planificación.
    • Técnica: Mantener las secciones de la red en una condición mínima aceptable. Esto se evalúa mediante indicadores como el Urban Pavement Condition Index (UPCI, Índice de Condición del Pavimento Urbano), que clasifica la calidad del pavimento en una escala del 1 (peor) al 10 (mejor).
  3. Variables de diseño:
    • Determinar qué secciones de la red deben tratarse, qué tratamiento aplicar y en qué momento realizarlo durante el horizonte de planificación.
  4. Parámetros:
    • Inventario: Datos sobre el tipo de pavimento, su longitud y ancho, condiciones climáticas y características del tráfico.
    • Técnicos: Condición inicial del pavimento, modelos de deterioro a lo largo del tiempo y el conjunto de tratamientos disponibles.
    • Económicos: Costos unitarios de mantenimiento para cada tratamiento.
    • Estratégicos: Periodo de planificación, tasa de descuento y estándares mínimos requeridos.
Las actividades de mantenimiento conllevan un aumento de la vida útil del firme (ΔSL) y, por tanto, una mejora inmediata de su estado (ΔUPCI) en el momento de su aplicación

Algoritmo GRASP-TA

El enfoque híbrido combina dos estrategias complementarias:

  1. GRASP (Procedimiento de Búsqueda Aleatoria Codiciosa Adaptativa):
    • Genera una población inicial de soluciones viables considerando una relajación controlada de las restricciones presupuestarias.
    • Utiliza funciones de priorización para evaluar el impacto de cada posible tratamiento en la LTE y seleccionar las mejores alternativas mediante un proceso probabilístico.
  2. TA (Aceptación de Umbral):
    • Realiza una optimización local a las soluciones generadas por GRASP.
    • Permite aceptar soluciones ligeramente peores en las primeras iteraciones para evitar quedarse atrapado en óptimos locales.
    • Ajusta iterativamente las restricciones presupuestarias relajadas en GRASP para cumplir con las condiciones originales.
Efecto del tratamiento sn para construir la solución en el año t con el algoritmo GRASP

Caso de estudio: red urbana en Santiago, Chile

La red analizada se encuentra en Santiago de Chile. Está compuesta por 20 secciones con pavimentos flexibles (asfálticos) y rígidos (hormigón). El clima de la región es mediterráneo, lo que influye en los patrones de deterioro del pavimento. La condición inicial media de la red es 6,8, según el Índice de Condición del Pavimento Urbano (UPCI), lo que indica una calidad intermedia.

Para los pavimentos asfálticos, los tratamientos evaluados incluyeron opciones de preservación, mantenimiento y rehabilitación. En preservación, el sellado de fisuras aumenta la vida útil en 2 años y tiene un coste de 0,99 USD/m². En el mantenimiento, el fresado y la repavimentación funcional ofrecen 10 años de vida útil por 23,24 USD/m². En rehabilitación, la rehabilitación en frío alcanza los 13 años con un coste de 36,50 USD/m².

Para los pavimentos de hormigón, los tratamientos incluyeron preservación y rehabilitación. El pulido con diamante aumenta la vida útil en 10 años y tiene un coste de 15,39 USD/m². La reconstrucción completa proporciona 25 años de servicio por un coste de 134,60 USD/m². Estos tratamientos representan opciones para diferentes niveles de deterioro y requisitos estructurales.

El programa optimizado mostró un impacto significativo en la efectividad a largo plazo (LTE). Se logró una mejora del 40 % en la LTE en comparación con las estrategias reactivas. Los tratamientos preventivos dominaron las decisiones, seleccionándose en el 80 % de los casos, lo que evidencia su mayor efectividad frente a opciones correctivas o de rehabilitación.

En términos de coste-eficacia, no se seleccionaron los tratamientos reciclados. Aunque ofrecen beneficios similares en términos de vida útil, su alto coste los hace menos competitivos frente a alternativas más económicas, lo que destaca la importancia de equilibrar costes y beneficios en el diseño de programas de mantenimiento.

Análisis de escenarios

1. Escenarios de inventario:

Se analizaron redes con diferentes proporciones de pavimentos asfálticos y de hormigón, con configuraciones del 25 %, 50 % y 75 % para cada tipo. También se estudiaron tres condiciones iniciales de las redes: buenas, intermedias y deficientes. Este análisis permitió evaluar la influencia de las características estructurales y del estado inicial en la optimización de los programas de mantenimiento.

En todos los casos, los resultados mostraron que la optimización mediante el algoritmo GRASP-TA era superior a las estrategias reactivas tradicionales. Esto demostró que el método es altamente adaptable a diversas configuraciones de red y capaz de ofrecer soluciones efectivas en términos de LTE, independientemente de las características de la red o de su estado inicial.

2. Escenarios presupuestarios:

El análisis incluyó variaciones en el presupuesto total, con incrementos y reducciones de hasta el 20 %, así como cambios en la distribución de los fondos a lo largo del tiempo. Se evaluaron dos configuraciones principales para entender su impacto en el rendimiento a largo plazo.

El escenario con mayor inversión en los primeros años mostró un aumento significativo de la LTE. Esto puso de manifiesto que la asignación temprana de fondos mejora sustancialmente los resultados del mantenimiento. Por el contrario, los aumentos progresivos anuales redujeron la LTE en un 15 % respecto al caso base, lo que indica que posponer la inversión perjudica el rendimiento de la red.

Conclusiones

Asignar más recursos durante los primeros años de un programa de mantenimiento es fundamental para optimizar el rendimiento a largo plazo de las infraestructuras. Este análisis pone de manifiesto la importancia de una planificación presupuestaria estratégica, ya que señala que el momento en que se invierten los recursos tiene un impacto considerable en los beneficios acumulados de la red.

  1. Eficiencia del método GRASP-TA: Diseña programas que maximizan la LTE bajo restricciones técnicas y económicas reales.
  2. Importancia de la prevención: Las actividades preventivas son significativamente más rentables a largo plazo.
  3. Estrategias presupuestarias: Es esencial priorizar mayores inversiones en los primeros años del programa para maximizar su impacto.
  4. Limitaciones de los tratamientos reciclados: Aunque presentan beneficios ambientales, su alto costo relativo limita su inclusión en las soluciones optimizadas cuando solo se consideran aspectos técnicos y económicos.

Como recomendaciones futuras habría que integrar criterios de sostenibilidad, como impactos ambientales y sociales, y extender el análisis a redes más grandes y diversas.

Referencia:

YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI:10.3846/13923730.2015.1120770

Aquí os dejo el artículo por si os resulta de interés.

Descargar (PDF, 1.2MB)

 

Tesis doctoral: Optimización social y ambiental de estructuras prefabricadas de hormigón armado bajo presupuestos restrictivos

De izquierda a derecha: Julián Alcalá, Tatiana García, Andrés Ruiz, Salvador Ivorra, Antonio Tomás y Víctor Yepes

Ayer, 4 de diciembre de 2024, tuvo lugar la defensa de la tesis doctoral de D. Andrés Ruiz Vélez, titulada “Optimal design of socially and environmentally efficient reinforced concrete precast modular road frames under constrained budgets”, dirigida por los profesores Víctor Yepes Piqueras y Julián Alcalá González. La tesis recibió la calificación de sobresaliente «cum laude». A continuación, presentamos un pequeño resumen de la misma.

Resumen:

La infraestructura de transporte es esencial para el desarrollo humano, ya que impulsa el crecimiento industrial y promueve la evolución social al mejorar la interacción y la conectividad. Su construcción actúa como un catalizador de transformaciones socioeconómicas, puesto que fomenta las economías locales y facilita el flujo de recursos y de la fuerza laboral. Sin embargo, la creciente concienciación sobre los impactos negativos de las prácticas insostenibles en la ingeniería de la construcción exige una transición hacia métodos más responsables. Históricamente, la viabilidad económica ha sido el enfoque principal en ingeniería estructural. No obstante, en la actualidad se otorga mayor relevancia a la evaluación de los impactos a lo largo del ciclo de vida de los proyectos. Aunque este enfoque supone un avance en la integración del diseño estructural con los objetivos de desarrollo sostenible, todavía no abarca plenamente la complejidad y diversidad que implica la sostenibilidad a lo largo de todo el ciclo de vida de las infraestructuras.

Esta tesis doctoral desarrolla de manera sistemática un marco de diseño que integra la sostenibilidad en la construcción de infraestructuras de transporte. Se propone un enfoque modular y prefabricado para proyectos de estructuras viales, que se posiciona como una alternativa más eficiente y atractiva frente a los métodos tradicionales de hormigonado in situ. El diseño estructural, junto con los procesos ambientales y sociales asociados al ciclo de vida de la estructura, se modela mediante un enfoque matemático avanzado. Este modelo permite aplicar técnicas de optimización monoobjetivo y multiobjetivo, combinadas con algoritmos multicriterio de toma de decisiones. Dada la complejidad y la diversidad de variables involucradas, el uso de métodos exactos de optimización no es viable. Por ello, la investigación adopta metaheurísticas híbridas y basadas en entornos para minimizar el coste final de la estructura desde una perspectiva monoobjetivo. Entre las técnicas evaluadas, las metaheurísticas de recocido simulado y aceptación por umbrales, calibradas con cadenas de mayor longitud, ofrecen resultados de alta calidad, aunque con un considerable esfuerzo computacional. En contraste, una versión híbrida del recocido simulado enriquecida con un operador de mutación común en algoritmos basados en poblaciones alcanza soluciones de calidad comparable con un menor esfuerzo computacional. La hibridación de metaheurísticas se presenta como una estrategia eficaz para ampliar las capacidades exploratorias de estos algoritmos, optimizando el equilibrio entre la calidad de los resultados y la eficiencia computacional.

El análisis del ciclo de vida de diferentes configuraciones de marcos con un coste óptimo revela claras ventajas ambientales del enfoque modular prefabricado en comparación con la construcción convencional in situ. Sin embargo, las implicaciones sociales son más complejas y destacan la relevancia de incorporar los impactos del ciclo de vida como funciones objetivo en el proceso de optimización. Este hallazgo subraya la necesidad de emplear técnicas multicriterio para evaluar y clasificar eficazmente las alternativas. De este modo, se garantiza un equilibrio adecuado entre los impactos ambientales y sociales, y se asegura una toma de decisiones más integral y sostenible dentro del marco del diseño y la planificación.

Esta investigación desarrolla operadores de cruce, mutación y reparación diseñados para discretizar eficazmente el problema de optimización, dotando así a los algoritmos genéticos y evolutivos de la capacidad necesaria para abordar la complejidad del proceso de optimización multiobjetivo. En particular, el operador de reparación estadístico muestra un buen rendimiento cuando se combina con los algoritmos genéticos NSGA-II y NSGA-III, así como con el algoritmo evolutivo RVEA. Aunque existen diferencias metodológicas entre estas técnicas, la herramienta de toma de decisiones FUCA produce clasificaciones equivalentes a las obtenidas mediante el método de ponderación aditiva simple. Esta coherencia también se observa con técnicas como TOPSIS, PROMETHEE y VIKOR. Para garantizar la imparcialidad en la ponderación de criterios, se aplica un proceso de cálculo basado en la teoría de la entropía, lo que proporciona un enfoque metódico a las técnicas de decisión multicriterio. La integración de algoritmos de optimización multiobjetivo con herramientas de decisión multicriterio en un marco de diseño fundamentado en modelos matemáticos permite identificar y clasificar diseños óptimos no dominados. Estos diseños logran un equilibrio integral entre las dimensiones económica, ambiental y social, y promueven la sostenibilidad del ciclo de vida de la estructura.

Referencias:

RUIZ-VÉLEZ, A.; GARCÍA, J.; PARTSKHALADZE, G.; ALCALÁ, J.; YEPES, V. (2024). Enhanced Structural Design of Prestressed Arched Trusses through Multi-Objective Optimization and MCDM. Mathematics, 12(16), 2567. DOI:10.3390/math12162567

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Enhancing Robustness in Precast Modular Frame Optimization: Integrating NSGA-II, NSGA-III, and RVEA for Sustainable Infrastructure. Mathematics, 12(10):1478. DOI:10.3390/math12101478

RUIZ-VÉLEZ, A.; GARCÍA, J.; ALCALÁ, J.; YEPES, V. (2024). Sustainable Road Infrastructure Decision-Making: Custom NSGA-II with Repair Operators for Multi-objective Optimization. Mathematics, 12(5):730. DOI:10.3390/math12050730

RUIZ-VÉLEZ, A.; ALCALÁ, J.; YEPES, V. (2023). A parametric study of optimum road modular hinged frames by hybrid metaheuristics. Materials, 16(3):931. DOI:10.3390/ma16030931

RUIZ-VÉLEZ, A.; ALCALÁ, J.; YEPES, V. (2023). Optimal design of sustainable reinforced concrete precast hinged frames. Materials, 16(1):204. DOI:10.3390/ma16010204

RUIZ-VÉLEZ, A.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2023). Perspectiva social de un marco modular óptimo: Análisis integral del ciclo de vida. Revista CIATEC-UPF, 15(1):1-19. DOI:10.5335/ciatec.v15i1.14974

RUIZ-VÉLEZ, A.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2022). Optimización de marcos articulados prefabricados de hormigón armado mediante recocido simulado. Revista CIATEC-UPF, 14(3):41-55. DOI:10.5335/ciatec.v14i3.14079