A través del blog de Carlos Fernández Tadeo se puede acceder a la descarga gratuita de la monografía del Cedex denominada “Recomendaciones para la ejecución e interpretación de ensayos no destructivos para el control de la integridad de pilotes y pantallas in situ”. Esta monografía también se puede descargar gratuitamente de la página de publicaciones de la web de Aetess. No obstante, la monografía se publicó en 2006, y si bien los conceptos básicos permanecen vigentes, la instrumentación y los equipos ha avanzado considerablemente. Os remito a Carlos Fernández Tadeo, gran especialista en este tema, para más información al respecto.
Recientemente se han desarrollado pilotes de hormigón ejecutados “in situ” con secciones en X o en Y para mejorar la fricción con el terreno. Esta idea no es del todo nueva, puesto que los pilotes metálicos de sección en I o en H, las barretes, etc., disponen de secciones que mejoran el rozamiento.
Los pilotes de hormigón ejecutados “in situ” con sección en X (“X-section cast-in-place concrete pile“, XCC) fue patentado en China por el Geotechnical Institute of Hohai University. En este caso, utilizando secciones circulares inversas, se pueden ejecutar pilotes ahorrando hormigón y con la misma área de superficie que un pilote circular del mismo diámetro. Su ejecución se basa en una tubería metálica con un tope en punta que se introduce en el terreno antes de hormigonar. El diámetro de la camisa metálica oscila entre 0,25 y 1,00 m, llegando a 25 m profundidad. Además, diversos estudios han comprobado que la capacidad vertical del pilote con sección en X es un 20% mayor que el de sección circular con la misma cantidad de hormigón debido a su mayor superficie de fricción (Lv et al., 2011).
A continuación os dejo un vídeo explicativo de la instalación de este tipo de pilotes.
Los pilotes de hormigón “in situ” huecos y de gran diámetro (“cast-in-place concrete large-diameter pipe“, PCC) constituyen una técnica de mejora de suelos basados en inclusiones rígidas desarrollados recientemente en China debido a su bajo coste y a su alta capacidad de carga. La función de este sistema es minimizar los asentamientos totales y diferenciales tras la construcción de un terraplén en un suelo blando.
Se trata de un pilote tubular de hormigón vertido “in situ” que se construye con una carcasa formada por dos tubos de acero de distinto diámetro colocados uno dentro del otro, auxiliados por una pilotadora dotada de un vibrador (Figura 1).
El espacio entre los dos tubos se cierra en la parte inferior y el pilote se hace vibrar en el suelo. Una vez se alcanza la profundidad requerida, se vierte hormigón en la zona hueca creada entre los dos tubos del pilote, se comprime mediante vibración y se retrae este armazón. Este proceso abre el cierre entre las dos carcasas permitiendo que el tubo de hormigón permanezca en el suelo mientras se retraen las tuberías concéntricas.
El pilote final tiene un diámetro de 1,0 a 1,5 m, un grosor de pared de 100 a 150 mm, una longitud de hasta 25 m y una distancia entre centros de unos 2,5 a 4,0 m (Figura 2).
Sobre el campo de pilotes se coloca un colchón formado por tres capas de geotextil con grava entre ellas para redistribuir la carga del relleno a los pilotes. Se comprueba que la velocidad de instalación es bastante lenta, pero que racionalizando el hormigonado se puede ganar tiempo. Se realizan pruebas posteriores para verificar la calidad del pilote individual y de toda la mejora del suelo.
El pilote PCC ofrece mejor rendimiento económico que otros métodos convencionales. Presenta un mejor control de calidad, pues tanto la integridad como el grosor de la pared se puede verificar más fácilmente. Combina las ventajas del pilote de hormigón pretensado, del pilote perforado y del pilote de acero. Así, el PPC puede alcanzar profundidades de 25 m con diámetros de hasta 1,50 m, mientras que las columnas de grava y las columnas de suelo-cemento presentan diámetros que rondan los 0,50 m y profundidades normalmente limitadas a 15 m. Por otra parte, pilotes de estas dimensiones no se podrían prefabricar y colocar sin que estuvieran fuertemente armados, cosa que no ocurre con un PPC.
La capacidad portante del PCC es elevada, pues el rozamiento es alto por su diámetro y porque se desarrolla tanto por el interior como por el exterior del pilote tubular. Ello permite separar los pilotes entre sí, disminuyendo el número total necesario. Además, la forma anular del elemento rebaja la cantidad de hormigón empleado.
En la Figura 3 se muestra la secuencia de la instalación del PCC. Primero se monta la carcasa anular en la pilotadora (a), se empuja al principio y luego se vibra para introducirla en el terreno (b). Una vez se alcanza la profundidad, se vierte hormigón en el espacio anular (c). Después se extrae la doble tubería de acero mediante vibración (d) hasta terminar el pilote (e).
Os dejo a continuación un vídeo explicativo que creo os puede servir para entender el procedimiento constructivo de este tipo de pilotes.
Referencias:
LIU, H.L.; FEI, K.; MA, X.H.; GAO, Y.F. (2003). Cast-in-situ concrete thin-wall pipe pile with vibrated and steel tube mould technology and its application (I): Development and design. Rock Soil Mechanics, 24:164–168.
LIU, H.L.; CHU, J.; DENG, A. (2009). Use of large-diameter, cast-in situ concrete pipe piles for embankment over soft clay. Canadian Geotechnical Journal, 46(8): 915–927.
Se denominan pilotes excavados, perforados o de extracción, los que en su ejecución la perforación se efectúa por extracción del terreno. Debido a esta forma de instalación, se suelen denominar también pilotes de sustitución. Los pilotes perforados se hormigonan en obra. Son pilotes muy utilizados, aunque en edificación se reduce su uso a pilotes de un diámetro menor al metro. Sus diámetros habituales varían entre 350 y 3000 mm. Actualmente se encuentra vigente la norma europea UNE-EN 1536:2011+A1:2016 que establece los principios generales para la ejecución de pilotes perforados.
La excavación del terreno para ejecutar estos pilotes suele ser a percusión con cucharas de distintos tipos o trépanos. Sin embargo, también se perfora a rotación con distintos tipos de corona o cuchara (Figura 1), a rotopercusión si los terrenos son duros, compactos o rocosos o mediante útiles helicoidales que se hincan con giro y se extraen sin él (Figura 2). Cada método de excavación influye de forma diferente en el terreno, lo cual modifica el comportamiento pilote-terreno.
Respecto a los pilotes hincados, los excavados presentan las siguientes ventajas:
Pueden obtenerse muestras del terreno mientras se realiza la excavación.
Pueden atravesarse con más facilidad estratos duros.
Los sistemas de perforación producen mucho menos ruido y vibraciones, con maquinaria generalmente más ligera y más barata. En su caso, solo hay vibraciones cuando se hincas las camisas. Es por ello que se emplean más en zonas urbanas que los hincados.
Pueden alcanzarse mayores profundidades.
Sin embargo, respecto a los hincados, los pilotes de perforación no se pueden construir con una inclinación significativa (existen casos como en la cimentación de un estribo de un puente, donde algunos de los pilotes se pueden construir con cierta inclinación, en torno a 12:1), el hormigón puede presentar mala calidad por su difícil puesta en obra y problemas de curado en contacto con el terreno, una colocación deficiente de las armaduras, la excavación afloja los terrenos arenosos y pueden estrangularse al extraer la camisa o la hélice. Además, para tener una idea de la sección real de la excavación y del pilote frente a la sección teórica, se utiliza la “curva de hormigonado”, que nos indica el consumo real de hormigón en función de la profundidad.
El hormigón que se vierte para conformar este tipo de pilotes debe presentar algunas características especiales, como utilizar un cemento resistente en terrenos agresivos. Según indica el CTE, el hormigón de los pilotes perforados debe presentar las siguientes características:
Alta capacidad de resistencia contra la segregación
Alta plasticidad y buena cohesión
Buena fluidez
Capacidad de autocompactación
Suficiente trabajabilidad durante el proceso de vertido, incluida la retirada, en su caso, de los entubados provisionales
Por tanto, no se aconseja el uso de cementos de gran finura de molido y alto calor de hidratación, debido al empleo de altas dosificaciones. No se recomiendan los cementos de aluminato de calcio, aconsejándose los cementos con adiciones (tipo CEM II), porque las adiciones mejoran la durabilidad y la trabajabilidad, reduciendo la generación de calor durante el curado. Si la agresividad del terreno es muy elevada, se deben emplear cementos con la característica especial de resistencia a sulfatos o agua de mar (SR/MR).
En cuanto a los áridos, se utilizará una granulometría continua para evitar la segregación. También se preferirá el empleo de áridos redondeados cuando la colocación del hormigón se realice mediante tubo tremie. El tamaño máximo se limita a 32 mm o a ¼ de la separación entre armaduras longitudinales, eligiéndose el valor menor de ambos. En condiciones normales, se utilizarán tamaños máximos de árido de 25 mm si es rodado y 20 mm si es de machaqueo.
Como en los hincados, existen diversos procedimientos de ejecución, con o sin entubación según la consistencia y estabilidad del terreno y con diferentes sistemas de compactación del hormigón: mecánicamente o con aire comprimido.
Si se emplea entubación, su recuperación o integración definitiva se debe decidir con los mismos criterios que en los pilotes hincados; en terrenos de cierta consistencia, puede no ser necesaria la entubación, en cuyo caso la excavación puede realizarse con lodos o en seco. Los métodos de entibación o sostenimiento de la perforación son más complejos y caros cuanto menos consistente es el terreno. Así, rocas, arcillas, limos y arenas son, por este orden, cada una más difícil de sostener. Además, la presencia del nivel freático acrecienta el problema, más si el agua está en movimiento o está cargada de sales.
Por otra parte, hay que tener presente que, en una zona de relativamente poco espesor alrededor del terreno excavado, se produce una alteración que depende del método de perforación y que normalmente producirá una disminución de la tensión lateral previa a la instalación del pilote. Ello se traduce en un descenso de la densidad y del ángulo de rozamiento, sobre todo en las arcillas (en arenas la perforación no puede realizarse sin entibación, que incluso puede densificar el terreno si la perforación se realiza dentro de un tubo hincado previamente).
Así, el uso de hélices discontinuas para realizar la excavación deja peor el fondo de la excavación por falta de limpieza adecuada y caída de detritus de las paredes al introducir las armaduras. Ello influye en la resistencia por punta del pilote, que podría mejorarse con una inyección de “jet-grouting” en el fondo de la excavación.
Los pilotes perforados, si llegan a un sustrato rocoso, deberían poder empotrarse en él de alguna forma. Para ello se excava la roca con trépano o con otro medio. En el caso de que el empotramiento no supere un diámetro de profundidad, entonces se considera que el pilote está simplemente apoyado. En estos casos, hay que asegurar que el fondo de la perforación se encuentre limpio para evitar depósitos de material compresible que originen asientos y pérdida de capacidad portante por la base.
No se debe permitir la hinca con desplazamiento de pilotes o entibaciones a distancias menores a 3 m de un pilote hormigonado hasta que este hormigón presente una resistencia mínima de 3 MPa. Este plazo también se debe respetar cuando se realice la perforación con extracción, a una distancia mínima de 3,5 diámetros medidos desde el centro del pilote.
Solo se pueden ejecutar pilotes aislados hormigonados “in situ” si su diámetro supera los 1000 mm y se arman para las excentricidades y momentos resultantes. No se deben ejecutar pilotes aislados de este tipo si su diámetro es inferior a los 450 mm. En diámetros intermedios, solo se permiten pilotes aislados si se arriostran en dos direcciones perpendiculares.
La norma NTE-CPI “Cimentaciones. Pilotes in situ”, indica que el hormigonado del pilote quedará a una altura superior a la definitiva, debiéndose demoler el exceso una vez endurecido el hormigón. La altura a sanear será como mínimo la mitad del diámetro cuando la cabeza quede sobre el nivel freático, o de vez y media el diámetro cuando la cabeza quede por debajo. De todos modos, la recomendación es que la Dirección Facultativa indique la profundidad a descabezar teniendo en cuenta estos factores y el grado de contaminación del hormigón de la parte superior del pilote.
En cuanto a los ensayos de control de los pilotes terminados, se distinguen los ensayos de integridad a lo largo del pilote y los ensayos de carga (estáticos o dinámicos). Los primeros comprueban la continuidad del fuste del pilote y la resistencia del hormigón; para ello pueden ser ensayos de transparencia sónica, de impedancia mecánica o sondeos mecánicos a lo largo del pilote. El Código Técnico de Edificación CTE DB-SE C establece que el número de ensayos de integridad no debe ser inferior a 1 por cada 20 pilotes, salvo en el caso de pilotes aislados de diámetros entre 450 y 1000 mm, que no debe ser inferior a 2 por cada 20 pilotes. En pilotes aislados de diámetro superior a 1000 mm, no debe ser inferior a 5 por cada 20 pilotes. Sin embargo, son frecuencias de muestreo muy bajas, pues no son las habituales aceptadas internacionalmente, donde se especifica un mínimo del 30% como muestra. Con todo, se recomienda ensayar al 100% todos los pilotes, al menos con el ensayo sónico mediante martillo de mano.
En la Tabla 1 se recoge el uso de los pilotes perforados en función de los condicionantes geotécnicos, diámetro, profundidad y rendimientos que puede tener, todo ello para tener un orden de magnitud de sus características principales.
Un suelo blando puede reforzarse mediante inclusiones rígidas verticales dispuestas en forma de malla que suelen apoyarse sobre un sustrato competente y que no se conectan a la estructura. Sobre las inclusiones se acomoda una capa de reparto para transferir las cargas. Esta capa de transferencia puede realizarse en balasto, materiales tratados con cemento o cal, o por materiales granulares. La transferencia mejora si se disponen uno o varios niveles de geosintéticos. Las inclusiones rígidas limitan los asientos y se mejora la capacidad portante del terreno.
A diferencia de las inclusiones blandas, como pueden ser las columnas de grava, la rigidez de las inclusiones rígidas es mayor a la del terreno natural, no siendo necesario confinarlas lateralmente. Además, sus diámetros son menores, con porcentajes de tratamiento comprendidos entre el 2 y el 15% del volumen del terreno. El material introducido en las inclusiones blandas no presenta cohesión, mientras que, en las rígidas, la cohesión es significativa y permanente. Las inclusiones rígidas son estables sin necesidad del confinamiento lateral que, por ejemplo, necesita una columna de grava.
En la Figura 1 se observa que las inclusiones rígidas, a diferencia de otras cimentaciones, no se conectan directamente con la estructura. En efecto, la técnica distribuye las tensiones entre las inclusiones y el suelo blando a través de la capa de reparto y por el rozamiento negativo originado por los diferentes asientos existentes entre el suelo y las inclusiones (Figura 2). Tanto la geometría como las características geotécnicas de la capa determinan la eficacia de la transmisión de las cargas. Una forma de reducir las tensiones en el terreno y aumentarlas en las inclusiones es colocar geomallas en la capa de reparto. Estas mallas acortan la diferencia de asientos entre la cabeza de las inclusiones y el suelo debido al efecto membrana.
Las inclusiones rígidas se clasifican atendiendo a su proceso constructivo y a su mecanismo de transferencia de cargas. Una primera división, formulada por Briançon (2002), permite distinguir las inclusiones prefabricadas de las ejecutadas “in situ” (Figura 3). Las primeras se hincan por golpeo o presión distinguiéndose los pilotes de hormigón, acero y madera. Las segundas se subdividen en pilotes de extracción e inclusiones ejecutadas por medio de un ligante añadido al suelo. Sin embargo, una clasificación más utilizada divide las inclusiones rígidas atendiendo a su procedimiento constructivo en inclusiones por desplazamiento, por extracción y por mezclado.
Las inclusiones rígidas producen los siguientes efectos sobre el terreno:
Mayor resistencia y menor deformación del suelo tratado. La magnitud depende del espaciamiento entre las inclusiones, de las condiciones del terreno, del empotramiento y de la dosificación del mortero de la inclusión.
Descarga de las tensiones al suelo blando debido al efecto arco entre las inclusiones, que puede ser del 60 al 95% de la carga.
Disminución de la consolidación de rellenos blandos saturados, al aliviar las inclusiones la carga que le llega al terreno.
Os dejo un vídeo explicativo del procedimiento constructivo de una de las técnicas, en este caso, columnas de módulo controlado. Espero que os sea de interés.
Referencias:
BRIANÇON L. (2002). Renforcement des sols par inclusions rigides – Etat de l’art. IREX, Paris, 185 p.
IREX (2012). Projet national ASIRI. Recommandations pour la conception, le dimensionnement, l’exécution et le contrôle de l’amélioration des sols de fondation par inclusions rigides. Presses des Ponts. France.
JENCK, O. (2005): Le renforcement des sols compressibles par inclusions rigides verticals. Modélisation physique et numérique. https://tel.archives-ouvertes.fr/tel-00143331
Todos los días vemos miles de imágenes en internet. Un buen número de ellas son montajes que buscan llamar la atención para capturar visitas y aumentar los ingresos por publicidad. La ingeniería no se libra de este tipo de fenómenos.
En la Figura 1 podéis observar una imagen que, a priori es espectacular. Pero para un ingeniero supone un rompecabezas, pues es muy complicado ejecutar unos pilotes justamente debajo de un edificio. Es la típica fotografía que utilizo para que mis estudiantes piensen un poco sobre cómo se ha podido realizar este procedimiento constructivo. Muchas veces la respuesta suele ser correcta: es un montaje. Sin embargo, no es éste el caso.
En este caso, la pregunta me la hizo Marcos Barjola. La respuesta no es nada fácil a priori. No obstante, buscando por internet uno puede encontrar una nota de prensa fechada en Toronto que habla de este caso.
Se trata de una noticia del año 2014. El titular decía lo siguiente: “Una casa histórica encaramada a cinco pisos sobre tierra firme para que un condominio de 50 pisos se levante detrás de una vivienda del siglo XIX”. Además, se añadía lo siguiente: “Hay pocas posibilidades de que los ocupantes originales de la Casa John Irwin pudieran imaginar lo que pasaría con su vivienda dentro de 141 años”.
La solución fue ingeniosa y, ciertamente, costosa. Se desplazó la vivienda, se ejecutaron los pilotes y la viga riostra, y se volvió a situar la vivienda sobre la estructura. Sin embargo, se trataba de salvar un edificio de dos plantas, construido en 1873, que es único porque es una de las últimas casas existentes del siglo XIX en el centro de Toronto.
Este tipo de noticias suele dar pie a muchas reflexiones ingenieriles. Un ejemplo es la Figura 2. ¿Se trata de un montaje? ¿Es posible que la foto sea real? Os dejo la pregunta abierta, para que penséis por un rato.
La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención y control del agua subterránea en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante.
Este es un curso básico de procedimientos de contención y control del agua subterránea en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.
En este curso aprenderás las distintas tipologías y aplicabilidad de los procedimientos de contención y control del agua utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de sistemas de control del agua (ataguías, pantallas, escudos, drenajes superficiales, bombeos profundos, congelación del suelo, electroósmosis, inyecciones, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.
El contenido del curso está organizado en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada Lección didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado tres unidades adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.
El curso está programado para una dedicación de 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.
Éste curso único impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.
Objetivos
Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:
Comprender la utilidad y las limitaciones de los procedimientos de contención y control del agua en obras de ingeniería civil y de edificación
Evaluar y seleccionar el mejor tipo de procedimiento necesario para una construcción con problemas de agua en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales
Programa
– Lección 1. Conceptos básicos del agua en medio poroso
– Lección 2. El problema del agua en las excavaciones
– Lección 3. La magia de las tensiones efectivas en geotecnia
– Lección 4. El sifonamiento en las excavaciones: el efecto Renard
– Lección 5. Clasificación de las técnicas de control del agua en excavaciones
– Lección 6. Selección del sistema de control del nivel freático
– Lección 7. Drenaje de excavaciones mediante bombeos superficiales y sumideros
– Lección 8. Drenaje de excavaciones mediante zanjas perimetrales
– Lección 9. Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem
– Lección 10. Cálculo de un agotamiento mediante pozos
– Lección 11. Tipología de las estaciones de bombeo
– Lección 12. Altura neta positiva de aspiración de una bomba
– Lección 13. Bombas empleadas en el control del nivel freático de una excavación
– Lección 14. Procedimientos constructivos de pozos profundos para drenaje
– Lección 15. Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio
– Lección 16. Drenaje de excavaciones mediante bombeo desde pozos filtrantes
– Lección 17. Drenaje de excavaciones mediante bombeo desde pozos eyectores
– Lección 18. Drenajes horizontales instalados mediante zanjadoras
– Lección 19. Pozos horizontales ejecutados mediante perforación horizontal dirigida
– Lección 20. Drenes de penetración transversal: drenes californianos
– Lección 21. Control del nivel freático mediante lanzas de drenaje (wellpoints)
– Lección 22. Drenaje horizontal con pozos radiales
– Lección 23. Galerías de drenaje en el control del nivel freático
– Lección 24. Electroósmosis como técnica de drenaje del terreno
– Lección 25. Procedimientos para la contención del agua
– Lección 26. Evaluación aproximada de caudales de bombeo en excavación de solares
– Lección 27. Contención de aguas mediante ataguías en excavaciones
– Lección 28. Contención del agua mediante ataguías de tierras y escollera
– Lección 29. Contención del agua mediante tablestacas
– Lección 30. Contención del agua mediante ataguías celulares
– Lección 31. Contención del agua mediante cajones indios
– Lección 32. Contención del agua mediante cajones de aire comprimido
– Lección 33. Contención del agua mediante muros pantalla
– Lección 34. Contención del agua mediante pantallas de pilotes secantes
– Lección 35. Contención del agua mediante pantallas plásticas de bentonita-cemento
– Lección 36. Contención del agua mediante pantallas de suelo-bentonita
– Lección 37. Contención del agua mediante pantallas de suelo-cemento con hidrofresa
– Lección 38. Contención del agua mediante pantallas de lodo autoendurecible armado
– Lección 39. Contención del agua mediante pantallas realizadas por mezcla profunda de suelos
– Lección 40. Contención del agua mediante pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
– Lección 41. Contención del agua mediante pantallas de geomembranas
– Lección 42. Contención del agua mediante inyección del terreno
– Lección 43. Contención del agua mediante inyección de lechadas de cemento
– Lección 44. Contención del agua mediante inyección de lechadas de arcilla
– Lección 45. Contención del agua mediante inyección de lechadas químicas
– Lección 46. Contención del agua mediante inyecciones de alta presión: jet-grouting
– Lección 47. Contención del agua mediante congelación de suelos
– Lección 48. Contención del agua mediante escudos presurizados con aire comprimido
– Lección 49. Contención del agua mediante escudos presurizados con lodos
– Lección 50. Contención del agua mediante escudos de presión de tierras
– Supuesto práctico 1.
– Supuesto práctico 2.
– Supuesto práctico 3.
– Batería de preguntas final
Profesorado
Víctor Yepes Piqueras
Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València
Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 115 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido cuatro ediciones. También destaca el curso sobre “Procedimientos de construcción de cimentaciones y estructuras de contención en obra civil y edificación”, que ya va por su segunda edición.
El viaducto del río Ulla, es una obra de celosía tipo mixta propiedad del Ministerio de Fomento (Dirección General de Ferrocarriles), proyectado por IDEAM, construido por la UTE Dragados-Tecsa. Se inauguró el 30 de marzo del 2015. Este puente se convirtió en el récord del mundo en la tipología de celosía mixta de alta velocidad con tres vanos de 225 + 240 + 225 m que superan al del puente de Nantenbach sobre el río Main, en Alemania, que ostentaba el récord desde su conclusión en 1993 con 208 m de luz.
A continuación os paso una simulación en 3D realizada por la empresa PROIN3D del proceso constructivo propuesto para la ejecución de las cimentaciones del viaducto de río Ulla (Eje Atlántico de Alta Velocidad). Espero que os guste. Dura menos de 5 minutos.
También os dejo el artículo que describe el proceso constructivo de este puente singular, firmado por Francisco Miilanes, Miguel Ortega y Rubén A. Estévez, y que se publicó en la revista Hormigón y Acero.
La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 50 horas de dedicación del estudiante. Empieza el 9 de septiembre de 2019 y termina el 21 de octubre de 2019. Hay plazas limitadas.
Os paso un vídeo explicativo y os doy algo de información tras el vídeo.
Este es un curso básico de construcción, cimentaciones y estructuras de contención en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.
En este curso aprenderás las distintas tipologías y aplicabilidad de los cimientos y las estructuras de contención utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de cimentación (zapatas, losas de cimentación, pilotes, micropilotes, cajones, etc.) así como los distintos tipos de estructuras de contención (muros pantalla, pantallas de pilotes y micropilotes, tablestacas, entibaciones, muros, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, estructuras de hormigón, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.
El contenido del curso está organizado en 20 unidades didácticas, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada unidad se estima en 2-3 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado cuatro unidades didácticas adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento constructivo. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.
El curso está programado para una dedicación de 50 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal de 6 a 10 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.
Objetivos
Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:
Comprender la utilidad y las limitaciones de las cimentaciones y estructuras de contenciónempleadas en la construcción de obras civiles y de edificación
Evaluar y seleccionar el mejor tipo de cimentación y estructura de contención necesario para una construcción en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales
Programa
– Unidad 1. Concepto y clasificación de cimentaciones
– Unidad 2. Cimentaciones superficiales. Parte 1
– Unidad 3. Cimentaciones superficiales. Parte 2
– Unidad 4. Cimentaciones por pozos y cajones
– Unidad 5. Conceptos fundamentales y clasificación de pilotes
– Unidad 6. Pilotes de desplazamiento prefabricados
– Unidad 7. Pilotes de desplazamiento hormigonados “in situ”
– Unidad 8. Pilotes perforados hormigonados “in situ”. Parte 1
– Unidad 9. Pilotes perforados hormigonados “in situ”. Parte 2
– Unidad 10. Equipos para la perforación de pilotes
– Unidad 11. Estructuras de contención de tierras. Muros
– Unidad 12. Pantallas de hormigón
– Unidad 13. Estabilidad de las excavaciones. Entibaciones.
– Unidad 14. Tablestacas y anclajes
– Unidad 15. Hinca de pilotes y tablestacas
– Unidad 16. Descabezado de pilotes y muros pantalla
– Unidad 17. Caso práctico 1
– Unidad 18. Caso práctico 2
– Unidad 19. Caso práctico 3 d
– Unidad 20. Cuestionario final del curso
Profesorado
Víctor Yepes Piqueras
Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de un centenar de artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido cuatro ediciones con más de 17000 estudiantes inscritos.
En suelos suficientemente coherentes se puede ensanchar la base de la perforación, a fin de aumentar la capacidad de transmitir resistencia por punta, mediante una herramienta especial denominada balde de campana o de quijadas. Este útil puede ser de dos tipos: con articulación en la base o con articulación superior.
El ensanche del fondo de la excavación (acampanamiento o underreaming) tiene forma troncocónica. Como criterio general, la altura del ensanchamiento debe ser mayor que el diámetro del pilote y la anchura menor que tres veces el diámetro.