Seguridad estructural, los estados límites y los métodos semiprobabilísticos

El concepto de seguridad de una estructura en cumplir un conjunto de funciones para las que ha sido proyectada es un término relacionado con el grado de certeza o fiabilidad de que no alcance un conjunto de estados no deseables que todavía no han acontecido.

La seguridad se representa por consiguiente como un aspecto antagónico al aspecto económico del dimensionamiento: una estructura proyectada para un coste pequeño puede resultar poco segura y, por el contrario, una estructura proyectada para ser muy segura puede resultar antieconómica. La solución debe quedar en un término adecuado.

El concepto de seguridad en una estructura se refiere a su capacidad para cumplir con las funciones previstas, garantizando un nivel de fiabilidad que evite la ocurrencia de estados no deseados. La seguridad se contrapone al aspecto económico del diseño: una estructura económica puede ser menos segura, mientras que una estructura altamente segura puede resultar costosa. Por lo tanto, es necesario encontrar un equilibrio adecuado entre ambos aspectos.

El objetivo principal del Proyecto de Ingeniería Estructural consiste en garantizar que la estructura cumpla satisfactoriamente con su función original. El mantenimiento de esta funcionalidad a lo largo de su vida útil depende de diversos factores o parámetros que tradicionalmente se han considerado como cantidades deterministas.

Sin embargo, evaluar la seguridad en ingeniería es complicado debido a varios factores. En primer lugar, los accidentes pueden ocurrir por causas no relacionadas con los cálculos realizados, como erosiones o modelos inadecuados. Además, tratar el problema de forma aleatoria puede llevar a considerar la probabilidad como medida universal e invariable de seguridad. Sin embargo, la probabilidad solo es significativa en relación con un conjunto coherente de conocimientos, como los estados de falla no ocurridos, difíciles de definir. Además, existen incertidumbres que no pueden ser objetivamente cuantificadas mediante probabilidades. Por lo tanto, las probabilidades solo pueden ser definidas dentro de un contexto específico y los cálculos de probabilidad son meramente convencionales. Además, si bien medir el margen de seguridad a través de una magnitud física puede ser útil en un problema particular, no todas las magnitudes son adecuadas en todos los casos generales. Por ejemplo, las tensiones no son una magnitud adecuada para el estudio del equilibrio estático, y evaluar el margen de seguridad basándose en las tensiones puede ser incorrecto en problemas no lineales.

En el contexto de la Teoría de la Fiabilidad Estructural, Armen Der Kiureghian presenta los siguientes tipos de incertidumbres. En primer lugar, están las incertidumbres físicas, que surgen debido a la inherente variabilidad de las magnitudes físicas involucradas en el problema, como dimensiones, propiedades del material, cargas y resistencia. En segundo lugar, encontramos las incertidumbres estadísticas, que se originan a partir de los modelos probabilísticos utilizados para caracterizar las Variables Básicas del problema. Estas incertidumbres se deben a las aproximaciones necesarias para seleccionar las Funciones de Distribución y estimar sus parámetros, debido a la falta de información disponible. En tercer lugar, se presentan las incertidumbres del modelo, que son generadas por las hipótesis simplificativas realizadas en los modelos matemáticos empleados para describir la respuesta de un sistema estructural. Estas simplificaciones incluyen aspectos como la homogeneidad, el comportamiento elástico o elastoplástico, las pequeñas deformaciones y las condiciones de contorno. Aunque la variabilidad de los dos últimos tipos de incertidumbres puede reducirse a través del estudio e investigación, las incertidumbres físicas del primer tipo son inevitables.

En el pasado, las construcciones se basaban en métodos empíricos, confiando en la experiencia y la intuición del constructor para garantizar la seguridad. Sin embargo, en la actualidad, la experiencia debe complementarse con los resultados obtenidos, ya que la rápida evolución técnica puede presentar situaciones no experimentadas previamente. Con el surgimiento de la construcción metálica en el siglo XIX y el enfoque en la Resistencia de Materiales, se introdujo el método de tensiones admisibles. Este método implica un enfoque determinista en las variables utilizadas, donde la seguridad se basa en el margen establecido por las tensiones admisibles. Estas tensiones se obtienen mediante el cociente entre la resistencia del material y un coeficiente de seguridad, mientras que las cargas variables se establecen de manera empírica y arbitraria.

El desarrollo de la Teoría de la Elasticidad permitió aplicar este método en la construcción de hormigón armado, pero presenta desafíos. Cuando el comportamiento no es lineal debido a los materiales o la geometría de la estructura, las tensiones admisibles no reflejan el margen real de seguridad. Además, el comportamiento del hormigón y el acero dificulta definir el fallo en términos de tensiones. No se consideran los efectos de la adaptación plástica del hormigón, donde la tensión en un punto no determina la confiabilidad estructural si hay una fase de adaptación plástica que redistribuye los esfuerzos. Además, no se distinguen los diferentes tipos de acciones cuya influencia en la seguridad es distinta. No obstante, este método ha sido utilizado con profusión durante la primera mitad del siglo XX.

La Teoría de la Fiabilidad, que inicialmente se aplicaba a procesos industriales de producción en serie, se adaptó en 1960 al campo de la Ingeniería Estructural. El objetivo era desarrollar métodos que permitieran determinar los niveles de seguridad de los Sistemas Estructurales, mediante un enfoque racional de las incertidumbres presentes en ellos. Desde entonces, esta área de investigación ha experimentado un notable impulso, y los fundamentos teóricos desarrollados han dejado de ser exclusivamente un tema de investigación académica para convertirse en un conjunto de metodologías con una amplia gama de aplicaciones prácticas.

No obstante, los avances tecnológicos y los métodos de análisis han permitido realizar estudios de seguridad más precisos en las estructuras mediante la incorporación de modelos estadísticos y de probabilidad en los cálculos. Desde los primeros intentos, como el de Max Mayer en 1926, numerosos autores han contribuido al desarrollo del enfoque probabilístico y a su aplicación práctica. Para emplear la probabilidad en los cálculos, es necesario definir un conjunto coherente de eventos no deseados, denominados “estados límite”. Estos estados límite representan condiciones en las que una estructura o uno de sus elementos deja de cumplir su función de manera inmediata o progresiva. La seguridad se caracteriza por la probabilidad o conjunto de probabilidades de que los estados límite no sean superados. Al elegir la probabilidad de ocurrencia de un estado límite como medida convencional de la seguridad, es necesario establecer los valores aplicables en la práctica.

A primera vista, podría parecer que el uso de probabilidades resuelve por completo el problema de medir la seguridad. Sin embargo, su implementación enfrenta dos dificultades. Por un lado, están los datos que no se pueden cuantificar de manera probabilística debido a su naturaleza. Por otro lado, resulta prácticamente imposible conocer con precisión la probabilidad real de alcanzar un estado límite. Estas limitaciones dificultan la aplicación práctica de las probabilidades en la evaluación de la seguridad.

La seguridad puede tratarse en tres niveles, según el grado de simplificación en el abordaje del problema:

  • Nivel 3: Utiliza el cálculo de probabilidades sin restricciones en la representación de las incertidumbres.
  • Nivel 2: Representa las acciones, resistencias de materiales y secciones mediante distribuciones conocidas o asumidas, definidas por su tipo, media y desviación típica. La fiabilidad se expresa con el “índice de seguridad” (β).
  • Nivel 1: Establece niveles de fiabilidad estructural aplicando factores parciales de seguridad a valores nominales preestablecidos de las variables fundamentales.

Los métodos de nivel 2 y 3 emplean probabilidades que están vinculadas a hipótesis apriorísticas sobre las distribuciones de los datos.

En cambio, el método de nivel 1, conocido como método semiprobabilístico, considera solo ciertos elementos que se pueden cuantificar de manera probabilística, mientras que las demás incertidumbres se abordan mediante factores empíricos que poseen un significado físico específico. Este método es el más simple y ampliamente reconocido en la actualidad.

Os paso un vídeo explicativo sobre conceptos de fiabilidad estructural de Juan Carlos López Agüí, que espero os sea de interés.

Referencias:

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización mediante metamodelos en la ingeniería estructural

Acaban de publicarnos un artículo en Structures, revista indexada en el JCR. Se trata de la evaluación del coste del ciclo de vida mediante la función de densidad espectral de potencia en un puente de hormigón en ambiente costero. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La optimización asistida por metamodelos es una alternativa valiosa para manejar los procedimientos de optimización de diseño estructural, que suelen ser bastante costosos y a veces incluso prohibitivos. Este estudio ofrece una revisión actualizada de la literatura sobre la optimización asistida por metamodelos en el campo de la ingeniería estructural, analizando 111 publicaciones y 169 casos de estudio. Para proporcionar recomendaciones prácticas sobre las mejores prácticas para realizar esta optimización, se analizan ocho variables categóricas y se detectan relaciones subyacentes entre ellas mediante el análisis de correspondencia simple y múltiple. Sorprendentemente, hay menos documentos publicados sobre el tema de lo que se esperaba. La mayoría se centran en mejorar o desarrollar estrategias de metamodelización utilizando casos de estudio simples (benchmark) para validar las metodologías propuestas. La originalidad y el valor de este estudio radican en las conclusiones obtenidas a partir del análisis estadístico, que sirven como guía práctica para incorporar estrategias de metamodelización en futuros proyectos relacionados con la optimización del diseño estructural.

Como el artículo está publicado en abierto, lo podéis descargar en el siguiente enlace: https://www.sciencedirect.com/science/article/pii/S2352012423004782

Abstract

Metamodel-assisted optimization is a valuable alternative to handle structural design optimization procedures, which are usually quite expensive and sometimes even prohibitive. This paper presents an up-to-date literature review on metamodel-assisted structural design optimization (MASDO) in the structural engineering field. The period analyzed is from 2000 to the present, involving 111 publications and 169 case studies. In order to provide practical recommendations on best practices to perform MASDO, eight categorical variables are analyzed, and underlying relationships between them are detected by applying simple and multiple correspondence analysis. Surprisingly, there are fewer published papers on the subject than expected. Most focus on improving or developing metamodeling strategies using simple (benchmark) case studies to validate the proposed methodologies. Consequently, the originality and value of this study lie in the conclusions obtained from the statistical analysis, which serve as a practical guide for incorporating metamodeling strategies in future projects related to structural design optimization.

Keywords

State-of-the-art; Structural design optimization; Metamodel-assisted optimization; Surrogate-based optimization; Structural engineering

Reference

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted design optimization in the field of structural engineering: a literature review. Structures, 52:609-631. DOI:10.1016/j.istruc.2023.04.006

Descargar (PDF, 6.89MB)

Tesis doctoral: Life cycle optimization analysis of bridge sustainable development

Hoy 13 de enero de 2023 ha tenido lugar la defensa de la tesis doctoral de D. Zhi Wu Zhou titulada “Life cycle optimization analysis of bridge sustainable development“, dirigida por Víctor Yepes Piqueras y Julián Alcalá González. La tesis recibió la máxima calificación de sobresaliente “cum laude”. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

En el núcleo de la industria mundial de la construcción radica el uso excesivo de materiales, especialmente de combustibles fósiles. En esta línea de investigación, muchos investigadores y diseñadores han reducido significativamente la proporción de materiales y han minimizado la cantidad destinada al diseño en función de los criterios de investigación y las especificaciones de diseño. Teniendo en cuenta que las medidas anteriores pueden reducir los materiales de manera efectiva, es necesario investigar más a fondo algunas cuestiones: a) ¿En qué etapas del ciclo de vida de los materiales de construcción se consumen más?, b) ¿Cómo utilizar el método científico más adecuado para reducir el consumo de materiales en la fase de mayor uso?, c) ¿Cómo completar científicamente la evaluación de la optimización del consumo de materiales bajo la influencia de la superación de muchos eventos discretos y factores de influencia externos durante la etapa de diseño?, d) En la fase de construcción, ¿cómo optimizar al máximo el proceso de gestión del proyecto y lograr el mayor ahorro de material para garantizar la calidad, la seguridad y el coste?, e) ¿Cuánto material se puede ahorrar mediante la optimización del diseño y la gestión del proyecto?, f) ¿Cuál es el impacto final del sistema teórico de investigación y de los datos de análisis mencionados en el desarrollo sostenible de la industria de la construcción?
Al examinar publicaciones relevantes sobre el ciclo de vida completo de la industria de la construcción (Capítulo 2), la tesis encontró que las etapas de diseño y construcción son clave para reducir efectivamente el consumo de materiales. El objetivo principal de esta tesis es resolver los problemas de optimización propuestos. Mediante el establecimiento de un marco de modelo de investigación multidimensional y un modelo de optimización de gestión de proyectos sistemático, la tesis reduce el peso de varios componentes estructurales del puente estáticamente indeterminado y realiza la optimización ligera de la estructura del puente.

La tesis establece varios modelos teóricos básicos de innovación en el marco del modelo de investigación: el modelo de acoplamiento bibliométrico, el modelo matemático ComplexPlot; el modelo matemático integral multifactorial; el modelo de optimización de acoplamiento micro y macrodimensional de elementos finitos, y el modelo de evaluación de optimización de la gestión de proyectos dominó del método de la entropía. El sistema de investigación teórica supera la interferencia de la discreción del objeto de investigación, la complejidad y los factores de influencia inciertos y analiza la solidez de la evaluación y la mejora. El sistema de investigación teórica supera la interferencia de la discreción del objeto de investigación, la complejidad y los factores de influencia inciertos y consigue la solidez de la evaluación y la mejora. Asimismo, mejora ampliamente la resistencia del modelo a los factores naturales, humanos, accidentales e inciertos y el problema de la interferencia externa de las emergencias. Por último, el sistema formó un conjunto completo de sistemas de modelos de optimización de prevención y control conjuntos maduros y alcanzó los objetivos y enfoques de la investigación.

El estudio de caso demuestra la solidez del sistema del modelo teórico establecido, que reduce el coste del ciclo de vida (LCC) = 1.081.248,68 Chino yuan (CNY); Evaluación del ciclo de vida (LCA) = 212.566,94 tonelada (t); Evaluación del impacto social (SIA) = 17.783.505,12 hora de riesgo medio (Mrh) del análisis del estudio de impacto económico. Reducción del coste del ciclo de vida (LCC) = 739.612,19 Chino yuan (CNY); Evaluación del ciclo de vida (LCA) = 278.455,12 tonelada (t); Evaluación del impacto social (SIA) = 23.262.239,52 hora de riesgo medio (Mrh) del análisis del impacto en el desarrollo sostenible. Las preguntas formuladas en esta tesis están correctamente planteadas desde la perspectiva teórica y están fuertemente respaldadas por los datos.

El valor de la investigación de esta tesis: a) llena el vacío de la investigación en este campo. b) innova en una variedad de nuevos modelos teóricos de investigación. c) resuelve los problemas de discreción, incertidumbre e interferencia de factores externos en la optimización de la topología y la optimización de la gestión de proyectos. Las interferencias de los factores externos de mutación y la sensibilidad de las emergencias se compensan y corrigen. d) La investigación mejora la captura de datos discretos y la escasez de compensación del sistema de análisis de software Monte Carlo. En esta tesis, se aplican varios tipos de métodos avanzados de gestión de proyectos y esquemas de construcción avanzados en el caso de estudio, lo que proporciona un importante valor de referencia para la optimización de puentes estáticamente indeterminados del mismo tipo. Hay algunas dificultades para los lectores sin una experiencia práctica para comprender y aplicar el modelo. El lector debe leer atentamente este caso, que es también una de las limitaciones de este trabajo.

La futura dirección de la investigación del autor es continuar investigando en profundidad el desarrollo sostenible de los puentes de gran tamaño y la optimización de la prevención de problemas, los materiales avanzados y la investigación de recuperación de energía renovable en el desarrollo sostenible de los puentes y otros campos.

Referencias:

  1. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Experimental Research on Diseases of Emulsified Asphalt Mortar Board for Ballastless Tracks. Journal of Materials in Civil Engineering (accepted, in press)
  2. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on Sustainable Development of the Regional Construction Industry Based on Entropy Theory. Sustainability, 14(24): 16645. DOI:10.3390/su142416645
  3. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on the optimized environment of large bridges based on multi-constraint coupling. Environmental Impact Assessment Review, 97:106914. DOI:10.1016/j.eiar.2022.106914
  4. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Regional sustainable development impact through sustainable bridge optimizationStructures, 41, 1061-1076. DOI: 10.1016/j.istruc.2022.05.047
  5. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633
  6. ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916
  7. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122
  8. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental Research and Public Health, 17(16):5953. DOI:10.3390/ijerph17165953

Conferencia en el JSAEE 2022: Diseño y mantenimiento sostenible de estructuras y puentes considerando su ciclo de vida

Con motivo de la celebración del XXXIX Congreso Sudamericano de Ingeniería Estructural JSAEE 2022, fui invitado a impartir una conferencia denominada “Diseño y mantenimiento sostenible de estructuras y puentes considerando su ciclo de vida“. En esta conferencia explico lo que está realizando nuestro grupo de investigación con proyectos como DIMALIFEHYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. Espero que os sea de interés.

Participación en el Comité Científico de Congreso Internacional IALCCE2023

Tengo el placer de anunciar mi participación en el Comité Científico del IALCCE2023, Eighth International Symposium on Life-Cycle Civil Engineering, que tendrá lugar en el campus del Politécnico de Milán (Italia), entre el 11 y el 15 de junio. Los Presidentes de este congreso son los profesores Fabio Biondini y Dan Frangopol.

El objetivo de IALCCE 2023 es reunir toda la investigación de vanguardia en el campo de la Ingeniería Civil de Ciclo de Vida y avanzar tanto en el estado de la técnica como en el de la práctica en este campo. Este simposio ofrecerá a académicos, ingenieros, arquitectos, consultores, contratistas, autoridades públicas y responsables de la toma de decisiones de todo el mundo la oportunidad de mantenerse al día con los últimos avances en el campo de la Ingeniería Civil de Ciclo de Vida.

Los sistemas de estructuras civiles e infraestructuras son la columna vertebral de la sociedad moderna y uno de los principales motores del crecimiento económico y el desarrollo sostenible de los países. Por lo tanto, es una prioridad estratégica consolidar y mejorar los criterios, métodos y procedimientos para proteger, mantener y mejorar la seguridad, la solidez, la durabilidad, la funcionalidad y la resistencia de los sistemas de estructuras e infraestructuras críticas en condiciones de incertidumbre.

En este contexto, la ingeniería civil está experimentando un profundo cambio hacia una filosofía de diseño orientada al ciclo de vida para satisfacer la creciente demanda de las necesidades económicas, medioambientales, sociales y políticas, y para incorporar los nuevos problemas medioambientales, como los efectos del calentamiento global y el cambio climático. También es necesario esforzarse por colmar el vacío existente entre la teoría y la práctica y fomentar la incorporación de los conceptos de ciclo de vida en los códigos, normas y especificaciones de diseño estructural. Para ello, se promueve la investigación y las aplicaciones en el seno de la Asociación Internacional de Ingeniería Civil del Ciclo de Vida (IALCCE).

 

XXXIX Congreso Sudamericano de Ingeniería Estructural JSAEE 2022

Tengo el placer de anunciar mi conferencia invitada al XXXIX Congreso Sudamericano de Ingeniería Estructural, JSAEE 2022. Dicha conferencia tiene como título: “Diseño y mantenimiento sustentable de estructuras y puentes considerando su ciclo de vida“.

La XXXIX edición de las Jornadas , que se realizará en septiembre de 2022 a distancia, es la continuación de un evento que tuvo su primera edición en 1950. Las Jornadas reúnen a profesionales e investigadores que trabajan en el diseño y construcción de obras verticales y horizontales, constituyéndose en el congreso más importante en esta área del conocimiento en Sudamérica. Las Jornadas están organizadas por la Asociación Sudamericana de Ingeniería Estructural (ASAEE – http://asaee.org ) y por un comité local. En la presente edición, el evento es organizado por el Programa de Posgrado en Ingeniería Civil y Ambiental de la Universidad de Passo Fundo, RS, Brasil.

Os dejo el enlace a la página web del congreso, para mayor información e inscripciones: https://eventos.congresse.me/jsaee2022

 

Integración del proyecto estructural en BIM. Estado del arte

Acaban de publicarnos en la revista Journal of Building Engineering, que está en el primer decil del JCR, un artículo de revisión sobre la integración del proyecto estructural en BIM. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Podéis descargar el artículo gratuitamente al tratarse de una publicación en acceso abierto: https://www.sciencedirect.com/science/article/pii/S235271022200331X

La revolución hacia la Industria 4.0 en el sector AECO ha tomado como uno de sus puntos centrales el Building Information Modelling (BIM). Las capacidades de BIM para la automatización, la interoperabilidad y la sostenibilidad juegan un papel clave en este cambio. En este artículo se presenta una revisión bibliográfica sobre la adopción de BIM para el proyecto estructural. El objetivo de la revisión presentada es establecer el estado actual del conocimiento de la implementación de la metodología BIM en el campo del análisis estructural. Se han seleccionado trabajos relacionados con estos dos temas simultáneamente, BIM y análisis de estructuras, durante los últimos 10 años. La literatura se ha analizado desde dos enfoques diferentes. En primer lugar, se ha realizado un análisis bibliométrico, estudiando la producción sobre el tema. En segundo lugar, se han seleccionado y analizado 81 artículos representativos, estableciendo áreas temáticas a través del análisis de clúster. También se han clasificado los artículos a partir de varias categorizaciones basadas en el ciclo de vida estructural y su objetivo. Por último, se efectúa un análisis DAFO a partir de estos datos para crear un marco completo que muestre el estado de la integración del proyecto estructural en entornos BIM y los posibles desarrollos y riesgos futuros. Este conjunto de estudios muestra una tendencia hacia las herramientas de diseño y las nuevas construcciones. Mientras que la automatización y el diseño asistido por ordenador han sido una tendencia en la investigación durante varios años, se ha señalado una laguna en la investigación sobre el análisis estructural a través de BIM para los edificios existentes y del patrimonio, mostrando su capacidad para mejorar el análisis de los edificios existentes y su mantenimiento.

Highlights:

  • The state-of-art of the integration of the structural project into BIM environments has been performed.
  • A quantitative approach has been performed studying the scientific production of the topic.
  • A qualitative analysis through proof-reading 81 articles relates the design phase and the agent involved in it to weigh the received attention.
  • A cluster analysis on keywords of 81 articles reveal the trends in BIM research.
  • Discussion through SWOT system reveals the different trends, weaknesses and further opportunities in the research area.

Abstract:

The revolution towards Industry 4.0 in the AECO Industry has taken Building Information Modelling (BIM) as one of its central points. BIM abilities for automatization, interoperability and sustainability play a key role in this change. In this paper, a literature review about BIM adoption for the structural project is presented. The aim of the presented review is to clearly establish the current state of knowledge of the implementation of the BIM methodology in the field of structural analysis. Papers related to these two topics simultaneously, BIM and structure analysis, during the last 10 years have been selected. The literature has been analysed from two different approaches. First, bibliometric analysis has been performed, studying the production on the topic. Secondly, 81 representative papers have been selected and analysed, establishing thematic areas via cluster analysis. The articles have also been classified upon several categorizations based on the structural life cycle and their aim. Finally, a SWOT analysis is performed from this data to create a complete framework that shows the state of the integration of the structural project in BIM environments and possible future developments and risks. This set of studies shows a tendency towards design tools and new buildings. While automatization and computer-aided design have been a trend in the research for several years, a research gap on the structural analysis via BIM for existing and heritage buildings has been pointed out, showing its ability to improve the analysis of existing buildings and its maintenance.

Keywords: BIM; Structural project; Building performance; Literature review; Life cycle

Referencia:

FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Journal of Building Engineering, 53:104318. DOI:10.1016/j.jobe.2022.104318.

Descargar (PDF, 1.36MB)

El sistema de seguimiento del constructor según el Código Estructural

Figura 1. Imagen: V. Yepes

El constructor debe definir y desarrollar un sistema de seguimiento que verifique la conformidad de la ejecución de los trabajos. Para ello debe desarrollar dos documentos. Por una parte el plan de obra, que también se llama “cronograma” en el Código Estructural, y el procedimiento de autocontrol de la ejecución de la estructura (también llamado “programa de autocontrol”. Ambos documentos desarrollan el plan de control definido en el proyecto. Entre los tres, darán lugar al programa de control que deberá aprobar la dirección facultativa. Por cierto, ya comentamos en un artículo anterior la confusión de términos cuando se mezclan “plan” y “programa” con “control” y “autocontrol”. El Código Estructural se merece que se simplifiquen y aclaren los términos.

El plan de obra lo debe redactar el constructor antes del inicio de los trabajos. El Código también lo llama cronograma para enfatizar el hecho de poner plazos a lo planificado por el constructor. Téngase en cuenta que, junto con el plan de control del proyecto y el programa de autocontrol del constructor, el plan de obra sirve de base al programa de control que debe aprobar la dirección facultativa.

Los contenidos mínimos que debe disponer el sistema de seguimiento de la obra del constructor (plan de obra y programa de autocontrol) son los siguientes:

  • El plan de obra o cronograma.
  • El sistema de gestión de los materiales, productos y elementos que se vayan a colocar en la obra, para garantizar su trazabilidad.
  • Las particularidades, con relación a los medios, procesos y actividades, para ejecutar la obra.
  • Las comprobaciones a realizar en el seguimiento de la ejecución, incluyendo su justificación, designación del responsable y de cumplimiento con el proyecto y lo establecido en el Código. Los resultados se documentarán por el constructor en los registros de autocontrol.

El concepto “programa de autocontrol” se puede encontrar disperso a lo largo del Código Estructural. Según el Art. 17 Criterios generales para la gestión de la calidad de las estructuras, el procedimiento de autocontrol del constructor es el sistema de aseguramiento de la calidad propio que incluye las evidencias necesarias para dar cumplimiento a los requerimientos del control e inspección establecidos en el correspondiente proyecto de ejecución y en el Código Estructural. Pero las ideas fundamentales las podemos ver en el Art. 19 Plan y programa de control, Art. 22 Control de la conformidad de los procesos de ejecución, Art. 22.1 Control de la ejecución mediante comprobación del control de producción del constructor y Art. 22.2 Control de la ejecución mediante inspección de los procesos.

A continuación os dejo un mapa conceptual donde se aclaran las relaciones del programa de autocontrol del constructor con otros aspectos del seguimiento de la ejecución (Figura 2).

Figura 2. Mapa conceptual sobre el control de la ejecución de una obra según el Código Estructural. Imagen: V. Yepes.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Objetivos y metodología del proyecto de investigación HYDELIFE

Figura 1. Instituto de Ciencia y Tecnología del Hormigón (ICITECH)
Figura 1. Laboratorio de materiales del Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En varios artículos anteriores detallamos los antecedentes, la motivación, las hipótesis de partida, así como la trascendencia del proyecto de investigación HYDELIFE. Ahora vamos a explicar los objetivos y la metodología de este proyecto, del cual soy investigador principal: Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos (PID2020-117056RB-I00). Los investigadores de este proyecto pertenemos al Instituto de Ciencia y Tecnología del Hormigón (ICITECH).

El objetivo general perseguido se basa en afrontar el reto social que supone la creación y la conservación de las construcciones modulares y puentes mixtos en escenarios de fuertes restricciones presupuestarias, mediante la resolución de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas. Para ello se precisa un salto científico capaz de integrar a los distintos actores y grupos de expertos en la toma de decisiones considerando criterios de sostenibilidad social y ambiental a lo largo de todo el ciclo de vida de las infraestructuras considerando la variabilidad inherente al mundo real. Para integrar las incertidumbres que afectan al sistema, se propone aplicar técnicas metaheurísticas híbridas basadas en fiabilidad, aplicadas no sólo al proyecto de nuevas estructuras, sino al mantenimiento de las actuales. Un estudio de sensibilidad de los escenarios presupuestarios y de las hipótesis tomadas en los inventarios del análisis del ciclo de vida proporcionará conocimiento no trivial sobre las mejores prácticas. Esta metodología será aplicable también a otro tipo de infraestructuras.

El objetivo general se desarrollará mediante los objetivos específicos mostrados en la Figura 2 y que se describen a continuación, de los cuales será responsable el investigador principal:

  • OE-1: Análisis de funciones de distribución específicas para el diseño óptimo basado en fiabilidad que integre aspectos ambientales, sociales y económicos que sirva para la toma de decisión multicriterio.
  • OE-2: Determinación de indicadores clave basados en redes bayesianas y lógica neutrosófica para garantizar una efectiva integración de la sostenibilidad ambiental y social en la licitación de proyectos mantenimiento de construcciones modulares, puentes mixtos e híbridos.
  • OE-3: Identificación de estrategias de mantenimiento robusto óptimo de construcciones modulares y puentes mixtos y estructuras híbridas.
  • OE-4: Formulación y resolución del problema de optimización multiobjetivo que contemple el ciclo completo de construcciones modulares, puentes mixtos y estructuras híbridas mediante metaheurísticas híbridas.
  • OE-5: Comparación del diseño robusto óptimo respecto a la optimización heurística considerando incertidumbres en los escenarios presupuestarios y en las hipótesis del análisis del ciclo de vida.
  • OE-6: Difusión de resultados y redacción de informes.
Figura 2.- Objetivos específicos del proyecto HYDELIFE

Metodología propuesta en relación con los objetivos y con el estado del arte

El análisis del estado del arte alumbró dos huecos en la investigación, el empleo de metaheurísticas híbridas con Deep Learning y su aplicación a construcciones modulares, puentes mixtos y estructuras híbridas. Además, el empleo de la lógica neutrosófica y las redes bayesianas abre puertas en el ámbito de la decisión multicriterio. Estas novedades se combinan en la metodología con técnicas y disciplinas ya empleadas en otros proyectos: análisis del ciclo de vida, análisis basado en fiabilidad, diseño óptimo robusto, metamodelos y técnicas de minería de datos. Por tanto, se trata de una combinación integrada cuyo objetivo es la priorización del tipo de diseño, en el caso de estructuras de nueva planta, o bien de su mantenimiento, basándose en criterios de sostenibilidad social y ambiental bajo presupuestos restrictivos, considerando la variabilidad inherente a los problemas reales.

La Figura 3 muestra el esquema metodológico propuesto para HYDELIFE, relacionando las fases con los objetivos propuestos. Se utiliza un enfoque mixto e interactivo, donde el decisor proporciona información sobre las preferencias al analista que, tras una optimización multiobjetivo basada en fiabilidad y metamodelos, aporta un conjunto de soluciones eficientes que el responsable debe evaluar antes de tomar su decisión. Por tanto, la novedad de la propuesta metodológica trifase se basa en la integración de técnicas de información a priori, donde el decisor (grupos de interés) informa de las preferencias al analista (en cuanto a tipologías, métodos constructivos, conservación, etc.), produciéndose con esta información una optimización multiobjetivo capaz de generar alternativas eficientes utilizando la variabilidad en los parámetros, variables y restricciones. La última fase pasa por un proceso de información a posteriori para que el decisor contemple aspectos no considerados en la optimización para dar la solución final completa.

Figura 3.- Esquema metodológico diseñado para HYDELIFE en relación con los objetivos

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

En este momento llevamos seis meses de trabajo, pues el proyecto comenzó en septiembre del 2021. Pero ya podemos dar algunos resultados que se pueden ver en la siguiente lista de referencias.

Referencias:

MARTÍNEZ FERNÁNDEZ, P.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2022). Slab track optimisation using metamodels to improve rail construction sustainabilityJournal of Construction Engineering and Management, (accepted, in press).

MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization, 65:46. DOI:10.1007/s00158-021-03154-0

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

YEPES, V.; LOPEZ, S. (2021). Knowledge management in the construction industry: Current state of knowledge and future research. Journal of Civil Engineering and Management, 27(8):671-680. DOI:10.3846/jcem.2021.16006

SIERRA, L.; ARAYA, F.; YEPES, V. (2021). Consideration of uncertainty and multiple disciplines in the determination of sustainable criteria for rural roads using neutrosophic logic.  Sustainability, 13(17):9854. DOI:10.3390/su13179854

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

HOOSE, A.; YEPES, V.; KRIPKA, M. (2021). Selection of Production Mix in the Agricultural Machinery Industry considering Sustainability in Decision Making. Sustainability, 13(16), 9110. DOI:10.3390/su13169110

MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879. DOI:10.1109/ACCESS.2021.3102215

MARTÍN, R.; YEPES, V. (2021). Bridging the gap between landscape and management within marinas: A review. Land, 10(8), 821. DOI:10.3390/land10080821

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

BIANCHI, P.F.; YEPES, V.; VITORIO, P.C., Jr.; KRIPKA, M. (2021). Study of alternatives for the design of sustainable low-income housing in BrazilSustainability, 13(9):4757. DOI:10.3390/su13094757

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homesEnvironmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2021). Neutrosophic completion technique for incomplete higher-order AHP comparison matrices. Mathematics, 9(5):496. DOI:10.3390/math9050496

TANG, M.; LIAO, H.; YEPES, V.; LAURINAVICIUS, A.; TUPENAITE, L. (2021). Quantifiying and mapping the evolution of a leader journal in the field of civil engineering. Journal of Civil Engineering and Management, 27(2):100-116. DOI:10.3846/jcem.2021.14365

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

GARCÍA, J.; ASTORGA, G.; YEPES, V. (2021). An analysis of a KNN perturbation operator: an application to the binarization of continuous metaheuristics. Mathematics, 9(3):225. DOI:10.3390/math9030225.

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Control de la conformidad de los procesos de ejecución en el Código Estructural

Figura 1. Fotografía: Esther Valiente

Los procesos realizados durante la construcción de una estructura se someten a un estricto control, tanto en el actual Código Estructural, como en la anterior Instrucción de Hormigón Estructural EHE-08. El Artículo 22 del Código es el que trata del control de la conformidad de los procesos de ejecución, mientras que en la EHE-08 lo hacía el Artículo 79.4. Sin embargo, existen novedades en el contenido y alcance, así como algunas incongruencias de las que hablaremos a continuación .

Aparte del cambio de nombre en el artículo (se añade la palabra “control”), lo más destacable en la actual redacción del Código es la inclusión de dos subapartados nuevos que son la programación y los niveles de control de ejecución. Estos añadidos se suman a los dos anteriores: control de la ejecución mediante comprobación del control de producción del constructor y control de la ejecución mediante inspección de los procesos. Con todo, incluso estos dos apartados han sido objeto de cambios. Vamos a analizarlos a continuación.

En la descripción del Artículo 22 se ha añadido un primer párrafo donde se explicita que el control de la ejecución de las estructuras, a través de sus procesos constructivos, es obligatorio. Es la dirección facultativa la que se responsabiliza de su conformidad con el proyecto y con lo indicado en el propio Código. Tal y como se ha comentado en alguna entrada anterior del blog,  este énfasis implica una elevada responsabilidad en la calidad del proyecto. Cualquier errata u omisión, o bien una modificación posterior en obra, son aspectos que no vendrían recogidos en el proyecto original.

Se ha incluido de forma expresa que una entidad de control podrá ser el medio por el cual la dirección facultativa controlaría la ejecución de la estructura, en el caso de que no lo hiciera directamente. No obstante, la responsabilidad última sigue siendo de la dirección facultativa.

  • Lo que antes era el plan de autocontrol del constructor, ahora se desdobla en dos documentos del constructor: el plan de obra (también llamado “cronograma” en el Artículo 19 del Código Estructural) y el programa de autocontrol. Hubiera sido deseable que los términos utilizados en los distintos artículos fuesen consistentes entre sí. Por ejemplo, el Artículo 19 se refiere al “procedimiento de autocontrol” (Figura 2), mientras que en el Artículo 22 se llama “programa de autocontrol”. Recordemos que el programa de control que tiene que aprobar la dirección facultativa se basa en el plan de control del proyecto y en el plan de obra y procedimiento de autocontrol del constructor. En una entrada anterior del blog se explicaron estos conceptos y a él me remito.
Figura 2. Nomenclatura seguida en el Artículo 19 del Código Estructural. Elaboración propia.
  • También se puntualiza en el Artículo 22.1 relativo al control de producción del constructor lo que se entiende como programa de autocontrol. Se trata de contemplar las particularidades concretas de la obra atendiendo a los medios, procesos y actividades. Además, la responsabilidad de registrar las comprobaciones recaen en el constructor, en los llamados registros de autocontrol.
  • Otra novedad a comentar es el papel de la dirección facultativa en la inspección de los procesos. Se ha añadido en el Artículo 22.2 que la dirección facultativa actúa en representación de la propiedad y tiene la obligación de efectuar el control de la ejecución y comprobar los registros de autocontrol del constructor. Asimismo, se incluye un párrafo donde se posibilita a la dirección facultativa de eximir de la realización de inspecciones externas aquellos procesos de ejecución que posean un distintivo de calidad oficialmente reconocido. Es evidente que el legislador resalta en numerosas ocasiones a lo largo del Código Estructural que la dirección facultativa no actúa en interés propio, sino representando a la propiedad. Además, se explicitan responsabilidades que, si bien parecían obvias, no quedaban reflejadas expresamente en la redacción de estos artículos.
  • Se ha incluido como novedad el Artículo 22.3 sobre programación del control de la ejecución. A pesar del nombre del artículo, realmente trata de la programación del autocontrol de la ejecución del constructor. Aquí se incluyen los niveles de control y clases de ejecución, los lotes de ejecución, las unidades de inspección y las frecuencias de comprobación. Como crítica a la redacción de este artículo cabe mencionar la confusión en los términos: “programación del control” y “programación del autocontrol” de este artículo 22.3 se confunden con el “programa de control” y el “procedimiento de autocontrol” descritos en el referido Artículo 19 (Figura 2).
  • Por último, otra novedad es el Artículo 22.4 sobre los niveles de control de la ejecución. Se contemplan dos niveles de control, a nivel normal y a nivel intenso, ambos descritos en el Artículo 14 del Código. Además, se exige que en el nivel intenso, el constructor debe estar certificado conforme a la norma UNE-EN ISO 9001 para el alcance de las actividades de ejecución requeridas.

Como resumen de todo lo anterior, cabe criticar la redacción de algunos de los conceptos clave que se manejan en el Código. Si bien este tipo de normativa deriva de otras anteriores, también es cierto que parece claro que son varios los redactores de los artículos del Código, con inconsistencias que deberían corregirse en este tipo de documento. Para aclarar los conceptos a los lectores diremos que “cronograma” equivale a “plan de obra” y que “procedimiento de autocontrol” es lo mismo que “programa de autocontrol”. Además, en la Figura 3 hemos puesto los conceptos que se manejan en el Código y los responsables de cada uno de ellos. En fin, que hace falta una guía para entender la combinación de palabras que se pueden ver en el texto de la norma.

Figura 3. Combinación de conceptos manejados en el Código Estructural y los responsables de cada uno de ellos. Elaboración propia.

Para aclarar al lector les diría lo siguiente: en el caso de un control de nivel intenso de la ejecución, la empresa constructora debe estar certificada con la norma ISO 9001. Ello implica que, para cada una de las estructuras que realice, debe disponer de un procedimiento de autocontrol conforme a esta norma. Si la constructora no dispone de este certificado de gestión de la calidad, el Código Estructural también le obliga a redactar un procedimiento de autocontrol. Por tanto, la conclusión parece evidente: sea cual sea el nivel de control de la ejecución de una estructura, el Código empuja a las empresas constructoras a tener certificado su sistema de gestión de la calidad.

Os he grabado un vídeo explicativo sobre este asunto. Espero que os sea de interés.

Os dejo a continuación la transcripción del artículo 22 del Código Estructural para su consulta.

Artículo 22. Control de la conformidad de los procesos de ejecución.

El control de la ejecución, establecido como preceptivo por este Código, tiene por objeto comprobar que los procesos realizados durante la construcción de la estructura, se organizan y desarrollan de forma que la dirección facultativa pueda asumir su conformidad respecto al proyecto, de acuerdo con lo indicado en este Código.

Durante la construcción de la estructura, la dirección facultativa controlará la ejecución de cada parte de la misma, bien directamente o a través de una entidad de control, verificando su replanteo, los productos que se utilicen y la correcta ejecución y disposición de los elementos constructivos. Efectuará cualquier comprobación adicional que estime necesaria para comprobar la conformidad con lo indicado en el proyecto, la reglamentación aplicable y las órdenes de la propia dirección facultativa. Comprobará que se han adoptado las medidas necesarias para asegurar la compatibilidad entre los diferentes productos, elementos y sistemas constructivos.

El control de la ejecución comprenderá:

a) la comprobación del control de producción del constructor, y
b) la realización de inspecciones de los procesos durante la ejecución.

22.1 Control de la ejecución mediante comprobación del control de producción del constructor.

El constructor tiene la obligación de definir y desarrollar un sistema de seguimiento, que permita comprobar la conformidad de la ejecución. Para ello, elaborará el plan de obra y el programa de autocontrol de la ejecución de la estructura, desarrollando el plan de control definido en el proyecto.

El programa de autocontrol contemplará las particularidades concretas de la obra, relativas a medios, procesos y actividades y se desarrollará el seguimiento de la ejecución de manera que permita a la dirección facultativa comprobar la conformidad con las especificaciones del proyecto y lo establecido en el Código. Para ello, los resultados de todas las comprobaciones realizadas serán documentados por el constructor, en los registros de autocontrol.

El programa de autocontrol deberá ser aprobado por la dirección facultativa antes del inicio de los trabajos.

Los resultados de todas las comprobaciones realizadas en el autocontrol deberán registrarse en un soporte, físico o electrónico, que deberá estar a disposición de la dirección facultativa. Cada registro deberá estar firmado por la persona física que haya sido designada por el constructor para el autocontrol de cada actividad.

Durante la obra, el constructor deberá mantener a disposición de la dirección facultativa un registro permanentemente actualizado, donde se reflejen las designaciones de las personas responsables de efectuar en cada momento el autocontrol relativo a cada proceso de ejecución. Una vez finalizada la obra, dicho registro se incorporará a la documentación final de la misma.

Además, en función del nivel de control de la ejecución, el constructor definirá un sistema de gestión de los acopios suficiente para conseguir la trazabilidad requerida de los productos y elementos que se colocan en la obra.

22.2 Control de la ejecución mediante inspección de los procesos.

La dirección facultativa, en representación de la propiedad, tiene la obligación de efectuar el control de la ejecución, comprobando los registros del autocontrol del constructor y efectuando las inspecciones puntuales de los procesos de ejecución que sean necesarios, según lo especificado en proyecto, lo establecido por este Código o lo ordenado por la propia dirección facultativa. Para ello, la dirección facultativa podrá contar con la asistencia técnica de una entidad de control de calidad, de acuerdo con el apartado 17.2.2.

En su caso, la dirección facultativa podrá eximir de la realización de las inspecciones externas para aquellos procesos de la ejecución de la estructura que se encuentren en posesión de un distintivo de calidad oficialmente reconocido.

22.3 Programación del control de ejecución.

La programación del autocontrol de la ejecución identificará, entre otros aspectos, los siguientes:

– niveles de control y clases de ejecución
– lotes de ejecución,
– unidades de inspección,
– frecuencias de comprobación.

22.4 Niveles de control de la ejecución.

A los efectos de este Código, se contemplan dos niveles de control:

a) Control de ejecución a nivel normal (conforme al Artículo 14)
b) Control de ejecución a nivel intenso (conforme al Artículo 14)

Cuando se realice un control de ejecución a nivel intenso el constructor deberá estar en posesión de un sistema de la calidad certificado conforme a la UNE-EN ISO 9001, obtenido de una entidad certificada confirme a la UNE-EN ISO/IEC 17021 para el alcance de las actividades de ejecución requeridas.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.