Os presento la segunda edición ampliada del libro que he publicado sobre procedimientos de construcción de cimentaciones y estructuras de contención. El libro trata de los aspectos relacionados con los procedimientos constructivos, maquinaria y equipos auxiliares empleados en la construcción de cimentaciones superficiales, cimentaciones profundas, pilotes, cajones, estructuras de contención de tierras, muros, pantallas de hormigón, anclajes, entibaciones y tablestacas. Pero se ha ampliado esta edición con tres capítulos nuevos dedicados a los procedimientos de contención y control de las aguas subterráneas. Además, de incluir la bibliografía para ampliar conocimientos, se incluyen cuestiones de autoevaluación con respuestas y un tesauro para el aprendizaje de los conceptos más importantes de estos temas. Este texto tiene como objetivo apoyar los contenidos lectivos de los programas de los estudios de grado relacionados con la ingeniería civil, la edificación y las obras públicas.
El libro tiene 480 páginas, 439 figuras y fotografías, así como 430 cuestiones de autoevaluación resueltas. Los contenidos de esta publicación han sido evaluados mediante el sistema doble ciego, siguiendo el procedimiento que se recoge en: http://www.upv.es/entidades/AEUPV/info/891747normalc.html
Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Es director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.
Las ataguías de tierra son diques que se usan en obras que tengan suficiente espacio y que dispongan de materiales adecuados (Figura 1). Son idóneas para pequeñas alturas de agua (sobre 3 m) que no estén en movimiento. El material no debe contener tierra vegetal y se debe compactar para lograr la mayor impermeabilidad y estabilidad.
Se suelen usar taludes de 3/2 en el paramento de aguas arriba y de 2/1 en el de aguas abajo, con un ancho de coronación de al menos 1,50 m (Figura 2). Se preverá también una altura mínima de 1 m sobre las crecidas normales. Si el talud de la ataguía se somete a un flujo hidráulico, se debe proteger mediante un pedraplén o cualquier otro procedimiento que impida la socavación; pero en este caso hay que sopesar el coste económico de este recubrimiento frente a otros procedimientos constructivos.
Un mismo material puede ser idóneo o no en función de cómo se construya la ataguía. Por ejemplo, si se utiliza una arcilla que ha de descargarse bajo el agua, el ablandamiento que va a experimentar impedirá conseguir pendientes estables. En cambio, este mismo material dispuesto en seco y correctamente compactado es muy adecuado por su baja permeabilidad. Se pueden disponer también núcleos de material impermeable y dejar los lados con otro material, incluso escollera si se quiere proteger de las corrientes de agua.
En el caso de no ser suficiente la impermeabilidad del material empleado, también es posible una ataguía mixta colocando una tablestaca en el centro de la ataguía de tierra (Figura 3). Las tablestacas se atornillan en cabeza a un perfil metálico que las enlaza.
Puede reducirse el espacio ocupado por la ataguía si se respalda la ataguía con un macizo de tierras aguas abajo, siempre y cuando las tablestacas presenten resistencia suficiente a los empujes (Figura 4). En este caso, es conveniente evitar las socavaciones de las tablestacas disponiendo escollera a su pie, aguas arriba.
Aún se podría minimizar el espacio ocupado si utilizamos dos cortinas de tablestacas y entre ellas construimos un macizo de tierras que de estabilidad al conjunto, y que mejore la estanqueidad de las cortinas si el material es arcilloso (Figura 5). En este caso, también se dispone escollera aguas arriba y una berma de tierras aguas abajo.
Siempre que se utilicen tablestacas, se debe garantizar su estabilización mediante apuntalamiento, arriostradas por tirantes, anclajes o cualquier otro procedimiento. Además, el empotramiento deberá ser suficiente para soportar los empujes, contener el flujo hidráulico y evitar el fenómeno del sifonamiento, entre otros. Hay que tener presente que el nivel freático desciende más rápido en el interior de la tablestaca que en el exterior, lo cual implican gradientes hidráulicos que pueden desestabilizar el fondo. Se recomienda cubrir el fondo de la excavación con una capa de arena y de grava. El agua que queda contenida en el recinto debe ser evacuada, normalmente por bombeo.
Cuando no se tenga la necesidad de crear recintos estancos, sino zonas de aguas tranquilas, no hay necesidad de crear ataguías impermeables, pues su función es únicamente romper la corriente o el oleaje. En estos casos se pueden utilizar las ataguías de escollera y de gaviones. En este último caso, se pueden usar también como protección del espaldón las ataguías (Figura 6).
En la Figura 7 se puede observar una ataguía formada por sacos de arena.
Las ataguías de escollera (rock-fill cofferdam) se construyen de forma similar a las ataguías de tierra, pero con la posibilidad de pendientes más pronunciadas. La escollera se dispone de forma que los huecos se pueden rellenar parcialmente con tierra y material granular. Si se quiere conseguir impermeabilidad, tanto la coronación como la pendiente aguas arriba requieren de una membrana impemeabilizante protegida con un pedraplén para proteger la ataguía contra el oleaje. La altura puede ser de hasta 3 m, con una pendiente entre 1:1,5 y 1:1,25. En caso de rebase por oleaje, el daño no es tan importante como en el caso de ataguías de tierra. Esta tipología se utiliza si la escollera está disponible en las cercanías.
REFERENCIAS:
GALABRÚ, P. (2004). Cimentaciones y túneles. Tratado de procedimientos generales de construcción. Editorial Reverte, Barcelona.
POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención y control del agua subterránea en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante.
Este es un curso básico de procedimientos de contención y control del agua subterránea en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.
En este curso aprenderás las distintas tipologías y aplicabilidad de los procedimientos de contención y control del agua utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de sistemas de control del agua (ataguías, pantallas, escudos, drenajes superficiales, bombeos profundos, congelación del suelo, electroósmosis, inyecciones, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.
El contenido del curso está organizado en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada Lección didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado tres unidades adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.
El curso está programado para una dedicación de 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.
Éste curso único impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.
Objetivos
Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:
Comprender la utilidad y las limitaciones de los procedimientos de contención y control del agua en obras de ingeniería civil y de edificación
Evaluar y seleccionar el mejor tipo de procedimiento necesario para una construcción con problemas de agua en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales
Programa
– Lección 1. Conceptos básicos del agua en medio poroso
– Lección 2. El problema del agua en las excavaciones
– Lección 3. La magia de las tensiones efectivas en geotecnia
– Lección 4. El sifonamiento en las excavaciones: el efecto Renard
– Lección 5. Clasificación de las técnicas de control del agua en excavaciones
– Lección 6. Selección del sistema de control del nivel freático
– Lección 7. Drenaje de excavaciones mediante bombeos superficiales y sumideros
– Lección 8. Drenaje de excavaciones mediante zanjas perimetrales
– Lección 9. Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem
– Lección 10. Cálculo de un agotamiento mediante pozos
– Lección 11. Tipología de las estaciones de bombeo
– Lección 12. Altura neta positiva de aspiración de una bomba
– Lección 13. Bombas empleadas en el control del nivel freático de una excavación
– Lección 14. Procedimientos constructivos de pozos profundos para drenaje
– Lección 15. Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio
– Lección 16. Drenaje de excavaciones mediante bombeo desde pozos filtrantes
– Lección 17. Drenaje de excavaciones mediante bombeo desde pozos eyectores
– Lección 18. Drenajes horizontales instalados mediante zanjadoras
– Lección 19. Pozos horizontales ejecutados mediante perforación horizontal dirigida
– Lección 20. Drenes de penetración transversal: drenes californianos
– Lección 21. Control del nivel freático mediante lanzas de drenaje (wellpoints)
– Lección 22. Drenaje horizontal con pozos radiales
– Lección 23. Galerías de drenaje en el control del nivel freático
– Lección 24. Electroósmosis como técnica de drenaje del terreno
– Lección 25. Procedimientos para la contención del agua
– Lección 26. Evaluación aproximada de caudales de bombeo en excavación de solares
– Lección 27. Contención de aguas mediante ataguías en excavaciones
– Lección 28. Contención del agua mediante ataguías de tierras y escollera
– Lección 29. Contención del agua mediante tablestacas
– Lección 30. Contención del agua mediante ataguías celulares
– Lección 31. Contención del agua mediante cajones indios
– Lección 32. Contención del agua mediante cajones de aire comprimido
– Lección 33. Contención del agua mediante muros pantalla
– Lección 34. Contención del agua mediante pantallas de pilotes secantes
– Lección 35. Contención del agua mediante pantallas plásticas de bentonita-cemento
– Lección 36. Contención del agua mediante pantallas de suelo-bentonita
– Lección 37. Contención del agua mediante pantallas de suelo-cemento con hidrofresa
– Lección 38. Contención del agua mediante pantallas de lodo autoendurecible armado
– Lección 39. Contención del agua mediante pantallas realizadas por mezcla profunda de suelos
– Lección 40. Contención del agua mediante pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
– Lección 41. Contención del agua mediante pantallas de geomembranas
– Lección 42. Contención del agua mediante inyección del terreno
– Lección 43. Contención del agua mediante inyección de lechadas de cemento
– Lección 44. Contención del agua mediante inyección de lechadas de arcilla
– Lección 45. Contención del agua mediante inyección de lechadas químicas
– Lección 46. Contención del agua mediante inyecciones de alta presión: jet-grouting
– Lección 47. Contención del agua mediante congelación de suelos
– Lección 48. Contención del agua mediante escudos presurizados con aire comprimido
– Lección 49. Contención del agua mediante escudos presurizados con lodos
– Lección 50. Contención del agua mediante escudos de presión de tierras
– Supuesto práctico 1.
– Supuesto práctico 2.
– Supuesto práctico 3.
– Batería de preguntas final
Profesorado
Víctor Yepes Piqueras
Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València
Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 115 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido cuatro ediciones. También destaca el curso sobre “Procedimientos de construcción de cimentaciones y estructuras de contención en obra civil y edificación”, que ya va por su segunda edición.
Las ataguías celulares son estructuras de contención utilizadas con profundidades importantes, formadas por cilindros huecos contiguos, normalmente tablestacas de acero unidas, que soportan los empujes mediante la fricción de su base (Figura 1).
Estos cilindros son relativamente grandes, con diámetros típicos de 12 a 20 m. Se utilizan en la construcción de presas, muelles (Figura 2), pilas de puentes y recintos en general donde debe trabajarse en seco.
Los recintos construidos con ataguías celulares se pueden construir sobre terrenos firmes o de calidad media. Los depósitos de suelos blandos hasta gran profundidad pueden ser inadecuados.
En el caso de corrientes importantes, por ejemplo en un gran río, es importante conocer el campo de velocidades entorno a la zona donde se colocarán las ataguías celulares. En este caso, la propia ataguía reduce la sección del río y provoca un aumento de la velocidad del agua, con la posible erosión del fondo del cauce, en especial hacia las esquinas, por lo que conviene redondearlas.
Las celdas se rellenan con un material del mayor peso específico posible, normalmente una mezcla de arenas y gravas. En el caso de desmontar las celdas, antes debe extraerse el material de relleno. En cambio, si se rellenan de hormigón quedan como estructuras permanentes, como es el caso de la construcción de diques en obras portuarias.
El ancho medio de una ataguía celular sobre roca oscila entre el 70 y el 80% de la altura del agua exterior que retiene (Figura 3). En el caso de estar sobre suelos arenosos, al igual que ocurre con las ataguías de tablestacas de doble pared, debe tener un espaldón en el interior. Con grandes calados de agua, estas ataguías de doble pared se pueden rellenar de hormigón y sostenerse por puntales, lo cual ahorra un espacio considerable y permiten asegurar una buena impermeabilización con anchos muy pequeños.
Existen distintas configuraciones de recintos que se construyen con formas circulares de tablestacas planas, creando celdas independientes que después se unen mediante arcos de tablestacas con formas especiales. En la Figura 4a se observan arcos circulares conectados por diafragmas rectos; en la Figura 4b vemos celdas circulares conectadas por arcos circulares; en la Figura 4c vemos la estructura tipo trébol, que consta de grandes celdas circulares subdivididas por diafragmas rectos. Las ataguías de tabiques rectos requieren menos tablestacas que las celdas circulares, aunque el relleno debe hacerse con cuidado para que los tabiques de separación no sufran presiones descompensadas. Con los recintos circulares, se pueden rellenar las celdas de forma independiente. Con los recintos de diafragmas, han de hacerse los rellenos simultáneamente, utilizándose un mayor número de tablestacas. Su posible ventaja radica en menores esfuerzos en la tablestaca para un mismo calado.
Las ataguías celulares se deben diseñar para ofrecer seguridad estructural en distintos aspectos:
Se debe evitar el vuelco y su puesta fuera de alineación
Debe estar al abrigo del deslizamiento
Debe presentar seguridad a la rotura por cortante en el relleno interior de la célula
Las juntas no deben romperse, teniendo en cuenta la corrosión
Las almas de las tablestacas deben presentar un factor de seguridad razonable frente a la rotura
No deben haber distorsiones ni deformaciones fuera de límites aceptables
La ventaja de construir las ataguías celulares con tablestacas es que precisan poco andamiaje, bastando unas guías superiores e inferiores para hacer descenderlas (Figura 5). Se pueden construir desde tierra, de forma que cada célula terminada sirve de plataforma de trabajo para hincar en la siguiente (Figura 6). Sobre lechos rocosos irregulares, las longitudes de las tablestacas se adaptan al perfil de la roca. Sobre suelos arenosos o de grava, se dispone de un banco de tierra interior (Figura 3) para conseguir que la longitud de la filtración sea suficiente para evitar el colapso por surgencia.
Uno de los mayores riesgos de colapso de las ataguías celulares es el fallo de cualquier unión. Por eso no se aconseja usar estas ataguías sobre terrenos con cantos u otros obstáculos que puedan abrir las tablestacas o la ruptura de las uniones.
A continuación os dejo algunos vídeos sobre el uso de las ataguías celulares. Espero que os sean de interés.
REFERENCIAS:
CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
Una ataguía (cofferdam) es una estructura, generalmente provisional, destinada contener el terreno e impedir, reducir o desviar la entrada de agua en una excavación. Se trata de construir un recinto estanco y seco temporal muy empleado, por ejemplo, en la ejecución de pilas de puentes, muelles, presas, y en cualquier otro lugar donde se quiera trabajar en seco.
Son obras que reciben el empuje de las tierras, el hidrostático y las fuerzas dinámicas debidas a corrientes u oleaje, en su caso, y que deben satisfacer los requisitos de estabilidad, impermeabilidad y estanqueidad. Por tanto, resulta inútil emplear ataguías sobre terrenos muy permeables, pues de nada serviría la impermeabilidad de las paredes si por el fondo se filtran caudales imposibles de agotar. En estos casos, sería necesario un dragado previo hasta alcanzar el sustrato impermeable.
Además, si la ataguía se utiliza en obras fluviales, hay que considerar los problemas hidráulicos como la erosión del lecho de la corriente y el desbordamiento. No en balde, si la ataguía empieza a tener dimensiones importantes debe diseñarse y construirse con todas las garantías exigibles a una presa, aunque sea provisional.
El trazado de la ataguía con frecuencia termina formando un recinto cerrado, caso muy habitual en el caso de la construcción de cimientos de puentes en los ríos. Sin embargo, pueden ser construcciones no cerradas, como es el caso de derivación de un río para construir una presa. En este caso de ataguías abiertas, no tiene sentido que su altura supere un nivel superior al de las orillas, aunque sí quedar por encima de la crecida ordinaria del río. La altura debe quedar por encima de las pleamares en obras marítimas.
La construcción de estos recintos estancos es compleja, pues se debe colocar en medio del cauce de un río o en el mar, en condiciones ambientales a veces muy duras. Es por ello difícil mantener las tolerancias constructivas, desviándose las dimensiones previstas en proyecto. Además, hay que tener presente que, en caso de desmontaje, se deben considerar los esfuerzos sobre la obra construida. Es por ello que muchas veces los recintos se quedan de forma permanente, por ejemplo en el caso de la construcción del cimiento de un puente.
Una ataguía de interés es la construida para el desvío y cierre del cauce de un río para la construcción de una presa. Realmente son presas cuya vida útil es muy reducida (de 1 a 4 años, según los casos), con fugas de agua o filtraciones admitidas mayores que las presas definitivas y con materiales empleados que, dada la cortedad de su vida útil, pueden ser de menor calidad. Es frecuente también colocar una contraataguía aguas abajo de la presa para contener la lámina de agua que pudiera llegarse a formar agua abajo, a la salida del túnel de desvío; aunque podría no ser necesaria cuando la pendiente del cauce es suficiente para que el agua siga con una cota máxima de lámina inferior al nivel del cauce en el lugar de trabajo.
Sea cual sea el tipo de ataguía a utilizar, resulta muy importante realizar un cálculo del gradiente hidráulico que se forma por la líneas de filtración del agua por el material permeable. Si el gradiente hidráulico, es decir, el caudal de agua dividido por la longitud de la línea de filtración excede a la unidad, se puede producir inestabilidad y el efecto de “arenas movedizas” del sifonamiento. Estas filtraciones se deben recoger en un sumidero para ser bombeadas al exterior del recinto excavado. El bombeo previsto para agotar el agua del recinto debe ser muy superiores a los previstos, pues son frecuentes las averías de las bombas, así como entradas de agua imprevistas.
La correcta elección del tipo adecuado de ataguía depende de aspectos tales como de la profundidad del agua, profundidad y tamaño de la excavación, tipo de terreno, velocidad de la corriente de agua, existencia de mareas o de elementos flotantes, condiciones locales y los medios que puedan utilizarse en función de la importancia de la obra a proteger. Galabrú (2004) clasifica las ataguías en los siguientes tipos: ataguías de tierra, ataguías mixtas de tierra y tablestacas, ataguías de escollera y gaviones, ataguías de tablestacas metálicas (cortinas simples, recintos y células autoestables), ataguías de hormigón (gravedad o bóveda, paredes moldeadas en el suelo e inyecciones, pantallas de pilotes y cajones hincados con aire comprimido o sin él), ataguías por congelación de suelos y casos especiales (sobres suelo rocoso o en cursos de aguas con corriente intensa).
Es más, los procedimientos de construcción de cimentaciones mediante cajones indios o mediante cajones de aire comprimido podrían considerarse, en cierto modo, como ataguías, puesto que serían sistemas que permiten trabajar en seco; aunque en estos casos el medio auxiliar no es provisional, sino que queda formando parte de la cimentación, tal y como pasa en el caso de los puentes cimentados bajo el agua.
Los romanos ya empleaban las ataguías para la construcción de la cimentación de los puentes, tal y como podemos ver en este pequeño vídeo de Structuralia:
Aquí tenéis una animación de cómo se construyó el Puente de Carlos, en Praga, puente que se terminó en 1402. Fijarse bien en cómo se ejecutaba la ataguía con una doble pared de tablestacas de madera rellenas de tierra.
Os dejo algún vídeo explicativo sobre ataguías y recintos cerrados (cofferdams).
Recientemente se han utilizado ataguías que se llenan, se despliegan y se estabilizan de forma rápida, tal y como se puede observar en los siguientes vídeos:
REFERENCIAS:
GALABRÚ, P. (2004). Cimentaciones y túneles. Tratado de procedimientos generales de construcción. Editorial Reverte, Barcelona.
POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
El viaducto del río Ulla, es una obra de celosía tipo mixta propiedad del Ministerio de Fomento (Dirección General de Ferrocarriles), proyectado por IDEAM, construido por la UTE Dragados-Tecsa. Se inauguró el 30 de marzo del 2015. Este puente se convirtió en el récord del mundo en la tipología de celosía mixta de alta velocidad con tres vanos de 225 + 240 + 225 m que superan al del puente de Nantenbach sobre el río Main, en Alemania, que ostentaba el récord desde su conclusión en 1993 con 208 m de luz.
A continuación os paso una simulación en 3D realizada por la empresa PROIN3D del proceso constructivo propuesto para la ejecución de las cimentaciones del viaducto de río Ulla (Eje Atlántico de Alta Velocidad). Espero que os guste. Dura menos de 5 minutos.
También os dejo el artículo que describe el proceso constructivo de este puente singular, firmado por Francisco Miilanes, Miguel Ortega y Rubén A. Estévez, y que se publicó en la revista Hormigón y Acero.
Si se pretende realizar una excavación profunda, dejando el recinto libre de obstáculos, tendremos que realizar un arriostramiento de las pantallas de tablestacas mediante anclajes al terreno. De esta forma podremos limitar las deformaciones en la pantalla. Esto permite realizar excavaciones junto a elementos a proteger, como edificaciones, instalaciones, etc. Eso sí, siempre que se pueda realizar el anclaje correspondiente.
El método constructivo pasa por realizar la excavación por fases, de forma que se puedan efectuar los anclajes y su tesado antes de proseguir con la excavación a mayor profundidad.
Este tipo de arriostramiento permite su uso en grandes recintos con muy diversas geometrías. Además, al no presentar la excavación obstáculos, se pueden alcanzar grandes rendimientos en los vaciados dentro del recinto.
Aunque en este post no vamos a dedicarlo al cálculo de estas estructuras, sí que es importante mencionar que una parte nada despreciable de roturas de tablestacas ancladas se han debido a un incorrecto o poco cuidadoso diseño o ejecución de los dispositivos de unión entre el tirante y la pantalla.
Os dejo un vídeo donde se explica el anclaje, en este caso, de una pantalla de pilotes.
La hinca de tablestacas por impacto, percusión o golpeo es una de las técnicas más antiguas y que se emplea en aquellos casos de suelos de mayor consistencia donde la vibración no es suficiente. El martillo de golpeo sujeta a la tablestaca por su parte superior y le transmite los impactos generados por una maza alojada en su interior.
Resulta muy importante la razón entre el peso de la maza y el peso de la o las tablestacas que van a introducirse en el suelo. Es necesario un sobreretes y sufrideras para distribuir el golpe y proteger la cabeza de la tablestaca. El sombrerete o casco de protección es una pieza de acero fundido o chapones soldados que se colocan en la cabeza de la tablestaca, la sufridera es una pieza colocada en la parte superior del sombrerete que distribuye la onda de choque de la maza y la galleta o almohadilla, de pequeño espesor, asegura el buen asiento del sombrerete con la cabeza de la tablestaca.
Se pueden distinguir dos tipos fundamentales:
Martillos de simple efecto: el ariete cae libremente sobre la tablestaca. Sirve para cualquier terreno. Se utilizan mazas pesadas con recorridos cortos para minimizar el daño en la cabeza de la tablestaca y el ruído. Normalmente se dan unos 60 golpes por minuto.
Martillos de doble efecto: el ariete cae acelerado por la presión suministrada por aire/vapor o un sistema hidráulico. Son más eficientes, con hasta 120 golpes por minuto.
Según el Art. 673 del PG-3, En el caso de mazas de simple efecto, el peso de la maza propiamente dicha no será inferior a la cuarta parte (1/4) del peso de la tablestaca, si se hinca la tablestaca de una en una, o a la mitad del peso de la misma si se hinca por parejas. La energía cinética desarrollada en cada golpe, por las mazas de doble efecto, será superior a la producida, también en cada golpe, por la de simple efecto especificada, cayendo desde una altura de sesenta centímetros (60 cm).
Asismismo, las tecnologías empleadas para accionar el martillo de golpeo son:
Accionamiento neumático, para usarse sustentado por una grúa
Accionamiento diésel, acoplado a un vehículo autotransportado
Os dejo un vídeo de un martillo diésel que espero os guste:
Y este otro martillo neumático, que como veréis, es bastante pequeño y efectivo:
Referencias:
BENEGAS, M.J. (1977). Tablestacas: Sistemas de hinca y su práctica. Revista de Obras Públicas, 3141: 29-35. (link)
Una solución habitual y eficiente cuando se pretenden alcanzar grandes profundidades de excavación de forma sencilla y económica consiste en arriostrar pantallas de tablestacas mediante perfilería metálica. Este sistema permite limitar las deformaciones de dichas tablestacas, lo cual permite proteger edificaciones o infraestructuras anexas a la excavación. Este procedimiento constructivo precisa realizar la excavación en más de una fase, pues es necesario realizar el montaje del arriostramiento. Este procedimiento es alternativo al anclaje de pantallas al terreno.
En un artículo anterior habíamos descrito la hinca por vibración de pilotes y tablestacas. Ahora vamos a detenernos en una forma sencilla y versátil de utilizar los vibrohincadores, que es acoplarlos a una retroexcavadora. En este caso, el vibrohincador se monta en la pluma de una retroexcavadora sustituyendo la cuchara. Las mismas palancas de control de la cuchara son las que sirve para manejar el vibrohincador.
Este equipo no requiere instalaciones eléctricas, son compactos y robustos, de montaje rápido y sencillo y con un alto ratio de potencia/peso del equipo. La misma fuerza disponible en el brazo de la retroexcavadora ayuda en la hinca del perfil. Además, el vibrador sirve también para la extracción de los perfiles.
Os un vídeo ilustrativo al respecto.
A continuación os dejo un folleto explicativo de la empresa Beenes.