Optimización multiobjetivo de pasarelas mixtas: un equilibrio entre sostenibilidad y protección frente al fuego

Acaban de publicar un artículo nuestro en Structural Engineering and Mechanicsuna de las revistas de referencia del JCR. Este trabajo sintetiza los resultados de un estudio en el que se presenta un marco de optimización multiobjetivo innovador para el diseño de pasarelas peatonales con estructuras mixtas de acero y hormigón.

La investigación se enmarca en el proyecto RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. A continuación, se presenta un resumen del trabajo y de la información contextual.

El objetivo principal de esta investigación ha sido equilibrar la eficiencia económica y medioambiental con la seguridad estructural y el confort del usuario, integrando de manera única la resiliencia ante incendios. A diferencia de investigaciones previas, este trabajo incorpora seis escenarios distintos de exposición al fuego, desde 320 hasta 720 segundos, para evaluar el rendimiento de la estructura en condiciones extremas.

Los resultados revelan una relación directa y lineal entre el coste y las emisiones de CO₂, lo que demuestra que por cada dólar estadounidense (1 USD) ahorrado en el coste por metro de la estructura, se reduce la emisión de 0,7727 kg de CO₂. Este descubrimiento posiciona la optimización de costes como una estrategia que favorece la sostenibilidad económica y medioambiental.

Un descubrimiento clave es que se pueden lograr mejoras sustanciales en la seguridad contra incendios con inversiones moderadas. Un aumento del 23 % en el coste permite que la estructura resista casi 8 minutos (460 segundos) de exposición al fuego antes de colapsar, mientras que incrementos menores, del 3,91 % y 15,06 %, aseguran la estabilidad durante 320 y 400 segundos, respectivamente. El estudio también pone de manifiesto un cambio fundamental en la configuración del diseño óptimo: mientras que los diseños esbeltos son más eficientes en términos de coste y emisiones en condiciones normales, las configuraciones más compactas son necesarias para garantizar la seguridad en caso de exposición prolongada al fuego. Estos resultados ofrecen directrices prácticas para el desarrollo de infraestructuras urbanas más seguras, resilientes y sostenibles.

1. Marco de optimización multiobjetivo.

El estudio aborda una brecha crítica en ingeniería estructural: la falta de investigaciones que apliquen métodos de optimización a infraestructuras reales, integrando simultáneamente criterios de sostenibilidad (económicos, medioambientales y sociales) y de seguridad, especialmente en condiciones extremas, como la exposición al fuego.

1.1. Metodología aplicada

El análisis se centra en una pasarela peatonal de estructura mixta de acero y hormigón, con una luz de 17,5 metros, ubicada en el sur de Brasil. Con el fin de hallar las soluciones óptimas, se empleó un algoritmo de Búsqueda de Armonía Multiobjetivo (MOHS, por sus siglas en inglés), desarrollado a medida en Python. El proceso de optimización busca minimizar simultáneamente tres funciones objetivo:

  • Coste: coste de los materiales necesarios para construir la estructura, basado en los precios del mercado brasileño.
  • Emisiones de CO₂: el impacto ambiental, medido por las emisiones de CO₂ asociadas a la producción de los materiales, para lo que se han utilizado indicadores específicos de la región objeto de estudio.
  • Aceleración vertical máxima: medida del confort de los peatones, calculada a partir de las vibraciones inducidas por su movimiento.

El modelo tiene en cuenta ocho variables de diseño discretas, como el espesor de la losa de hormigón y las dimensiones de las vigas de acero, lo que da como resultado un espacio de búsqueda de 7×10¹¹ soluciones posibles.

Ilustración de la pasarela mixta

1.2. Escenarios de exposición al fuego.

Una de las innovaciones centrales del estudio es incorporar la resiliencia al fuego en el proceso de optimización. Se ha simulado un escenario de incendio de un vehículo debajo de una pasarela utilizando una curva tiempo-temperatura específica, desarrollada a partir de pruebas experimentales realizadas en puentes no confinados. Además de la condición a temperatura ambiente (0 segundos), se analizaron seis periodos de exposición al fuego que provocaron una degradación significativa de las propiedades mecánicas del acero.

Periodo de exposición al fuego (s) Temperatura del acero (°C) Factor de reducción (límite elástico) Factor de reducción (módulo de elasticidad)
0 20 1,00 1,00
320 200 1,00 0,90
400 300 1,00 0,80
460 400 1,00 0,70
510 500 0,78 0,60
560 600 0,47 0,31
720 700 0,23 0,13

2. Hallazgos clave y análisis de resultados.

El proceso de optimización generó un frente de Pareto tridimensional que muestra los equilibrios entre coste, emisiones y confort en los distintos escenarios de incendio.

2.1. Relación lineal entre el coste y las emisiones de CO₂.

Se identificó una relación directa y consistente entre el coste de fabricación y las emisiones de CO₂ en todos los escenarios analizados. Los datos demuestran que cada real brasileño (R$) ahorrado mediante la optimización equivale a una reducción de 0,1358 kg de CO₂. Convertido a dólares estadounidenses, esto equivale a una reducción de 0,7727 kg de CO₂ por cada dólar estadounidense ahorrado por metro de pasarela.

Esta correlación confirma que la optimización económica es una herramienta eficaz para promover la sostenibilidad medioambiental, especialmente en regiones que necesitan desarrollar infraestructuras sin sacrificar la eficiencia económica.

2.2. Intercambio entre la resistencia al fuego y el coste.

Como era de esperar, aumentar la resistencia de la estructura al fuego implica un mayor coste y, por tanto, más emisiones. Sin embargo, el estudio demuestra que es posible lograr mejoras significativas en la seguridad con incrementos de coste relativamente bajos o moderados.

  • Un incremento del 3,91 % en el coste permite que la estructura resista durante 320 segundos (5 minutos) de fuego.
  • Un incremento del 15,06 % extiende la resistencia a 400 segundos (6,5 minutos).
  • Un incremento moderado del 23 % evita el colapso durante casi ocho minutos (460 segundos), lo que proporciona un tiempo valioso para la evacuación.
  • Diseñar para resistir un incendio de 12 minutos (720 segundos) incrementa el coste en más del 400 %, por lo que resulta inviable en la mayoría de los casos.

2.3. Impacto en el confort de los peatones.

Los objetivos de coste y confort son conflictivos: un mayor confort (menor aceleración vertical) exige una mayor rigidez estructural, lo que se traduce en un mayor consumo de materiales.

  • Pasar de un nivel de confort «mínimo» a «medio» implica un aumento del coste promedio del 44 %.
  • Mejorar el nivel de confort de «medio» a «máximo» solo requiere un aumento promedio del 6 % en el coste, lo que sugiere que es una inversión factible en la mayoría de los escenarios.
  • La excepción es el escenario de 12 minutos de fuego, en el que alcanzar el nivel de confort «máximo» supone un 68 % más que el «medio», debido a la grave degradación del rendimiento del acero.

3. Implicaciones prácticas y configuraciones óptimas de diseño.

El análisis de las variables de diseño de las soluciones óptimas revela patrones claros y ofrece implicaciones prácticas para la ingeniería.

3.1. Evolución del diseño en función de la exposición al fuego.

La configuración geométrica óptima de la pasarela varía drásticamente según el tiempo de exposición al fuego considerado.

  • En ausencia de fuego o con una exposición breve, la solución más eficiente es un diseño de alta esbeltez, con vigas de acero altas y delgadas que se acercan a los límites normativos. Así se minimiza el consumo de material, lo que reduce costes y emisiones.
  • Con una exposición prolongada al fuego (es decir, superior a 510 segundos), la solución óptima se desplaza hacia configuraciones más compactas y menos esbeltas. Se observa un aumento considerable del espesor del alma y de las alas de las vigas de acero.

Este cambio se debe a que, a altas temperaturas, el límite de esbeltez (que depende del módulo de elasticidad y del límite elástico del acero) disminuye considerablemente. En los escenarios más extremos, el límite de esbeltez deja de ser una restricción activa y el algoritmo prioriza la robustez geométrica para cumplir con otros requisitos de diseño.

Periodo de exposición (s) Esbeltez óptima / Límite de esbeltez
0 99,17 %
460 99,54 %
560 68,45 %
720 46,98 %

3.2. Estrategias de materiales.

  • Preferencia por el acero: el estudio revela que, para aumentar la seguridad contra incendios, es más rentable y sostenible incrementar el consumo de acero (a pesar de la degradación de sus propiedades) que aumentar la rigidez mediante una losa de hormigón más gruesa.
  • Interacción total: en todas las soluciones óptimas de menor coste, el grado de interacción entre la viga de acero y la losa de hormigón es del 100 % (α = 1,0), lo que indica que el comportamiento compuesto completo es la opción más eficiente.

4. Conclusiones principales

El estudio presenta un marco sólido para el diseño de pasarelas mixtas de acero y hormigón y demuestra que es posible equilibrar sostenibilidad, economía y seguridad. Las conclusiones más relevantes son las siguientes:

  • Sostenibilidad y coste vinculados: existe una relación lineal y cuantificable entre la reducción de costes y la disminución de las emisiones de CO₂, por lo que la optimización económica puede utilizarse como herramienta para la sostenibilidad ambiental.
  • Seguridad contra incendios asequible: es posible mejorar significativamente la seguridad de una pasarela ante un incendio con incrementos de coste moderados y económicamente viables.
  • El diseño se adapta al riesgo: la configuración óptima de una estructura no es universal; los diseños esbeltos son ideales para condiciones normales, pero las configuraciones compactas son cruciales para la resiliencia en escenarios de incendio prolongados.
  • Implicaciones para el diseño: los resultados subrayan la importancia de incorporar escenarios de riesgo extremo en las primeras fases del diseño estructural para crear infraestructuras más seguras y resilientes sin comprometer desproporcionadamente los recursos.

Estas conclusiones se aplican únicamente a la tipología de estructura y al escenario de incendio estudiados, así como a los costes y a los factores de emisión regionales. Por tanto, se requieren más investigaciones para validar y extender estos resultados a otros contextos.

Referencia:

TRES JUNIOR, F.L.; DE MEDEIROS, G.F.; KRIPKA, M.; YEPES, V. (2025). Designing for Safety and Sustainability: Optimization of Fire-Exposed Steel-Concrete Composite Footbridges. Structural Engineering and Mechanics, 96 (4):337-350. DOI:10.12989/sem.2025.96.4.337

En esta conversación puedes escuchar información interesante sobre este tema.

En este vídeo se resumen las ideas más importantes de esta investigación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Más allá del coste inicial: cómo elegir la mejor estrategia de refuerzo sísmico con criterios de sostenibilidad

Acaban de publicarnos un artículo en la revista Mathematics, revista indexada en el primer decil del JCR. Desarrolla un marco de decisión multicriterio que integra análisis del ciclo de vida (económico, ambiental y social) con técnicas avanzadas de decisión en entornos de incertidumbre (DEMATEL, DANP y TOPSIS en entornos difusos). El modelo se ha aplicado a un caso real de refuerzo de pilares de hormigón armado en Quito, una ciudad expuesta a riesgos sísmicos y volcánicos, por lo que los resultados son especialmente relevantes para la práctica profesional. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València, y es fruto de la colaboración con la Universidad Central de Ecuador. A continuación se recoge un resumen sintético del trabajo.

En los últimos años, la ingeniería civil ha tenido que replantear las estrategias de intervención en el patrimonio edificado. En regiones con alta peligrosidad sísmica, es imperioso reforzar las estructuras de hormigón armado construidas conforme a normativas antiguas. La demolición y reconstrucción, aunque técnicamente es posible, tiene un gran impacto ambiental y social, y supone un coste elevado. Por este motivo, la investigación reciente se orienta hacia metodologías que permitan adoptar soluciones integrales que equilibren la seguridad estructural, la sostenibilidad ambiental, la viabilidad económica y la aceptación social.

Un objetivo ambicioso: tomar decisiones informadas y sostenibles.

El objetivo del estudio es proporcionar a los ingenieros un procedimiento para priorizar técnicas de refuerzo sísmico de pilares de hormigón armado que tenga en cuenta de manera simultánea los siguientes aspectos:

  • Costes de ciclo de vida (LCC): diseño, construcción, mantenimiento y demolición.
  • Impactos ambientales (LCA): consumo de recursos, emisiones con efectos sobre la salud humana y daños a los ecosistemas.
  • Impactos sociales (S-LCA): seguridad de los trabajadores, derechos laborales, efectos sobre la comunidad local, compatibilidad arquitectónica y tiempo de interrupción del uso.

Lo novedoso es que estos criterios no se tratan como compartimentos estancos, sino como un sistema interdependiente en el que las decisiones económicas repercuten en lo social y lo ambiental, y viceversa.

La metodología paso a paso

  1. Selección de criterios: se identificaron nueve indicadores distribuidos en tres dimensiones (económica, ambiental y social).
  2. Análisis de relaciones causales (fuzzy DEMATEL): permitió visualizar qué criterios actúan como causa (por ejemplo, el coste de construcción influye en varios indicadores) y cuáles como efecto (por ejemplo, la salud humana se ve afectada por las decisiones ambientales y económicas).
  3. Determinación de pesos relativos (DANP): se asignó importancia a cada criterio teniendo en cuenta esas interdependencias. La dimensión social emergió como la de mayor peso global (44,6%), seguida de la ambiental (32,2%) y la económica (23,1%).
  4. Evaluación de alternativas (TOPSIS): se compararon tres técnicas habituales de refuerzo de pilares:
    • Encamisado con hormigón armado.
    • Encamisado con acero.
    • Revestimiento con CFRP (polímeros reforzados con fibra de carbono).
      Cada una se evaluó en todas las fases del ciclo de vida, desde la extracción de materias primas hasta el final de vida.

Resultados: el CFRP como mejor opción global

El análisis mostró perfiles muy diferenciados:

  • Hormigón armado (RC):
    • Ventaja: la alternativa más barata en coste inicial y en LCC.
    • Inconveniente: presenta los mayores impactos ambientales y sociales, debido al uso intensivo de materiales (cemento y áridos) y a la mayor duración y molestias de obra.
  • Acero (ST):
    • Ventaja: menor impacto social que el hormigón, reducción moderada de impactos ambientales.
    • Inconveniente: costes significativamente más altos, sobre todo en mantenimiento y fin de vida (protecciones contra corrosión, demolición).
  • CFRP:
    • Ventaja: mejor desempeño ambiental (hasta un 81% menos de consumo de recursos respecto al RC) y social (reducción de hasta un 85% en impactos sobre la sociedad). Además, tiempos de ejecución mucho más cortos, con mínima afectación al uso del edificio.
    • Inconveniente: coste inicial muy superior (un 154% más que el RC).
    • Resultado: pese a ese mayor coste inicial, es la alternativa mejor valorada globalmente cuando se consideran los 50 años de vida útil.

La conclusión es clara: el criterio de sostenibilidad a largo plazo favorece el uso del CFRP, aunque su adopción aún depende de la disponibilidad económica y de la madurez del mercado en cada contexto.

Aplicaciones prácticas en la ingeniería real

Para el proyecto de refuerzo de una estructura, este estudio ofrece varias lecciones prácticas:

  • Justificación técnica y económica: el marco permite presentar a clientes y administraciones un análisis riguroso que va más allá del presupuesto inicial, considerando impactos a 50 años.
  • Planificación de obra: la valoración de los tiempos de intervención y la compatibilidad arquitectónica muestra que soluciones como el CFRP pueden reducir notablemente la interrupción de la actividad en edificios de uso crítico (hospitales, colegios, edificios administrativos).
  • Selección de materiales: el análisis evidencia cómo el acero requiere medidas de protección adicionales frente a la corrosión, mientras que el hormigón aumenta considerablemente la huella de carbono. Esto impulsa a considerar materiales compuestos, incluso con su mayor precio, cuando la sostenibilidad y el servicio a la comunidad son prioritarios.
  • Diseño normativo y políticas públicas: al integrar impactos sociales, el modelo puede orientar normativas de rehabilitación sísmica en países con gran stock de edificaciones vulnerables, priorizando soluciones que maximicen beneficios sociales, además de estructurales.

Conclusiones y recomendaciones para la práctica profesional

  1. Mirar más allá del coste inicial: la ingeniería actual debe adoptar un enfoque de ciclo de vida para que las decisiones sean sostenibles y no hipotequen a futuras generaciones.
  2. Dar peso a lo social: en muchos contextos, el impacto en trabajadores y usuarios pesa tanto como la seguridad estructural. Reducir los tiempos de obra y las afecciones al entorno puede ser determinante.
  3. Promover materiales innovadores: el CFRP se posiciona como un referente en refuerzos sísmicos por su durabilidad, bajo impacto ambiental y beneficios sociales.
  4. Aplicar marcos multicriterio: metodologías como la propuesta permiten al ingeniero defender decisiones complejas con base científica y transparencia.
  5. Aprovechar el modelo en la planificación pública: puede guiar programas de rehabilitación masiva en países sísmicamente activos, optimizando recursos y beneficios.

En definitiva, este trabajo no solo aporta un modelo matemático, sino también una forma de pensar y justificar nuestras decisiones como ingenieros civiles. Es un claro ejemplo de cómo la integración de herramientas de análisis avanzado con criterios de sostenibilidad puede transformar la práctica profesional y alinearla con los retos del siglo XXI.

Este audio os puede servir para entender el trabajo realizado.

Os dejo un vídeo que resume este trabajo.

Referencia:

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

Como el artículo está publicado en abierto, os lo dejo para su descarga.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Métodos de decisión multicriterio aplicados a los proyectos vivienda social

Acaban de publicarnos un artículo en la revista Journal of Civil Engineering and Management, revista indexada en el JCR. Presenta un análisis exhaustivo de la investigación científica en torno a la evaluación de las viviendas sociales. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. A continuación se recoge un resumen sintético del trabajo.

La evaluación de proyectos de vivienda social es un proceso complejo que requiere tener en cuenta múltiples factores para conseguir comunidades más resilientes y sostenibles. Los métodos de decisión multicriterio (MCDM) son herramientas esenciales que proporcionan un marco estructurado para la adopción de decisiones informadas, ya que integran criterios cuantitativos y cualitativos. Esta revisión bibliográfica, basada en 93 artículos publicados entre 1994 y marzo de 2025, destaca la creciente prevalencia de los MCDM, el enfoque en la sostenibilidad (que abarca aspectos ambientales, sociales, económicos y técnicos) y la evolución hacia técnicas más modernas, como la lógica difusa y neutrosófica. Aunque el proceso de jerarquía analítica (AHP) y TOPSIS son los métodos más utilizados, es necesario integrar más los MCDM en todas las fases del proceso de construcción para mejorar la constructibilidad y la sostenibilidad, sobre todo en la vivienda social.

Contexto y desafío de la vivienda social

La vivienda es un elemento clave para cubrir las necesidades básicas de la población y fortalecer la cohesión social. Sin embargo, el crecimiento demográfico y la urbanización han agravado la escasez de viviendas asequibles, sostenibles y socialmente justas en todo el mundo. El modelo tradicional de construcción no solo encarece los costes a lo largo de la vida útil de la vivienda, sino que también provoca impactos negativos en el medio ambiente y en la salud.

En este contexto, la vivienda social se presenta como una solución esencial para atender a las poblaciones más vulnerables, garantizar unas condiciones mínimas de habitabilidad y calidad de vida, y promover la inclusión social.

No obstante, el desarrollo urbano desordenado ha favorecido la expansión de asentamientos informales y la falta de infraestructuras básicas adecuadas. Para que las iniciativas de vivienda social sean efectivas, es necesario adoptar un enfoque integral que tenga en cuenta la viabilidad económica, la sostenibilidad medioambiental y la equidad social. En un mundo donde la urbanización acelerada amenaza los medios de vida de millones de personas, buscar soluciones sostenibles es cada vez más urgente.

Métodos de decisión multicriterio (MCDM)

Los MCDM son herramientas poderosas para la toma de decisiones en escenarios con múltiples objetivos o criterios, facilitando la evaluación y comparación de alternativas basadas en varios aspectos cruciales. Se clasifican en:

  • Métodos de Puntuación: Asignan puntuaciones numéricas a los criterios para comparación (e.g., SAW, COPRAS).
  • Métodos Basados en Distancia: Evalúan alternativas midiendo la distancia a un punto ideal positivo y a un punto ideal negativo (e.g., TOPSIS, VIKOR, ARAS, EDAS).
  • Métodos de Comparación Pareada: Comparan alternativas directamente para determinar preferencias basadas en criterios específicos (e.g., AHP, ANP).
  • Métodos de Superación (Outranking): Se basan en la noción de que una alternativa óptima es preferible si es igual o superior en todos los criterios y al menos uno de ellos (e.g., PROMETHEE, ELECTRE).
  • Funciones de Utilidad (Valor) Multi-atributo: Representan las preferencias del tomador de decisiones a través de funciones de utilidad/valor (e.g., MAUT, SWARA, MIVES).

Prevalencia y tendencias:

  • AHP es el método individual dominante (75% de los casos individuales), seguido por TOPSIS.
  • El 48% de los artículos revisados utilizan la comparación pareada, siendo AHP el método principal (41 artículos).
  • Los métodos basados en distancia representan el 21% del uso, con TOPSIS como la opción predominante.
  • Métodos híbridos: Aunque se aboga por la integración de diferentes MCDM, su adopción generalizada es limitada. La combinación AHP + TOPSIS es frecuente, aprovechando la capacidad de AHP para estructurar criterios y la de TOPSIS para identificar y clasificar alternativas.
  • Números Crisp vs. Lógica Difusa/Neutrosófica: La mayoría de los estudios (84%) emplean números crisp, lo que indica un enfoque en datos exactos. Sin embargo, desde 2011, ha habido un aumento en el uso de la lógica difusa (15% de los manuscritos) para manejar la imprecisión y vaguedad inherentes a los juicios humanos. La lógica neutrosófica (1%) también ha comenzado a explorarse.
  • La Agenda 2030 y el ODS 11 («Ciudades y Comunidades Sostenibles»), junto con la adopción de la Nueva Agenda Urbana en 2015, han impulsado un aumento significativo en las publicaciones (más del 77% entre 2016 y la actualidad), «subrayando el papel fundamental de la vivienda adecuada y sostenible como piedra angular para lograr ciudades sostenibles.

Criterios de evaluación en vivienda social

Los proyectos de vivienda social se evalúan considerando cuatro dimensiones principales, reflejando un enfoque integral de sostenibilidad:

  • Económicos: Predominantemente enfocados en costos de construcción, reparación y mantenimiento, y gastos operativos de los proyectos de vivienda. Solo siete artículos revisados incluyen el Coste del Ciclo de Vida (LCC) según ISO 15686-5.
  • Ambientales: Abordan consumo de energía, eficiencia hídrica, emisiones contaminantes, gestión de residuos y energía del ciclo de vida (LCE). El consumo de energía y las emisiones de contaminantes son los aspectos más evaluados.
  • Sociales: Los criterios incluyen salud y seguridad, nivel de confort, facilidad de servicios y satisfacción del usuario. La accesibilidad a servicios públicos y la inclusión social son aspectos clave.
  • Técnicos: Comprenden especificaciones del proyecto, diseño, construcción y criterios de programación, con énfasis en la innovación, calidad y adhesión a los plazos.

Hay un cambio hacia evaluaciones multidimensionales, con «comparación por pares, superación y métodos basados en la distancia» emergiendo como herramientas esenciales.

Fases del proceso de construcción y MCDM

La aplicación de MCDM se distribuye en varias fases de la constructibilidad:

  • Fase de diseño: Es la fase más estudiada, cubriendo optimización del diseño interior, selección de sistemas de construcción óptimos y diseño MEP (Mecánico, Eléctrico y de Fontanería) priorizando el confort térmico.
  • Fase de planificación conceptual: Se centra en la viabilidad económica, la elección de ubicaciones adecuadas y la consideración de las necesidades de los habitantes, incluyendo acceso a servicios públicos, transporte, seguridad y áreas recreativas.
  • Fase de mantenimiento y puesta en marcha: Evalúa el bienestar de los ocupantes, las renovaciones arquitectónicas y energéticas, y las técnicas de refuerzo estructural.
  • Fase de construcción: Se enfoca en el uso de maquinaria, materiales y mano de obra, abordando preocupaciones de seguridad.
  • Fase de adquisiciones: Aborda la evaluación de proveedores y la gestión de la cadena de suministro, un aspecto vital pero poco representado.

A pesar de las intervenciones de la ciencia de la construcción que se centran en el conocimiento, la planificación, las adquisiciones y la ejecución, la investigación en este ámbito aborda principalmente cuestiones convencionales en lugar de conceptos emergentes como la economía circular y el Análisis del Ciclo de Vida (ACV) completo.

Discusión y direcciones futuras de investigación

La revisión destaca la necesidad de:

  • Integración de MCDM más allá de la viabilidad económica: Ampliar el alcance para abarcar la viabilidad social, técnica y ambiental.
  • Mayor uso de métodos híbridos y lógicas avanzadas: A pesar de la complejidad de los proyectos de vivienda social, la aplicación de la lógica difusa y neutrosófica en MCDM individuales e híbridos sigue siendo limitada en comparación con otras disciplinas de ingeniería. Se recomienda la integración de enfoques híbridos que integren MCDM con lógica difusa o neutrosófica, para evaluaciones más precisas.
  • Estandarización de criterios de evaluación: Existe una falta de consenso en los criterios de evaluación de la sostenibilidad, lo que subraya la «necesidad de un marco estandarizado que integre sistemáticamente estos aspectos. Un enfoque de Evaluación del Ciclo de Vida de la Sostenibilidad (SLCA) podría ser beneficioso.
  • Exploración de MCDM alternativos: Métodos como el Best-Worst Method (BWM) y el Combinative Distance-Based Assessment (CODAS) ofrecen ventajas sobre los métodos tradicionales en ciertos escenarios y deberían ser considerados.
  • Mayor aplicación del análisis de sensibilidad: Solo 17 de los artículos revisados emplearon análisis de sensibilidad, a pesar de su crucial papel para determinar la solidez de los métodos y la validez de los resultados.
  • Integración de tecnologías como GIS y BIM: La combinación de GIS (Sistemas de Información Geográfica), BIM (Modelado de Información de Construcción) y MCDM ha demostrado ser efectiva en la ingeniería civil, permitiendo análisis espaciales y temporales multicriterio. Esta integración puede optimizar la selección de sitios, el uso de recursos y la planificación sostenible a largo plazo. Sin embargo, su combinación es limitada en la literatura revisada.
  • Abordar la interdependencia de los criterios: La naturaleza holística y multifacética de la sostenibilidad implica que los criterios están inherentemente interconectados, lo que desafía los enfoques individuales de MCDM. Un reconocimiento exhaustivo de esta interdependencia es vital.

7. Conclusiones clave

  • Los MCDM son herramientas versátiles y esenciales para evaluar proyectos de vivienda social, con AHP, TOPSIS y COPRAS como los más prevalentes.
  • Existe una tendencia creciente hacia el uso de MCDM con lógicas de incertidumbre como la difusa y neutrosófica, aunque su aplicación todavía es limitada.
  • La sostenibilidad es un factor clave, siendo la dimensión social la más analizada, seguida por la económica, ambiental y técnica. No obstante, se necesita un marco estandarizado y la integración del Análisis del Ciclo de Vida (LCA) para evaluaciones más completas.
  • La aplicación de MCDM en todas las fases de la construcción mejora la toma de decisiones, optimiza los recursos y permite la identificación temprana de riesgos.
  • Es crucial investigar la jerarquización de criterios y la optimización de modelos híbridos para mejorar la aplicabilidad de los MCDM en proyectos de interés social.
  • La adopción de innovaciones como la construcción modular y el uso de materiales sostenibles es fundamental para la eficiencia y sostenibilidad de la vivienda social.

Este documento de información busca guiar a los profesionales de la investigación y a los tomadores de decisiones hacia la integración de métodos MCDM modernos para abordar de manera más efectiva los complejos desafíos de la vivienda social, impulsando así decisiones más informadas y sostenibles.

Os dejo un resumen en audio donde se explican las ideas principales del trabajo.

Al estar publicado en abierto, os dejo el artículo completo.

Pincha aquí para descargar

Glosario de términos clave

  • AHP (Analytic Hierarchy Process / Proceso Analítico Jerárquico): Un método MCDM basado en comparaciones por pares para estructurar y analizar decisiones complejas, determinando la importancia relativa de los criterios y alternativas.
  • ANP (Analytic Network Process / Proceso de Red Analítico): Una extensión del AHP que permite relaciones más complejas entre los criterios y las alternativas, incluyendo interdependencias y retroalimentación.
  • ARAS (Additive Ratio Assessment / Evaluación por Razón Aditiva): Un método MCDM basado en el cálculo de ratios aditivos para clasificar alternativas en función de su rendimiento.
  • BIM (Building Information Modelling / Modelado de Información de Construcción): Un proceso inteligente basado en modelos 3D que permite a los profesionales de la arquitectura, ingeniería y construcción planificar, diseñar, construir y gestionar edificios e infraestructuras de manera más eficiente.
  • COPRAS (Complex Proportional Assessment / Evaluación Proporcional Compleja): Un método MCDM de puntuación que evalúa alternativas basándose en su proximidad a un punto ideal y a un punto anti-ideal.
  • Crisp numbers (Números nítidos): Valores precisos y exactos utilizados en los cálculos matemáticos, que no consideran la imprecisión o la ambigüedad inherente a algunos conceptos humanos o datos subjetivos.
  • Constructability (Constructibilidad): La medida en que el diseño de un proyecto facilita la construcción, permitiendo un uso eficiente de los recursos y la mano de obra para mejorar el costo, el tiempo, la calidad y la seguridad.
  • DEMATEL (Decision Making Trial and Evaluation Laboratory / Laboratorio de Evaluación y Toma de Decisiones): Un método MCDM que ayuda a analizar relaciones causa-efecto entre criterios, permitiendo comprender su interdependencia.
  • EDAS (Evaluation Based on Distance to Average Solution / Evaluación Basada en la Distancia a la Solución Promedio): Un método MCDM que evalúa alternativas en función de su distancia a la solución promedio.
  • ELECTRE (Elimination and Choice Expressing Reality Method / Método de Eliminación y Elección que Expresa la Realidad): Una familia de métodos MCDM de superación que compara alternativas por pares y determina su relación de preferencia o indiferencia.
  • Fuzzy logic (Lógica difusa): Una forma de lógica multivaluada que permite valores de verdad intermedios entre «verdadero» y «falso», utilizada para modelar la incertidumbre y la vaguedad en los juicios humanos.
  • GIS (Geographic Information Systems / Sistemas de Información Geográfica): Un sistema que crea, gestiona, analiza y mapea todo tipo de datos. Relaciona los datos con la ubicación, analizando la información geográfica para organizar capas de información en visualizaciones mediante mapas.
  • Hybrid MCDMs (MCDM híbridos): Combinaciones de dos o más métodos MCDM, o de MCDM con otras herramientas (como BIM o GIS), para aprovechar las fortalezas de cada técnica y abordar la complejidad de los problemas de decisión.
  • LCA (Life Cycle Assessment / Análisis del Ciclo de Vida): Una metodología para evaluar los impactos ambientales asociados a todas las etapas de la vida de un producto o servicio, desde la extracción de materias primas hasta su disposición final.
  • LCC (Life Cycle Cost / Costo del Ciclo de Vida): El cesto total de un activo a lo largo de su vida útil, incluyendo los costos iniciales de adquisición, operación, mantenimiento, y disposición final.
  • MCDM (Multi-Criteria Decision Methods / Métodos de Decisión Multicriterio): Herramientas analíticas y computacionales que ayudan a los tomadores de decisiones a evaluar y priorizar diferentes opciones considerando múltiples factores o criterios, a menudo conflictivos.
  • MIVES (Model Integrated Value for Sustainable Evaluation / Modelo de Valor Integrado para la Evaluación Sostenible): Un método MCDM que integra la toma de decisiones con el análisis de valor, utilizando dimensiones indexadas estandarizadas para comparar indicadores de diferente naturaleza.
  • MOORA (Multi-Objective Optimization by Ratio Analysis / Optimización Multiobjetivo por Análisis de Ratios): Un método MCDM que clasifica alternativas basándose en un ratio de rendimiento y una referencia de desviación.
  • Neutrosophic logic (Lógica neutrosófica): Una generalización de la lógica difusa que introduce la indeterminación (además de la verdad y la falsedad), permitiendo un manejo más completo de la incertidumbre en los procesos de decisión.
  • PROMETHEE (Preference Ranking Organization Method for Enrichment of Evaluations / Método de Organización de Preferencias para el Enriquecimiento de Evaluaciones): Un método MCDM de superación que permite clasificar alternativas según sus preferencias de los criterios.
  • Scoring methods (Métodos de puntuación): Métodos MCDM que asignan puntuaciones numéricas a los criterios relevantes para comparar y evaluar cantidades jerárquicamente estructuradas.
  • Sensitivity analysis (Análisis de sensibilidad): Un estudio que examina cómo la incertidumbre en la salida de un modelo puede atribuirse a diferentes fuentes de incertidumbre en sus entradas, utilizado para probar la robustez de un método y la validez de los resultados.
  • Social housing (Vivienda social): Viviendas diseñadas para ser accesibles a personas y familias de ingresos medios y bajos, asegurando estándares mínimos de habitabilidad y calidad de vida, y fomentando la inclusión social.
  • Sustainability (Sostenibilidad): Un enfoque que busca satisfacer las necesidades del presente sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades, abarcando dimensiones económicas, ambientales, sociales y técnicas.
  • SWARA (Scaled Weighted Assessment Ratio Analysis): Un método MCDM utilizado para determinar los pesos de los criterios.
  • TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution / Técnica para la Ordenación por Similitud con la Solución Ideal): Un método MCDM que clasifica alternativas basándose en su distancia a una solución ideal positiva y a una solución ideal negativa.
  • VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje / Optimización Multicriterio y Solución de Compromiso): Un método MCDM que clasifica alternativas basándose en su proximidad a una solución ideal.
  • WSM (Weighted Sum Model / Modelo de Suma Ponderada): Un método MCDM de puntuación que calcula una puntuación total para cada alternativa sumando las puntuaciones ponderadas de cada criterio

Pasarelas peatonales sostenibles: cómo optimizar su diseño para reducir costes económicos y ambientales

Este artículo se centra en la aplicación práctica de la evaluación del ciclo de vida (LCA) para optimizar el impacto ambiental y los costes de los puentes peatonales compuestos de acero y hormigón. Los autores utilizan el algoritmo de búsqueda de armonía multiobjetivo (MOHS) para identificar soluciones de diseño que minimicen simultáneamente las emisiones de CO₂, la energía incorporada y los costes de construcción. Los resultados muestran una relación directa y lineal entre el coste, las emisiones de CO₂ y la energía incorporada, lo que sugiere que las soluciones económicamente eficientes también son beneficiosas para el medio ambiente. Se analizan escenarios alternativos, como variaciones en la resistencia del hormigón y fluctuaciones en el precio de los materiales, para evaluar su impacto en los resultados de la optimización. En última instancia, el estudio demuestra la eficacia de combinar la optimización estructural con la evaluación del ciclo de vida para fomentar un diseño de infraestructura más sostenible.

El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. Se trata de una colaboración internacional de nuestro grupo con investigadores brasileños. A continuación se recoge un resumen sintético del trabajo.

El sector de la construcción es uno de los que más recursos consume y más emisiones de gases de efecto invernadero genera. Según el Programa de las Naciones Unidas para el Medio Ambiente, este sector consume alrededor del 34 % de la energía mundial y es responsable de aproximadamente el 37 % de las emisiones de CO₂. Ante esta realidad, mejorar la sostenibilidad de las infraestructuras es fundamental para alcanzar los Objetivos de Desarrollo Sostenible (ODS) de la ONU. En este contexto, el artículo «Aplicación práctica de la evaluación del ciclo de vida para optimizar el impacto ambiental de los puentes peatonales de acero y hormigón», de Fernando Luiz Tres Junior y colaboradores, muestra cómo la combinación de la optimización estructural multiobjetivo y la evaluación del ciclo de vida permite diseñar un puente peatonal que reduce simultáneamente su coste económico, las emisiones de CO₂ y la energía incorporada, sin sacrificar la seguridad ni la funcionalidad.

El trabajo aporta varias conclusiones relevantes. Una de las más importantes es que los objetivos de minimizar el coste y el impacto ambiental no son opuestos, sino que las soluciones más baratas también son más sostenibles. Además, el estudio cuantifica con precisión la relación entre estos factores, por lo que es posible estimar cómo varía el impacto ambiental en función del presupuesto. Otra aportación destacable es la validación práctica de la metodología: la combinación de técnicas de optimización y bases de datos de evaluación del ciclo de vida (LCA, por sus siglas en inglés) conduce a soluciones óptimas y robustas, incluso ante cambios en parámetros como la resistencia del hormigón o las fluctuaciones de precios.

El caso de estudio consiste en un puente peatonal de 17,5 m de luz y 3 m de ancho ubicado en el sur de Brasil. La estructura combina vigas de acero soldadas y una losa de hormigón armado, unidas mediante conectores de corte. Las variables de diseño incluyen el espesor y la resistencia del hormigón, las dimensiones de las vigas de acero y el grado de interacción entre ambos materiales. Estas variables pueden adoptar distintos valores discretos, lo que da lugar a más de 700 000 millones de combinaciones posibles. El objetivo de la optimización es hallar las mejores soluciones en términos de coste económico, emisiones de CO₂ y energía incorporada, cumpliendo siempre con la normativa brasileña sobre seguridad estructural y confort frente a vibraciones.

Para evaluar el impacto ambiental de los materiales, los autores utilizaron dos bases de datos. En el caso del acero de las vigas, utilizaron una base de datos internacional, que contiene datos globales sobre emisiones y consumo de energía. En el caso del hormigón y las armaduras, recurrieron a datos locales de producción del sur de Brasil. Además, analizaron dos escenarios alternativos para comprobar la solidez de las soluciones: uno con hormigón de menor resistencia (20 MPa en lugar de 40 MPa) y otro con precios más altos para los materiales (como ocurrió durante la pandemia en 2022).

Todas las soluciones se verificaron para garantizar que cumplían los requisitos normativos de seguridad y servicio, incluidos los estados límite últimos, las deformaciones y las vibraciones. Las soluciones que no superaban estas comprobaciones eran penalizadas y el algoritmo de optimización las descartaba. Para la optimización, utilizaron el algoritmo Multiobjective Harmony Search (MOHS), inspirado en la improvisación musical, que busca soluciones que «armonizan» los distintos objetivos. Este algoritmo genera y mejora iterativamente las soluciones hasta construir la denominada «frontera de Pareto», que recoge las mejores alternativas posibles sin que ninguna sea mejor en todos los objetivos a la vez.

Los resultados muestran que estos tres objetivos —coste, emisiones de CO₂ y energía incorporada— están estrechamente relacionados y no entran en conflicto entre sí. Se evita la emisión de 1 kg de CO₂ por cada 6,56 reales brasileños ahorrados por metro de puente, y se reducen 1 MJ de energía por cada 0,70 reales. Además, por cada 9,3 MJ ahorrados se evita la emisión de 1 kg de CO₂. Estas relaciones lineales reflejan que, al reducir el consumo de materiales, se consigue simultáneamente un ahorro económico y un menor impacto medioambiental.

Las soluciones óptimas obtenidas tienen características muy similares entre sí. La losa de hormigón tiene un espesor de 12 cm y la viga de acero mide aproximadamente 860 mm de altura, con un espesor del alma de 6,35 mm, y mantiene la clásica proporción luz/altura cercana a 20. La anchura de las alas superior e inferior de la viga varía, siendo la inferior más ancha y gruesa. En todos los casos, la interacción entre el acero y el hormigón es completa (grado de interacción igual a 1).

Al considerar el escenario con hormigón de menor resistencia, se observó un aumento del coste total del 3 %, debido a que fue necesario añadir más acero para compensar la menor resistencia del hormigón. En cuanto al impacto ambiental, las emisiones de CO₂ apenas se redujeron (menos de un 1 %), mientras que la energía incorporada aumentó alrededor de un 4 %. En el escenario con precios más altos de los materiales, se obtuvieron dos soluciones óptimas: una más barata, pero con mayores emisiones, y otra más cara y sostenible. En ambos casos, las diferencias entre las soluciones fueron pequeñas y se mantuvo la relación lineal entre los objetivos.

En conclusión, este trabajo demuestra que es posible diseñar puentes peatonales más económicos y sostenibles combinando optimización estructural y LCA. La reducción del consumo de materiales no solo abarata la estructura, sino que también disminuye las emisiones de CO₂ y la energía incorporada. Además, el uso de hormigón de alta resistencia reduce la cantidad de acero necesaria, lo que tiene un impacto positivo en el coste y la sostenibilidad. Las soluciones óptimas resultaron muy similares al modificar las condiciones del diseño o del mercado, lo que confirma la solidez de la metodología.

Este tipo de estudios es especialmente valioso en los países en desarrollo, donde las necesidades de infraestructuras son elevadas y los recursos económicos, limitados. El diseño de estructuras asequibles y sostenibles contribuye al desarrollo regional y a la lucha contra el cambio climático. Los autores recomiendan ampliar futuras investigaciones para incluir también el impacto social y considerar así los tres pilares de la sostenibilidad: el económico, el ambiental y el social. También recomiendan analizar el ciclo de vida completo de la estructura, incluyendo el mantenimiento y la demolición. Por último, esta metodología podría aplicarse fácilmente a otros tipos de infraestructuras, como puentes para vehículos o edificios.

En definitiva, este trabajo no solo muestra cómo reducir costes y emisiones en un puente peatonal concreto, sino que también abre la puerta a un diseño más sostenible de nuestras infraestructuras. Es un claro ejemplo de cómo la ingeniería civil puede ser una aliada clave en el desarrollo sostenible.

Referencia:

Tres Junior, F.L., Yepes, V., de Medeiros, G.F., Kripka, M. (2025). Practical Application of LCA to Optimize Environmental Impacts of Steel–concrete Footbridges. In: Brandli, L., Rosa, F.D., Petrorius, R., Veiga Avila, L., Filho, W.L. (eds) The Contribution of Life Cycle Analyses and Circular Economy to the Sustainable Development Goals. World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-031-85300-5_22

Glosario de términos clave

  • Evaluación del ciclo de vida (LCA): Una metodología para estimar los impactos ambientales resultantes de la fabricación de un producto o servicio, examinando cada etapa de su ciclo de vida, desde la extracción de recursos naturales hasta su eliminación.
  • Emisiones de CO2: La cantidad de dióxido de carbono liberada a la atmósfera, utilizada como un criterio clave para evaluar el impacto ambiental en este estudio.
  • Energía incorporada: La suma total de energía necesaria para producir un producto, desde la extracción de las materias primas hasta el final del proceso de fabricación, utilizada como otro criterio de impacto ambiental.
  • Optimización multi-objetivo: Un proceso de optimización que considera múltiples funciones objetivo que deben minimizarse o maximizarse simultáneamente. Produce un conjunto de soluciones no dominadas o Pareto-óptimas.
  • Algoritmo de búsqueda de armonía multi-objetivo (MOHS): Un algoritmo metaheurístico basado en la improvisación musical, adaptado para resolver problemas de optimización multi-objetivo.
  • Pasarela mixta de hormigón y acero: Una estructura que combina elementos de acero y hormigón de manera que trabajen juntos como una sola unidad para soportar cargas, aprovechando las fortalezas de ambos materiales.
  • Frontera de Pareto: Una representación gráfica que conecta el conjunto de soluciones no dominadas (Pareto-óptimas) en un problema de optimización multi-objetivo, lo que permite analizar las compensaciones entre los objetivos.
  • Solución no dominada (Pareto-Óptima): Una solución para la cual no existe otra solución admisible que mejore simultáneamente todas las funciones objetivo. Mejorar un objetivo solo es posible a expensas de al menos otro.
  • Grado de interacción (α): Una variable de diseño en vigas compuestas que representa el nivel de conexión entre el acero y el hormigón, influyendo en su comportamiento estructural combinado.
  • Estado límite último (ULS): Verificaciones relacionadas con la capacidad de la estructura para resistir las cargas máximas sin colapsar, incluyendo la tensión de cizallamiento y el momento de flexión.
  • Estado límite de servicio (SLS): Verificaciones relacionadas con el rendimiento de la estructura bajo cargas normales para garantizar la comodidad y la funcionalidad, como la limitación de los desplazamientos y las aceleraciones.
  • Penalización: Un método utilizado en algoritmos de optimización para hacer que las soluciones que no cumplen con las restricciones de diseño sean menos atractivas para el algoritmo, agregando un valor a la función objetivo.

Aportaciones al Congreso sobre Optimización de Estructuras HPSM/OPTI 2025, Edimburgo (Reino Unido)

Los días 10 a 12 de junio de 2025 se celebró en Edimburgo (Reino Unido) uno de los congresos más importantes sobre optimización de estructuras: “12th International Conference on High Performance and Optimum Design of Structures and Materials, HPSM/OPTI 2025“. He participado en dicho congreso tanto en su Comité Científico como Invited Speaker.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València. Además, es uno de los resultados de la tesis doctoral de Lorena Yepes.

En cuanto la comunicación esté publicada en el libro de ponencias, os pasaré el enlace para su descarga gratuita. A continuación os paso el resumen de la comunicación presentada.

El artículo «Multi-Attribute Decision-Making in Prestressed Concrete Road Flyover Design», propone una innovadora metodología para optimizar el diseño de puentes de hormigón pretensado teniendo en cuenta simultáneamente tres criterios clave: el coste económico, las emisiones de CO₂ y la energía incorporada en los materiales. Su objetivo es encontrar soluciones de compromiso que equilibren sostenibilidad y eficiencia estructural.

Aportaciones principales del estudio

Este trabajo aporta un enfoque sistemático y práctico para integrar criterios medioambientales y económicos en el diseño de pasos elevados. Frente a las metodologías tradicionales que suelen priorizar únicamente el coste, los autores aplican técnicas de toma de decisiones multicriterio para considerar también el impacto ambiental desde el inicio del proceso proyectual. Además, ofrecen pautas concretas para diseños preliminares que buscan un equilibrio entre coste, emisiones y consumo energético.

Metodología empleada

La investigación se basa en técnicas avanzadas de optimización y modelado. En primer lugar, se utilizaron 50 soluciones iniciales de diseño generadas mediante un muestreo estadístico conocido como Latin Hypercube Sampling, que explora diferentes combinaciones de parámetros como la resistencia del hormigón, la anchura de la base y la profundidad del tablero.

A continuación, se aplicó un modelo de sustitución de tipo Kriging, capaz de estimar con gran precisión los resultados estructurales sin necesidad de cálculos exhaustivos para cada diseño. Esto permitió ampliar el análisis a 1.000 soluciones adicionales simuladas.

Con todas las alternativas sobre la mesa, se extrajo la “frontera de Pareto”, un conjunto de soluciones no dominadas que representan los mejores compromisos posibles entre los tres objetivos. Finalmente, se aplicaron distintos escenarios de toma de decisiones multiatributo, asignando diferentes pesos a cada criterio, para seleccionar los diseños más equilibrados.

Resultados más relevantes

El análisis reveló que los diseños más sostenibles tienen características comunes: una relación entre canto del tablero y luz principal cercana a 1/30 y una resistencia del hormigón de 40 MPa. Estas configuraciones permiten reducir tanto el consumo de materiales como las emisiones sin comprometer la viabilidad estructural.

Dependiendo del peso asignado a cada criterio (coste, emisiones, energía), se identificaron varias soluciones óptimas, destacando especialmente dos (denominadas #6 y #13) por su buen rendimiento integral. Curiosamente, priorizar solo el coste lleva a soluciones con mayor canto, mientras que priorizar el medio ambiente genera estructuras más esbeltas y materialmente eficientes.

Conclusiones y recomendaciones

El estudio concluye que aplicar técnicas de decisión multicriterio en la ingeniería civil permite diseñar infraestructuras más sostenibles y racionales, sin sacrificar funcionalidad ni economía. Se recomienda considerar desde fases tempranas del diseño variables ambientales clave como las emisiones o la energía embebida, además de los costes.

Asimismo, los autores sugieren incorporar la participación de los diferentes agentes implicados (ingenieros, administraciones, ciudadanía) para lograr soluciones más equilibradas y duraderas.

Este trabajo representa un avance hacia una práctica de la ingeniería más alineada con los Objetivos de Desarrollo Sostenible, y especialmente con el ODS 9, que promueve infraestructuras resilientes, sostenibles e innovadoras.

Referencia:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Multi-attribute decision-making in prestressed concrete road flyover design. International Conference on High Performance and Optimum Design of Structures and Materials, HPSM/OPTI 2025, 10-12 June 2025, Edinburgh, UK.

Evaluación del índice de daño estructural en entornos BIM

Acaban de publicar nuestro artículo en la revista Structures, de la editorial Elsevier, indexada en Q1 del JCR. El estudio desarrolla una metodología para evaluar un índice de daño estructural en entornos BIM, con el fin de optimizar los procesos de rehabilitación.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València.

El artículo contextualiza la necesidad de integrar herramientas digitales en la evaluación de daños estructurales como respuesta a las exigencias de sostenibilidad y eficiencia en el sector de la construcción. Se menciona que el envejecimiento del parque edificatorio y las nuevas exigencias en materia de mantenimiento requieren un enfoque innovador. Se destaca la implementación de BIM como una solución para mejorar la gestión de activos y prolongar la vida útil de las estructuras. En este contexto, el artículo presenta Endurify, una herramienta diseñada para evaluar la durabilidad de elementos estructurales de hormigón mediante indicadores de deterioro, con el fin de optimizar los procesos de rehabilitación.

El artículo enfatiza que la rehabilitación de edificios es una estrategia fundamental para mejorar la sostenibilidad en el sector de la construcción. Al renovar estructuras existentes, se reduce el impacto ambiental al disminuir la necesidad de utilizar nuevos materiales y procesos constructivos. Además, la rehabilitación mejora el rendimiento energético de los edificios, lo que contribuye a los objetivos de desarrollo sostenible establecidos por organismos internacionales. En el contexto europeo, iniciativas como el Pacto Verde Europeo subrayan la relevancia de estas medidas para reducir las emisiones de carbono y mejorar la eficiencia en el uso de recursos.

La metodología BIM se ha convertido en un estándar en la industria de la construcción, facilitando la integración de múltiples capas de información en un único modelo digital. BIM permite almacenar y gestionar datos estructurales, materiales y operacionales, optimizando así la planificación y el mantenimiento de edificios. La literatura reciente ha demostrado que el uso de BIM mejora la sostenibilidad en la construcción, facilita la gestión de riesgos y permite realizar análisis avanzados, como simulaciones de desempeño estructural. Además, la incorporación de gemelos digitales y herramientas de simulación refuerza su capacidad para la toma de decisiones fundamentadas en datos.

El mantenimiento estructural es fundamental para garantizar la seguridad y la eficiencia de los edificios a lo largo de su vida útil. A pesar de la importancia del seguimiento del estado estructural, la investigación en este ámbito ha sido menos extensa que la dedicada al diseño y la construcción. En este contexto, BIM se presenta como una plataforma idónea para integrar estrategias de mantenimiento predictivo, ya que permite evaluar el estado real de las estructuras y anticipar las intervenciones necesarias. Sin embargo, la implementación de BIM en este ámbito enfrenta desafíos como la precisión de los datos, los costes asociados y la capacitación del personal especializado.

El desarrollo de Endurify se basó en una metodología de investigación-acción de doble ciclo, lo que permitió realizar iteraciones sucesivas para optimizar la herramienta. El proceso constó de siete etapas, que iban desde la identificación del problema hasta la validación del software en entornos reales. La herramienta se diseñó específicamente para el mercado de la vivienda en España y cumple con los requisitos del Código Estructural.

Para evaluar la durabilidad, se seleccionaron cuatro indicadores principales: carbonatación, fisuración transversal, fluencia y deformación. La metodología utilizada para determinar cada uno de estos indicadores se basa en modelos normativos y en la recopilación de datos mediante inspección visual. Los resultados se almacenan dentro del modelo BIM, lo que permite su análisis comparativo y la planificación de intervenciones de mantenimiento.

La implantación de Endurify en BIM se realizó mediante un complemento para Autodesk Revit que permite extraer datos de los elementos estructurales y realizar el análisis de daños en tiempo real. La herramienta se diseñó para trabajar con parámetros predefinidos en el modelo BIM y almacenar los resultados como atributos de los elementos analizados.

El artículo presenta Endurify, un complemento para entornos BIM que permite analizar el estado de conservación de los elementos estructurales de hormigón. La herramienta emplea cuatro indicadores de daño: carbonatación, fisuración transversal, fluencia y deformación. Su integración en BIM facilita la gestión de datos, ya que permite almacenar los resultados del análisis dentro del modelo digital. Esto posibilita una evaluación más precisa del estado estructural y contribuye a la toma de decisiones sobre el mantenimiento y la rehabilitación de edificios existentes. Cabe destacar que la herramienta evita pruebas destructivas y se ajusta a normativas como el Código Estructural de España (CE-2021).

Los estudios de caso presentados en el artículo muestran cómo se ha aplicado Endurify en elementos estructurales con distintos grados de exposición ambiental. En un primer caso, se analizó una viga interior con fisuras visibles y se determinó que la carbonatación era el factor predominante en su deterioro. En el segundo caso, se evaluó un soporte en un corredor exterior sin daños aparentes con el mismo procedimiento, confirmándose un estado avanzado de carbonatación. Los resultados demuestran que la herramienta permite identificar patrones de degradación en distintos elementos y facilita la programación de intervenciones específicas. No obstante, se reconoce que la precisión del análisis depende de la calidad de los datos de entrada y de su compatibilidad con diferentes normativas y condiciones ambientales.

El artículo sugiere que la incorporación de nuevos enfoques podría mejorar la herramienta Endurify. Se menciona la posibilidad de desarrollar un índice de daño estructural que combine los cuatro indicadores en un solo valor ponderado, aunque los autores advierten de que esto podría ocultar información relevante sobre las causas del deterioro. Asimismo, se plantea la necesidad de adaptar la metodología a distintos contextos normativos e integrar sensores IoT para obtener datos en tiempo real. Además, se destaca que una mejor definición de los parámetros de análisis podría optimizar la precisión del modelo y ampliar su aplicación a proyectos de rehabilitación a gran escala.

Por tanto, el artículo demuestra que la integración de herramientas de análisis de durabilidad en entornos BIM puede mejorar la evaluación del estado estructural de los edificios. Endurify permite almacenar y visualizar datos de deterioro en el modelo digital, lo que facilita la toma de decisiones sobre el mantenimiento y la rehabilitación. Sin embargo, su implementación depende de la calidad de los datos de entrada y de su adaptación a distintas normativas. Se identifican oportunidades para mejorar la herramienta mediante el uso de modelos predictivos y la incorporación de tecnologías emergentes, lo que podría consolidar su aplicación en la ingeniería civil.

Referencia:

FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2025). Structural damage index evaluation in BIM environmentsStructures, 74:108544. DOI:10.1016/j.istruc.2025.108544

 

Teoría de juegos aplicada a la optimización multiobjetivo de puentes mixtos

Acaban de publicar nuestro artículo en la revista del primer decil del JCR Mathematics. El artículo presenta un método innovador para optimizar el diseño de puentes mixtos de acero y hormigón mediante un enfoque basado en la teoría de juegos. Este enfoque integra criterios de sostenibilidad económica, ambiental y social con la simplicidad constructiva, abordando de manera simultánea múltiples objetivos que suelen ser conflictivos en proyectos de infraestructura. La principal contribución radica en la aplicación de un método de optimización multiobjetivo (MOO) que permite equilibrar los tres pilares de la sostenibilidad, empleando el Análisis del Ciclo de Vida (LCA) para evaluar el impacto durante todo el ciclo de vida del puente, desde su fabricación hasta su desmantelamiento.

Destaca la implementación de una versión discreta del algoritmo Seno-Coseno (SCA), adaptada específicamente para resolver problemas de diseño estructural. Esta metodología no solo garantiza un diseño eficiente en términos de coste y sostenibilidad, sino que también proporciona una solución práctica que facilita la construcción al reducir los refuerzos en las losas superiores y realizar ajustes geométricos estratégicos. Este enfoque supone un avance en el campo de la ingeniería civil, ya que combina técnicas matemáticas avanzadas con consideraciones prácticas del sector. Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València.

La metodología descrita combina la teoría de juegos con un enfoque cooperativo, en el que los diferentes objetivos (coste, impacto ambiental, impacto social y facilidad constructiva) se representan como «jugadores». Estos jugadores colaboran para encontrar soluciones óptimas dentro del conjunto de soluciones Pareto-óptimas, utilizando el concepto de equilibrio de Nash y reglas de negociación.

El algoritmo Seno-Coseno (SCA) modificado desempeña un papel fundamental en este proceso, ya que permite gestionar variables discretas y restricciones estructurales mediante funciones de transferencia en forma de tangente hiperbólica. Además, se emplea la teoría de la entropía para asignar pesos objetivos, lo que asegura un equilibrio justo entre los criterios y minimiza la subjetividad en la toma de decisiones.

Los resultados muestran que la metodología basada en la teoría de juegos permite reducir el refuerzo de las losas superiores del puente y optimizar el uso de materiales sin comprometer la resistencia estructural. En comparación con un enfoque de optimización monoobjetivo centrado exclusivamente en costes, el método propuesto aumenta los costes en un 8,2 %, pero mejora sustancialmente los impactos ambientales y sociales asociados al diseño.

El estudio revela que, mediante la redistribución del material estructural, es posible mantener la rigidez necesaria en las secciones transversales del puente. En concreto, se observa un aumento en el uso de acero estructural en lugar de acero de refuerzo, lo que simplifica la construcción al reducir la cantidad de barras necesarias y, por ende, el tiempo de instalación y vibrado del hormigón. Este cambio también contribuye a mejorar la calidad del producto final, ya que reduce los errores constructivos y optimiza el tiempo de ejecución.

El análisis demuestra que las soluciones obtenidas mediante métricas de distancia Minkowski (L1, L2 y L∞) proporcionan diseños equilibrados que logran compromisos efectivos entre coste, sostenibilidad y facilidad constructiva. Estas soluciones son comparables a estudios previos en términos de costes, pero ofrecen beneficios adicionales al incluir una evaluación más integral de los impactos sociales y ambientales.

El enfoque presentado abre la puerta a diversas áreas de investigación. Una línea de investigación prometedora es la aplicación de algoritmos híbridos que combinen la teoría de juegos con otras metaheurísticas, como redes neuronales o algoritmos genéticos, para mejorar la exploración y explotación del espacio de soluciones. Esto podría reducir el tiempo de computación y permitir su aplicación a problemas más complejos.

Otra posible dirección de investigación sería ampliar el modelo para incluir criterios como la resiliencia ante desastres naturales o la evaluación de riesgos a largo plazo. También se podría explorar la incorporación de nuevos indicadores sociales, como el impacto en las comunidades locales durante la construcción y operación del puente, lo que ampliaría la evaluación de sostenibilidad. Asimismo, sería interesante aplicar esta metodología a otros tipos de estructuras, como edificios o infraestructuras de transporte masivo, para evaluar su viabilidad y adaptar el enfoque a diferentes contextos.

En definitiva, el artículo proporciona una herramienta muy valiosa para abordar los desafíos de sostenibilidad y eficiencia en el diseño de infraestructuras civiles. La combinación de la teoría de juegos y la optimización multiobjetivo es efectiva para equilibrar criterios complejos y conflictivos, y ofrece soluciones prácticas, sostenibles y viables desde el punto de vista económico y constructivo. Aunque computacionalmente intensivo, este enfoque establece una base sólida para futuras investigaciones y aplicaciones en el campo de la ingeniería civil, lo que permite avanzar en la evaluación integral de la sostenibilidad y en la mejora de los procesos de diseño estructural.

Referencia:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2025). Game Theory-Based Multi-Objective Optimization for Enhancing Environmental and Social Life Cycle Assessment in Steel-Concrete Composite Bridges. Mathematics, 13(2):273. DOI:10.3390/math13020273

Os dejo a continuación el artículo completo, pues se ha pbulicado en abierto.

Pincha aquí para descargar

Métodos multicriterio: la clave para rehabilitar edificios vulnerables en zonas sísmicas

Un equipo de investigadores de la Universitat Politècnica de València y la Universidad Central del Ecuador ha llevado a cabo un análisis exhaustivo sobre los métodos de toma de decisiones multicriterio (MCDM) aplicados a la evaluación, selección y rehabilitación de edificios. Publicado en la prestigiosa revista Journal of Civil Engineering and Management, este artículo aborda una problemática clave en la ingeniería civil actual: cómo hacer frente al envejecimiento del parque de edificios, muchos de los cuales se construyeron siguiendo normativas de seguridad y sostenibilidad ya obsoletas.

La necesidad de abordar esta cuestión es urgente, dado que muchos edificios existentes no cumplen con los estándares actuales de seguridad, en particular respecto a su vulnerabilidad sísmica. Este factor es especialmente relevante en países con un alto riesgo, donde recientes terremotos han demostrado la fragilidad de las infraestructuras más antiguas. Además de las posibles pérdidas humanas, el impacto económico y social de estos eventos puede ser devastador.

Esta investigación es el resultado de una colaboración internacional realizada en el marco de los proyectos HYDELIFE y RESILIFE, cuyo investigador principal es Víctor Yepes, y es fruto de una colaboración internacional entre investigadores de Ecuador y España.

Contexto de la investigación

El envejecimiento del parque de edificios es un problema global que afecta tanto a países desarrollados como en vías de desarrollo. Muchos edificios antiguos se construyeron siguiendo normativas obsoletas que no tenían en cuenta los estándares de seguridad modernos, especialmente en lo que respecta al riesgo sísmico. A esto se suma la necesidad de hacer frente a desafíos medioambientales, como el impacto de la construcción en el consumo energético y las emisiones de CO₂. Ante esta situación, surge la necesidad de adoptar estrategias de rehabilitación que combinen la seguridad estructural con la sostenibilidad. La integración de factores sociales, económicos y ambientales en la toma de decisiones sobre la rehabilitación de edificios es fundamental para avanzar hacia un entorno construido más seguro y sostenible.

Metodología

La investigación se basa en una revisión bibliométrica de la literatura sobre los métodos MCDM aplicados a la evaluación y rehabilitación de edificios. Se analizaron 91 artículos publicados entre 2008 y 2023, utilizando bases de datos especializadas como Web of Science y SCOPUS. Los estudios seleccionados abordan tanto la evaluación de la vulnerabilidad de los edificios como la selección de estrategias de rehabilitación, con un enfoque particular en edificios escolares y patrimoniales, que suelen estar más expuestos a riesgos debido a su antigüedad o importancia cultural.

Se evaluaron las tendencias en el uso de los métodos MCDM y se identificaron investigaciones clave que han logrado evaluar de manera conjunta el consumo energético y la vulnerabilidad sísmica. Estas investigaciones destacan la necesidad de contar con metodologías que permitan evaluar múltiples factores de manera simultánea y en contextos de incertidumbre, especialmente cuando se trata de estructuras vulnerables, como las escuelas y los edificios patrimoniales, que requieren un enfoque especializado tanto por su valor cultural como por su complejidad estructural. Los investigadores clasificaron los diferentes métodos MCDM más utilizados, como el Proceso de Análisis Jerárquico (AHP), el Simple Additive Weighting (SAW) y el TOPSIS. Cada método se evaluó en función de su capacidad para integrar criterios contradictorios, como la seguridad estructural, el impacto económico, social y ambiental.

Resultados

El estudio revela la prevalencia de ciertos métodos clásicos en la investigación científica, como el ya mencionado AHP, que se ha combinado en muchos estudios con TOPSIS, un enfoque que permite identificar soluciones óptimas al considerar tanto la distancia a una solución ideal como a una no ideal. Este enfoque se ha aplicado tanto a la selección de edificios que requieren intervenciones urgentes como a la identificación de estrategias de rehabilitación más eficaces. Estos métodos permiten ponderar diversos criterios y encontrar soluciones que maximicen la seguridad y la sostenibilidad. Entre los principales hallazgos destacan:

  • Evaluación de la vulnerabilidad: Se ha aplicado MCDM para evaluar la vulnerabilidad de los edificios en zonas urbanas, con un enfoque particular en las escuelas y los edificios patrimoniales. En muchos casos, los estudios integraron criterios de vulnerabilidad sísmica con aspectos socioeconómicos y ambientales.
  • Selección de estrategias de rehabilitación: El estudio identificó tres enfoques principales en la rehabilitación de edificios: la intervención en componentes individuales, la adición de elementos de resistencia y la reducción de demandas estructurales mediante dispositivos suplementarios. La combinación de sostenibilidad y seguridad ha sido un aspecto clave en estos estudios.
  • Sostenibilidad: Si bien muchos estudios ya integran criterios de sostenibilidad, solo un porcentaje menor (15 %) incorpora análisis del ciclo de vida (LCA), una herramienta crucial para medir el impacto ambiental de las intervenciones a largo plazo.

Implicaciones

Las conclusiones de este trabajo tiene importantes implicaciones tanto para la práctica de la ingeniería civil como para las políticas públicas. La aplicación de métodos MCDM permite a los ingenieros y a los responsables de la toma de decisiones considerar una variedad de factores antes de seleccionar una estrategia de rehabilitación para un edificio. Esto es particularmente relevante en áreas con alto riesgo sísmico, donde la rehabilitación de edificios vulnerables puede salvar vidas y reducir las pérdidas económicas.

Además, la integración de criterios de sostenibilidad subraya la importancia de las políticas que promuevan rehabilitaciones que no solo refuercen la seguridad, sino que también reduzcan el impacto ambiental. Los resultados del estudio sugieren que las futuras investigaciones deberían centrarse en la creación de metodologías más avanzadas que manejen mejor la incertidumbre y que logren una verdadera integración de los pilares de sostenibilidad (económico, social y ambiental) con los criterios de seguridad estructural.

En resumen, este estudio ofrece una perspectiva innovadora sobre la forma en que los métodos MCDM pueden ayudar a afrontar los retos actuales en la rehabilitación de edificios. Su aplicación no solo mejora la seguridad de las infraestructuras, sino que también permite avanzar hacia un modelo de construcción más sostenible y eficiente. Sus recomendaciones son claras: es necesario seguir investigando para mejorar las soluciones de toma de decisiones que integren de manera efectiva la seguridad estructural y la sostenibilidad. Esto es fundamental no solo para garantizar la seguridad de los edificios, sino también para asegurar que las futuras generaciones puedan disfrutar de un entorno construido que sea resiliente, seguro y sostenible.

Referencia:

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2024). A review of multi-criteria decision-making methods for building assessment, selection, and retrofit. Journal of Civil Engineering and Management, 30(5):465-480. DOI:10.3846/jcem.2024.21621

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Pincha aquí para descargar

Redes neuronales y metamodelos Kriging para la optimización de la energía en puentes losa pretensados

Acaban de publicarnos un artículo en la revista Sustainability, revista indexada en el JCR. El artículo evalúa la eficacia de las redes neuronales artificiales y los modelos sustitutos de Kriging para optimizar la energía incorporada de los puentes de losas pretensadas, y proporciona recomendaciones prácticas para mejorar el diseño y la sostenibilidad.

El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

A continuación se recoge un resumen sintético del trabajo.

 

 

Introducción

  • La industria de la construcción contribuye significativamente al consumo mundial de energía y a las emisiones de gases de efecto invernadero, lo que suscita un interés creciente en mejorar las prácticas de sostenibilidad.
  • El hormigón pretensado destaca por sus ventajas, que incluyen la durabilidad, la reducción del mantenimiento y la rapidez de construcción, a pesar de los costes iniciales más altos en comparación con los métodos tradicionales.
  • Las investigaciones indican que existe una brecha en la optimización de la energía incorporada en los puentes de losas de hormigón, lo que exige una mayor exploración y metodologías innovadoras, como el Kriging y las redes neuronales artificiales, para optimizar su diseño de manera efectiva.

Descripción de la cubierta del puente de losa aligerada

  • Los diseñadores suelen utilizar una relación canto/luz de 1/25 para las losas de carreteras con el fin de garantizar su integridad estructural. Los diseños de losas aligeradas ofrecen ventajas en cuanto a rigidez a la flexión y adaptabilidad.
  • El estudio se centra en una configuración de losas aligeradas pretensadas adecuada para los pasos superiores, con el objetivo de mejorar la eficiencia del diseño y el rendimiento estructural.
  • La teoría del estado límite se emplea para verificar la resistencia estructural mediante el uso de software avanzado para el modelado tridimensional y el análisis de cargas.
Figura 2. Imagen aérea de la estructura, situada en Cocentaina (Alicante). Imagen: Google Maps.

Metodología

  • El estudio analiza varios materiales, incluidos tipos específicos de acero y calidades de hormigón, para optimizar el diseño del puente de losa aligerada.
  • Se utilizan dos metamodelos predictivos, Kriging y las redes neuronales, con el fin de optimizar el diseño propuesto del puente de losas.
  • La metodología incluye una fase de diversificación para la optimización inicial y una fase de intensificación para refinar los resultados, midiendo los errores de predicción mediante el error cuadrático medio (RMSE).

Metamodelo Kriging

  • Kriging se emplea para estimar las necesidades de energía del puente de losas, utilizando un enfoque determinista que proporciona respuestas consistentes basadas en los datos de entrada.
  • La «caja de herramientas Kriging de MATLAB» se utiliza para crear un modelo sustituto, y el LHS (LHS) mejora el proceso de muestreo para representar mejor el espacio de diseño.
  • Este método permite realizar pruebas computacionales eficientes y, al mismo tiempo, minimizar los errores sistemáticos, lo que lo hace adecuado para tareas complejas de optimización estructural.

Red neuronal artificial

  • Las ANN están estructuradas con capas de neuronas, donde las capas ocultas utilizan funciones sigmoideas para procesar las entradas y la capa de salida emplea funciones lineales para las predicciones.
  • El modelo de perceptrón multicapa (MLP) destaca por su capacidad para aproximar funciones de manera eficaz, basándose en el algoritmo de retropropagación para el entrenamiento.
  • El estudio hace hincapié en la importancia de la validación cruzada para evitar el sobreaprendizaje y garantizar que el rendimiento de la red neuronal sea sólido en los diferentes conjuntos de datos.

Visualización de los datos observados

  • La gráfica de contorno de los datos observados revela múltiples valores óptimos locales, lo que indica la complejidad del problema de optimización y las limitaciones de los modelos de regresión tradicionales.
  • Esta complejidad requiere el uso de modelos predictivos avanzados para identificar con precisión las soluciones óptimas dentro del espacio de diseño.

Comparación de modelos predictivos

  • Los modelos de Kriging son deterministas, mientras que las redes neuronales introducen variabilidad debido a que se basan en la selección aleatoria de datos para su entrenamiento y validación.
  • El rendimiento de la red neuronal se estabiliza mediante múltiples ejecuciones, lo que permite una comparación más fiable de los valores medios con las predicciones de Kriging.

Análisis de errores

  • El promedio de las predicciones de la red neuronal coincide estrechamente con los resultados del modelo de Kriging, aunque la red neuronal presenta un error cuadrático medio (MSE) y un error cuadrático medio (RMSE) más bajos.
  • El análisis destaca la necesidad de una evaluación exhaustiva de la capacidad de la red neuronal para identificar los valores óptimos, comparando las predicciones entre todos los puntos de datos.

Recomendaciones prácticas

  • El estudio proporciona recomendaciones prácticas para reducir las emisiones en los puentes de losas pretensadas, incluidas directrices específicas sobre el contenido de hormigón y refuerzo.
  • Los hallazgos sugieren que tanto las redes neuronales como las de Kriging pueden identificar eficazmente los valores óptimos locales, lo que ayuda a los ingenieros estructurales a optimizar los diseños para obtener beneficios económicos y ambientales.
  • Haciendo hincapié en la importancia de los modelos sustitutivos, la investigación aboga por su uso para perfeccionar los procesos de diseño y mejorar los resultados en materia de sostenibilidad.

Conclusiones

  • Se subraya la complejidad de la superficie de respuesta al consumo de energía, ya que tanto Kriging como las redes neuronales predicen valores superiores a los observados.
  • El modelo de Kriging muestra un error relativo menor en las predicciones óptimas locales en comparación con la red neuronal, que, sin embargo, muestra un rendimiento de RMSE superior.
  • El estudio concluye que, si bien Kriging proporciona resultados deterministas, las redes neuronales requieren múltiples iteraciones para estabilizar los resultados, lo que aporta información valiosa para optimizar los diseños estructurales.

ABSTRACT:

The main objective of this study is to assess and contrast the efficacy of distinct spatial prediction methods in a simulation aimed at optimizing the embodied energy during the construction of prestressed slab bridge decks. A literature review and cross-sectional analysis have identified crucial design parameters that directly affect the design and construction of bridge decks. This analysis determines the critical design variables to improve the deck’s energy efficiency, providing practical guidance for engineers and professionals in the field. The methods analyzed in this study are ordinary Kriging and a multilayer Perceptron neural network. The methodology involves analyzing the predictive performance of both models through error analysis and assessing their ability to identify local optima on the response surface. Results show that both models generally overestimate observed values. The Kriging model with second-order polynomials yields a 4% relative error at the local optimum, while the neural network achieves lower root-mean-square errors (RMSE). Neither the Kriging model nor the neural network provide precise predictions, but point to promising solution regions. Optimizing the response surface to find a local minimum is crucial. High slenderness ratios (around 1/28) and 40 MPa concrete grade are recommended to improve energy efficiency.

KEYWORDS:

bridges; embodied energy; optimization; prestressed concrete; artificial neural network; surrogate model; Kriging; sustainability

REFERENCE:

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450; DOI:10.3390/su16198450

Pincha aquí para descargar

Coste del ciclo de vida de las baterías de NiZn mediante Optimización Multiobjetivo por Enjambre de Partículas

Acaban de publicarnos un artículo en la revista Sustainability, revista indexada en el JCR. El artículo de investigación se centra en la optimización de las funciones de coste del ciclo de vida (LCC) e impacto ambiental (LCA) de las baterías de níquel-zinc (NiZn) mediante el algoritmo de optimización por enjambres de partículas multiobjetivo (MOPSO). El proceso de optimización se centra en las fases de adquisición de materias primas y de fin de vida útil de las baterías de NiZn para mejorar sus indicadores clave de rendimiento (KPI) de sostenibilidad. La metodología, implementada en MATLAB, utiliza un modelo de formulación de LCC y LCA ambiental, e incorpora datos de la base de datos Ecoinvent, el software OpenLCA y otras bases de datos públicas. Los resultados obtenidos gracias a la optimización proporcionan información sobre las combinaciones de países más eficaces para obtener materias primas para la producción de baterías de NiZn y gestionar los residuos de las baterías que no se pueden reciclar. Los KPI de sostenibilidad, como el impacto del calentamiento global y los costes de capital, se vinculan automáticamente a los resultados, lo que garantiza su reproducibilidad en caso de actualizaciones de datos o cambios en las ubicaciones de producción y reciclaje establecidas inicialmente en París (Francia) y Krefeld (Alemania). El proceso de validación implica un análisis de sensibilidad para garantizar la solidez de los parámetros matemáticos y tener en cuenta las futuras variaciones del mercado, junto con el uso del proceso jerárquico analítico (AHP) para validar los resultados con interacciones humanas. En el futuro, se sugiere incluir las fases de fabricación y uso en el modelo de optimización para mejorar aún más la sostenibilidad y la eficiencia de las baterías de NiZn.

Como conclusiones más importantes de este trabajo, se pueden señalar las siguientes:

  • El estudio optimizó el ciclo de vida, el impacto ambiental y el costr de las baterías de NiZn, utilizando los datos más recientes disponibles de los principales productores y centros de tratamiento de residuos.
  • La optimización por enjambres de partículas multiobjetivo (MOPSO) se consideró más adecuada que el algoritmo genético (GA) para la optimización multiobjetivo, debido a su eficiencia y eficacia.
  • El análisis tuvo en cuenta 14 flujos de materiales, una línea de eliminación de residuos y varias ubicaciones del mundo con diferentes costes e impactos ambientales, lo que puso de relieve la complejidad del proceso de optimización.
  • Mediante el MOPSO, se identificaron las ubicaciones óptimas de los proveedores de materias primas con un coste e impacto medioambiental mínimos, así como las ubicaciones de eliminación de residuos de materiales no reciclables.
  • Se recomendaron países proveedores óptimos específicos para los diferentes materiales, haciendo hincapié en la importancia de tomar decisiones estratégicas de abastecimiento para reducir el impacto ambiental y los costes.
  • El modelo de IA demostró su solidez al alinearse con los resultados del proceso jerárquico analítico (AHP) y mostrar su resiliencia a las fluctuaciones del mercado en el análisis de sensibilidad.
  • El estudio hizo hincapié en la necesidad de contar con módulos de programación dinámicos para estimar los indicadores clave de rendimiento (KPI) de sostenibilidad y validar los resultados de la optimización, especialmente en las fases de adquisición de materias primas y eliminación de residuos.
  • La validación mediante el AHP reveló similitudes y diferencias entre la IA y los resultados de las encuestas de un panel de expertos, lo que puso de manifiesto la eficacia del modelo de IA en la toma de decisiones estratégicas para el abastecimiento y la gestión de residuos.
  • El documento concluyó destacando la importancia de incorporar las fases de fabricación y uso en los futuros modelos de optimización para mejorar aún más la sostenibilidad y la eficiencia de las baterías de NiZn.

Abstract:

This study aims to optimize the Environmental Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) of NiZn batteries using Pareto Optimization (PO) and Multi-objective Particle Swarm Optimization (MOPSO), which combine Pareto optimization and genetic algorithms (GA). The optimization focuses on the raw material acquisition and end-of-life phases of NiZn batteries to improve their sustainability Key Performance Indicators (KPIs). The optimization methodology, programmed in MATLAB, is based on a formulation model of LCC and the environmental LCA, using data from the Ecoinvent database, the OpenLCA software (V1.11.0), and other public databases. Results provide insights about the best combination of countries for acquiring raw materials to manufacture NiZn and for disposing of the waste of NiZn batteries that cannot be recycled. These results were automatically linked to some sustainability KPIs, such as global warming and capital costs, being replicable in case of data updates or changes in production or recycling locations, which were initially considered at Paris (France) and Krefeld (Germany), respectively. These results provided by an AI model were validated by using a sensitivity analysis and the Analytical Hierarchy Process (AHP) through an expert panel. The sensitivity analysis ensures the robustness of mathematical parameters and future variations in the market; on the other hand, the AHP validates the Artificial Intelligence (AI) results with interactions of human factors. Further developments should also consider the manufacturing and use phases in the optimization model.

Keywords:

LCCA; LCA; MOPSO; genetic algorithms; AHP; sustainability KPIs; AI; NiZn batteries

Reference:

MALVIYA, A.K.; ZAREHPARAST MALEKZADEH, M.; SANTARREMIGIA, F.E.; MOLERO, G.D.; VILLALBA-SANCHIS, I.; MARTÍNEZ-FERNÁNDEZ, P.; YEPES, V. (2024). Optimization of the Life cycle cost and environmental impact functions of NiZn batteries by using Multi-Objective Particle Swarm Optimization (MOPSO). Sustainability, 16(15):6425. DOI:10.3390/su16156425

Pincha aquí para descargar