Evaluación de la sostenibilidad de las técnicas de mejora del terreno

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production, revista de ELSEVIER indexada en el primer decil del JCR.

El terreno no siempre es adecuado o competente para soportar una cimentación superficial directa. En muchos casos, para evitar costosas cimentaciones profundas, está indicado sustituir, mejorar o reforzar dicho terreno. Este trabajo se centra en evaluar la contribución a la sostenibilidad entre diferentes técnicas de mejora del suelo y el resultado de su aplicación a la cimentación de una vivienda unifamiliar como alternativa a la construida. Se compara el rendimiento del ciclo de vida en materia de sostenibilidad entre el diseño de referencia (sin intervención), el relleno y la compactación del suelo, las columnas de suelo-cemento, la inclusión rígida de micropilotes y el clavado de viguetas prefabricadas. Para caracterizar la sostenibilidad, se propone un conjunto de 37 indicadores que integran los aspectos económicos o ambientales de cada alternativa de diseño y sus impactos sociales. Se obtiene un ranking de sostenibilidad para las diferentes alternativas basado en el método ELECTRE IS para la toma de decisiones multicriterio (MCDM). Se evalúa la sensibilidad de los resultados obtenidos frente a diferentes métodos MCDM (TOPSIS, COPRAS) y diferentes ponderaciones de criterios. La evaluación proporciona una visión transversal, comparando la capacidad y fiabilidad de cada técnica para priorizar la solución de consolidación del terreno que mejor contribuye a la sostenibilidad en el diseño de la subestructura de un edificio.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Podéis leer una versión preliminar el artículo en la siguiente dirección: https://doi.org/10.1016/j.jclepro.2022.131463

Highlights

  • Evaluation of soil consolidation techniques for a single-family house’s foundation.
  • A deep foundation is compared to four alternatives that consider soil improvement.
  • 37 indicators characterize the sustainability of substructure in residential buildings.
  • The aggregation of the different sustainability criteria is applied in 3 MCDM methods.
  • Nailing precast joists into the ground achieves the best sustainability result.

Abstract

The soil is not always suitable or competent to support a direct shallow foundation in construction. In many cases, to avoid costly deep foundations, it is indicated to replace, improve, or reinforce such soil. This paper focuses on evaluating the contribution to sustainability between different soil improvement techniques and the outcome of their application to the foundation of a single-family house as an alternative to the one built. The life-cycle performance in sustainability is compared between the baseline design (without intervention), backfilling and soil compaction, soil-cement columns, rigid inclusion of micropiles, and nailing of precast joists. To characterize sustainability, a set of 37 indicators is proposed that integrate the economic or environmental aspects of each design alternative and its social impacts. A sustainability ranking is obtained for the different alternatives based on the ELECTRE IS method for multi-criteria decision-making (MCDM). The sensitivity of the obtained results is evaluated against different MCDM methods (TOPSIS, COPRAS) and different criteria weights. The evaluation provides a cross-cutting view, comparing the ability and reliability of each technique to prioritize the ground consolidation solution that best contributes to the sustainability in the design of a building’s substructure.

Keywords

Sustainability; Construction; Multi-criteria decision analysis; Life cycle assessment; Modern methods of construction; Soil improvement; Foundations; ELECTRE IS; TOPSIS; COPRAS

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Evaluating the sustainability of soil improvement techniques in foundation substructures. Journal of Cleaner Production, 351: 131463. DOI:10.1016/j.jclepro.2022.131463

Descargar (PDF, 7.31MB)

Cinco artículos de muy alto impacto publicados este año para celebrar el día del padre

Han bastado 11 semanas de este 2022, en particular 77 días, para tener la satisfacción de ver publicado cinco artículos de gran impacto, que daría para un sexenio de investigación (en revistas del primer cuartil del JCR, siendo tres, además, del primer decil). El mérito, como siempre, no es mío, sino del maravilloso grupo de investigación que tengo a mi lado. Espero que la racha continúe. ¡No hay mejor forma de celebrar el día del padre! Os paso los resúmenes de estos artículos por si os interesan.

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

Since the establishment of the Sustainable Development Goals, great concern has arisen on how to diminish the impacts that result from construction activities. In such context, Modern Methods of Construction (MMC) rise as a powerful way to reduce life cycle impacts through optimizing the consumption of materials. This paper focuses on the sustainability assessment of different modern construction techniques applied to concrete structures of single-family houses. The life cycle performance in terms of sustainability is compared between a conventional reference design, a precast design, a lightweight slab design with pressurized hollow discs, and a design based on double-wall structural elements. The sustainability is assessed through a set of 38 indicators that address not only the economic and environmental response of the designs, but also their social impacts as well. Five of the best known Multi-Criteria Decision-Making (MCDM) techniques (SAW, COPRAS, TOPSIS, VIKOR and MIVES) are applied to derive the life-cycle performance of each design into a single sustainability score. Since there is no consensus on which MCDM method works best in sustainability assessments, a Global Structural Sustainability Index (GSSI) combining and weighting the above is proposed here to aid the analysis of the results obtained. The results show that consideration of the three dimensions of sustainability leads to balanced designs whose preference need not coincide with those derived from each one-dimensional life cycle approach.

MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization, 65:46. DOI:10.1007/s00158-021-03154-0

In this work, we study the potential of using kriging metamodelling to perform multi-objective structural design optimization using finite element analysis software and design standards while keeping the computational efforts low. A method is proposed, which includes sustainability and buildability objectives, and it is applied to a case study of reinforced concrete foundations for wind turbines based on data from a large Swedish wind farm project. Sensitivity analyses are conducted to investigate the influence of the penalty factor applied to unfeasible solutions and the size of the initial sample generated by Latin hypercube sampling. A multi-objective optimization is then performed to obtain the optimum designs for different weight combinations for the four objectives considered. Results show that the kriging-obtained designs from samples of 20 designs outperform the best designs in the samples of 1000 designs. The optimum designs obtained by the proposed method have a sustainability impact 8–15% lower than the designs developed by traditional methods.

MARTÍNEZ FERNÁNDEZ, P.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2022). Slab track optimisation using metamodels to improve rail construction sustainabilityJournal of Construction Engineering and Management, (accepted, in press).

Railways are an efficient transport mode, but building and maintaining railways tracks has a significant environmental impact in terms of CO2 emissions and use of raw materials. This is particularly true for slab tracks, which require large quantities of concrete. They are also more expensive to build than conventional ballasted tracks, but require less maintenance and have other advantages that make them a good alternative, especially for high-speed lines. In order to contribute to a more sustainable railways, this paper aims to optimise the design of one of the most common slab track typologies: RHEDA 2000. The main objective is to reduce the amount of concrete required to build the slab without compromising its performance and durability. To do so, a Finite Elements (FEM) model of the track has been used, paired with a kriging meta-model to allow analysing multiple options of slab thickness and concrete strength in a timely manner. By means of the kriging, optimal solutions have been obtained and them validate through the FEM model to ensure that predefined mechanical and geometrical constraints are met. Starting from an initial setup with a 30 cm slab made of concrete with a characteristic strength of 40 MPa, an optimised solution has been reached, consisting on a 24 cm slab made of concrete with a strength of 45 MPa. This process may be now applied to other slab typologies to obtain more sustainable designs.

FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Journal of Building Engineering, (accepted, in press).

The revolution towards Industry 4.0 in the AECO Industry has taken Building Information Modelling (BIM) as one of its central points. BIM abilities for automatization, interoperability and sustainability play a key role in this change. In this paper, a literature review about BIM adoption for the structural project is presented. The aim of the presented review is to clearly establish the current state of knowledge of the implementation of the BIM methodology in the field of structural analysis. Papers related to these two topics simultaneously, BIM and structure analysis, during the last 10 years have been selected. The literature has been analysed from two different approaches. First, bibliometric analysis has been performed, studying the production on the topic. Secondly, 81 representative papers have been selected and analysed, establishing thematic areas via cluster analysis. The articles have also been classified upon several categorizations based on the structural life cycle and their aim. Finally, a SWOT analysis is performed from this data to create a complete framework that shows the state of the integration of the structural project in BIM environments and possible future developments and risks. This set of studies shows a tendency towards design tools and new buildings. While automatization and computer-aided design have been a trend in the research for several years, a research gap on the structural analysis via BIM for existing and heritage buildings has been pointed out, showing its ability to improve the analysis of existing buildings and its maintenance.

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Evaluating the sustainability of soil improvement techniques in foundation substructures. Journal of Cleaner Production, (accepted, in press).

The soil is not always suitable or competent to support a direct shallow foundation in construction. In many cases, to avoid costly deep foundations, it is indicated to replace, improve, or reinforce such soil. This paper focuses on evaluating the contribution to sustainability between different soil improvement techniques and the outcome of their application to the foundation of a single-family house as an alternative to the one built. The life-cycle performance in sustainability is compared between the baseline design (without intervention), backfilling and soil compaction, soil-cement columns, rigid inclusion of micropiles, and nailing of precast joists. To characterize sustainability, a set of 37 indicators is proposed that integrate the economic or environmental aspects of each design alternative and its social impacts. A sustainability ranking is obtained for the different alternatives based on the ELECTRE IS method for multi-criteria decision-making (MCDM). The sensitivity of the obtained results is evaluated against different MCDM methods (TOPSIS, COPRAS) and different criteria weights. The evaluation provides a cross-cutting view, comparing the ability and reliability of each technique to prioritize the ground consolidation solution that best contributes to the sustainability in the design of a building’s substructure.

Objetivos y metodología del proyecto de investigación HYDELIFE

Figura 1. Instituto de Ciencia y Tecnología del Hormigón (ICITECH)
Figura 1. Laboratorio de materiales del Instituto de Ciencia y Tecnología del Hormigón (ICITECH)

En varios artículos anteriores detallamos los antecedentes, la motivación, las hipótesis de partida, así como la trascendencia del proyecto de investigación HYDELIFE. Ahora vamos a explicar los objetivos y la metodología de este proyecto, del cual soy investigador principal: Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos (PID2020-117056RB-I00). Los investigadores de este proyecto pertenemos al Instituto de Ciencia y Tecnología del Hormigón (ICITECH).

El objetivo general perseguido se basa en afrontar el reto social que supone la creación y la conservación de las construcciones modulares y puentes mixtos en escenarios de fuertes restricciones presupuestarias, mediante la resolución de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas. Para ello se precisa un salto científico capaz de integrar a los distintos actores y grupos de expertos en la toma de decisiones considerando criterios de sostenibilidad social y ambiental a lo largo de todo el ciclo de vida de las infraestructuras considerando la variabilidad inherente al mundo real. Para integrar las incertidumbres que afectan al sistema, se propone aplicar técnicas metaheurísticas híbridas basadas en fiabilidad, aplicadas no sólo al proyecto de nuevas estructuras, sino al mantenimiento de las actuales. Un estudio de sensibilidad de los escenarios presupuestarios y de las hipótesis tomadas en los inventarios del análisis del ciclo de vida proporcionará conocimiento no trivial sobre las mejores prácticas. Esta metodología será aplicable también a otro tipo de infraestructuras.

El objetivo general se desarrollará mediante los objetivos específicos mostrados en la Figura 2 y que se describen a continuación, de los cuales será responsable el investigador principal:

  • OE-1: Análisis de funciones de distribución específicas para el diseño óptimo basado en fiabilidad que integre aspectos ambientales, sociales y económicos que sirva para la toma de decisión multicriterio.
  • OE-2: Determinación de indicadores clave basados en redes bayesianas y lógica neutrosófica para garantizar una efectiva integración de la sostenibilidad ambiental y social en la licitación de proyectos mantenimiento de construcciones modulares, puentes mixtos e híbridos.
  • OE-3: Identificación de estrategias de mantenimiento robusto óptimo de construcciones modulares y puentes mixtos y estructuras híbridas.
  • OE-4: Formulación y resolución del problema de optimización multiobjetivo que contemple el ciclo completo de construcciones modulares, puentes mixtos y estructuras híbridas mediante metaheurísticas híbridas.
  • OE-5: Comparación del diseño robusto óptimo respecto a la optimización heurística considerando incertidumbres en los escenarios presupuestarios y en las hipótesis del análisis del ciclo de vida.
  • OE-6: Difusión de resultados y redacción de informes.
Figura 2.- Objetivos específicos del proyecto HYDELIFE

Metodología propuesta en relación con los objetivos y con el estado del arte

El análisis del estado del arte alumbró dos huecos en la investigación, el empleo de metaheurísticas híbridas con Deep Learning y su aplicación a construcciones modulares, puentes mixtos y estructuras híbridas. Además, el empleo de la lógica neutrosófica y las redes bayesianas abre puertas en el ámbito de la decisión multicriterio. Estas novedades se combinan en la metodología con técnicas y disciplinas ya empleadas en otros proyectos: análisis del ciclo de vida, análisis basado en fiabilidad, diseño óptimo robusto, metamodelos y técnicas de minería de datos. Por tanto, se trata de una combinación integrada cuyo objetivo es la priorización del tipo de diseño, en el caso de estructuras de nueva planta, o bien de su mantenimiento, basándose en criterios de sostenibilidad social y ambiental bajo presupuestos restrictivos, considerando la variabilidad inherente a los problemas reales.

La Figura 3 muestra el esquema metodológico propuesto para HYDELIFE, relacionando las fases con los objetivos propuestos. Se utiliza un enfoque mixto e interactivo, donde el decisor proporciona información sobre las preferencias al analista que, tras una optimización multiobjetivo basada en fiabilidad y metamodelos, aporta un conjunto de soluciones eficientes que el responsable debe evaluar antes de tomar su decisión. Por tanto, la novedad de la propuesta metodológica trifase se basa en la integración de técnicas de información a priori, donde el decisor (grupos de interés) informa de las preferencias al analista (en cuanto a tipologías, métodos constructivos, conservación, etc.), produciéndose con esta información una optimización multiobjetivo capaz de generar alternativas eficientes utilizando la variabilidad en los parámetros, variables y restricciones. La última fase pasa por un proceso de información a posteriori para que el decisor contemple aspectos no considerados en la optimización para dar la solución final completa.

Figura 3.- Esquema metodológico diseñado para HYDELIFE en relación con los objetivos

Proyecto de Investigación:

  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.

En este momento llevamos seis meses de trabajo, pues el proyecto comenzó en septiembre del 2021. Pero ya podemos dar algunos resultados que se pueden ver en la siguiente lista de referencias.

Referencias:

MARTÍNEZ FERNÁNDEZ, P.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2022). Slab track optimisation using metamodels to improve rail construction sustainabilityJournal of Construction Engineering and Management, (accepted, in press).

MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization, 65:46. DOI:10.1007/s00158-021-03154-0

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

YEPES, V.; LOPEZ, S. (2021). Knowledge management in the construction industry: Current state of knowledge and future research. Journal of Civil Engineering and Management, 27(8):671-680. DOI:10.3846/jcem.2021.16006

SIERRA, L.; ARAYA, F.; YEPES, V. (2021). Consideration of uncertainty and multiple disciplines in the determination of sustainable criteria for rural roads using neutrosophic logic.  Sustainability, 13(17):9854. DOI:10.3390/su13179854

ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838

HOOSE, A.; YEPES, V.; KRIPKA, M. (2021). Selection of Production Mix in the Agricultural Machinery Industry considering Sustainability in Decision Making. Sustainability, 13(16), 9110. DOI:10.3390/su13169110

MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879. DOI:10.1109/ACCESS.2021.3102215

MARTÍN, R.; YEPES, V. (2021). Bridging the gap between landscape and management within marinas: A review. Land, 10(8), 821. DOI:10.3390/land10080821

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633

ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916

BIANCHI, P.F.; YEPES, V.; VITORIO, P.C., Jr.; KRIPKA, M. (2021). Study of alternatives for the design of sustainable low-income housing in BrazilSustainability, 13(9):4757. DOI:10.3390/su13094757

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homesEnvironmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2021). Neutrosophic completion technique for incomplete higher-order AHP comparison matrices. Mathematics, 9(5):496. DOI:10.3390/math9050496

TANG, M.; LIAO, H.; YEPES, V.; LAURINAVICIUS, A.; TUPENAITE, L. (2021). Quantifiying and mapping the evolution of a leader journal in the field of civil engineering. Journal of Civil Engineering and Management, 27(2):100-116. DOI:10.3846/jcem.2021.14365

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

GARCÍA, J.; ASTORGA, G.; YEPES, V. (2021). An analysis of a KNN perturbation operator: an application to the binarization of continuous metaheuristics. Mathematics, 9(3):225. DOI:10.3390/math9030225.

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización de la cimentación de un aerogenerador mediante metamodelos

Acaban de publicarnos un artículo en la revista Structural and Multidisciplinary Optimization, revista de ELSEVIER indexada en el primer decil del JCR.

En este trabajo se estudia el potencial del metamodelado de kriging para optimizar el diseño estructural con múltiples objetivos mediante el uso de software de análisis de elementos finitos y normas de diseño. Se propone un método que incluye la sostenibilidad y la constructibilidad, y se aplica a un caso de cimentaciones de hormigón armado para aerogeneradores de un gran proyecto de parque eólico sueco. Se realizan análisis de sensibilidad para investigar la influencia del factor de penalización aplicado a las soluciones no viables y el tamaño de la muestra inicial generada por el muestreo de hipercubos latinos. A continuación, se realiza una optimización multiobjetivo para obtener soluciones óptimas para diferentes combinaciones de pesos para los cuatro objetivos considerados. Los resultados indican que los diseños obtenidos mediante kriging a partir de muestras de 20 superan a los mejores diseños de las muestras de 1000. Las soluciones óptimas obtenidas por el método propuesto tienen un impacto de sostenibilidad entre un 8 y un 15% menor que los desarrollados por métodos tradicionales.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El artículo lo podéis descargar GRATUITAMENTE por tener acceso libre: https://link.springer.com/article/10.1007/s00158-021-03154-0

Abstract:

In this work, we study the potential of using kriging metamodelling to perform multi-objective structural design optimization using finite element analysis software and design standards while keeping the computational efforts low. A method is proposed, which includes sustainability and buildability objectives, and it is applied to a case study of reinforced concrete foundations for wind turbines based on data from a large Swedish wind farm project. Sensitivity analyses are conducted to investigate the influence of the penalty factor applied to unfeasible solutions and the size of the initial sample generated by Latin hypercube sampling. Multi-objective optimization is then performed to obtain the optimum designs for different weight combinations for the four objectives considered. Results show that the kriging-obtained designs from samples of 20 designs outperform the best designs in the samples of 1000 designs. The optimum designs obtained by the proposed method have a sustainability impact 8–15% lower than the designs developed by traditional methods.

Keywords:

Multidisciplinary design optimization; Structural design; Kriging surrogate model; Reinforced concrete structures; Multi-criteria decision making; Parametric design

Reference:

MATHERN, A.; PENADÉS-PLÀ, V.; ARMESTO BARROS, J.; YEPES, V. (2022). Practical metamodel-assisted multi-objective design optimization for improved sustainability and buildability of wind turbine foundations. Structural and Multidisciplinary Optimization, 65:46. DOI:10.1007/s00158-021-03154-0

Descargar (PDF, 2.05MB)

Balance personal de 2021 en el ámbito docente e investigador

Cada 31 de diciembre hemos decidido que termina un año y empieza otro. Podía haberse elegido otra fecha más razonable, como un solsticio o un equinoccio, pero hoy parece que todo acaba para volver a empezar. Como ya va siendo habitual, es un buen día para repasar lo que ha sido el año 2021. Si el 2020 fue un mal año, este 2021 tampoco es que sea para tirar cohetes por culpa de la pandemia. Ya está haciendo mella en mucha gente esta situación tan anómala. Lo bueno es que si el año pasado hablábamos de confinamiento, mascarillas, distancia social, hoy, al menos, podemos añadir vacunas e inmunización.

Tampoco ha sido buen año para la isla de La Palma, con una erupción volcánica que ha roto récords, pero que más ha roto a los que se han quedado sin casas y si recuerdo. Toda ayuda va a ser poca para que recuperen algo de normalidad. Tampoco hay que olvidar a la borrasca Filomena, el temporal más intenso de los últimos 50 años que paralizó gran parte de España. Y cómo no, la subida generalizada de precios motivada por el encarecimiento desbocado de la energía eléctrica y de los combustibles. Como decía el año pasado, nos hemos dado cuenta de lo vulnerables que somos y de la importancia que tiene la salud. Sin la salud, todo lo demás no sirve de nada. Pero también hemos descubierto palabras como solidaridad, ciencia, investigación o vacunas que nos permiten tener más esperanzas cara al futuro.

En la docencia hemos pasado de dar las clases a distancia a través de TEAMS, así como asistir a reuniones y conferencias también de forma virtual, a una docencia semipresencial. Las tecnologías han venido para quedarse, han salvado de nuevo este año y están acelerando el proceso de digitalización y transformación de la docencia universitaria.

Con este post, son un total de 187 los que he escrito este año, lo cual no está nada mal. Ya he publicado 1487 artículos en mi blog desde que inicié esta andadura un 5 de marzo de 2012. Sin darme cuenta, he tocado muchos temas que tienen que ver con la profesión de la ingeniería civil en todos sus aspectos. Además, en redes sociales cada vez tengo más presencia. Más de 22.100 seguidores en Twitter.

Entrega del Primer Premio, con Ignacio junto a los miembros del jurado

Pero demos un pequeño repaso a lo que ha sido este 2021. En el mes de mayo puse en marcha el curso en línea denominado “Compactación superficial y profunda de suelos en obras de ingeniería civil y edificación“, el cual se une a otros dos más que ya tengo en marcha en colaboración con la empresa Ingeoexpert. Ese mismo mes tuve la ocasión de participar en la I Jornadas de la gestión de las arenas en el litoral español,. organizada por el Comité de Ingeniería y Gestión de la Costa de la Asociación Técnica de Puertos y Costas (ATPyC), así como en las 26ª Jornadas Argentinas de Ingeniería Estructural. Ese mismo mes de mayo se inició un curso gratuito en línea y masivo: Introducción a los procedimientos de construcción para la mejora de terrenos en obra civil y edificación.  En junio me invitaron a impartir una lección magistral en el XXI Congreso Nacional de Ingeniería Civil, organizado por el Colegio de Ingenieros del Perú.

También ha sido un orgullo codirir la tesis doctoral de Ignacio J. Navarro. Se le concedió el premio a la mejor tesis doctoral en decisión multicriterio otrogada por el Grupo de Trabajo en Decisión Multicriterio (GTDM) de la Sociedad Española de Estadística e Investigación Operativa (SEIO). Asimismo, Alejandro Ferrero Montes ganó el Premio Torrecid al mejor Trabajo Final de Grado de la Universitat Politècnica de València. Dicho TFG tuve el placer de dirigirlo junto con el profesor Julián Alcalá González.

Fue un orgullo este año conocer que la Comisión de Premios del XXV Congreso Internacional de Dirección e Ingeniería de Proyectos nos otorgó el Premio Jaume Blasco a la Innovación 2021 a la comunicación “Consideración de la incerteza de multi-disciplinas en la determinación de criterios sostenibles de caminos rurales usando la lógica neutrosófica“, cuyos autores han sido Leonardo Sierra, Felipe Araya y Víctor Yepes. Otro reconocimiento recibido fue el nombramiento como Colaborador de Honor de la Asociación Ibérica de Tecnología sin Zanja IbSTT, distinción aprobada por unanimidad por la Asamblea General de Socios. También recibí el reconocimiento a la labor de revisión de artículos científicos “2020 Outstanding Reviewer Awards” en mayo de este año.

Víctor José Yepes recibiendo el diploma de graduación de manos del Excmo. y Magfco. Rector de la Universitat Politècnica de València

Pero a nivel personal, una de las mayores alegrías fue asistir a la graduación como ingeniero civil de mi hijo Víctor José. Este acto fue muy emotivo, al igual que a los que asistí con mi hija Lorena. Los dos siguiendo el camino de la ingeniería de caminos, canales y puertos. Otra de las alegrías de este año es que mi amigo Julián Alcalá González superó con éxito su oposición al Profesor Titular de Universidad, dentro del Área de Ingeniería de la Construcción.

En relación con las publicaciones de artículos científicos en revistas indexadas, 2021 ha sido un buen año. Se nota que estamos terminando el proyecto DIMALIFE, y que hemos empezado el proyecto HYDELIFE, y eso conlleva publicar los resultados. He publicado 16 artículos internacionales en revistas indexadas en el JCR, de las cuales 6 son del primer cuartil (4 del primer decil) y 10 del segundo cuartil, lo cual no está nada mal. Pero hoy ya tenemos un artículo publicado del 2022 en el Journal of Cleaner Production, que es una revista del primer decil, y otro artículo aceptado en Structural and Multidisciplinary Optimization, catalogada en el primed cuartil. Asimismo, destaco mi contribución como editor invitado en varios números especiales en revistas indexadas: en la revista Mathematics (D1), Special Issue “Optimization for Decision Making III”, junto con el profesor José María Moreno, también en Mathematics (D1), Special Issue “Deep Learning and Hybrid-Metaheuristics: Novel Engineering Applications“, junto con el profesor José García; y en el International Journal of Environmental Research and Public Health (Q1), Special Issue 2nd Edition of Trends in Sustainable Buildings and Infrastructure”, junto con el Dr. Moacir Kripka. Otro número especial en la revista J es Special Issue “New Trends in Smart Construction Education and Research”. Todo esto no hubiera sido posible sin mis estudiantes de doctorando y colegas del grupo de investigación. El resultado ha sido que, a fecha de hoy, mi índice Hirsch de producción científica, según la Web of Science, ha sido h=33, mientras que ese mismo índice en Google Académico ha sido h=49.

En cuanto a los Congresos, este año, al igual que el anterior, ha sido muy complicado. Se suspendieron los viajes y se tuvieron que realizar a distancia. No es lo mismo, pues son en estos congresos donde se acercan los investigadores, se comentan resultados y se abre la mente a nuevas ideas. Ya se volverán a celebrar presencialmente. Lo cierto es que el esfuerzo que dedicamos normalmente a preparar los congresos lo hemos dedicado este año a escribir artículos. No hay mal que por bien no venta.

Al menos, he tenido tiempo para publicar cuatro libros, uno de ellos, la primera edición del Manual de Referencia Procedimientos de construcción para la compactación y mejora del terreno, que tiene 426 páginas así como 259 figuras y fotografías.

Por último, os dejo a continuación algunas de las referencias respecto a los artículos, congresos, libros y vídeos educativos que he realizado durante este 2021. Espero que 2022 sea mejor que este año, pues estoy convencido que, por fin, llegaremos a algo parecido a la normalidad.

INVESTIGADOR PRINCIPAL EN PROYECTOS DE INVESTIGACIÓN COMPETITIVOS:

  • Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos. DIMALIFE. [Reliability-based robust optimum design and maintenance of high social and environmental efficiency of bridges and highway infrastructures under restrictive budgets]. BIA2017-85098-R.
  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00.

ARTÍCULOS INDEXADOS EN EL JCR:

  1. YEPES, V.; LOPEZ, S. (2021). Knowledge management in the construction industry: Current state of knowledge and future research. Journal of Civil Engineering and Management, 27(8):671-680. DOI:10.3846/jcem.2021.16006
  2. SIERRA, L.; ARAYA, F.; YEPES, V. (2021). Consideration of uncertainty and multiple disciplines in the determination of sustainable criteria for rural roads using neutrosophic logic.  Sustainability, 13(17):9854. DOI:10.3390/su13179854
  3. ATA-ALI, N.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2021). Recycled versus non-recycled insulation alternatives LCA analysis for different climatic conditions in Spain. Resources, Conservation and Recycling, 175, 105838. DOI:10.1016/j.resconrec.2021.105838
  4. HOOSE, A.; YEPES, V.; KRIPKA, M. (2021). Selection of Production Mix in the Agricultural Machinery Industry considering Sustainability in Decision Making. Sustainability, 13(16), 9110. DOI:10.3390/su13169110
  5. MAUREIRA, C.; PINTO, H.; YEPES, V.; GARCÍA, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping. IEEE Access, 9:110842-110879. DOI:10.1109/ACCESS.2021.3102215
  6. MARTÍN, R.; YEPES, V. (2021). Bridging the gap between landscape and management within marinas: A review. Land, 10(8), 821. DOI:10.3390/land10080821
  7. MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Comparative life cycle analysis of concrete and composite bridges varying steel recycling ratio. Materials, 14(15):4218. DOI:10.3390/ma14154218
  8. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Optimized application of sustainable development strategy in international engineering project management. Mathematics, 9(14):1633. DOI:10.3390/math9141633
  9. ZHOU, Z.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2021). Life cycle assessment of bridges using Bayesian Networks and Fuzzy Mathematics. Applied Sciences, 11(11):4916. DOI:10.3390/app11114916
  10. BIANCHI, P.F.; YEPES, V.; VITORIO, P.C., Jr.; KRIPKA, M. (2021). Study of alternatives for the design of sustainable low-income housing in BrazilSustainability, 13(9):4757. DOI:10.3390/su13094757
  11. SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homesEnvironmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572
  12. NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2021). Neutrosophic completion technique for incomplete higher-order AHP comparison matrices. Mathematics, 9(5):496. DOI:10.3390/math9050496
  13. TANG, M.; LIAO, H.; YEPES, V.; LAURINAVICIUS, A.; TUPENAITE, L. (2021). Quantifiying and mapping the evolution of a leader journal in the field of civil engineering. Journal of Civil Engineering and Management, 27(2):100-116. DOI:10.3846/jcem.2021.14365
  14. MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800
  15. GARCÍA, J.; ASTORGA, G.; YEPES, V. (2021). An analysis of a KNN perturbation operator: an application to the binarization of continuous metaheuristics. Mathematics, 9(3):225. DOI:10.3390/math9030225.
  16. ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

LIBROS:

  1. YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.
  2. YEPES, V.; NAVARRO, I.J. (Eds.) (2021). Trends in Sustainable Buildings and Infrastructure. MPDI, 272 pp., Basel, Switzerland. ISBN: 978-3-0365-0914-3
  3. YEPES, V.; MARTÍ, J.V. (2021). Sustainable Construction II. MPDI, 114 pp., Basel, Switzerland. ISBN 978-3-0365-0484-1
  4. YEPES, V.; GARCÍA-SEGURA, T. (2021). Sustainable Construction. MPDI, 230 pp., Basel, Switzerland. ISBN 978-3-0365-0482-7

CONGRESOS:

  1. MARTÍNEZ-MUÑOZ, D.; SÁNCHEZ-GARRIDO, A.J.; MARTÍ, J.V.; YEPES, V. (2021). Composite bridge deck optimization with trajectory-based algorithms. 6th International Conference on Mechanical Models in Structural Engineering, CMMoST 2021, 1-3 December, Valladolid, Spain.
  2. SÁNCHEZ-GARRIDO, A.J.; MARTÍNEZ-MUÑOZ, D.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic logic applied to the multi-criteria evaluation of sustainable alternatives for earth-retaining walls. 6th International Conference on Mechanical Models in Structural Engineering, CMMoST 2021, 1-3 December, Valladolid, Spain.
  3. MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2021). Remote teaching in construction engineering management during COVID-19. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March 2021, pp. 879-887, Valencia, Spain. ISBN: 978-84-09-27666-0
  4. NAVARRO, I.J.; SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2021). Engineering and architecture postgraduate student’s perceptions on sustainable design. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March 2021, pp. 2554-2563, Valencia, Spain. ISBN: 978-84-09-27666-0
  5. SALAS, J.; SIERRA, L.; YEPES, V. (2021). AHP-based educational sofware for strudents’ self-assessment of critical thinking capacity. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March 2021, pp. 2744-2753, Valencia, Spain. ISBN: 978-84-09-27666-0
  6. SALAS, J.; SIERRA, L.; YEPES, V. (2021). ESRA, an educational software for introducing stochastic scheduling to civil engineering students. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March 2021, pp. 5788-5798, Valencia, Spain. ISBN: 978-84-09-27666-0
  7. YEPES, V.; MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V. (2021). Application of the response surface methodology in a postgraduate optimization course. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March 2021, pp. 869-878, Valencia, Spain. ISBN: 978-84-09-27666-0
  8. YEPES, V.; SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J. (2021). Multi-criteria decision techniques in civil engineering education. Comparative study applied to the sustainability of structures. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March, 2021, pp. 2564-2573, Valencia, Spain. ISBN: 978-84-09-27666-0

VÍDEOS EDUCATIVOS:

  1. Introducción a los pilotes. 20 minutos, 56 segundos.
  2. Introducción a las entibaciones. 34 minutos, 0 segundos.
  3. Construcción de muros pantalla. 50 minutos, 16 segundos.
  4. Previsión de repuestos en obra. 12 minutos, 47 segundos.
  5. Introducción a las tablestacas. 22 minutos, 37 segundos.
  6. Perforación horizontal dirigida. 44 minutos, 39 segundos.
  7. Estabilización de suelos. 21 minutos, 29 segundos.
  8. Precarga como técnica de mejora del terreno. 9 minutos, 52 segundos.
  9. Drenes verticales como técnica de mejora de terrenos. 6 minutos, 25 segundos.
  10. Clasificaciones técnicas de mejora del terreno. 11 minutos, 8 segundos.
  11. Mejora del terreno mediante vibrocompactación. 8 minutos, 39 segundos.
  12. Materiales empleados en la inyección de terrenos. 7 minutos, 46 segundos.
  13. Control del nivel freático mediante lanzas de drenaje. 7 minutos, 14 segundos.
  14. Técnicas de inyección del terreno. 6 minutos, 42 segundos.
  15. Columnas de grava mediante vibrosustitución. 7 minutos, 0 segundos.
  16. Columnas de grava mediante vibrodesplazamiento. 7 minutos, 1 segundos.
  17. Concepto y clasificación de los anclajes. 5 minutos, 44 segundos.
  18. Compactación dinámica. 9 minutos, 36 segundos.
  19. Drenes de penetración transversal: Drenes californianos. 7 minutos, 19 segundos.
  20. Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio.  6 minutos, 26 segundos.
  21. Galerías de drenaje en el control del nivel freático. 6 minutos, 58 segundos.
  22. Consolidación por vacío de suelos. 6 minutos, 53 segundos.
  23. Electroósmosis como técnica de drenaje del terreno. 8 minutos, 33 segundos.
  24. Congelación artificial del terreno. 9 minutos, 47 segundos.
  25. Compactadores estáticos autopropulsados de ruedas neumáticas. 8 minutos, 22 segundos.
  26. Ejecución de un anclaje. 8 minutos, 35 segundos.

 

 

Lógica neutrosófica aplicada a la evaluación multicriterio de alternativas sostenibles de muros de contención de tierras

Alternativas de diseño para muros de contención de tierras

El diseño sostenible de infraestructuras es uno de los aspectos clave para alcanzar los Objetivos de Desarrollo Sostenible, debido a los impactos tanto económicos como ambientales del sector de la construcción. Las metodologías de decisión multicriterio permiten abordar el diseño sostenible de infraestructuras considerando simultáneamente el impacto de un diseño en las diferentes dimensiones de la sostenibilidad. Este artículo propone el uso de la lógica neutrosófica para resolver uno de los principales problemas asociados a la toma de decisiones: la subjetividad de los expertos implicados. Mediante el enfoque neutrosófico de la metodología AHP multicriterio y el uso de la técnica VIKOR, se analizan los impactos económicos y ambientales asociados a cuatro diseños de muros de contención de tierras.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; MARTÍNEZ-MUÑOZ, D.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic logic applied to the multi-criteria evaluation of sustainable alternatives for earth-retaining walls. 6th International Conference on Mechanical Models in Structural Engineering, CMMoST 2021, 1-3 December, Valladolid, Spain, pp. 188-203. ISNB: 978-84-09-39323-7

Descargar (PDF, 2.01MB)

 

 

Toma de decisión multicriterio aplicada a la sostenibilidad de estructuras de edificios basados en métodos modernos de construcción (MMC)

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production, revista de ELSEVIER indexada en el primer decil del JCR.

Desde el establecimiento de los Objetivos de Desarrollo Sostenible, ha surgido una gran preocupación sobre cómo disminuir los impactos que resultan de las actividades de construcción. En este contexto, los Métodos Modernos de Construcción (MMC) surgen como una poderosa forma de reducir la huella del ciclo de vida a través de la optimización del consumo de materiales. Este trabajo se centra en la evaluación de la sostenibilidad de diferentes técnicas MMC aplicadas a estructuras de hormigón de viviendas unifamiliares. Se compara el rendimiento del ciclo de vida en términos de sostenibilidad entre un diseño de referencia convencional, un diseño prefabricado, un diseño de losa ligera con discos huecos presurizados y un diseño basado en elementos estructurales de doble pared. La sostenibilidad se evalúa mediante un conjunto de 38 indicadores que abordan no solo la respuesta económica y medioambiental de los diseños, sino también sus impactos sociales. Se aplican cinco de las técnicas más conocidas de toma de decisiones con criterios múltiples (SAW, COPRAS, TOPSIS, VIKOR y MIVES) para derivar el rendimiento del ciclo de vida de cada diseño en una única puntuación de sostenibilidad. Dado que no hay consenso sobre qué método MCDM funciona mejor en las evaluaciones de sostenibilidad, se propone aquí un Índice Global de Sostenibilidad Estructural (GSSI) que combina y pondera los anteriores para ayudar al análisis de los resultados obtenidos. Los resultados muestran que la consideración de las tres dimensiones de la sostenibilidad conduce a diseños equilibrados cuya preferencia no tiene por qué coincidir con los derivados de cada enfoque unidimensional del ciclo de vida.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El artículo lo podéis descargar GRATUITAMENTE hasta el 28 de enero de 2022 en el siguiente enlace:

https://authors.elsevier.com/c/1eDIl3QCo9bRMh

Abstract

Since the establishment of the Sustainable Development Goals, great concern has arisen on how to diminish the impacts that result from construction activities. In such context, Modern Methods of Construction (MMC) rise as a powerful way to reduce life cycle impacts through optimizing the consumption of materials. This paper focuses on the sustainability assessment of different modern construction techniques applied to concrete structures of single-family houses. The life cycle performance in terms of sustainability is compared between a conventional reference design, a precast design, a lightweight slab design with pressurized hollow discs, and a design based on double-wall structural elements. The sustainability is assessed through a set of 38 indicators that address not only the economic and environmental response of the designs, but also their social impacts as well. Five of the best known Multi-Criteria Decision-Making (MCDM) techniques (SAW, COPRAS, TOPSIS, VIKOR and MIVES) are applied to derive the life-cycle performance of each design into a single sustainability score. Since there is no consensus on which MCDM method works best in sustainability assessments, a Global Structural Sustainability Index (GSSI) combining and weighting the above is proposed here to aid the analysis of the results obtained. The results show that consideration of the three dimensions of sustainability leads to balanced designs whose preference need not coincide with those derived from each one-dimensional life cycle approach.

Keywords:

Sustainability, Construction, Structural design, Life cycle cost, Life cycle assessment, Social life cycle, Multi-criteria decision-making, Modern methods of construction

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision- making applied to the sustainability of building structures bases on Modern Methods of Construction. Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724

Nuestra aportación a la 6ª Conferencia Internacional sobre Modelos Mecánicos en Ingeniería Estructural CMMoST 2021

Como suele ser habitual, nuestro grupo de investigación suele presentar algunos de sus trabajos en la Conferencia Internacional sobre Modelos Mecánicos en Ingeniería Estructural. Estamos ya en la sexta edición, la CMMoST 2021, que se va a desarrollar del 1 al 3 de diciembre de 2021 en Valladolid (España). Se trata de un congreso bianual que, como bien indica su blog de presentación, es una excelente oportunidad para presentar a nivel internacional vuestros proyectos y compartir experiencias en el campo de los modelos mecánicos en la ingeniería estructural. CMMoST 2021 va dirigido tanto a investigadores como a profesionales dedicados al desarrollo y aplicación de modelos mecánicos en la ingeniería estructural. De este modo, ingenieros, arquitectos y otros expertos y profesionales relacionados con los modelos estructurales tienen cabida en este congreso internacional.

En esta ocasión, nos presentamos con dos comunicaciones que son parte de la investigación realizada en sendas tesis doctorales en marcha. A continuación os paso el resumen de los dos trabajos. Más adelante os pasaré las comunicaciones completas.

MARTÍNEZ-MUÑOZ, D.; SÁNCHEZ-GARRIDO, A.J.; MARTÍ, J.V.; YEPES, V. (2021). Composite bridge deck optimization with trajectory-based algorithms. 6th International Conference on Mechanical Models in Structural Engineering, CMMoST 2021, 1-3 December, Valladolid, Spain.

ABSTRACT

Bridge optimization can be difficult due to the large number of variables involved in the problem. In this work, the optimization of a steel‐concrete composite box girder bridge has been performed considering cost as objective function. To achieve this objective, Simulated Annealing (SA) has been applied as an example of trajectory‐based algorithm for the optimization of the structure. It is observed that the addition of cells to the bridge cross sections improves not only the section behavior but also the optimization results. Finally, it is observed that the proposed double composite‐action design materializing slabs on the bottom flange on supports, allows eliminating the continuous longitudinal stiffeners. This method automatize the optimization process of an initial design of a composite bridge, which has traditionally been based on the technician’s own experience, allowing to reach results in a more efficient way.

Keywords: Optimization, Structures, Composite bridges, Metaheuristics, Trajectory‐based algorithms.

 

SÁNCHEZ-GARRIDO, A.J.; MARTÍNEZ-MUÑOZ, D.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic logic applied to the multi-criteria evaluation of sustainable alternatives for earth-retaining walls. 6th International Conference on Mechanical Models in Structural Engineering, CMMoST 2021, 1-3 December, Valladolid, Spain.

ABSTRACT

The sustainable design of infrastructures is one of the key aspects for the achievement of the Sustainable Development Goals, given the recognized magnitude of both the economic and environmental impacts of the construction sector. Multi-criteria decision methodologies allow addressing the sustainable design of infrastructures, simultaneously considering the impact of a design on the different dimensions of sustainability. This article proposes the use of neutrosophic logic to solve one of the main problems associated with decision making: the subjectivity of the experts involved. Through the neutrosophic approach of the AHP multi-criteria methodology and the use of the VIKOR technique, the economic and environmental impacts associated with four earth retaining wall designs are analyzed. In the present assessment, the most sustainable response over its life cycle has been found to be the gabion wall.

Keywords: Sustainability, Retaining walls, Neutrosophic logic, AHP, Multi-criteria decision making.

 

¿Quieres incorporarte a nuestro grupo de investigación con un contrato predoctoral?

Quien quiera trabajar con nuestro grupo de investigación tiene una oportunidad de contrato predoctoral FPU. Será bienvenido. Acaba de salir: https://www.boe.es/diario_boe/txt.php?id=BOE-B-2021-46596
En este momento estamos iniciando un proyecto de investigación que se llama HYDELIFE, del cual te puedes informar en los siguientes enlaces:
Si además, quieres ver qué tipo de publicaciones hacemos en nuestro grupo, te remito al siguiente enlace:
Creemos que es una muy buena oportunidad de incorporarte a nuestro grupo de investigación. Te esperamos.

 

 

Proyecto de referencia:
  • Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00.

Oferta contrato predoctoral para Proyecto de Investigación HYDELIFE

En el BOE del 17 de octubre, la Presidencia de la Agencia Estatal de Investigación ha publicado el anuncio de la convocatoria de  2021 de ayudas para contratos predoctorales para la formación de doctores asociadas a proyectos de investigación. Los proyectos de la Universitat Politècnica de València susceptibles de asignación de ayuda están disponibles en la web del Ministerio de  Ciencia, Innovación y Universidades, en el siguiente enlace: proyectos.

Como ya sabéis, se nos adjudicó recientemente el Proyecto de Investigación HYDELIFE, del cual soy Investigador Principal: Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos (PID2020-117056RB-I00). Este proyecto tiene asignado un contrato predoctoral (antiguas becas FPI), cuya convocatoria ya está en marcha.

Quien esté interesado en este contrato, puede solicitarlo hasta el 11 de noviembre de 2021, a las 14:00 horas (hora peninsular española).

Es una muy buena oportunidad para realizar, mediante un contrato, la tesis doctoral. Asimismo, también hay opción a pedir un contrato de formación de profesor universitario (antiguas becas FPU) para también estar en disposición de realizar la tesis.

Te podrás incorporar a nuestro equipo de investigación y colaborar en las líneas de trabajo que tenemos en marcha dentro del ICITECH (Instituto de Ciencia y Tecnología del Hormigón).

Requisitos para las personas solicitantes:

Podrán ser solicitantes todas aquellas personas que estén matriculadas o admitidas en un programa de doctorado para el curso 2021/2022, en el momento de presentación de la solicitud. También podrán ser solicitantes todas aquellas personas que, en el momento de presentación de la solicitud, no estando matriculadas o admitidas en un programa de doctorado, estén en disposición de estarlo en la fecha en la que se formalice el contrato.

Cada solicitante únicamente podrá presentar una solicitud y cada solicitud vendrá referida a un proyecto de investigación.

No podrán ser solicitantes, ni acceder a la contratación que se incentiva, quienes cumplan cualquiera de las siguientes circunstancias:

  • Haber disfrutado de un contrato predoctoral por tiempo superior a doce meses, previamente a la presentación de la solicitud.
  • Estar en posesión del título de Doctor, por cualquier universidad española o extranjera.
  • Haber iniciado su formación predoctoral con financiación de otras ayudas destinadas a la formación predoctoral a través del desarrollo de una tesis doctoral que se hayan otorgado en el marco del Plan Estatal de Investigación.

Toda la información la puedes consultar en el siguiente enlace:

http://www.aei.gob.es/portal/site/MICINN/menuitem.dbc68b34d11ccbd5d52ffeb801432ea0/?vgnextoid=4c6c68d98570c710VgnVCM1000001d04140aRCRD