Resultados finales del proyecto DIMALIFE: Diseño y mantenimiento robusto y basado en fiabilidad de puentes

Figura 1. Mapa mental del proyecto de investigación DIMALIFE

En el pasado Congreso ACHE 2022, celebrado recientemente en Santander, tuve la oportunidad de presentar los resultados del proyecto de DIMALIFE. Este proyecto fue anterior al actual HYDELIFE y supone una línea de investigación de alta productividad para nuestro grupo de investigación. En el periodo comprendido entre 2018 y 2021, tuvimos la ocasión de publicar 50 artículos indexados de alto impacto en el JCR, defender 5 tesis doctorales, 10 trabajos fin de máster y 25 comunicaciones a congresos. A ello hay que añadir la irrupción de la pandemia, que impidió una mayor presencia física en los congresos para diseminar los resultados alcanzados. Pero para eso está internet y las redes sociales.

Os paso, por tanto, el artículo completo donde se recogen los resultados. Lo más interesante son las referencias. Si alguien tiene interés por alguna de ellas, me las puede solicitar. También os paso un enlace a los resultados del grupo en este y otros proyectos de investigación: https://victoryepes.blogs.upv.es/publicaciones/articulos-jcr/

Referencia:

YEPES, V.; PELLICER, E.; MARTÍ, J.V.; KRIPKA, J. (2022). Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes de alta eficiencia social y medioambiental bajo presupuestos restrictivos. VIII Congreso de la Asociación Española de Ingeniería Estructural ACHE. Santander, 2022.

Descargar (PDF, 373KB)

Comunicaciones presentadas al VIII Congreso Internacional de Estructuras de ACHE

Durante los días 20-22 de junio de 2022 tendrá lugar el VIII Congreso Trienal de la Asociación Española de Ingeniería Estructural (ACHE), un excelente encuentro internacional de profesionales y especialistas en el campo de las estructuras, cuyo nivel técnico lo avalan las anteriores ediciones. Los objetivos fundamentales de este Congreso Internacional de Estructuras son, por un lado, dar a conocer los avances, estudios y realizaciones recientemente alcanzados en el ámbito estructural (en Edificación y en Ingeniería Civil e Industrial), y, por otro, exponer las actividades de la Asociación a sus miembros, amigos, y a toda la sociedad a cuyo servicio se encuentra ACHE realizando una labor de difusión técnica sin ánimo de lucro.

Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes. Además, tendré el honor de ser Presidente de Sala en la Sesión Técnica 5 de Gestión de Estructuras, el martes 21 de junio de 2022, en el Aula 5. Nos veremos pronto en el Congreso.

MARTÍ, J.V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Diseño de experimentos para la calibración de la heurística de optimización de muros de contrafuertes. VIII Congreso de la Asociación Española de Ingeniería Estructural ACHE. Santander, 2022.

En la actualidad, los técnicos se enfrentan al desafío de encontrar soluciones estructurales más eficientes, cumpliendo con todas las restricciones de seguridad y funcionalidad. Como ayuda a este reto, surgen las técnicas de optimización heurísticas. El algoritmo aplicado en este artículo es el Recocido Simulado o Simulated Annealing (SA). La estructura sobre la que se emplea esta metodología es un muro de contrafuertes de hormigón armado de 11 metros de altura. La eficiencia del algoritmo depende de la elección de los parámetros más adecuados que lo definen. Para ello, se realiza un diseño de experimentos factorial fraccionado que permite, a través de un análisis estadístico, detectar aquellos parámetros de la heurística que más afectan al resultado de la solución obtenida.

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2022). Aplicación del análisis del valor MIVES a la estructura de una vivienda unifamiliar de autopromoción con criterios de sostenibilidad. VIII Congreso de la Asociación Española de Ingeniería Estructural ACHE. Santander, 2022.

En este trabajo se estudia el óptimo diseño de la estructura y cerramiento entre tres alternativas dispares aplicadas a una vivienda unifamiliar adosada, para la toma de decisión de un autopromotor, apoyándose en métodos multicriterio y teniendo en cuenta parámetros de sostenibilidad. Se obtiene así la validación del método para una alternativa “convencional”, “prefabricada” y “tecnológica”, consiguiendo esta última la mejor valoración. Esta información permitiría a cualquier gestor conocer desde el inicio del proyecto los aspectos fundamentales que marcarán el equilibrio medioambiental, económico y social del futuro edificio a lo largo de su ciclo de vida para hacerlo, en definitiva, más sostenible.

YEPES, V.; PELLICER, E.; MARTÍ, J.V.; KRIPKA, J. (2022). Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes de alta eficiencia social y medioambiental bajo presupuestos restrictivos. VIII Congreso de la Asociación Española de Ingeniería Estructural ACHE. Santander, 2022.

El artículo expone los resultados alcanzados dentro del proyecto de investigación DIMALIFE. Se desarrolla una metodología que incorpora la variabilidad en los procesos de toma de decisiones en el ciclo completo de vida de puentes e infraestructuras viarias, de forma que se contemplen las necesidades e intereses sociales y ambientales con presupuestos restrictivos. La variabilidad inherente a los parámetros, variables y restricciones del problema resulta crítica si se dan por buenas soluciones optimizadas, que pueden encontrarse al borde de la infactibilidad. Se precisa introducir en el análisis la optimización multiobjetivo basada en fiabilidad y conseguir diseños óptimos robustos.

Un nuevo modelo de toma de decisiones adaptativo basado en ANP y ELECTRE-IS aplicado a edificación

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. Se trata de un nuevo modelo de toma de decisiones que utiliza variables cuantitativas y que se ha aplicado distintas estructuras de edificación. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El proceso analítico en red (ANP) es un método discreto de toma de decisiones multicriterio (MCDM) concebido como una generalización del proceso analítico jerárquico (AHP) tradicional para abordar sus limitaciones. El ANP permite incorporar relaciones de interdependencia y retroalimentación entre los criterios y las alternativas que componen el sistema. Esto implica mucha más complejidad y tiempo de intervención, lo que reduce la capacidad del experto para emitir juicios precisos y coherentes. El presente trabajo aprovecha la utilidad de esta metodología formulando el modelo para variables exclusivamente cuantitativas, lo que simplifica el problema de decisión al dar lugar a un menor número de comparaciones pareadas. Se utilizan siete criterios relacionados con la sostenibilidad para determinar, entre cuatro alternativas de diseño para una estructura de edificio, cuál es la más sostenible a lo largo de su ciclo de vida. Los resultados revelan que el número de preguntas que requiere el AHP convencional se reduce en un 92%. Las ponderaciones obtenidas entre los grupos AHP y ANP muestran variaciones significativas de hasta el 71% en la desviación estándar relativa de algunos criterios. Esta sensibilidad a la subjetividad se ha llevado a cabo mediante la combinación de los métodos ANP-ELECTRE IS, permitiendo al experto reflejar la visión del problema de decisión con mayor flexibilidad y precisión. Tamién se ha analizado la sensibilidad de los resultados a los distintos métodos.

Abstract

The analytic network process (ANP) is a discrete multi-criteria decision-making (MCDM) method conceived as a generalization of the traditional analytic hierarchical process (AHP) to address its limitations. ANP allows the incorporation of interdependence and feedback relationships between the criteria and alternatives that make up the system. This implies much more complexity and intervention time, which reduces the expert’s ability to make accurate and consistent judgments. The present paper takes advantage of the usefulness of this methodology by formulating the model for exclusively quantitative variables, simplifying the decision problem by resulting in fewer paired comparisons. Seven sustainability-related criteria are used to determine, among four design alternatives for a building structure, which is the most sustainable over its life cycle. The results reveal that the number of questions required by the conventional AHP is reduced by 92%. The weights obtained between the AHP and ANP groups show significant variations of up to 71% in the relative standard deviation of some criteria. This sensitivity to subjectivity has been implemented by combining the ANP-ELECTRE IS methods, allowing the expert to reflect the view of the decision problem with greater flexibility and accuracy. The sensitivity of the results on different methods has been analyzed.

Keywords:

Multiple-criteria decision-making; sustainable design; analytic hierarchy process; analytic network process; ELECTRE IS; life cycle assessment; modern methods of construction

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2022). An Adaptive ANP & ELECTRE IS-based MCDM Model Using Quantitative VariablesMathematics, 10(12):2009. DOI:10.3390/math10122009

Dejo a continuación el artículo, que se puede descargar y compartir, pues está publicado en abierto.

Descargar (PDF, 3.59MB)

¿Es obligatorio calcular la huella de carbono en los proyectos de construcción?

Una pregunta que suelen hacerme es si es necesario el cálculo de la huella de carbono en la redacción de los proyectos de construcción. A estas alturas nadie duda de la importancia que tiene la emisión de gases de efecto invernadero. En el ámbito científico y técnico, la metodología del análisis del ciclo de vida de un producto está plenamente desarrollada. Sin embargo, la docencia de este tipo de técnicas en las enseñanzas universitarias no acaba de incorporarse plenamente en los programas curriculares. Voy a relatar brevemente lo que está ocurriendo a nivel legislativo para que veáis hacia dónde va este tema.

Todo ello viene porque el pasado 1 de abril de 2022 el Pleno del Consell aprobó el proyecto de Ley de Cambio Climático y Transición Ecológica de la Comunitat Valenciana. Se trata de una propuesta de la Conselleria de Agricultura, Desarrollo Rural, Emergencia Climática y Transición Ecológica que traza una hoja de ruta para reducir las emisiones y contribuir a luchar contra el cambio climático.

La nueva normativa establece un objetivo de reducción de emisiones del 40% para 2030 y conseguir la neutralidad en el horizonte del 2050. En cuanto al consumo de energía, el objetivo es disminuir al menos un 35,4% para 2030. En relación con la transición energética, el objetivo es que el 42% del consumo de energía provenga de fuentes renovables, también en 2030. Una de las diversas obligaciones que impone el nuevo texto legislativo es que, a partir del 1 de enero de 2025, todos los municipios de la Comunitat Valenciana con más de 5.000 habitantes estén obligados a calcular y registrar su huella de carbono.

Asimismo, este requisito parece ser cada vez más como una condición necesaria para poder acogerse a determinadas ayudas públicas. A modo de ejemplo, la Resolución de 16 de febrero de 2022, de la Conselleria de Agricultura, Desarrollo Rural, Emergencia Climática y Transición Ecológica, por la que se convocan ayudas a los municipios de la Comunitat Valenciana para potenciar proyectos de lucha contra el cambio climático, para el ejercicio de 2022. Por su parte, las grandes y medianas empresas que operen en todo o parte de la Comunidad Valenciana estarán obligadas, de acuerdo con lo que se establezca reglamentariamente, a calcular y reconocer anualmente la correspondiente huella de carbono de sus actividades.

Este es un ejemplo, en el ámbito regional, de cómo se está imponiendo la evaluación de la huella de carbono en los ámbitos públicos y privados. En muchos más ámbitos y países se está legislando de una forma similar. Por tanto, y respondiendo a la pregunta planteada, la respuesta es que sí no es obligatorio calcular la huella de carbono en los proyectos, lo va a ser en el futuro próximo. Los Colegios Profesionales deberán estar atentos a estos cambios legislativos para exigir estos cálculos cuando se proceda al visado de los proyectos.

Como sabéis, nuestro grupo de investigación no solo está desarrollando la metodología para este cálculo en el ámbito ambiental y social, sino que está aplicando técnicas de decisión multicriterio para que el proyectista sea capaz de decidir la mejor de las opciones en el estudio de soluciones del proyecto. Además, para que estas técnicas sean efectivas, deben aplicarse sobre soluciones optimizadas.

Referencias:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Regional sustainable development impact through sustainable bridge optimization. Structures, 41, 1061-1076. DOI: 10.1016/j.istruc.2022.05.047

VITORIO, P.C., Jr.; YEPES, V.; KRIPKA, M. (2022). Comparison of Brazilian Social Interest Housing Projects considering Sustainability. International Journal of Environmental Research and Public Health, 19(10):6213DOI:10.3390/ijerph19106213

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Evaluating the sustainability of soil improvement techniques in foundation substructures. Journal of Cleaner Production, 351: 131463. DOI:10.1016/j.jclepro.2022.131463

MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization, 65:46. DOI:10.1007/s00158-021-03154-0

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

SIERRA, L.; ARAYA, F.; YEPES, V. (2021). Consideration of uncertainty and multiple disciplines in the determination of sustainable criteria for rural roads using neutrosophic logic.  Sustainability, 13(17):9854. DOI:10.3390/su13179854

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

HOOSE, A.; YEPES, V.; KRIPKA, M. (2021). Selection of Production Mix in the Agricultural Machinery Industry considering Sustainability in Decision Making. Sustainability, 13(16), 9110. DOI:10.3390/su13169110

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

BIANCHI, P.F.; YEPES, V.; VITORIO, P.C., Jr.; KRIPKA, M. (2021). Study of alternatives for the design of sustainable low-income housing in BrazilSustainability, 13(9):4757. DOI:10.3390/su13094757

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homesEnvironmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2021). Neutrosophic completion technique for incomplete higher-order AHP comparison matrices. Mathematics, 9(5):496. DOI:10.3390/math9050496

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

NAVARRO, I.J.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; REMPLING, R.; YEPES, V. (2020). Life cycle sustainability assessment for multi-criteria decision making in bridge design: A review. Journal of Civil Engineering and Management, 26(7):690-704. DOI:10.3846/jcem.2020.13599.

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental Research and Public Health, 17(16):5953. DOI:10.3390/ijerph17165953

PONS, J.J.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2020). Life cycle assessment of a railway tracks substructures: comparison of ballast and ballastless rail tracks. Environmental Impact Assessment Review, 85:106444. DOI:10.1016/j.eiar.2020.106444

MILANI, C.J.; YEPES, V.; KRIPKA, M. (2020). Proposal of sustainability indicators for the design of small-span bridges. International Journal of Environmental Research and Public Health, 17(12):4488. DOI:10.3390/ijerph17124488

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020:8823370. DOI:10.1155/2020/8823370

PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265

PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Engineering Structures, 209: 109968. DOI:10.1016/j.engstruct.2019.109968

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2020). Robust design optimization for low-cost concrete box-girder bridge. Mathematics, 8(3): 398. DOI:10.3390/math8030398

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258: 120556. DOI:10.1016/j.jclepro.2020.120556

SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. International Journal of Environmental Research and Public Health, 17(3): 962. DOI:10.3390/ijerph17030962

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7): 949-967. DOI:10.1080/15732479.2019.1676791

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multicriteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803. DOI:10.1155/2019/6134803

SALAS, J.; YEPES, V. (2019). VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain. Sustainability, 11(8): 2191. DOI:10.3390/su11082191

MARTÍNEZ-FERNÁNDEZ, P.; VILLALBA-SANCHÍS, I.; YEPES, V.; INSA-FRANCO, R. (2019). A review of modelling and optimisation methods applied to railways energy consumption. Journal of Cleaner Production, 222:153-162. DOI:10.1016/j.jclepro.2019.03.037

KRIPKA, M.; YEPES, V.; MILANI, C.J. (2019). Selection of sustainable short-span bridge design in Brazil. Sustainability, 11(5):1307. DOI:10.3390/su11051307

SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, 216:607-623. DOI:10.1016/j.jclepro.2018.12.083

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:10.1016/j.eiar.2018.10.001

GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202: 904-915. DOI:10.1016/j.jclepro.2018.08.177

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:10.1016/j.eiar.2018.05.003

PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420. DOI:10.1016/j.jclepro.2018.04.268

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI:10.1016/j.jclepro.2018.03.022

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:10.3390/su10030845

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. DOI:10.3390/su10030685

SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534. DOI:10.1016/j.jclepro.2017.12.140

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. DOI:10.1007/s00158-017-1653-0

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013

MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. DOI:10.1016/j.jclepro.2017.06.246

PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. DOI:10.3390/su9101864

SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53. DOI:10.1016/j.eiar.2017.02.004

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003

TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102. DOI:10.1016/j.jclepro.2017.01.100

ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048. DOI: 10.1016/j.jclepro.2016.10.085

PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295

GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI:10.1016/j.engstruct.2016.07.012

MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI:10.1016/j.jclepro.2016.02.024

SIERRA, L.A.; PELLICER, E.; YEPES, V. (2016). Social sustainability in the lifecycle of Chilean public infrastructure. Journal of Construction Engineering and Management, 142(5):05015020. DOI:10.1061/(ASCE)CO.1943-7862.0001099

TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63. DOI:10.3141/2523-07

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridgesEngineering Structures, 92:112-122. DOI:10.1016/j.engstruct.2015.03.015

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI:10.1016/j.autcon.2014.10.013

TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56. DOI:10.4067/S0718-915X2014000200006

TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, 2014, 524329. DOI:10.1155/2014/524329

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI:10.1007/s11367-013-0614-0

MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(6):420-432. DOI:10.1631/jzus.A1100304

YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering, 26 (3):378-386. DOI:10.1061/(ASCE)CP.1943-5487.0000140

PAYÁ-ZAFORTEZA, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Optimization of Reinforced Concrete Frames by Simulated Annealing. Engineering Structures, 31(7): 1501-1508. DOI: 10.1016/j.engstruct.2009.02.034

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Comparación de proyectos de vivienda de interés social considerando la sostenibilidad

Acaban de publicarnos un artículo en el International Journal of Environmental Research and Public Health, revista indexada en el JCR. Se trata de comparar distintas alternativas de viviendas sociales en Brasil, considerando la sostenibilidad. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València y de la colaboración con el profesor Moacir Kripka.

Considerando la importancia del desarrollo de nuevos proyectos de vivienda, el propósito de esta investigación es proporcionar un modelo orientado a la identificación de la alternativa más sostenible en proyectos de vivienda unifamiliar de interés social desde la perspectiva del ciclo de vida y del proceso jerárquico analítico (AHP). Se evaluó un proyecto de mampostería cerámica y otro de mampostería de hormigón. En la dimensión ambiental, los resultados mostraron que el proyecto de albañilería cerámica tenía impactos ambientales más significativos y mayores daños a la salud humana y a la disponibilidad de recursos y ecosistemas. En la dimensión social, se comprobó que existen discrepancias entre los salarios de la cadena de suministro de la construcción y que el proyecto de mampostería de hormigón tenía mejores características sociales que el de mampostería cerámica. La dimensión económica reveló que el proyecto de mampostería de hormigón era más atractivo. Relacionando los resultados de las dimensiones ambiental, social y económica, se encontró que el proyecto de mampostería de hormigón presentaba una combinación de características más sostenibles que el proyecto de mampostería de cerámica en la mayoría de los resultados. Entre las implicaciones del estudio realizado aquí está el avance de la sostenibilidad aplicada al sector de la construcción.

Abstract:

Considering the importance of the development of new housing projects, the purpose of this research is to provide a model oriented to the identification of the most sustainable alternative in single-family housing projects of social interest from the perspective of life cycle thinking (LCT) and the analytical hierarchical process (AHP). A ceramic masonry project and a concrete masonry project were evaluated. In the environmental dimension, the results showed that the ceramic masonry project had more significant environmental impacts and greater damage to human health and the availability of resources and ecosystems. In the social dimension, it was found that there are discrepancies between the salaries in the construction supply chain and that the concrete masonry project had better social characteristics than the ceramic masonry project. The economic dimension revealed that the concrete masonry project was more attractive. Relating the environmental, social, and economic dimensions’ results, through the combination of LCT and AHP, it was found that the concrete masonry project presented a combination of more sustainable characteristics than the ceramic masonry project in the majority of the results. Among the implications of the study carried out here is the advancement of sustainability applied to the construction sector.

Keywords:

Social interest housing; life cycle thinking; analytic hierarchy process; sustainability

Reference:

VITORIO, P.C., Jr.; YEPES, V.; KRIPKA, M. (2022). Comparison of Brazilian Social Interest Housing Projects considering Sustainability. International Journal of Environmental Research and Public Health, 19(10):6213. DOI:10.3390/ijerph19106213 .

Descargar (PDF, 1.42MB)

Aplicación del análisis del valor MIVES a la estructura de una vivienda unifamiliar de autopromoción con criterios de sostenibilidad

Este trabajo presenta el estudio entre tres alternativas estructurales dispares aplicadas una vivienda unifamiliar adosada, para la toma de decisión de un autopromotor, apoyándose en métodos multicriterio y teniendo en cuenta parámetros de sostenibilidad. Se ha definido un modelo de evaluación y propuesto una serie de indicadores usando la metodología MIVES que permite identificar, estructurar y evaluar las distintas alternativas propuestas transformándolas en un valor, cuyo máximo es la opción óptima. Se obtiene la validación del método para una alternativa tradicional (hormigón in situ), prefabricada (©YTONG) y tecnológica (©ELESDOPA) consiguiendo esta última la mejor valoración a pesar de no ser la más económica ni la más rápida de ejecutar.  Las viviendas unifamiliares suelen estar más ligadas a proyectos singulares para clientes particulares, no siendo objeto de interés para los promotores que obtienen mayores beneficios en otros productos inmobiliarios de tipo plurifamiliar. Sin embargo, para cualquier autopromotor su “hogar” constituye quizás la mayor inversión de su vida, y por tanto una de las decisiones más importantes a tomar. No existe una herramienta específica en el mercado para evaluar de forma rigurosa (más allá del coste de obra) la sostenibilidad de una vivienda durante su ciclo de vida. Los cuestionarios para evaluar los indicadores a través de atributos (tangibles e intangibles) identifican numéricamente las deficiencias de esta tipología para mejorar su índice de valor, ofreciendo al proyectista una herramienta objetiva y eficaz para justificar ante su cliente el mejor uso de materiales, mano de obra y tecnología, para conseguir diseños óptimos (desde el punto de vista ambiental, social, estético, funcional, temporal, económico, seguridad y salud, etc.). En conclusión, un estudio así desde la fase inicial permitiría a todo gestor de proyecto controlar los aspectos fundamentales que marcarán el equilibrio del futuro edificio para que sea más funcional, inteligente, económico y sostenible.

Os dejo a continuación un vídeo explicativo donde os cuento los aspectos básicos del trabajo.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258: 120556. DOI:10.1016/j.jclepro.2020.120556

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué alternativa de puente es la más sostenible medioambientalmente? ¿Y socialmente?

He empezado una serie de vídeos divulgativos donde quiero explicar, de forma breve, los resultados que estamos obteniendo en nuestro grupo de investigación. Considero que es importante hacerlo debido a que, muchas veces, los artículos científicos quedan almacenados en las grandes revistas y no llegan al técnico o al público en general.

En este caso, os he preparado un vídeo sobre en el que explico cómo hemos realizado el análisis del ciclo de vida de cuatro tipologías de puentes muy utilizados en nuestro país: losas macizas, losas aligeradas, secciones en cajón y secciones mixtas. Se analiza no solo el impacto social, sino también el medioambiental. Os explico qué metodología usamos, el software, las bases de datos, etc. Os llevaréis una relativa sorpresa con los resultados obtenidos. Ya os adelanto que las mejores alternativas medioambientales no se corresponden con las mejores desde el punto de vista social.

Los que queráis descargar gratuitamente el artículo, podéis acudir al siguiente enlace: https://www.mdpi.com/2071-1050/14/9/5186

Referencia:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Valoración del impacto social de puentes de hormigón y mixtos

Acaban de publicarnos un artículo en Sustainability, revista indexada en el JCR. Se trata de valorar distintas alternativas de puentes de hormigón o mixtos desde el punto de vista de la sostenibilidad social. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La definición de sostenibilidad incluye tres pilares fundamentales: económico, medioambiental y social. Los estudios sobre el impacto económico en las infraestructuras de ingeniería civil se han centrado en la reducción de costes. No está necesariamente en consonancia con la sostenibilidad económica, pues no se cosideran otros factores económicos. Además, la evaluación del pilar social se ha desarrollado poco en comparación con la económica y la medioambiental. Es esencial centrarse en la sostenibilidad social y evaluar indicadores claros que permitan a los investigadores comparar alternativas. Además, los estudios de evaluación del ciclo de vida de los puentes se han centrado hasta ahora en soluciones de hormigón. Esto ha dado lugar a una falta de análisis del impacto de las alternativas de puentes mixtos. Este estudio se realiza en dos fases. La primera parte evalúa la sostenibilidad social y medioambiental de “la cuna a la tumba” con las bases de datos SOCA v2 y ecoinvent v3.7.1. Esta evaluación se realiza sobre cuatro alternativas de puentes de hormigón y mixtos con luces entre 15 y 40 m. Para obtener los indicadores sociales y medioambientales se ha utilizado ReCiPe y el método de ponderación del impacto social. La segunda parte del estudio compara los resultados obtenidos de la evaluación social y medioambiental de las alternativas variando la tasa de reciclaje del acero. Las alternativas de puente son la losa maciza de hormigón pretensado, la losa aligerada de hormigón pretensado, el cajón-viga de hormigón pretensado y el cajón-viga mixto. Los resultados muestran que las opciones compuestas son las mejores en cuanto al impacto medioambiental, pero las soluciones de viga cajón de hormigón son mejores en cuanto al impacto social. Además, un aumento de la tasa de reciclaje del acero aumenta el impacto social y disminuye el medioambiental.

Abstract

The definition of sustainability includes three fundamental pillars: economic, environmental, and social. Studies of the economic impact on civil engineering infrastructures have been focused on cost reduction. It is not necessarily in line with economic sustainability due to the lack of other economic factors. Moreover, the social pillar assessment has been weakly developed compared to the economic and the environmental ones. It is essential to focus on the social pillar and evaluate clear indicators that allow researchers to compare alternatives. Furthermore, bridge life cycle assessment studies have been focused on concrete options. This has resulted in a lack of analysis of the impact of composite bridge alternatives. This study is conducted in two stages. The first part of the study makes a cradle-to-grave social and environmental sustainability evaluation with the SOCA v2 and ecoinvent v3.7.1 databases. This assessment is carried out on four concrete and composite bridge alternatives with span lengths between 15 and 40 m. The social impact weighting method and recipe have been used to obtain the social and environmental indicators. The second part of the study compares the results obtained from the social and environmental assessment of the concrete and the composite alternatives varying the steel recycling rate. The bridge alternatives are prestressed concrete solid slab, prestressed concrete lightened slab, prestressed concrete box-girder, and steel-concrete composite box-girder. The results show that composite options are the best for environmental impact, but the concrete box girder solutions are better for social impact. Furthermore, an increase in the steel recycling rate increases the social impact and decreases the environmental one.

Keywords

Sustainability; bridges; structures; LCA; ReCiPe; SOCA

Reference:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2022). Social Impact Assessment Comparison of Composite and Concrete Bridge Alternatives. Sustainability, 14(9):5186. DOI:10.3390/su14095186.

Descargar (PDF, 1.26MB)

Los distintivos de calidad en el Código Estructural

https://www.mitma.gob.es/organos-colegiados/comision-permanente-del-hormigon/cph/reconocimiento-de-distintivos

El distintivo de calidad oficialmente reconocido (DCOR) fue una posibilidad que se introdujo en la derogada Instrucción de Hormigón Estructural EHE-08 como una certificación de la calidad del hormigón que asegurase una mayor normalización del producto y que permitiese reducir los controles de calidad de la obra.

En el Código Estructural, DCOR se recoge en numerosos artículos. Veamos los más relevantes:

  • Art. 4.2.2 Condiciones técnicas del proyecto, se establece que “a la vista de las posibles mayores garantías técnicas y de trazabilidad que pueden estar asociadas a los distintivos de calidad, el autor del proyecto valorará la inclusión, en el correspondiente pliego de prescripciones técnicas particulares, de la exigencia de emplear materiales, productos y procesos que dispongan de un distintivo de calidad oficialmente reconocido“.
  • Art. 4.2.3 Condiciones técnicas en la ejecución, se refuerza esta posibilidad, pues “la dirección facultativa valorará la conveniencia de exigir productos y procesos que dispongan de un distintivo de calidad oficialmente reconocido“. En el Art. 18 Garantía de la conformidad de productos y procesos de ejecución, distintivos de calidad, una de las formas por las que se pueden garantizar los productos y procesos es “mediante la posesión de un distintivo de calidad oficialmente reconocido (DCOR) concedido a un organismo de certificación acreditado conforme al Reglamento (CE) N.º 765/2008 del Parlamento Europeo y del Consejo, de 9 de julio“; además, el Código permite ciertas consideraciones especiales en la recepción de los productos y procesos con DCOR que no requieran el marcado CE.
  • Art. 21.1 Control documental de los suministros, se incide en el certificado final del suministro del producto suministrado cuando dispongan DCOR. En ese caso, si presentan una garantía superior, debe efectuarse un control documental específico, para lo que “los suministradores entregarán al constructor, quien los facilitará a la dirección facultativa, los certificados que avalen que los productos que se suministrarán están en posesión de un distintivo de calidad oficialmente reconocido vigente“.
  • Art. 22.2 Control de la ejecución mediante inspección de los procesos, en el caso de que un proceso de ejecución de la estructura se encuentre en posesión de un DCOR, “la dirección facultativa podrá eximir de la realización de las inspecciones externas“.

El DCOR es de carácter voluntario y puede estar oficialmente reconocido por la Subdirección General de Normativa y Estudios Técnicos del Ministerio de Transportes, Movilidad y Agenda Urbana u otro órgano directivo con competencias en el ámbito de la edificación o de la obra pública y perteneciente a la Administración Pública de cualquier Estado miembro de la Unión Europea, de Turquía o de cualquiera de los Estados firmantes del Acuerdo sobre el Espacio Económico Europeo.

Sin embargo, es importante resaltar que en los productos con marcado CE, los DCOR no podrán certificar la conformidad con las prestaciones declaradas en lo que respecta a las características esenciales cubiertas por la norma armonizada, ni tampoco con las prestaciones de ninguna característica esencial relacionada con los requisitos básicos incluidos en el anexo I del Reglamento (EU) 305/2011, de 9 de marzo de 2011.

A continuación hemos representado en un mapa conceptual las características relevantes del DCOR (Figura 2).

 

Figura 1. Distintivo de calidad oficialmente reconocido (DCOR). Imagen: V. Yepes.

Os dejo a continuación el Artículo 18 del Código Estructural para su consulta.

Artículo 18. Garantía de la conformidad de productos y procesos de ejecución, distintivos de calidad.

La ejecución de la estructura se llevará a cabo según el proyecto y las modificaciones autorizadas y documentadas por la dirección facultativa. Durante la ejecución de la estructura se elaborará la documentación que reglamentariamente sea exigible y en ella se incluirá, sin perjuicio de lo que establezcan otras reglamentaciones, la documentación a la que hace referencia el Anejo 4 de este Código.

En todas las actividades ligadas al control de recepción, podrá estar presente un representante del agente responsable de la actividad o producto controlado (autor del proyecto, suministrador de hormigón, suministrador de las armaduras elaboradas,
suministrador de los elementos prefabricados, constructor, etc.). En el caso de la toma de muestras, cada representante se quedará con copia del acta correspondiente. Cuando se produzca cualquier incidencia en la recepción derivada de resultados de ensayo no conformes, el suministrador y en su caso, el constructor, tendrá derecho a recibir una copia del correspondiente informe del laboratorio y que deberá ser facilitada por la dirección facultativa.

La conformidad de los productos y de los procesos de ejecución respecto a las exigencias básicas definidas por este Código, requiere que satisfagan con un nivel de garantía suficiente un conjunto de especificaciones.

De forma voluntaria, los productos y los procesos pueden disponer de las garantías necesarias para que se cumplan los requisitos mínimos contemplados en este Código, mediante la incorporación de sistemas (como por ejemplo, los distintivos de calidad) que
avalen, a través de las correspondientes auditorías, inspecciones y ensayos, que sus sistemas de calidad y sus controles de producción, cumplen las exigencias requeridas para la concesión de tales sistemas. Dichos sistemas deberán ser coherentes con las consideraciones especiales contempladas en este Código, con el fin de que el índice de fiabilidad de la estructura sea al menos el mismo, independientemente de los materiales que utilice.

A los efectos de este Código, dichas garantías pueden demostrarse por cualquiera de los siguientes procedimientos:

a) mediante la posesión de un distintivo de calidad oficialmente reconocido (DCOR) concedido a un organismo de certificación acreditado conforme al Reglamento (CE) N.º 765/2008 del Parlamento Europeo y del Consejo, de 9 de julio,
b) en el caso de productos fabricados en la propia obra o de procesos ejecutados en la misma, mediante un sistema equivalente validado y supervisado bajo la responsabilidad de la dirección facultativa, que asegure que el índice de fiabilidad de la estructura es al menos el mismo.

Este Código contempla la aplicación de ciertas consideraciones especiales en la recepción para aquellos productos y procesos que presenten las garantías necesarias para su cumplimiento mediante cualquiera de los dos procedimientos mencionados en el párrafo anterior.

El control de recepción tendrá en cuenta las garantías asociadas a la posesión de un distintivo, siempre que este cumpla unas determinadas condiciones. Así, tanto en el caso de los procesos de ejecución, como en el de los productos que no requieran el marcado CE según el Reglamento (UE) N.º 305/2011, de 9 de marzo de 2011, este Código permite aplicar unas consideraciones especiales en su recepción, cuando ostenten un distintivo de calidad de carácter voluntario que esté oficialmente reconocido por la Subdirección General de Normativa y Estudios Técnicos del Ministerio de Transportes, Movilidad y Agenda Urbana u otro órgano directivo con competencias en el ámbito de la edificación o de la obra pública y perteneciente a la Administración Pública de cualquier Estado miembro de la Unión Europea, de Turquía o de cualquiera de los Estados firmantes del Acuerdo sobre el Espacio Económico Europeo.

Lo dispuesto en el párrafo anterior será también de aplicación a los productos de construcción fabricados o comercializados legalmente en un Estado que tenga un acuerdo de asociación aduanera con la Unión Europea, cuando ese acuerdo reconozca a esos productos el mismo tratamiento que a los fabricados o comercializados en un Estado miembro de la Unión Europea.

De acuerdo al apartado 4.1, en el caso de los productos con marcado CE, los distintivos de calidad oficialmente reconocidos no podrán certificar la conformidad con las prestaciones declaradas en lo que respecta a las características esenciales cubiertas por la norma armonizada, ni tampoco con las prestaciones de ninguna característica esencial relacionada con los requisitos básicos incluidos en el anexo I del Reglamento (EU) 305/2011, de 9 de marzo de 2011.

18.1 Procedimiento de reconocimiento oficial de distintivos de calidad.

El reconocimiento oficial del distintivo se desarrollará conforme al procedimiento que establezca la Administración reconocedora de cualquier Estado miembro de la Unión Europea, de Turquía o de cualquier Estado de la Asociación Europea de Libre Comercio
signatario del Acuerdo sobre el Espacio Económico Europeo.

En el caso de los reconocimientos de distintivos por parte del Ministerio de Transportes, Movilidad y Agenda Urbana, se aplicará el siguiente procedimiento.

Estarán legitimados para presentar las solicitudes de reconocimiento oficial de un distintivo de calidad, los organismos de certificación acreditados conforme a los apartados de este Código que le sean de aplicación y a la norma UNE-EN ISO/IEC 17065 según el Reglamento (CE) N.º 765/2008, del Parlamento Europeo y del Consejo de 9 de julio, por el que se establecen los requisitos de acreditación y vigilancia del mercado relativos a la comercialización de productos.

Las solicitudes deberán acompañarse de al menos la siguiente documentación:

a) Memoria explicativa y justificativa de la solicitud.
b) Reglamento regulador del distintivo en donde se definan las garantías particulares, procedimiento de concesión, régimen de funcionamiento, requisitos técnicos y reglas para la toma de decisiones. En cualquier caso, dicho reglamento incluirá la declaración explícita del cumplimiento del contenido de este Código.
c) Cualquier otra documentación que la Administración reconocedora establezca o considere necesaria en relación al ámbito de certificación en el que se desarrolle el distintivo.

La Administración reconocedora podrá recabar los informes o dictámenes de los expertos por ella designados, en función de las características de la certificación cuyo reconocimiento se solicita.

Para mayor difusión y comodidad en el acceso de la información por parte de los usuarios, cualquier Administración reconocedora de las contempladas en los párrafos anteriores para el reconocimiento oficial de un distintivo de calidad, podrá solicitar la publicación de los distintivos por ellas reconocidas en las páginas web de las Comisiones Permanentes que proponen este Código, creadas a tal efecto.

Si la resolución de la Administración reconocedora fuese desfavorable al reconocimiento, la finalización del procedimiento se produciría con la comunicación al solicitante.

La enmienda o retirada del reconocimiento oficial del distintivo podrá ser realizada a instancia o de parte, para lo cual se iniciará el procedimiento mediante la oportuna solicitud y se regirá conforme a los mismos trámites que para su reconocimiento.

La Administración reconocedora vigilará la correcta aplicación de los distintivos, por lo que podrá participar en todas aquellas actividades que se consideren relevantes para el correcto funcionamiento del distintivo así como asistir a las inspecciones que realicen los servicios de inspección correspondientes a las instalaciones que ostenten el distintivo de calidad, para verificar la correcta actuación de estos en la supervisión de las características técnicas de los productos y la adecuación del control interno sobre su producción.

Si se detectase alguna anomalía en estos procedimientos, la Autoridad reconocedora podrá incoar un expediente y podrá suspender el reconocimiento, comunicando previamente la propuesta de retirada al solicitante con el objeto de que pueda formular alegaciones. La validez del reconocimiento quedará condicionada durante el período de validez, al mantenimiento de las condiciones que los motivan.

18.2 Distintivos de calidad concedidos por entidades de certificación en otros Estados.

No será necesaria la declaración explícita requerida en el punto b) del apartado 18.1, si una entidad de certificación de otro Estado miembro de la Unión Europea, de Turquía o de cualquiera de los Estados firmantes del Acuerdo sobre el Espacio Económico Europeo, evalúa la conformidad respecto a cualquier norma o reglamento que, manteniendo al menos las garantías necesarias para verificar un nivel similar de calidad del producto o proceso y de sus características técnicas, demuestre que se cumplen los requisitos de seguridad estructural contemplados en este Código.

También resulta de interés recoger el comentario que se hace al respecto de este artículo:

“En el caso de los productos o procesos (como por ejemplo, el hormigón) que presentan un nivel de garantía adicional de acuerdo con el articulado y se fabrican o desarrollan, según el caso, a partir de otros productos (como por ejemplo, cementos) susceptibles de estar también en posesión de distintivos de calidad, la utilización de estos permite una mejora en la trazabilidad global y facilita la consecucion de los niveles adicionales de garantía en los productos finales.

En el caso de que se realicen ensayos o comprobaciones experimentales sobre cualquier producto o proceso que esté en posesión de un distintivo oficialmente reconocido y de los resultados de ensayos realizados pueda confirmarse una no conformidad del producto respecto a lo establecido en este Código, la dirección facultativa notificará dicha circunstancia al Organismo emisor del distintivo y a la Administración que hubiera efectuado el reconocimiento”.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Evaluación de la sostenibilidad de las técnicas de mejora del terreno

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production, revista de ELSEVIER indexada en el primer decil del JCR.

El terreno no siempre es adecuado o competente para soportar una cimentación superficial directa. En muchos casos, para evitar costosas cimentaciones profundas, está indicado sustituir, mejorar o reforzar dicho terreno. Este trabajo se centra en evaluar la contribución a la sostenibilidad entre diferentes técnicas de mejora del suelo y el resultado de su aplicación a la cimentación de una vivienda unifamiliar como alternativa a la construida. Se compara el rendimiento del ciclo de vida en materia de sostenibilidad entre el diseño de referencia (sin intervención), el relleno y la compactación del suelo, las columnas de suelo-cemento, la inclusión rígida de micropilotes y el clavado de viguetas prefabricadas. Para caracterizar la sostenibilidad, se propone un conjunto de 37 indicadores que integran los aspectos económicos o ambientales de cada alternativa de diseño y sus impactos sociales. Se obtiene un ranking de sostenibilidad para las diferentes alternativas basado en el método ELECTRE IS para la toma de decisiones multicriterio (MCDM). Se evalúa la sensibilidad de los resultados obtenidos frente a diferentes métodos MCDM (TOPSIS, COPRAS) y diferentes ponderaciones de criterios. La evaluación proporciona una visión transversal, comparando la capacidad y fiabilidad de cada técnica para priorizar la solución de consolidación del terreno que mejor contribuye a la sostenibilidad en el diseño de la subestructura de un edificio.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Podéis leer una versión preliminar el artículo en la siguiente dirección: https://doi.org/10.1016/j.jclepro.2022.131463

Highlights

  • Evaluation of soil consolidation techniques for a single-family house’s foundation.
  • A deep foundation is compared to four alternatives that consider soil improvement.
  • 37 indicators characterize the sustainability of substructure in residential buildings.
  • The aggregation of the different sustainability criteria is applied in 3 MCDM methods.
  • Nailing precast joists into the ground achieves the best sustainability result.

Abstract

The soil is not always suitable or competent to support a direct shallow foundation in construction. In many cases, to avoid costly deep foundations, it is indicated to replace, improve, or reinforce such soil. This paper focuses on evaluating the contribution to sustainability between different soil improvement techniques and the outcome of their application to the foundation of a single-family house as an alternative to the one built. The life-cycle performance in sustainability is compared between the baseline design (without intervention), backfilling and soil compaction, soil-cement columns, rigid inclusion of micropiles, and nailing of precast joists. To characterize sustainability, a set of 37 indicators is proposed that integrate the economic or environmental aspects of each design alternative and its social impacts. A sustainability ranking is obtained for the different alternatives based on the ELECTRE IS method for multi-criteria decision-making (MCDM). The sensitivity of the obtained results is evaluated against different MCDM methods (TOPSIS, COPRAS) and different criteria weights. The evaluation provides a cross-cutting view, comparing the ability and reliability of each technique to prioritize the ground consolidation solution that best contributes to the sustainability in the design of a building’s substructure.

Keywords

Sustainability; Construction; Multi-criteria decision analysis; Life cycle assessment; Modern methods of construction; Soil improvement; Foundations; ELECTRE IS; TOPSIS; COPRAS

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Evaluating the sustainability of soil improvement techniques in foundation substructures. Journal of Cleaner Production, 351: 131463. DOI:10.1016/j.jclepro.2022.131463

Descargar (PDF, 7.31MB)