¿Cuándo hay que comprar o renovar la maquinaria empleada en la construcción?

La adquisición de maquinaria puede motivarse, bien por la implantación de un proceso novedoso, por la mejora de otro ya existente, por el incremento de la capacidad de producción, o simplemente por una sustitución periódica de otra máquina similar que llegó al término de su vida económica. El conocimiento de las causas que provocan la pérdida de valor de las máquinas proporciona las pautas para su renovación, que dependerán, en gran medida, de las disponibilidades y circunstancias de la empresa. El envejecimiento de los equipos, una producción baja o con unos costes elevados y el mercado de maquinaria nueva y usada son algunos de los criterios que deberían guiar a la empresa en la adquisición de una máquina. Además, deben considerarse otros factores como el estado general de la economía, el futuro de la empresa y sus necesidades inmediatas, los objetivos a largo plazo y la selección de los medios adecuados para sus logros. Sin embargo, la realidad es que la necesidad concreta que surge en una obra determinada es la que plantea la adquisición de una nueva máquina.

El problema de la renovación es independiente de la dimensión de las organizaciones. Las pequeñas empresas deben afrontar el reemplazamiento de los equipos con la misma amplitud que las grandes, so pena de soportar serios problemas de descapitalización y de incrementos en los costes de producción. Las opciones a la compra de un equipo nuevo son la gran reparación, el alquiler, el arrendamiento financiero y la compra de máquinas usadas. Siempre que la empresa pueda abordar la adquisición de un nuevo equipo, son los criterios de rentabilidad económica durante la vida útil los que decidirán la opción más adecuada en cada caso. Como variantes a la adquisición de equipos para grandes obras, en ocasiones se compran los equipos para una obra y se venden a terceros cuando se termina, o bien se adquieren con el compromiso de recompra por parte del vendedor. Con ello se evita que estos equipos graven al parque de maquinaria por su falta de empleo. La maquinaria propia representa para la empresa un mayor potencial y prestigio; sin embargo, supone un mayor inmovilizado, el riesgo de paralización si no existe suficiente obra, la necesidad de contar con un parque o servicio de maquinaria y el riesgo de personal excedente cuando se paran las máquinas. Una alternativa puede ser el alquiler.

Para profundizar un poco más en este tema, os paso un vídeo Polimedia sobre el tema. Espero que os guste.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cómo podríamos diseñar un hotel con “calidad”?

Hotel Fábrica de Giner en Morella (Castellón)

En posts anteriores hemos destacado la importancia de la calidad de un proyecto de construcción, los costes de explotación y mantenimiento o del despilfarro en las obras. Aquí vamos a comentar algunos aspectos relacionados con una tipología concreta. Se trata de una infraestructura que, con mayor o menor fortuna, todos hemos utilizado, pero que menos han tenido la oportunidad de diseñar. Podemos, por tanto, realizarnos la siguiente pregunta: ¿qué es la calidad de diseño en un hotel? ¿Qué deberíamos hacer para que el proyecto de un hotel realmente tuviese en cuenta las necesidades de los clientes?

La calidad de diseño de un sistema hotelero se establecería a través de las siguientes fases:

  • Identificación de las necesidades de los distintos segmentos de mercado. No se debe proyectar un hotel como un edificio a imagen del arquitecto o del propietario, debe serlo a gusto del huésped buscado.
  • Elaborar un producto -instalaciones hoteleras- acorde a dichas necesidades, desarrollando las especificaciones de un proyecto factible, que lleven a la satisfacción de cliente -tanto interno como externo- y a la eficiencia económica. De las múltiples opciones se elegirá aquella que minimice los costes globales a lo largo de la vida del hotel. Técnicas como el “análisis del valor” deben desechar componentes del diseño que no proporcionen valor añadido al cliente. Esta implicación siempre obliga al estudio de varias soluciones alternativas. Continue reading “¿Cómo podríamos diseñar un hotel con “calidad”?”

La perforación a rotopercusión

Marini Castoro Neumático

La perforación a rotopercusión es el sistema clásico de perforación de barrenos que aparece con el desarrollo industrial del siglo XIX. Este sistema, junto con la invención de la dinamita, constituyen dos hitos en el desarrollo del arranque de rocas en minería y obras civiles. Este tipo de perforadoras se usan tanto en obras públicas subterráneas como en minas o explotaciones a cielo abierto: túneles, carreteras, cavernas de centrales hidráulicas, etc.

El principio de perforación de estos equipos se basa en el impacto de una pieza de acero llamada pistón, sobre un útil, que a su vez transmite la energía al fondo del barreno, por medio de un elemento final denominado boca o bit. Este sistema de perforación suele usarse en terrenos muy duros y semiduros.

Las acciones básicas que tienen lugar sobre el sistema de transmisión de energía hasta la boca de perforación son las siguientes:

  1. La percusión: los impactos producidos por el golpe del pistón originan unas ondas de choque se que transmiten a la boca a través del varillaje
  2. La rotación: se hace girar la boca para cambiar la zona de impacto
  3. El empuje: para mantener en contacto la roca con la boca
  4. El barrido: donde el fluido permite extraer el detritus del fondo del barreno

Rotopercusión

Dependiendo del lugar donde esté instalado el martillo, las perforadoras a rotopercusión se clasifican en:

  • Perforadoras con martillo en cabeza, que a su vez pueden ser de accionamiento neumático o hidráulico. Aquí la rotación y la percusión se producen fuera del barreno, transmitiéndose a través de una espiga y del varillaje hasta la boca de perforación.
  • Perforadoras con martillo en fondo, en inglés Down the Hole (D.T.H.), donde la acción del pistón se lleva a cabo de una forma neumática y la acción de rotación puede ser tanto de tipo hidráulico como neumático. En ese caso la percusión se realiza directamente sobre la boca de perforación, mientras que la rotación se efectúa en el exterior del barreno.

Perforación a rotopercusión

Las gamas más habituales de diámetros utilizados con estas perforadoras dependen del campo de aplicación, según se puede ver en la tabla siguiente:

Tipo de perforadora

Diámetro de perforación (mm)

Cielo abierto

Subterráneo

Martillo en cabeza

50 – 127

38 – 65

Martillo en fondo

75 – 200

100 – 165

En los martillos manuales, la rotación se transmite a través del buje de rotación del martillo y se acciona por el propio mecanismo del pistón, en función de los impactos: a menor número de impactos, debe corresponder un menor par de rotación.

En los equipos de perforación pesados, la rotación se acciona a través de un motor independiente, lo que permite actuar bien sobre la rotación, bien sobre la percusión, según los condicionantes del terreno.

Como ventajas de la perforación rotopercutiva se pueden señalar las siguientes:

  • Su aplicación a todo tipo de rocas, blandas o duras
  • Amplia disponibilidad de diámetros
  • Versatilidad en los equipos y gran movilidad
  • Se maneja con un solo operario
  • Rapidez y accesibilidad en el mantenimiento de los equipos
  • Precio de adquisición no muy elevado

En el siguiente Polimedia podéis ver una explicación sobre este sistema.

En el vídeo que os muestro a continuación, podéis ver cómo golpea una perforadora con martillo de fondo. Espero que os guste.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.

 

 

 

Para nostálgicos. Examen parcial de 1986 de instalación de áridos

IMG_20121106_094440Cuando como profesor te planteas poner un examen a tus alumnos siempre te preguntas si el nivel de la asignatura va mejorando con el tiempo. Por eso resulta agradable recordar con nostalgia aquellos exámenes que hacíamos en la Escuela de Ingenieros de Caminos de Valencia. En este caso, no me resisto a poner el examen que tuve que hacer yo como alumno en el año 1986 en la asignatura de Procedimientos de Construcción. El profesor que teníamos era D. Hermelando Corbí Abad, de entrañable recuerdo. He tenido que volver a mecanografiarlo puesto que el original es una vieja fotocopia a la que me temo le quedan pocos años de vida. El nivel creo que, en este caso, se mantiene. Nuestros alumnos siguen haciendo este tipo de problemas en sus exámenes. ¿Sería capaz de hacerlo cualquiera de los profesionales actuales? Espero que os guste.

Descargar (PDF, 1.26MB)

 

Teoría del valor extremo y optimización estructural

A continuación dejo una presentación que hicimos para el VII Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados MAEB 2010, que se celebró en Valencia del 8 al 10 de septiembre de 2010.

El artículo, denominado “Teoría del valor extremo como criterio de parada en la optimización heurística de bóvedas de hormigón estructural” establece un criterio de parada para un algoritmo multiarranque de búsqueda exhaustiva de máximo gradiente basado en una codificación Gray aplicado a la optimización de bóvedas de hormigón. Para ello se ha comprobado que los óptimos locales encontrados constituyen valores extremos que ajustan a una función Weibull de tres parámetros, siendo el de  posición, γ, una estimación del óptimo global que puede alcanzar el algoritmo. Se puede estimar un intervalo de confianza para γ ajustando una distribución Weibull a muestras de  óptimos locales extraídas mediante una técnica bootstrap de los óptimos disponibles. El algoritmo multiarranque se detendrá cuando se acote el intervalo de confianza y la diferencia entre el menor coste encontrado y el teórico ajustado a dicha función Weibull.

Descargar (PDF, 141KB)

Referencia:

YEPES, V.; CARBONELL, A.; GONZÁLEZ-VIDOSA, F. (2010). Teoría del valor extremo como criterio de parada en la optimización heurística de bóvedas de hormigón estructural. Actas del VII Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados MAEB 2010, Valencia, 8-10 septiembre, pp. 553-560. Garceta Grupo Editorial. ISBN: 978-84-92812-58-5.

Paso inferior mediante cajones empujados

En numerosas ocasiones no podemos realizar un paso bajo una línea de ferrocarril o de carretera sin interrumpir seriamente el tráfico durante un periodo de tiempo que, en ocasiones, no es posible superar. En vez de construir una estructura tipo marco de forma tradicional, podemos acudir al procedimiento constructivo de empuje de cajones.  Se trata de realizar la estructura íntegramente fuera de la plataforma de la vía o de la carretera y posteriorrmente,  mediante una fase de excavación y otra de translación realizadas simultáneamente, se sitúa la estructura en su posición definitiva.

La estructura no va cimentada, está apoyada simplemente sobre el plano horizontal de deslizamiento constituido por la llamada “solera de deslizamiento“, que hormigonada con anterioridad, crea el plano de apoyo de la mencionada estructura.  La solera tiene la doble función de crear un plano de deslizamiento de la estructura, y por otra parte, servir de encofrado para la construcción de la misma.

El diseño de la sección estructural del cajón debe resultar compatible con los esfuerzos originados en el proceso de traslación y con las solicitaciones derivadas de la ausencia de cimentación en la estructura una vez completado el deslizamiento.

Paso inferior del metro ligero bajo la línea del ferrocarril Granada-Moreda, en la zona de Cerrillo Maracena.

Para la construcción de la losa base inferior de la estructura, se requiere la interposición entre ésta y la solera de deslizamiento, de un material idóneo que cumpla las funciones de separación de hormigones reduciendo el rozamiento en la traslación. A tal propósito se recurre por razones de funcionalidad y economía a una lámina de polietileno de espesor adecuado.

La parte frontal del cajón debe ofrecer la mayor resistencia posible al avance en el terreno y sujetar lateralmente el mismo, por lo que se proyecta prolongando su losa superior y los muros laterales, achaflanados estos últimos al fin de constituir la denominada “cuña de penetración“.

Tiene particular importancia, en la fase de empuje, la estabilidad del frente de excavación para evitar el peligro de desconsolidación lateral en “V” en los muros laterales de la cuña de penetración. En tal caso podría llegarse al asentamiento de la plataforma. La experiencia sugiere dar una inclinación achaflanado el frontal de la cuña de penetración conforme al ángulo de rozamiento del terreno y así poder proceder en fase de avance con un frente paralelo al talud del mismo.

Podemos resumir las ventajas derivadas de este sistema constructivo, en el caso de un paso inferior en una vía de ferrocarril, en las siguientes:

  • Eliminación de todos los trabajos que precisen corte de vía
  • Eliminación de trabajos nocturnos
  • Eliminación de toda actividad de maquinaria sobre la vía y de los cortes de catenaria correspondientes
  • Disminución  consecuente de interferencias con el tráfico ferroviario
  • Seguridad en el paso de circulaciones, evitando situaciones en precario
  • Eliminación de problemas de cimentación
  • Facilidad de construcción de la estructura en espacio abierto
  • Control total de la calidad de los materiales y de la ejecución
  • Impermeabilidad de la estructura
  • Acabado de paramentos en hormigón visto, sin necesidad de revestimientos posteriores

 

Os paso un vídeo de la Junta de Andalucía donde se puede ver cómo se ha realizado un paso inferior para atravesar una línea de ferrocarril mediante el empuje de cajones de hormigón. Espero que os guste.

Montaje de tubos prefabricados de hormigón

Colocación de tubería. Gadea Hermanos.

Una de las unidades de obra más habituales en obras de ingeniería civil es la instalación de tubos prefabricados de hormigón. Para ello se realizan zanjas de una profundidad mínima que permita la protección de las tuberías de los efectos del tránsito y de las cargas exteriores, así como de las variaciones térmicas. La anchura de la zanja será la necesaria para que los operarios trabajen en buenas condiciones. Como norma general, se dejará un espacio mínimo de 0.30 m. a cada lado del tubo, medido entre la intersección del talud con la solera y la proyección sobre ésta del riñón del tubo. El talud de las paredes de la zanja depende del tipo de terreno. El valor mínimo, propio de terreno rocoso, será el talud 1/10, y se recomienda para terrenos normales, el talud 1/5. Los tubos no se apoyarán directamente sobre la rasante de la zanja, sino sobre camas. Para la ejecución de la cama de hormigón de extenderá una solera de hormigón pobre, de 0.10 a 0.15 m de espesor, según los diámetros de los tubos, sobre el fondo de la zanja, y sobre esta solera se situarán los tubos,  convenientemente calzados. Posteriormente los tubos se bajan al fondo de la zanja.

Podéis leer con detalle cómo se pueden montar dichas tuberías en el siguiente enlace de Prefabricados Alberdi  o bien en este otro de Prefabricados Delta. Algunos manuales técnicos de cómo montar este tipo de tubos los podéis descargar de las siguientes empresas: Borondo,Prefabricados Alberdi o ANDECE.

En este vídeo se pueden observar los pasos fundamentales a la hora de montar los elementos de los que consta un pozo de hormigón amado prefabricado.

Método belga de construcción de túneles

Figura 1. Excavación en bóveda. http://descubriendolaingenieriacivil.blogspot.com/2014/10/construccion-de-tuneles.html

El Método belga, también conocido como el Método Clásico de Madrid o el Método de Galería de Clave, es una técnica utilizada en la construcción de túneles. Se originó a partir de los principios aplicados en la construcción del Túnel del Charleroi en 1828, que conectaba Bruselas y Charleroi. Este método se distingue por su progresiva excavación de los componentes del túnel, eliminando primero los elementos más estables para evitar colapsos o inestabilidades en el frente de trabajo. El Método Clásico de Madrid recibe este nombre debido a su amplio uso en la construcción de los túneles del metro de Madrid. Es adecuado para túneles con una anchura máxima de 11 m, incluyendo un espacio máximo de 8 m de ancho y 3 m de ambos hastiales.

El Método Belga implica la excavación de una pequeña galería en clave que se ensancha gradualmente. Durante este proceso, se protege y fortalece el frente de trabajo hasta que sea posible colocar el hormigón en toda la bóveda (se suele denominar avance en bóveda o calota). La bóveda se sostiene en el terreno mediante un entramado progresivo de madera. La bóveda se asegura con un encofrado y cuando está asegurada, la parte inferior se va excavando a medida que se va asegurando el avance. De esta manera, la galería se construye mientras se avanza, sin poner en peligro a los trabajadores debido a posibles hundimientos del túnel. Al abrir pequeñas secciones es posible solucionar cualquier problema que pudiera surgir de inestabilidad, puesto que la seguridad del método se basa en que se trabaja con un frente muy pequeño, normalmente inferior a 3 m². Este método está ampliamente comprobado en la práctica de la ingeniería civil, aunque su rendimiento es limitado.

Figura 2. Esquema de ejecución de un túnel en mina por el método belga

Resumiendo, las fases serían las siguientes:

a) Excavación de la bóveda. Realmente se inicia con una galería de avance, entibada en la zona de clave, que va unos metros por delante de la bóveda, y desde la que se ensancha la excavación de esa zona. Esta excavación va unida a la debida entibación.

b) Hormigonado de la bóveda con inyección del trasdós para rellenar huecos y asegurar el contacto terreno-hormigón.

c) Excavación y entibación de hastiales por bataches, previa excavación en destroza.

d) Hormigonado de hastiales por bataches.

e) Destroza y hormigonado de la contrabóveda.

 Si la sección del túnel es grande, las fases c) y d) se cambian, se excavan los hastiales en pozo y se hormigonan antes de excavar la destroza.

En resumen, el Método Belga es efectivo cuando el terreno es lo suficientemente bueno para soportar el descalce de parte de la bóveda para ejecutar los bataches. Esto es comúnmente posible en terrenos de Madrid con luces inferiores a 9 m, siendo la cantidad de agua en terrenos arenosos el principal factor limitante. Además, su sencillez y la poca infraestructura necesaria para su implementación lo hacían un sistema económico para tramos cortos en los años 60 y 70, permitiendo atacar el túnel desde varios frentes sin grandes inversiones. Sin embargo, la escasez de mano de obra ha aumentado significativamente el costo por metro lineal.

El tipo de entibación requiere una gran participación de la mano de obra, lo que conlleva los retos propios de un trabajo artesanal. Sin embargo, brinda una supervisión personal y constante, con una gran capacidad de respuesta ante imprevistos. Es esencial trabajar continuamente en turnos de 8 horas para evitar problemas en el terreno.

En términos generales, la velocidad de avance puede variar entre 30 metros por mes en terrenos muy duros a 40-50 m por mes en terrenos de arena de miga, llegando en ocasiones a 50 m por mes en terrenos óptimos con 3 turnos de trabajo.

Os paso algunos vídeos donde se explica de forma gráfica el sistema. Espero que os gusten.

https://www.youtube.com/watch?v=6E2-4RNyxdc

En el siguiente vídeo, se explica el método tradicional de construcción de túneles de Madrid. En el vídeo no se refleja que las fases de avance están desfasadas en el tiempo, es decir, la galería en avance se realiza muchos metros por delante de la sección en la que se hormigonan los hastiales por bataches.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

MELIS, M.J.; TRABADA, J.M. (2000). Construcción en 39 meses de 8 km de túnel por el Método Clásico de Madrid. Revista de Obras Públicas, 3405:25-40.

 

¿Cómo decidir cuando tenemos un dilema? El óptimo de Pareto

Los problemas de decisión están presentes en todos los ámbitos del ser humano: finanzas, empresa, ingeniería, salud, etc. Una de las grandes dificultades al tomar una decisión ocurre cuando queremos conseguir varios objetivos distintos, muchos de ellos incompatibles o contradictorios. Por ejemplo, si queremos un vehículo que sea muy veloz, debería tener un perfil aerodinámico que a veces es incompatible con la comodidad de los usuarios;  si queremos hacer un negocio con grandes beneficios, a veces tenemos que asumir ciertos riesgos, etc. Una herramienta que permite afrontar este tipo de problemas de decisión es el denominado “óptimo de Pareto“. A continuación os paso un vídeo explicativo de este tema. Espero que os guste.

 

 

Sondeo a rotación con barrena helicoidal

pilote-cpi8-2grandeEl sondeo a rotación con barrena helicoidal, maciza o hueca es un método a perforación a destroza en la que los materiales salen desmenuzados por la boca del sondeo. Se puede utilizar si el terreno es relativamente blando y cohesivo, y no se encuentran capas cementadas, gravas, o roca en toda la profundidad de realización del sondeo. Si se emplea la barra helicoidal hueca, es posible la toma de muestras inalteradas y la realización de ensayos “in situ” por el interior de la sonda.

Podemos destacar tres tipos fundamentales: hélice corta, hélice continua y cucharas auger.

Hélice corta
Hélice continua

Os dejo un vídeo explicativo de estas técnicas. Espero que os guste.

Referencia:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.