Acaban de publicar nuestro artículo en la revista Plos One, del primer cuartil del JCR. El artículo presenta una propuesta innovadora para la enseñanza de la ingeniería mediante la aplicación de la nomografía, una técnica matemática que se utiliza para representar gráficamente ecuaciones complejas. Su principal contribución es la introducción del software Nomogen, una herramienta basada en Python que permite generar nomogramas de tres variables de manera rápida y precisa, sin necesidad de manipular determinantes ni realizar dibujos manuales.
El estudio también demuestra la viabilidad de la nomografía como recurso didáctico en la enseñanza de la ingeniería, ya que facilita la interpretación de ecuaciones multivariables y reduce los errores en cálculos repetitivos. A través de una metodología experimental aplicada a estudiantes de ingeniería de diferentes niveles, los autores confirman que existe un renovado interés en el uso de nomogramas en entornos educativos, puesto que destacan su utilidad como complemento a los métodos digitales convencionales.
Los resultados del estudio revelan que, aunque el 78,4 % de los estudiantes encuestados nunca habían utilizado nomogramas, el 86,5 % reconoció su capacidad para interpretar fenómenos con múltiples variables de manera clara. Esta percepción constituye un argumento sólido a favor de la integración de la nomografía en los programas de ingeniería.
El uso del software Nomogen permitió superar las limitaciones tradicionales de la nomografía, ya que elimina la complejidad matemática inherente a su construcción manual. La posibilidad de generar gráficos precisos y adaptables a diferentes contextos hace que la herramienta sea accesible para estudiantes y docentes.
El análisis de las respuestas de la encuesta también reveló diferencias en la valoración de los nomogramas según el nivel formativo de los estudiantes. Los estudiantes en etapas avanzadas de sus estudios mostraron una mayor valoración de su utilidad en cuanto a la comprensión de fenómenos con múltiples variables.
El estudio abre diversas oportunidades de desarrollo futuro en los campos de la ingeniería y la educación. Algunas áreas que podrían explorarse son:
Ampliación del uso de nomogramas en otras disciplinas: Evaluar su aplicabilidad en áreas como la mecánica de suelos, hidráulica y estructuras, donde la representación gráfica de ecuaciones puede simplificar análisis complejos.
Integración de inteligencia artificial: Incorporar algoritmos de aprendizaje automático para optimizar la generación de nomogramas y mejorar su precisión en función de patrones detectados en bases de datos de ingeniería.
Desarrollo de herramientas interactivas: Explorar la posibilidad de crear versiones digitales interactivas de los nomogramas, que permitan una manipulación dinámica de las variables en tiempo real.
Evaluación longitudinal de su impacto educativo: Realizar estudios a largo plazo para analizar la retención del conocimiento y la eficacia del aprendizaje cuando se incorporan nomogramas en la enseñanza de la ingeniería.
Comparación con otros métodos gráficos: Investigar la efectividad de la nomografía frente a otras técnicas de visualización de datos, como los diagramas de contorno o los gráficos tridimensionales en programas informáticos especializados.
Este artículo representa un avance significativo en la enseñanza de la ingeniería, rescatando una herramienta histórica y adaptándola a las nuevas tecnologías con el objetivo de mejorar la comprensión y aplicación de conceptos matemáticos complejos.
Tricono con insertos. https://www.talleresegovia.com
La perforación rotativa con triconos se ha tratado en artículos anteriores. Se trata de uno de los procedimientos más extendidos y consiste en equipos grandes capaces de ejercer empujes elevados sobre la boca. En este artículo se explicará un procedimiento para calcular la velocidad de barrido.
El aire comprimido enfría y lubrica los cojinetes del tricono, limpia el fondo del barreno y eleva el detrito a la velocidad adecuada para el ascenso.
El aire circula desde el compresor hasta el mástil mediante un tubo y una manguera flexible protegida, pasando por la cabeza de rotación. A continuación, entra en la barra de perforación y llega a la boca, donde sale entre los conos, arrastrando los detritos y llevándolos a la superficie.
Si los fragmentos son grandes y el caudal de aire es insuficiente, vuelven al fondo y se remueven hasta alcanzar el tamaño adecuado. Esto genera un consumo innecesario de energía, una menor velocidad de penetración y un mayor desgaste de la boca. Por otro lado, una velocidad ascensional excesiva incrementa el desgaste del centralizador y de las barras de perforación.
A continuación se ofrece un nomograma original elaborado por el profesor Pedro Martínez Pagán para estimar la velocidad de barrido de perforación de un equipo rotary (Instituto Tecnológico Geominero de España, 1994).
Esta expresión incorpora la corrección por altura geográfica que hay que hacerle al caudal que proporciona un compresor por la pérdida que sufre:
Referencias:
DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.
La perforación rotativa con triconos es uno de los procedimientos más extendidos, y está constituido por grandes equipos capaces de ejercer elevados empujes sobre la boca. Esto se debe a que las unidades que trabajan con trépanos son más sencillas de diseño y de menor envergadura. Las perforadoras rotativas están formadas esencialmente por una fuente de energía, como una batería de barras o tubos individuales o conectados en serie, que transmite el peso de la rotación y el aire de barrido a una boca con dientes de acero o insertos de carburo de tungsteno que actúan sobre la roca.
En este tipo de perforación, la velocidad de penetración depende de muchos factores externos, como las características geológicas, las propiedades físicas de las rocas, la distribución de tensiones y la estructura interna. Por este motivo, determinar la velocidad de penetración durante el desarrollo de un proyecto es una tarea difícil para el ingeniero proyectista, pero necesaria, ya que la decisión que se tome va a incidir decisivamente en el resto de las operaciones.
Las fórmulas empíricas para estimar la velocidad de penetración son muy sencillas y se basan en ensayos de campo. En general, tienen en cuenta las siguientes variables: diámetro de la perforación, empuje sobre el tricono, velocidad de rotación y resistencia a compresión simple. La resistencia a compresión es la variable desconocida, cuyo valor se puede estimar fácilmente mediante un ensayo de laboratorio o de campo.
A continuación se ofrece un nomograma original elaborado por los profesores Pedro Martínez Pagán, Daniel Boulet y Trevor Blight para estimar el coeficiente de perforación de un equipo rotary basándose en la formulación empírica que dedujo Praillet en 1978. Esta fórmula es más fiable en todos los rangos de resistencias de las rocas y permite calcular el valor de la resistencia a compresión de la roca durante una operación en marcha.
Referencias:
DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
PRAILLET, R. (1984), Consideraciones de un fabricante de máquinas de perforación. Canteras y Explotaciones
UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.
Durante los días 3-4 de julio de 2024 tiene lugar en Jaén (Spain) el 28th International Congress on Project Management and EngineeringAEIPRO 2024. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.
SÁNCHEZ-GARRIDO, A.; GUAYGUA, B.; VILLALBA, P.; YEPES, V. (2024). Ingeniería de proyectos basada en modelos de análisis multivariante. Aplicación al dimensionamiento de losas planas aligeradas.28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)
Esta investigación propone una metodología para dimensionar losas innovadoras de hormigón armado sin vigas, que permiten el uso eficiente de materiales. Utilizando un enfoque estadístico y modelos de regresión lineal, se proporcionan criterios para calcular el espesor de la losa aligerada con esferas o discos plásticos presurizados, minimizando el número de variables. Este espesor puede estimarse a partir de la luz principal entre apoyos, la altura del disco o el diámetro de la esfera, así como el uso previsto del edificio. El modelo final ajustado logra explicar el 98% de la variabilidad en el espesor de la losa para luces comprendidas entre 5 m y 16 m. Este tipo de forjado contribuye a la reducción del consumo de hormigón y acero, lo que resulta en una disminución del peso y las cargas aplicadas. Esto impacta directamente en los costos y mejora los indicadores ambientales en comparación con los sistemas tradicionales. Se presenta como una alternativa eficiente para edificaciones, permitiendo la combinación de parámetros estructurales, constructivos y sostenibles.
SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; SAIZ, D.; YEPES, V. (2024). Ingeniería de proyectos en Modernos Métodos de Construcción: El caso de edificios con losas planas mediante elementos aligerantes multiaxiales.28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)
Los métodos modernos de construcción (Modern Methods of Construction, MMC), o como algunos llaman “construcción inteligente“, constituyen alternativas a la construcción tradicional. Esta nueva forma de construir implica, necesariamente, un cambio en la forma de dirigir los proyectos, que pasan a ser industrializados, donde la eficiencia estructural, constructiva y la sostenibilidad ambiental y social son protagonistas. El objetivo del artículo es identificar los aspectos característicos de estas construcciones innovadoras que influyen en la ingeniería de proyectos, integrando a grupos multidisciplinares como arquitectos, ingenieros estructurales y empresas constructoras. Para ello se realizará un estudio para el caso de edificios construidos con losas planas aligeradas mediante elementos aligerantes multiaxiales. Los resultados muestran que estos diseños permiten integrar el proyecto, la fabricación de elementos y el procedimiento constructivo. El proyecto de estas construcciones permite aligerar y reducir las cuantías de hormigón y acero en aquellas zonas de las losas donde la capacidad portante es insignificante. Además, se ha comparado este diseño con otros tradicionales, destacando una reducción de costes y un aumento de la sostenibilidad a lo largo del ciclo de vida.
YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P.; ALCALÁ, J.; YEPES, V. (2024). Análisis del predimensionamiento de tableros óptimos de puentes losa pretensados aligerados y su incidencia en el proyecto estructural.28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)
El proyecto estructural normalmente se basa en la experiencia del proyectista. En ocasiones, dicha experiencia se plasma en fórmulas de predimensionamiento que, si bien ofrecen buenos resultados, en ocasiones arrastran ineficiencias cuando se comparan con técnicas actuales de optimización que tenga en cuenta las dimensiones económicas y ambientales. En este artículo se comparan reglas de dimensionamiento previo de estructuras basadas en la experiencia con técnicas de optimización. Se aplica al caso del proyecto de tableros de puentes tipo losa pretensados aligerados. El resultado de la investigación resalta la importancia de aplicar métodos basados en la optimización heurística y en metamodelos para actualizar la experiencia de los proyectistas y proponer nuevas fórmulas de predimensionamiento más ajustadas a la optimización económica y ambiental. Además, en el trabajo se ofrecen nomogramas de predimensionamiento, con el mínimo número de datos posible, que pueden ser de utilidad al proyectista en sus diseños previos.
Roermond, the Netherlands, – August 08, 2019. Construction of a new highway tunnel in the center of the city.
En un artículo anterior explicamos cómo se podía calcular la presión y la potencia para el bombeo del hormigón. Aquí vamos a presentar un par de nomogramas que hemos desarrollado junto a los profesores Pedro Martínez Pagán y Daniel Boulet. Además, se incluye la resolución completa de un problema utilizando estos nomogramas.
Para los que estéis interesados en ampliar conocimientos, os recomiendo un libro de 300 problemas resueltos de Maquinaria y Procedimientos de Construcción. El libro ofrece una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras. Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 26 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil, la edificación y las obras públicas.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014).Fabricación, transporte y colocación del hormigón.Apuntes de la Universitat Politècnica de València.
RODRÍGUEZ-LÓPEZ, A.J. (2015). Determinación automática de la eficiencia volumétrica y otros parámetros de operación de bombas alternativas de hormigón mediante análisis de los pulsos de presión en su salida. Tesis doctoral. Universidad Politécnica de Madrid.
Figura 1. Bombeo de hormigón. https://www.balcellsintegralservice.com/bombeo-hormigon-barcelona-autobomba-sobre-camion.html
El bombeo del hormigón depende de la capacidad del equipo utilizado, del control y la homogeneidad de todos los ingredientes de la mezcla, de la dosificación y el mezclado, así como de los conocimientos y la experiencia del personal involucrado. La selección de equipos para el bombeo en condiciones óptimas depende de diversos factores específicos de cada obra. Para obtener información más detallada y concreta, se puede consultar la documentación técnica proporcionada por los fabricantes de bombas y las referencias bibliográficas disponibles. Se recomienda ponerse en contacto con el fabricante para determinar el tipo de bomba adecuado, pues los precios de alquiler aumentan en función de la capacidad del equipo. Es importante buscar una solución que sea razonable y eficiente.
Para que una operación de bombeo sea satisfactoria, es necesario un suministro constante de hormigón con las características adecuadas. Al igual que el hormigón convencional, requiere un buen control de calidad, una distribución homogénea de áridos, una granulometría adecuada y materiales dosificados y mezclados de manera uniforme. A continuación, se ofrecen algunas pautas generales sobre el proceso de bombeo de hormigón.
El proceso de colocación de hormigón por bombeo se basa en la bomba, la tubería y, en su caso, el sistema de distribución a la salida. La bomba debe estar diseñada para aspirar y empujar el volumen de hormigón requerido a través de la tubería hasta el punto de colocación. El tamaño máximo del árido viene determinado por los diámetros de los orificios de aspiración y de los cilindros de bombeo. Se recomienda que el diámetro del canal de aspiración sea al menos tres veces mayor que el tamaño máximo del árido.
Figura 2. Bomba de hormigón. https://ittcanarias.com/bombas-de-hormigon-putzmeister/
El tamaño máximo del árido grueso de forma angular se limita a un tercio del diámetro interior más pequeño de la tubería y, en el caso de áridos bien redondeados, debe ser inferior a dos quintos de este diámetro. El tamaño máximo del árido (TMA) influye significativamente en el volumen o cantidad de árido que puede utilizarse de manera eficiente. La cantidad de árido grueso debe reducirse considerablemente a medida que disminuye el TMA, pues la mayor superficie del árido de menor diámetro requiere más pasta para cubrir todas las superficies, lo que reduce la cantidad de pasta disponible para lubricar la línea de la tubería. Los áridos finos o arenas juegan un papel mucho más importante en la proporción de las mezclas bombeables que los áridos gruesos. Junto con el cemento y el agua, proporcionan el mortero que conduce en suspensión los sólidos o áridos gruesos, permitiendo así que una mezcla sea bombeable.
El uso de una autobomba suele estar limitado por una longitud máxima equivalente (L), calculada con la fórmula L = H + 3·V + 10·C₁ + 5·C₂, donde L debe ser menor o igual a 350 mm. En esta fórmula, H representa la distancia horizontal, V el desnivel vertical, C₁ el número de codos a 90º y C₂ el número de codos a 135º.
En el proceso de impulsión del hormigón, el parámetro principal es la máxima presión que puede generar la bomba. Generalmente, las autobombas utilizan una tubería corta que coincide con la longitud de la pluma de distribución, lo que implica que requieren una presión de bombeo menor en comparación con las bombas estacionarias. Estas últimas pueden bombear a distancias mayores con rendimientos similares. Por ejemplo, una presión de 7 MPa puede ser suficiente para las autobombas, incluso en casos de grandes caudales. Sin embargo, las bombas estacionarias necesitan alcanzar presiones de hasta 20 MPa para distancias horizontales de 1000 m o verticales de 500 m, lo que ilustra la diferencia en los requerimientos de presión entre ambos tipos de bombas.
La presión requerida para el bombeo varía en función de diversos factores, como la longitud, el diámetro y la cantidad de codos en la tubería, el caudal, la consistencia del hormigón y la altura. Los fabricantes de los equipos suelen proporcionar nomogramas que permiten estimar la presión necesaria para un caudal específico. En este enlace tenéis cómo realizar el cálculo de la presión y del caudal de bombeo.
Figura 3. Nomograma presión hormigón-rendimiento. Fuente: Bombas de hormigón estacionarias, Putzmeister
Durante el proceso de bombeo, el hormigón se transporta a través de tuberías metálicas de diversos espesores, diámetros, longitudes y sistemas de acoplamiento. Los diámetros de estas tuberías suelen oscilar entre 80 mm y 150 mm, con espesores habituales de entre 4 mm y 7 mm. La selección de estas variables está directamente relacionada con la presión de bombeo. Además, las longitudes típicas de los tramos individuales de tubería varían entre 1 m y 3 m.
La definición de los distintos aspectos geométricos de la tubería, junto con las características de su diseño en planta y alzado, es crítica para el proceso de bombeo. Además, el sentido del bombeo, ya sea ascendente o descendente, también es fundamental. Los sistemas de acoplamiento entre tramos individuales de tubería dependen de estas características geométricas del diseño.
Se recomienda ubicar la bomba lo más cerca posible de la zona de colocación del hormigón, utilizando una manguera flexible o un dispositivo articulado. En caso de emplear una tubería fija, se aconseja iniciar el hormigonado desde el punto más alejado de la bomba. Esto permite lubricar toda la tubería al principio y luego ir desmontando secciones de tubo y conectar la manguera de descarga en la parte final. Para este procedimiento, es necesario limpiar la tubería del hormigón utilizando agua o aire a presión.
Al poner en marcha los trabajos, se recomienda lubricar el interior de la tubería con una mezcla de mortero de cemento y arena. Una proporción de una parte de cemento por dos partes de arena es suficiente para lograr una consistencia fluida. Este mortero no solo lubrica la tubería, sino que también rellena posibles cavidades en las juntas del empalme. Aunque el método de lubricación con agua seguida por el paso de hormigón puede funcionar con dosificaciones especialmente diseñadas para el bombeo, existe el riesgo de obstrucciones en la tubería. En función de la naturaleza del material utilizado para la lubricación, este podrá emplearse o no en la colocación. Una vez que el flujo de hormigón comience a través de la tubería, la lubricación se mantendrá mientras el bombeo continúe con un diseño de mezcla adecuado y consistente.
Un problema habitual en el proceso de bombeo es la obstrucción del hormigón en la tubería. Por lo general, el operador de la bomba detecta la obstrucción al observar un aumento de la presión indicada. Los bloqueos pueden resolverse mediante ciclos que alteran la dirección de la presión, especialmente eficaces en conductos verticales. Sin embargo, este procedimiento no debe repetirse más de tres o cuatro veces. Si el bombeo no vuelve a la normalidad, es crucial identificar y eliminar la obstrucción en el punto donde se produjo.
Los atascos suelen ocurrir en el reductor a la salida de las válvulas y pueden detectarse cuando el manómetro registra una subida rápida de la presión. Cuando esto ocurre, es necesario desmontar y limpiar el reductor. No se debe forzar nunca la bomba y, si es preciso, se debe desmontar el tramo de conducción afectado. Si la presión no experimenta un aumento tan repentino, la obstrucción puede estar en el codo, el reductor o la manguera de descarga. Al observar la tubería e invertir la presión, se puede identificar la ubicación del atasco por las vibraciones que se producen. Normalmente, estos tapones no superan los 30 cm de longitud y se pueden desatascar desmontando un tramo de tubería.
Tabla 1. Localización de la obstrucción de una bomba
Subida de presión
Localización de la obstrucción
Brusca
Bomba o principio de la tubería
Lenta
Más alejado de la zona anterior (en la propia tubería)
Los conductos deben limpiarse al finalizar el trabajo o si hay una interrupción importante. El tiempo de espera no debe exceder media hora en climas cálidos y 1 hora en condiciones normales. La limpieza puede realizarse drenando el hormigón con agua o aire y, a continuación, bombeando una esponja húmeda en dirección opuesta para crear un vacío. Para limpiar las tuberías, existen dispositivos de limpieza de diversas rigideces que deben utilizarse con cuidado para evitar accidentes.
Al realizar un pedido de hormigón preparado a un proveedor y solicitar que sea bombeado, se debe proporcionar la siguiente información, además de la resistencia característica o la consistencia: especificar que el hormigón debe ser apto para el bombeo y las condiciones de especificación en la puesta en obra. También se debe informar sobre la cantidad y el caudal a bombear, la distancia en horizontal y vertical, el tiempo de funcionamiento de la bomba y los posibles tiempos de espera. Además, es importante indicar si se dispondrá de personal para ayudar en las operaciones de lubricación y limpieza de las tuberías.
Aquí tenéis algún vídeo ilustrativo del bombeo del hormigón.
https://www.youtube.com/watch?v=_VGtI5yHnx8https://www.youtube.com/watch?v=P3TLyBiuzcM
Os dejo un catálogo de bombas de hormigón estacionarias de la marca Liebherr, por si os resulta de interés.
AA. VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.
ACI COMMITTEE 304. Placing Concrete by Pumping Methods (ACI 304.2R-17). American Concrete Institute.
CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014).Fabricación, transporte y colocación del hormigón.Apuntes de la Universitat Politècnica de València.
RODRÍGUEZ-LÓPEZ, A.J. (2015). Determinación automática de la eficiencia volumétrica y otros parámetros de operación de bombas alternativas de hormigón mediante análisis de los pulsos de presión en su salida. Tesis doctoral. Universidad Politécnica de Madrid.
Figura 1. Compactador monocilíndrico vibratorio autopropulsado Cat CS10 GC. https://www.interempresas.net/ObrasPublicas/Articulos/346172-Caterpillar-presenta-sus-nuevos-compactadores-vibratorios-de-suelos-de-un-solo-tambor.html
La producción de un compactador es directamente proporcional a su velocidad de trabajo, al ancho eficaz del compactador y al espesor de la tongada una vez compactada, e inversamente proporcional al número de pasadas necesarias. El ancho eficaz sería la diferencia entre la anchura del órgano de trabajo del compactador y el solape necesario para garantizar la compactación entre los distintos carriles.
Debido a la multitud de factores que influyen en la compactación, para grandes volúmenes de obra, se aconseja la realización de tramos de prueba, donde se pueden establecer los criterios que, bajo la perspectiva económica, sean óptimos para llegar a la compactación especificada. Los tramos de prueba no suelen estar justificados en el caso de que los materiales sean suficientemente homogéneos y siempre resulta interesante cuando nos encontramos ante yacimientos importantes. En otro caso, no resulta económica su ejecución. Estos tramos de prueba están formados por una cuña, cuyo espesor llega hasta el máximo que se considere para el equipo empleado.
A continuación os dejo un par de nomogramas que permiten el cálculo directo de esta producción. En uno de ellos se han utilizado tanto las unidades del sistema internacional como las anglosajonas. Estos nomogramas se han elaborado en colaboración con el profesor Pedro Martínez Pagán, de la Universidad Politécnica de Cartagena.
Referencias:
MORILLA, I. (2012). Interpretación de los ensayos geotécnicos en suelos. 627 pp., Madrid.
Figura 1. Proceso de recocido del acero. https://www.win-therm.com.my/what-is-annealing-heat-treatment-process-annealing/
En un artículo anterior describimos la metaheurística conocida como “Recocido simulado” o “Cristalización simulada”, que en inglés se conoce como “Simulated Annealing”. Para los que no estéis familiarizados con la optimización, os dejo en este enlace una descripción de lo que son las metaheurísticas.
En la década de 1980, Kirkpatrick et al. (1983), mientras trabajaban en el diseño de circuitos electrónicos, y de manera independiente, Cerny (1985), investigando el problema del TSP (Traveling Salesman Problem), consideraron la aplicación del algoritmo de Metrópolis en algunos de los desafíos de optimización combinatoria que surgen en este tipo de diseño. Para lograrlo, creyeron que era posible establecer una analogía entre los parámetros presentes en la simulación termodinámica y aquellos que se encuentran en los métodos de optimización local. En la Figura 2 se puede ver dicha analogía.
Figura 2. Analogía entre la termodinámica y la optimización (Díaz et al., 1996)
Como se puede observar, en el ámbito de la optimización, el concepto físico de temperatura no tiene un significado literal, sino que debe ser considerado como un parámetro, T, que necesita ser ajustado. De esta manera, podemos encontrar similitudes entre los procesos que tienen lugar cuando las moléculas de una sustancia se distribuyen en diferentes niveles energéticos en busca de un equilibrio a una temperatura específica y los procesos de minimización en la optimización local (o, en el caso de maximización, de manera similar).
En el primer caso, con una temperatura fija, la distribución de las partículas sigue la distribución de Boltzmann. Por lo tanto, cuando una molécula se desplaza, su movimiento será aceptado en la simulación si esto resulta en una disminución de la energía, o con una probabilidad proporcional al factor de Boltzmann si no es así. En el contexto de la optimización, al fijar el parámetro T, introducimos una perturbación y aceptamos directamente la nueva solución si su costo disminuye, o bien con una probabilidad proporcional al “factor de Boltzmann” en caso contrario.
La clave del recocido simulado es su estrategia heurística de búsqueda local. La elección del nuevo elemento del entorno, N(s), se hace de manera aleatoria, lo que puede llevar a quedar atrapado en óptimos locales. Para evitar esto, el recocido simulado permite, con una probabilidad decreciente a medida que nos acercamos a la solución óptima, el movimiento hacia soluciones peores. Al analizar el factor de Boltzmann en función de la temperatura, observamos que a medida que esta disminuye, la probabilidad de aceptar una solución peor disminuye rápidamente.
Figura 3. Valor del factor de Boltzmann en función de la temperatura y de δ (Díaz et al., 1996)
En consecuencia, la estrategia a seguir en el recocido simulado implica comenzar con una temperatura alta. Esto permite la posibilidad de aceptar soluciones peores en las primeras etapas, cuando estamos a gran distancia del óptimo global. A medida que se avanza hacia el óptimo global, se reducirá gradualmente la temperatura, disminuyendo así la probabilidad de aceptar soluciones peores. El nombre de este algoritmo proviene del proceso metalúrgico de “recocido” utilizado, por ejemplo, para eliminar las tensiones internas en el acero laminado en frío. En este proceso, el material se somete a un calentamiento rápido y luego se enfría de manera lenta y controlada durante horas.
A continuación os dejo un nomograma, elaborado junto con los profesores Trevor Blight y Pedro Martínez Pagán, para calcular la probabilidad en función de la temperatura y de δ. Aquí también resulta sencillo comprobar cómo varía dicha probabilidad en función de los valores anteriores.
Os dejo también un vídeo explicativo:
Referencias
CERNY, V. (1985). Thermodynamical approach to the traveling salesman problem: an efficient simulated algorithm. Journal of Optimization Theory and Applications, 45: 41-51.
DÍAZ, A. et al. (1996). Optimización heurística y redes neuronales en dirección de operaciones e ingeniería. Editorial Paraninfo, Madrid, 235 pp.
LUNDY, M.; MEES, A. (1986). Convergence of an Annealing Algorithm. Mathematical programming, 34:111-124.
METROPOLIS, N.; ROSENBLUTH, A.W.; ROSENBLUTH, M.N.; TELLER, A.H.; TELER, E. (1953). Equation of State Calculation by Fast Computing Machines. Journal of Chemical Physics, 21:1087-1092.
GONZÁLEZ-VIDOSA-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; CARRERA, M.; PEREA, C.; PAYÁ-ZAFORTEZA, I. (2008) Optimization of Reinforced Concrete Structures by Simulated Annealing. TAN, C.M. (ed): Simulated Annealing. I-Tech Education and Publishing, Vienna, pp. 307-320. (link)
Figura 1. Desencofrado parcial de un muro de hormigón armado. Imagen: V. Yepes (2023)
En un artículo anterior ya se habló del cimbrado, recimbrado, clareado y descimbrado de plantas consecutivas de un edificio. Allí se recogieron recomendaciones para estimar el plazo de descimbrado de una estructura de hormigón.
El plazo mínimo de descimbrado depende de la evolución de la resistencia, del módulo de deformación, de las condiciones de curado, de las características de la estructura y de la relación entre la carga muerta y la carga actuante en el momento del descimbrado. Esta operación comienza quitando los puntales de las zonas más deformables del forjado (extremo de los voladizos y centros de vano) para continuar hacia los apoyos. Esto se hace para no cargar más de lo previsto y que se deforme el forjado de forma brusca.
Los comentarios al artículo 53.2 del Código Estructural proponen determinar el plazo de descimbrado utilizando la siguiente expresión, basada en el concepto de madurez del hormigón (edad equivalente entre dos hormigones dependiente del tiempo y de la temperatura). Esta fórmula solo se aplica a elementos de hormigón armado fabricados con cementos Portland sin adiciones, suponiendo que el endurecimiento se haya realizado en condiciones ordinarias:
donde:
Q es la diferencia entre la carga que actúa en situación de proyecto y la carga que actúa en una determinada fase constructiva
G es la carga que actúa en una determinada fase de construcción (en el momento de descimbrar), incluido el peso propio y la carga transmitida procedente de forjados cimbrados sobre el elemento a estudiar
T es la temperatura media en °C de las máximas y mínimas diarias durante los j días
J es el número de días desde el hormigonado hasta el descimbrado
Esta fórmula ha estado presente en las ediciones de la norma española desde 1973. Ofrece un ajuste que, si bien prioriza la seguridad, proporciona valores adecuadamente precisos. Además, considera tanto la influencia de la temperatura como la relación entre las cargas. De hecho, representa una simplificación de un enfoque más amplio que se encuentra en la Instrucción HA 61.
Si analizamos la fórmula a una temperatura de 20 °C y consideramos la carga total como la que actúa al descimbrar, obtendremos un valor de 28 días. Conforme aumenta la relación entre la carga que actuará posteriormente y la carga que actuará al descimbrar, la fórmula arroja edades de descimbrado cada vez menores, llegando incluso a valores asintóticos. En consecuencia, esta fórmula produce valores que, si bien pueden inclinarse hacia la seguridad, no generan grandes contradicciones. En la Figura 2 se representa el criterio del Código Estructural para los plazos de descimbrado.
Figura 2. Criterio del Código Estructural de descimbrado
Por ejemplo, supongamos que se quiere estimar el plazo de descimbrado de una estructura atendiendo al método sugerido en los comentarios del artículo 53.2 del Código Estructural. Para ello se considera que se ha empleado en la fabricación del hormigón un cemento Portland y el endurecimiento se ha realizado en condiciones ordinarias. Se supone que la carga que actúa en el momento de descimbrar (incluido el peso propio) es de 45 kN y que la carga total que actuará posteriormente es de 65 kN. Suponemos una temperatura media hasta el descimbrado de 18 °C. En este caso, Q = 65-45 = 20 kN; G = 45 kN. El plazo es j = 15,13 días. Por tanto, se podría descimbrar a los 16 días del hormigonado.
Ahora os presentamos un nomograma elaborado junto con el profesor Pedro Martínez-Pagán. Este recurso puede ser valioso para calcular rápidamente el tiempo de descimbrado en función de la temperatura y la relación Q/G. Por ejemplo, de un vistazo se puede determinar el tiempo necesario para el descimbrado en invierno, a 5 °C.
Referencias:
CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.
Durante los días 10-13 de julio de 2023 tiene lugar en Donostia-San Sebastián (Spain) el 27th International Congress on Project Management and EngineeringAEIPRO 2023. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.
BRUN-IZQUIERDO, A.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2023). Optimización energética de tableros tipo losa pretensados aligerados mediante modelos Kriging. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).
El objetivo de este trabajo es desarrollar una metodología para optimizar la energía en la construcción de tableros losa pretensado aligerados. Se lleva a cabo un análisis de la sección transversal para determinar los parámetros de diseño a través de un estudio del estado del arte. A partir de ese análisis, se identifican las variables de diseño que mejorarán la eficiencia energética del tablero. La metodología se divide en dos fases: primero, se utiliza una técnica estadística llamada hipercubo latino para muestrear las variables del tablero y determinar una superficie de respuesta; y en segundo lugar, se optimiza la superficie de respuesta mediante un modelo de optimización basado en Kriging. Como resultado, se ha desarrollado una metodología que reduce el costo energético en la construcción de tableros losa pretensado aligerados. Las recomendaciones para mejorar la eficiencia energética incluyen emplear esbelteces elevadas (alrededor de 1/28), reducir el consumo de hormigón y armadura activa, y aumentar la cantidad de armadura pasiva.
HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Durability assessment and re-design of coastal concrete bridge through a non-destructive damage detection method.27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).
Los expertos y los gobiernos llevan tiempo centrándose en reducir los costes de reparación y mantenimiento de estructuras cruciales como los puentes mediante un mantenimiento y una reparación continuos. Este estudio explora la rentabilidad de dos métodos de predicción de daños mediante el método de densidad espectral de potencia (PSD) en comparación con el método convencional de detección de daños mediante el rediseño de diferentes espesores de recubrimiento de hormigón para un puente costero de hormigón armado. El estudio evalúa el impacto de los iones cloruro en la localización y extensión de los daños a lo largo de la vida útil del puente y compara los costes totales de mantenimiento y reparación. Los resultados muestran que, si bien el método PSD es eficaz para estructuras de hormigón con recubrimientos de hormigón bajos, el aumento del espesor del recubrimiento de hormigón puede dar lugar a mayores costes de reparación.
YEPES, V.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.J.; BLIGHT, T. (2023). Códigos abiertos basados en Python para la construcción de nomogramas y su aplicación en la ingeniería de proyectos.27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).
La Nomografía es una disciplina científica que se encarga de representar gráficamente fórmulas complejas mediante nomogramas, permitiendo el cálculo de tres o más variables matemáticas. Durante el siglo XX, esta técnica fue ampliamente utilizada en áreas como la ingeniería, medicina, electrónica, ciencias físicas, biológicas, etc. Sin embargo, con la llegada de las calculadoras y computadoras, la construcción de nuevos nomogramas y su enseñanza en la universidad disminuyeron. En los últimos años, la nomografía ha resurgido gracias a la ayuda de códigos de programación como PyNomo y Nomogen, basados en Python, que pueden generar un nomograma en cuestión de segundos, frente a las horas que antes requerían. En este trabajo se presentan estos códigos abiertos y algunos nomogramas generados con ellos, analizando su usabilidad, precisión y contribución a la relación entre las variables de las expresiones matemáticas. Finalmente, se destacan las posibilidades del uso de los nomogramas en la enseñanza e ingeniería de proyectos.