La evaluación de competencias a través de una rúbrica

Las rúbricas son guías precisas de valoración y puntuación utilizadas en la evaluación de los niveles de desempeño de los estudiantes en un aspecto determinado, que describen las características específicas de un producto, proyecto o tarea en varios niveles de rendimiento.

Su FINALIDAD es

  • Clarificar lo que se espera del trabajo del alumno valorando la ejecución.
  • Facilitar al alumno los criterios que el profesor espera de él en sus actividades de aprendizaje y con los que será evaluado.
  • Ofrecer feedback a los alumnos para mejorar su aprendizaje.
  • Evaluar de forma objetiva y consistente, sobre todo aquellas áreas consideradas subjetivas, complejas, imprecisas mediante criterios que cualifican progresivamente el logro de aprendizajes, conocimientos, competencias desde un nivel incipiente hasta un nivel experto.
  • Motivar y promover expectativas positivas hacia la evaluación, clarificando cómo los alumnos pueden alcanzar los mejores resultados.
  • Facilitar la comunicación con el estudiante sobre los resultados de sus aprendizajes, su progreso y su producto final.
  • Promover el pensamiento crítico y la creatividad.

Para ello HAY QUE:

  • Determinar los objetivos del aprendizaje.
  • Identificar los aspectos a valorar.
  • Definir descriptores, escalas de cualificación y criterios.
  • Determinar el peso-calificación de cada criterio.
  • Revisar la rúbrica y reflexionar sobre su impacto educativo.
  • Explicar a los alumnos el funcionamiento y la metodología de aplicación.

 

En el siguiente enlace encontrarás una herramienta para crear rúbricas.

Os dejo a continuación algunos vídeos al respecto que espero os sean de interés:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Construcción de túneles mediante el Nuevo Método Austriaco

Túnel de Albertia. LAV Vitoria-Bilbao-San Sebastián

¿Túneles que se sostienen casi por arte de magia? ¿No se nos caerá el túnel cuando estemos construyéndolo? No solo es posible, sino que es un procedimiento constructivo que ya no es tan nuevo como su nombre indica, aunque ya adelantamos que, para una correcta ejecución, se necesita experiencia y saber muy bien lo que se lleva entre manos.

Las técnicas de gunitado y bulonado, junto con una nueva concepción constructiva en la que el estado de tensiones-deformaciones del sistema túnel-terreno se controla desde el inicio de la excavación, llevaron al desarrollo de un conjunto de sistemas de ejecución, entre los cuales el primero patentado (1.956) fue el denominado Nuevo Método Austriaco.

En estos métodos, el sostenimiento provisional no se consigue como en los métodos clásicos con cuadros rígidos, sobredimensionados para soportar la presión del terreno una vez se ha producido su deformación, sino mediante un medio de sostenimiento provisional más flexible, que se adapte al terreno y trabaje desde el momento en que se efectúa la excavación. De este modo, se pretende que las condiciones resistentes del macizo sufran la menor alteración posible, controlando (con medidores de convergencia, extensómetros, etc.) las deformaciones del terreno que se producen por descompresión al excavar y minimizando su magnitud por medio de un gunitado del terreno excavado y de otras técnicas complementarias. Con ello se pretende que el terreno colabore como elemento resistente con el recubrimiento definitivo del túnel, que, en consecuencia, resulta de bastante menor espesor que el que se obtendría con un método tradicional.

Estos principios son los que se aplican en el Nuevo Método Austriaco, con las características constructivas que se exponen en la propia memoria original: «La aplicación de un revestimiento delgado semirrígido, colocado inmediatamente antes de que la roca se vea afectada por el proceso de descompresión. El revestimiento se diseña para alcanzar un equilibrio permanente, después de adaptarse a un reajuste de esfuerzos, sin especificar de qué material ha de ser construido. El revestimiento puede ser de cualquier material adecuado al propósito indicado, tal como anclajes, hormigón proyectado, hormigón prefabricado, arcos metálicos, pudiendo emplearse estos medios aisladamente o combinados entre sí«.

La aplicación del método implica, por tanto, las siguientes fases:

(1)   Excavación realizada con los medios que requiera el terreno, a plena sección o mediante bataches.

(2) Entibación provisional inmediata a la excavación, generalmente mediante un gunitado que puede ir armado con una malla metálica y, si es necesario, reforzado con bulones, inyección o incluso con cerchas metálicas, cuando el cierre de la cavidad se produce tan rápidamente que no da tiempo a que la gunita se endurezca.

(3)   Medición de convergencias y deformaciones del terreno, y de la tensión de los bulones, cerchas, etc. Esta auscultación se lleva a cabo mediante células de presión, extensómetros de superficie o internos, y medidas topográficas que indican el momento en que el terreno ya ha quedado equilibrado con el recubrimiento provisional.

(4)   Los resultados de las mediciones anteriores pueden aconsejar:

  • la ejecución de un refuerzo del sostenimiento provisional, y/o
  • la aplicación del recubrimiento definitivo con un espesor que debe absorber las deformaciones radiales previsibles en el caso en que no se haya podido esperar el tiempo suficiente hasta alcanzar la estabilización total.

El siguiente vídeo explica bien este método constructivo utilizado en los túneles de Alta Velocidad de Levante, Tramo Contreras – Villargordo del Cabriel. Túneles Hoya de la Roda, Rabo de la Sartén y Umbría.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Métodos y equipos de excavación en túnel. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.835. Valencia, 52 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistema «Omega» de ejecución de pilotes de desplazamiento por rotación

Sistema Omega de ejecución de pilotes. Imagen: W. Van Impe (http://scon.persianblog.ir/post/121/)

El sistema Omega de ejecución de pilotes permite, mediante la aplicación de rotación y empuje a la cabeza en la fase de perforación y rotación y tiro en la fase de extracción, la instalación de pilotes con total ausencia de vibraciones y produciendo un desplazamiento lateral del terreno que lo compacta y evita la extracción de detritus.

Por encima del diámetro máximo de la cabeza, unas hélices horizontales y la inclinación adecuada del ángulo superior producen un segundo desplazamiento del terreno durante la secuencia de extracción y la fase de hormigonado. En esta fase, la presión controlada de inyección de hormigón a través de la varilla del tubo central induce un tercer estado de desplazamiento, asegurando una perfecta adherencia del pilote al terreno.

Se utiliza una perforadora de vuelo parcial con una sección de desplazamiento que comprime y mejora la densidad de los flancos del agujero. Esto mejora la fricción perimetral y la capacidad de carga del pilote vaciado en el molde.

Un documento explicativo lo podéis encontrar aquí: http://www.ifc-es.com/docs/doc478f25b17f2af6.04560118.pdf de la empresa IFC Cimentaciones Especiales S.A. Otro muy interesante, de Juan José Rosas: http://www.consultorsestructures.org/images/stories/quaderns/quaderns15.pdf?phpMyAdmin=1f73cb5e5b5871b17a5dd37e0ee619a6

Os dejo un vídeo en el que podéis ver cómo se realiza este tipo de pilote. Espero que os guste.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los tramos de prueba en la compactación de suelos

Figura 1. Tramo de prueba de suelo seleccionado. https://twitter.com/cytemsl/status/888377967256244224/photo/1

La compactación de suelos suele ser uno de los procedimientos constructivos en los que las patologías suelen presentarse por su mala ejecución. Debido a la multitud de factores que influyen en la compactación, para grandes volúmenes de obra se aconseja realizar tramos de prueba, en los que se pueden establecer los criterios que, bajo la perspectiva económica, resulten óptimos para alcanzar la compactación especificada. Los tramos de prueba no suelen estar justificados en el caso de que los materiales sean suficientemente homogéneos y siempre resulta interesante cuando nos encontramos ante yacimientos importantes. En otro caso, no resulta económica su ejecución. Estos tramos de prueba están formados por una cuña, cuyo espesor llega hasta el máximo que se considere para el equipo empleado. Veamos brevemente cómo se puede determinar el espesor de tongada y el número óptimo de pasadas.

Figura 2. Esquema de tramo de prueba (Rojo, 1988)

La humedad y la naturaleza del suelo, el espesor de compactación, el equipo seleccionado para la compactación, la velocidad de trabajo y el número de pases, entre otros, están relacionados entre sí y, con ellos, se puede alcanzar la densidad exigida para cada caso. Esta propiedad es cambiante con la profundidad de la capa, con una variación que depende del equipo de compactación, por lo que consideraremos una densidad media de capa. Los pliegos de condiciones pueden exigir que la compactación media de la capa sea superior a un valor determinado, según su densidad especificada, o bien que la compactación en cualquier punto sea superior a un valor determinado. Hoy en día se tienen en cuenta no solo los valores medios, sino también su dispersión.

La densidad es, en general, débil en los primeros centímetros, alcanza su máximo a los 10 o 20 cm y disminuye con rapidez, de forma variable según los materiales y el compactador utilizado. Sin embargo, el efecto de compactación de capas sucesivas produce un aumento de la densidad, de modo que la densidad media de la capa se aproxima a la obtenida con el método de ensayo.

Figura 3. Distribución de la compactación en profundidad

Los máximos de las curvas de compactación, con el número de pases, se sitúan cada vez más profundos en la compactación vibratoria; en cambio, se acercan a la superficie en la compactación por amasado (pata de cabra). Se dice en este último caso que la compactación es de “abajo hacia arriba”, tal y como vimos en un punto anterior.

El contenido de agua tiene un valor decisivo en la elección del grosor de la tongada, ya que para cada grosor existe una humedad óptima, y ambas variables crecen de forma conjunta. A mayor humedad, más efectiva es la acción del compactador en profundidad. Esta consideración es de gran importancia económica, puesto que se puede elegir un grosor de capa en función de la humedad natural previa a la corrección. También es decisivo, a la hora de calcular rendimientos, tener perfectamente establecido el número de pases, que disminuye con el espesor de la capa.

Estos tramos de prueba están formados por una cuña, cuyo espesor llega hasta el máximo que se considere para el equipo empleado. Se miden las densidades obtenidas en función del grosor de capa y del número de pases, lo que da lugar a curvas como las reflejadas en la Figura 3.

Figura 4. Curvas de resultados del tramo de pruebas

Una vez obtenido el conjunto de puntos “a”, “b”, etc., se elige el par formado por el número de pases y el espesor de tongada de mayor producción horaria.

El Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes establece en su artículo 330 que «cuando lo indique el Proyecto o lo aconsejen las características del material o de la obra, y previa autorización del Director de las Obras, las determinaciones «in situ» de densidad, humedad, y módulo de deformación se complementarán por otras, como los ensayos de huella ejecutados según NLT 256 o el método de «Control de procedimiento» a partir de bandas de ensayo previas. En estas últimas deberán quedar definidas, para permitir su control posterior, las operaciones de ejecución, equipos de extendido y compactación, espesores de tongada, humedad del material y número de pasadas, debiendo comprobarse en esas bandas de ensayo que se cumplen las condiciones de densidad, saturación, módulo de deformación y relación de módulos que se acaban de establecer. En estas bandas o terraplenes de ensayo el número de tongadas a realizar será, al menos, de tres (3)”.

A continuación, os dejamos un Polimedia donde se recoge una somera explicación a la realización de estos tramos de prueba.

Referencias:

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Curso de compactación superficial y profunda de suelos en obras de ingeniería civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización de la gestión del mantenimiento de una red de carreteras bajo restricciones presupuestarias

El mantenimiento de las carreteras constituye uno de los mayores problemas que debe abordar cualquier administración pública. Una inversión insuficiente o una estrategia de mantenimiento ineficiente provoca costes económicos muy altos a medio y largo plazo. Cuando existen restricciones presupuestarias, como es habitual, la asignación óptima de los recursos escasos se convierte en un aspecto crucial. La pregunta clave es, para un horizonte temporal determinado, contestar dónde, cuándo y de qué forma se debe abordar un tratamiento que sea capaz de maximizar los indicadores de prestación de la infraestructura sin sobrepasar las previsiones presupuestarias.

Un ejemplo de colaboración entre grupos de investigación de la Universidad Politécnica de Valencia y la Pontificia Universidad Católica de Chile se plasma en una serie de artículos de investigación conjunta donde se aborda el problema de la optimización del mantenimiento de las infraestructuras, en particular, de redes de carreteras. En concreto, la colaboración se lleva a cabo entre los departamentos de ingeniería y de gestión de la construcción de ambas universidades. Este es un ejemplo en el que la investigación aplicada tiene un campo claro de trabajo conjunto con las administraciones públicas en la gestión de los activos públicos.

No cabe duda de que el esfuerzo por mantener los niveles de servicio de las infraestructuras básicas (hospitales, carreteras, puertos, ferrocarriles, presas, etc.) bajo las restricciones presupuestarias cada vez mayores va a constituir uno de los mayores retos a los que se enfrenta la sociedad actual.

A continuación os dejo este artículo editado en abierto, que también podéis encontrar directamente en este enlace. Espero que sea de interés.

Pincha aquí para descargar

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mis líneas de investigación en el Programa de Doctorado en Ingeniería de la Construcción

.facebook_2096399093El Programa de Doctorado en Ingeniería de la Construcción de la Universidad Politécnica de Valencia ha sido seleccionado con la “Mención hacia la Excelencia”. Hoy en día, el título de doctor constituye un valor añadido no solo en los ámbitos universitarios, sino también en las empresas e instituciones. Este Programa de Doctorado está estrechamente relacionado con el Máster Universitario en Ingeniería del Hormigón, aunque no es necesario cursar el máster para acceder a este nivel de posgrado. Dentro de este programa existen tres líneas de investigación en las que estoy trabajando y liderando proyectos de investigación, que son las siguientes:

PROPT-ED: 5. Modelos predictivos aplicados al hormigón estructural basados en la minería de datos e inteligencia artificial

El descubrimiento de conocimiento en bases de datos constituye un área en la que se realizan muchos esfuerzos, tanto en metodología como en investigación. En este contexto, la minería de datos constituye un conjunto de herramientas empleadas para extraer información no trivial que reside implícitamente en los datos. Esta parcela reúne ventajas de varias áreas como la estadística, la inteligencia artificial, la computación gráfica, las bases de datos y el procesamiento masivo. Mediante los modelos extraídos con este tipo de técnicas se puede abordar la resolución de problemas de predicción, clasificación y segmentación aplicados al hormigón estructural. Algunas de sus herramientas más representativas son las redes neuronales, la programación genética, las máquinas de soporte vectorial, los árboles de decisión, los modelos estadísticos avanzados multivariantes, el diseño de experimentos y el agrupamiento o clustering. Estas herramientas construyen modelos abstractos a partir de datos mediante métodos de aprendizaje automático (machine learning). Dentro de esta línea se encuentra el proyecto de investigación HORSOST, que trata del diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo mediante el empleo de técnicas de minería de datos.

PROPT-ED: 6: Optimización heurística en ingeniería

Los problemas de ingeniería suelen ser difíciles de optimizar mediante métodos exactos, al igual que ocurre con muchos problemas de decisión en el campo de la investigación de operaciones. La línea de investigación profundiza en métodos de optimización empleados en inteligencia artificial, tales como los algoritmos genéticos, las redes neuronales, la cristalización simulada, la búsqueda tabú, los sistemas de hormigas, GRASP, etc., capaces de proporcionar buenos resultados en numerosos problemas de ingeniería, como las estructuras, las redes de transporte y la planificación de obras.

PROPT-ED: 7: Estandarización de la gestión de la innovación en empresas del sector de la construcción

La gestión de la innovación en las empresas del sector de la construcción se encuentra en un estado inmaduro, con ideas innovadoras que provienen básicamente de los problemas que surgen en la obra. Sin embargo, la gestión estratégica empresarial no suele considerar la innovación, sino que se apoya en subcontratistas especializados. Esta línea de investigación pretende analizar la forma en que se desarrolla la innovación en las organizaciones del sector de la construcción, los factores de los que depende y las barreras más importantes; se parte de un modelo propuesto en una investigación exploratoria previa, el cual se contrasta en diferentes tipos de empresas y circunstancias.

Los resultados de estas líneas de investigación se materializan en un número significativo de tesis doctorales, tesinas de máster y proyectos de investigación cuyos resultados son algunas publicaciones que podéis consultar en el siguiente enlace:  http://victoryepes.blogs.upv.es/publicaciones/articulos-jcr/

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es la optimización combinatoria?

Los problemas de optimización en los que las variables de decisión son enteras, es decir, donde el espacio de soluciones está formado por ordenaciones o subconjuntos de números naturales, se denominan problemas de optimización combinatoria. En este caso, se trata de hallar el mejor valor entre un número finito o numerable de soluciones viables. Sin embargo, la enumeración de este conjunto resulta prácticamente imposible, aun para problemas de tamaño moderado.

Las raíces históricas de la optimización combinatoria subyacen en ciertos problemas económicos: la planificación y la gestión de operaciones, y el uso eficiente de los recursos. Pronto comenzaron a modelizarse de esta manera aplicaciones más técnicas, y hoy vemos problemas de optimización discreta en diversas áreas: informática, gestión logística (rutas, almacenaje), telecomunicaciones, ingeniería, etc., así como para tareas variadas como el diseño de campañas de marketing, la planificación de inversiones, la división de áreas en distritos políticos, la secuenciación de genes, la clasificación de plantas y animales, el diseño de nuevas moléculas, el trazado de redes de comunicaciones, el posicionamiento de satélites, la determinación del tamaño de vehículos y las rutas de medios de transporte, la asignación de trabajadores a tareas, la construcción de códigos seguros, el diseño de circuitos electrónicos, etc. (Yepes, 2002). La trascendencia de estos modelos, además del elevado número de aplicaciones, estriba en el hecho de que “contiene los dos elementos que hacen atractivo un problema a los matemáticos: planteamiento sencillo y dificultad de resolución” (Garfinkel, 1985). En Grötschel y Lobas (1993) se enumeran otros campos en los cuales pueden utilizarse las técnicas de optimización combinatoria.

REFERENCIAS

GARFINKEL, R.S. (1985). Motivation and Modeling, in LAWLER, E.L.; LENSTRA, J.K.; RINNOOY KAN, A.H.G.; SHMOYS, D.B. (eds.) The Traveling Salesman Problem: A Guide Tour of Combinatorial Optimization. Wiley. Chichester.

GRÖTSCHEL, M.; LÓVASZ, L. (1993). Combinatorial Optimization: A Survey. Technical Report 93-29. DIMACS, May.

YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universitat Politècnica de València. 352 pp. ISBN: 0-493-91360-2. (pdf)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Se puede innovar en las obras?

La innovación es un concepto abierto que abarca aspectos tan heterogéneos como las mejoras en los procesos, los productos o los servicios. Consiste, básicamente, en incorporar ideas no triviales capaces de generar cambios orientados a resolver necesidades en una empresa, con la finalidad de aumentar su competitividad y mejorar su posicionamiento en el mercado. La incorporación de la innovación en las empresas constructoras supone ventajas competitivas en un mercado cada vez más exigente y globalizado, que requiere la construcción de infraestructuras capaces de satisfacer de manera creciente a todas las partes interesadas, incluyendo al entorno ambiental y a las generaciones futuras.

La aplicación de la innovación en el sector de la construcción, sin embargo, no es una tarea fácil, a pesar de la importancia de este sector en el desarrollo de cualquier país. Las empresas que trabajan en la construcción tienen por objeto proyectos “únicos” para los cuales deben adaptar, en cada ocasión, sus procesos y recursos. Cada obra es un prototipo único, cuya configuración evoluciona con el tiempo. Las obras se localizan en diversos lugares, con continuos desplazamientos del personal y de la maquinaria. Además, el clima y el trabajo a la intemperie son, entre otros, algunos de los factores diferenciales que impiden trasladar directamente las experiencias obtenidas en otros sectores.

Las empresas constructoras aportan soluciones novedosas en obras cuya complejidad técnica exige esfuerzos especiales. Así, los departamentos técnicos son los que, con frecuencia, proponen soluciones de innovación a los problemas concretos que la ejecución de las obras va demandando. En ocasiones son el resultado de la adopción y adaptación de ideas de otras industrias o de empresas de suministro de materiales. Estas soluciones a problemas concretos se incorporan a la experiencia y al buen hacer de la empresa, que plantea la innovación como una tarea artesanal, lejos de los beneficios que supondría incorporar las actividades de I+D+i como procesos de gestión habituales en la organización.

Sin embargo, la innovación debe entenderse como un proceso sistemático e intencionado, donde juega un papel importante el grado de conexión que la empresa tenga con el entorno, no requiriendo ser compleja para tener éxito, pero sí orientada a una aplicación concreta y a situar a la empresa en una posición privilegiada. La innovación deja de ser un acto puntual, de aplicación de ideas felices, para convertirse en un proceso susceptible de ser gestionado, medido y controlado de forma sistemática. Por consiguiente, la normalización de los procesos de innovación constituye un punto de partida de gran interés para las empresas.

La clave consiste en considerar la innovación como un proceso de gestión dentro de la empresa. Efectivamente, si cualquier proceso puede normalizarse y la innovación se considera un proceso, este también puede normalizarse. Una posible norma de gestión del proceso de innovación debe contener el marco de referencia, los criterios y las herramientas para la identificación, elaboración y sistematización de cada una de las actividades involucradas. En estas condiciones, cada organización puede controlar y mejorar los distintos aspectos de la innovación e integrarlos en el conjunto de procesos de la empresa.

Una empresa que incorpore una gestión normalizada de la innovación espera los siguientes beneficios:

  1. Mejora de las actividades de la organización.
  2. Incremento de la competitividad de la empresa a medio y largo plazo.
  3. Mayor integración de los procesos de gestión empresarial con su estrategia.
  4. Eficiente explotación del conocimiento de la organización.
  5. Sistematización de la incorporación de nuevos conocimientos en procesos y productos.
  6. Satisfacción de las expectativas futuras de los clientes.

Existen dos familias de normas centradas en la normalización del proceso de innovación: las británicas BS 7000-1 y las españolas UNE 166000. Las primeras (“Diseño de sistemas de innovación: guía para la gestión de la innovación”) sirven de guía para el desarrollo de productos innovadores y competitivos que satisfagan las necesidades futuras de los usuarios. Tres rasgos definen las normas británicas: su objeto es el diseño de productos; proporcionan una estructura para la gestión (no sistemática) de la innovación; y se apoyan en la norma ISO 9001 de gestión de la calidad.

Las normas UNE 166000 “Gestión de la I+D+i” —recientemente reconocidas oficialmente en España y, de forma extraoficial, en México, Brasil, Italia y Portugal— consideran la innovación como un proceso que puede sistematizarse siguiendo un modelo similar a la gestión de la calidad o del medio ambiente. Sus objetivos son: homogeneizar los criterios en dichas actividades; fomentar la transferencia de tecnología; y proporcionar instrumentos que permitan a la administración pública valorar proyectos de I+D+i. También persiguen dotar a las empresas certificadas conforme a la norma ISO 9001 de una herramienta activa centrada en la mejora continua de sus procesos mediante las actividades de I+D+i.

Por tanto, la innovación en el sector de la construcción puede ser normalizada siempre que se trate de un proceso. Las etapas que guían dicho proceso pueden ser las siguientes:

  1. Identificación de la necesidad y oportunidad de innovación: analizando los métodos constructivos durante la planificación es posible identificar posibles alternativas o ideas innovadoras que permitan alcanzar los objetivos asociados con el proyecto y la organización; esta etapa está muy influenciada por el alcance, la complejidad y la dificultad del proyecto, la demanda del mercado, la competencia, las oportunidades de negocio, la legislación, los accesos a nuevas tecnologías, etc.
  2. Selección de proyectos de innovación en obra: la decisión sobre los proyectos de innovación depende de los objetivos, los beneficios o las ventajas competitivas esperados por la organización, del traspaso de las novedades a otros proyectos, etc. La evaluación de las alternativas de innovación debe considerar todos los objetivos del proyecto y de la empresa.
  3. Desarrollo del proyecto de innovación en la obra: la incorporación de un avance tecnológico u organizativo requiere del compromiso de toda la organización, del equipo que desarrolla la innovación y del equipo de obra. La empresa debe asignar los recursos humanos y materiales necesarios para llevar a cabo el proyecto de innovación. Esta etapa es clave, pues en ella se debe ajustar lo planificado a la realidad de la obra.
  4. Evaluación: el equipo y la organización deben evaluar el cumplimiento de los objetivos del proyecto de innovación. Debe considerarse cada una de las etapas del proceso de innovación, así como todos los aspectos relacionados.
  5. Transferencia a futuros proyectos: la explotación de los resultados obtenidos requiere un traspaso exitoso a otras obras. En otras palabras, para que el proceso de innovación culmine, este debe ser aprendido, codificado y aplicado a futuros proyectos.

Referencias

CORREA, C.L.; YEPES, V.; PELLICER, E. (2007). Factores determinantes y propuestas para la gestión de la I+D+i en las empresas constructoras. Revista Ingeniería de Construcción, 22(1): 5-14. Pontificia Universidad Católica de Chile.  ISSN: 0716-2952. (link)

PELLICER, E.; YEPES, V. (2007). Gestión de recursos, en Martínez, G.; Pellicer, E. (ed.): Organización y gestión de proyectos y obras. Ed. McGraw-Hill. Madrid, pp. 13-44. ISBN: 978-84-481-5641-1. (link)

PELLICER E., YEPES V., CORREA C.L.; MARTÍNEZ, G. (2008). Enhancing R&D&i through standardization and certification: the case of the Spanish construction industry, Revista Ingeniería de Construcción, 23(2): 112-121. (link)

PELLICER, E.; CORREA, C.L.;YEPES, V.; ALARCÓN, L.F. (2012). Organizacional improvement through standardization of the innovation process in construction firms. EMJ-Engineering Management Journal, 24(2) (accepted, in press).

PELLICER, E.; YEPES, V.; CORREA, C.L.; ALARCÓN, L.F. (2012). In Search of a Model for Systematic Innovation in Construction Companies. Journal of Construction Engineering and Management ASCE, (accepted, in press). DOI: 10.1061/(ASCE)CO.1943-7862.0000468. ISNN: 0733-9364.

YEPES, V. (2008). Technology and Quality Management, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 115-128. ISBN: 83-89780-48-8.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.